Math 444/539, Homework 7

1. Let G and H be nontrivial groups. Prove that $G * H$ has a trivial center and that if $x \in G * H$ satisfies $x^{n}=1$ for some $n \geq 1$, then x is conjugate to an element of either G or H.
2. Let $X \subset \mathbb{R}^{n}$ be a finite set of points. Assume that $n \geq 3$. Prove that $\pi_{1}\left(\mathbb{R}^{n} \backslash X\right)=1$.
3. Let $X \subset \mathbb{R}^{3}$ be a set of n distinct lines through the origin. Calculate $\pi_{1}\left(\mathbb{R}^{3} \backslash X\right)$.
4. Let X equal $T^{2} \sqcup T^{2}$ modulo the equivalence relation that identifies the circles $S^{1} \times 1$ in the two tori homeomorphically. Calculate $\pi_{1}(X)$.
5. Let $X=\cup_{n=1}^{\infty} X_{n}$, where $X_{n} \subset \mathbb{R}^{2}$ is the circle of center $(1 / n, 0)$ and radius $1 / n$. Let $p=(0,0)$. Prove that $\pi_{1}(X, p)$ is uncountable. Hint : construct a retraction $r_{n}: X \rightarrow X_{n}$, and thus a surjection $\left(r_{n}\right)_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}\left(X_{n}, p\right)=\mathbb{Z}$. Combine the r_{n} together to get a map $R: \pi_{1}(X, p) \rightarrow \prod_{n=1}^{\infty} \pi_{1}\left(X_{n}, p\right)$. Prove that R is surjective.
6. Let T^{2} be the 2-torus. Recall that $\pi_{1}\left(T^{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$. Consider $(n, m) \in \mathbb{Z} \oplus \mathbb{Z}$. Assume that n and m are relatively prime. Prove that the curve on T^{2} representing the homotopy class of (n, m) can be chosen so that it has no self-intersections. Hint: Use the projection $\mathbb{R} \rightarrow S^{1}$ that was used to calculate $\pi_{1}\left(S^{1}\right)$ to construct a projection $\rho: \mathbb{R}^{2} \rightarrow T^{2}$. The curve you want will be the image of a straight line in \mathbb{R}^{2}.
7. Let $\Sigma_{g, n}$ be the result of removing n disjoint open discs from an oriented genus g surface. Thus $\Sigma_{g, n}$ is a compact manifold with boundary whose boundary consists of n circles. Assume that $g \geq 2$ and that $n \geq 1$. Prove that $\pi_{1}\left(\Sigma_{g, n}\right)$ is a free group on $2 g+n-1$ generators. You can use the fact that the diffeomorphism type of this surface does not depend on which discs you remove.
8. Let Σ_{g} be an oriented genus g surface. Assume that $g \geq 2$. Prove that $\pi_{1}\left(\Sigma_{g}\right)$ is not abelian. Hint : find a surjective homomorphism from $\pi_{1}\left(\Sigma_{g}\right)$ to the dihedral group of order 8 .
9. Prove that the fundamental group of the following noncompact surface is free on infinitely many generators.

10. Let $f: T^{2} \rightarrow T^{2}$ be a map satisfying $f(p)=p$ for some point p. Since $\pi_{1}\left(T^{2}, p\right) \cong \mathbb{Z}^{2}$, we get an induced map $f_{*}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$; ie a 2×2 integer matrix. Define M_{f} to be $T^{2} \times I$ modulo the equivalence relation that identifies $(x, 1)$ with $(f(x), 0)$ (this is called the mapping torus of f). Compute $\pi_{1}\left(M_{f}\right)$ in terms of the above matrix.
