Math 444/539, Homework 8

1. Construct a 2-dimensional CW complex that contains both an annulus $S^{1} \times I$ and a Möbius band as deformation retracts.
2. Prove that S^{∞} is contractible.
3. Given positive integers v and e and f satisfying $v-e+f=2$, construct a CW complex structure on S^{2} having $v 0$-cells, e 1-cells, and $f 2$-cells.
4. Let X be the space quotient space of S^{2} obtained by identifying the north and south poles to a single point.
(a) Construct an explicit CW complex structure on X.
(b) Use this CW complex structure to calculate the fundamental group of X.
5. Consider the quotient space of a cube $[0,1]^{3}$ obtained by identifying each square face with the opposite square face via the right-handed screw motion consisting of a translation by one unit in the direction perpendicular to the face combined with a one-quarter twist of the face about its center point. Show this quotient space X is a CW complex with two 0 -cells, four 1 -cells, three 2-cells, and one 3-cell. Using this structure, show that $\pi_{1}(X)$ is isomorphic to the quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\}$ of order eight.
