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CHAPTER 1

Multivariable calculus

In this chapter, we quickly review the rudiments of multivariable differential
calculus.

1.1. Smooth maps and their derivatives

Let f : V1 → V2 be a continuous function between open sets V1 ⊂ Rn and
V2 ⊂ Rm. We say that f is smooth if all of its mixed partial derivatives exist. To
keep things straight, we will illustrate all the features of f we will discuss with the
following running example.

Example. Let V1 = R2 and V2 = R3. Define f : V1 → V2 via the formula

f(x1, x2) = (x21 − 3x32, x1x2, x2 + 3) ∈ V2 ((x1, x2) ∈ V1).

It is clear that all mixed partial derivatives of f exist, so f is smooth. □

As a first approximation, the derivative of f at a point p ∈ V1, denoted Dpf ,
is the matrix of first partial derivatives. Thus Dpf is an m × n matrix whose

(i, j)-entry is ∂fi
∂xj

, where fi is the i
th coordinate function of f .

Example. Returning to the above example, if p = (p1, p2) then

Dpf =

2p1 −9p22
p2 p1
0 1

 □

However, this is not quite the correct point of view. In reality, one should view
the derivative Dpf as being the linear map

Rn → Rm

x⃗ 7→ (Dpf) · x⃗

which corresponds to the matrix of first partial derivatives we discussed above. But
this is potentially confusing since the Rn and Rm look like the same places where V1
and V2 live, but in reality they should be thought of as something different, namely
the spaces of tangent vectors of V1 and V2 at the points p ∈ V1 and f(p) ∈ V2,
respectively. These spaces of tangent vectors will be denoted TpV1 and Tf(p)V2, so
TpV1 = Rn and Tf(p)V2 = Rm and Dpf is a linear map from the vector space TpV1
to the vector space Tf(p)V2. We remark that though all the TpV1 for p ∈ V1 equal
the vector space Rn, they should not be viewed as being the same thing.

Example. Returning to the above example, if we write x⃗ = (x1, x2) ∈ TpV1 =
R2, then Dpf is the linear map from TpV1 = R2 to Tf(p)V2 = R3 defined via the
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2 1. MULTIVARIABLE CALCULUS

formula

(Dpf)(x⃗) =

2p1 −9p22
p2 p1
0 1

(
x1
x2

)
=

2p1x1 − 9p22x2
p2x1 + p1x2

x2

 ;

here we are regarding x⃗ as a column vector. □

1.2. The chain rule

One of the most important property of derivatives is the chain rule. Let f :
V1 → V2 and g : V2 → V3 be smooth maps, where V1 ⊂ Rn and V2 ⊂ Rm and
V3 ⊂ Rℓ are open. We then have the composition g ◦ f : V1 → V3. For p ∈ V1, we
have linear maps

Dpf : TpV1 → Tf(p)V2

and
Df(p)g : Tf(p)V2 → Tg(f(p))V3

and
Dp(g ◦ f) : TpV1 → Tg(f(p))V3.

The chain rule can be stated as follows.

Theorem 1.1 (Chain Rule I). Let V1 ⊂ Rn and V2 ⊂ Rm and V3 ⊂ Rℓ be open
sets and let f : V1 → V2 and g : V2 → V3 be smooth maps. Then for all p ∈ V1 we
have

Dp(g ◦ f) = (Df(p)g) ◦ (Dpf).

Example. Let V1 = R2 and V2 = R3 and V3 = R. Define f : V1 → V2 via the
formula

f(x1, x2) = (x21 − 3x32, x1x2, x2 + 3) ∈ V2 ((x1, x2) ∈ V1)

and g : V2 → V3 via the formula

g(y1, y2, y3) = (y1 + 2y22 + 3y33).

As we calculated in the previous section, for p ∈ V1 written as p = (p1, p2) the
linear map Dpf : TpV1 → Tf(p)V2 is represented by the matrix2p1 −9p22

p2 p1
0 1

 .

For q ∈ V2 written as q = (q1, q2, q3), the linear map Dqg : TqV2 → Tg(q)V3 is
represented by the matrix (

1 4q2 9q23
)
.

Let’s now check the chain rule. The composition g ◦ f : V1 → V3 is given via the
formula

(g ◦ f)(p1, p2) = ((p21 − 3p32) + 2(p1p2)
2 + 3(p2 + 3)3) ∈ R1.

The derivative Dp(g ◦ f) of this at p = (p1, p2) is represented by the matrix(
2p1 + 4(p1p2)p2 −9p22 + 4(p1p2)p1 + 9(p2 + 3)2

)
.

Plugging the equations of f(p) into the above formula for Dqg : TqV2 → Tg(q)V3,
the linear map Df(p)g : Tf(p)V2 → Tg(f(p))V3 is represented by the matrix(

1 4(p1p2) 9(p2 + 3)2
)
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The chain rule then asserts that(
2p1 + 4(p1p2)p2 −9p22 + 4(p1p2)p1 + 9(p2 + 3)2

)
=

(
1 4(p1p2) 9(p2 + 3)2

)
·

2p1 −9p22
p2 p1
0 1

 ,

which is easily verified. □
We now globalize all of this. The tangent bundles of V1 and V2 are defined to

be
TV1 = V1 × Rn and TV2 = V2 × Rm,

respectively. The tangent bundle TV1 should be viewed as the union of the tangent
spaces TpV1 as p ranges over V1; the space TpV1 = Rn is identified with {p}×Rn ⊂
TV1. Similarly, TV2 should be viewed as the union of the tangent spaces TqV2 = Rm
as q ranges over V2. The derivatives Dpf piece together to give a continuous map
Df : TV1 → TV2 defined via the formula

(Df)(p, x⃗) = (f(p), (Dpf)(x⃗)) ∈ TV2 = V2 × Rm ((p, x⃗) ∈ TV1 = V1 × Rn).

Example. Continuing our running example, if V1 = Rn and V2 = Rm and
f : V1 → V2 is defined via the formula

f(x1, x2) = (x21 − 3x32, x1x2, x2 + 3) ∈ V2 ((x1, x2) ∈ V1),

then the map Df : TV1 → TV2 is the map defined via the formula

Df(p, x⃗)) = ((p21 − 3p32, p1p2, p2 + 3), (2p1x1 − 9p2x2, p2x1 + p1x2, x2))

for p = (p1, p2) ∈ V1 and x⃗ = (x1, x2) ∈ TpV1 = R2. □

To globalize the chain rule (Theorem 1.1), observe that if V3 ⊂ Rℓ is an open
set and g : V2 → V3 is a smooth map, then we have derivative maps

Df : TV1 → TV2

and
Dg : TV2 → TV3

and
D(g ◦ f) : TV1 → TV3.

The chain rule can then be stated as follows.

Theorem 1.2 (Chain Rule II). Let V1 ⊂ Rn and V2 ⊂ Rm and V3 ⊂ Rℓ be
open sets and let f : V1 → V2 and g : V2 → V3 be smooth maps. We then have

D(g ◦ f) = (Dg) ◦ (Df).





CHAPTER 2

Smooth manifolds

This chapter defines smooth manifolds and gives some basic examples. We also
discuss smooth partitions of unity.

2.1. The definition

We start with the definition of a manifold (not yet smooth).

Definition. A manifold of dimension n is a paracompact Hausdorff spaceMn

such that for every p ∈ Mn there exists an open set U ⊂ Mn containing p and a
homeomorphism ϕ : U → V , where V ⊂ Rn is open. The map ϕ : U → V is a chart
around p. We will often call V a local coordinate system around p and identify it
via ϕ−1 with a subset of Mn. □

Remark. We require Mn to be Hausdorff and paracompact to avoid various
pathologies, some of which are discussed in the exercises. The existence of charts
is the real fundamental defining property of a manifold. □

Our goal is to learn how to do calculus on manifolds. The idea is that notions
like derivatives are local: they only depend on the behavior of functions in small
neighborhoods of a point. We can thus use charts and local coordinate systems to
identify small pieces of our manifold with open sets in Rn and thereby apply calculus
in Rn to our manifolds. However, this does not quite work because different charts
might give you completely unrelated notions of smooth functions, derivatives, etc.
We therefore have to carefully choose our charts.

Definition. Given two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on a manifold
Mn, the transition function from U1 to U2 is the function τ21 : ϕ1(U1 ∩ U2) →
ϕ2(U1 ∩U2) defined via the formula τ21 = ϕ2 ◦ (ϕ1|ϕ1(U1∩U2))

−1. Here observe that
ϕ1(U1 ∩ U2) is an open subset of V1 ⊂ Rn and ϕ2(U1 ∩ U2) is an open subset of
V2 ⊂ Rn. □

Definition. A smooth atlas for a manifold Mn is a set A = {ϕi : Ui → Vi}i∈I
of charts on Mn with the following properties.

• The Ui cover M
n, i.e. Mn = ∪i∈IUi.

• For all i, j ∈ I, the transition function from U1 to U2 is smooth. Of course,
this only has content if Ui ∩ Uj ̸= ∅.

Two smooth atlases A1 and A2 are compatible if A1 ∪A2 is also a smooth atlas.
This defines an equivalence relation on smooth atlases. A smooth manifold is a
manifold equipped with an equivalence class of smooth atlases. □

Remark. We will give examples of manifolds by describing an atlas for them.
However, this atlas is not a fundamental property of the manifold, and when we
subsequently make use of charts for the manifold we will allow ourselves to use
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6 2. SMOOTH MANIFOLDS

charts from any equivalent atlas. The first place where this freedom will play an
important role is when we define what it means for a function between two smooth
manifolds to be smooth. □

2.2. Basic examples

Here are a number of examples.

Example. If U ⊂ Rn is an open set, then U is naturally a smooth manifold
with the smooth atlas A consisting of a single chart ϕ : U → V with V = U
and ϕ = id. These can be complicated and wild; for instance, U might be the
complement of a Cantor set embedded in Rn. □

Example. An important special case of an open subset of Euclidean space is
the general linear group GLn(R). The set Mat(n, n) of n× n real matrices can be

identified with Rn2

in the obvious way, and GLn(R) is the complement of the closed
subset where the determinant vanishes. This is an example of a Lie group, that is,
a smooth manifold which is also a group and for which the group operations are
continuous (and, in fact, smooth). We will discuss these in much more detail in
Chapter 9 □

Example. More generally, if Mn is a smooth manifold with smooth atlas
A = {ϕi : Ui → Vi}i∈I and U ⊂ Mn is an open subset, then U is naturally a
smooth manifold with smooth atlas {ϕi|U∩Ui : Ui ∩ U → ϕi(U ∩ Ui)}i∈I . □

Example. Let Sn be the unit sphere in Rn+1, i.e.

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1}.

Then Sn can be endowed with the following smooth atlas. For 1 ≤ i ≤ n+1, define

Uxi>0 = {(x1, . . . , xn+1) ∈ Sn | xi > 0}

and

Uxi<0 = {(x1, . . . , xn+1) ∈ Sn | xi < 0}.

Let V ⊂ Rn be the open unit disc. Define ϕxi>0 : Uxi>0 → V via the formula

ϕxi>0(x1, . . . , xn+1) = (x1, . . . , x̂i, . . . , xn+1) ∈ V ;

here x̂i indicates that this single coordinate should be omitted. Define ϕxi<0 :
Uxi<0 → V similarly. We claim that

A = {ϕxi>0 : Uxi>0 → V }n+1
i=1 ∪ {ϕxi<0 : Uxi<0 → V }n+1

i=1

is a smooth atlas. Since the Uxi>0 and Uxi<0 clearly cover Sn, it is enough to
check that the transition functions are smooth. As an illustration of this, we will
verify that for 1 ≤ i < j ≤ n + 1 the transition function τ from Uxi>0 to Uxj>0

is smooth (all the other needed verifications are similar, and this will allow us
to avoid introducing some terrible notation for the various special cases). Define
Vij = ϕi(Uxi>0 ∩ Uxj>0) and Vji = ϕj(Uxi>0 ∩ Uxj>0), so Vij consists of points
(y1, . . . , yn) ∈ V such that yj−1 > 0 and Vji consists of points (y1, . . . , yn) ∈ V such
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that yi > 0. The transition function τji : Vij → Vji is then given by the formula

τji(y1, . . . , yn) = ϕxj>0(ϕ
−1
xi>0(y1, . . . , yn))

= ϕxj>0(y1, . . . , yi−1,
√

1− y21 − · · · − y2n, yi, . . . , yn)

= (y1, . . . , yi−1,
√

1− y21 − · · · − y2n, yi, · · · , ŷj−1, . . . , yn).

This is clearly a smooth function. □

Example. Here is another smooth atlas for Sn. Let U1 = Sn \ {(0, 0, 1)}
and U−1 = Sn \ {(0, 0,−1)}. Identifying Rn with the subspace of Rn+1 consisting
of points whose last coordinate is 0, define a function ϕ1 : U1 → Rn by letting
ϕ1(p) be the unique intersection point of the line joining p ∈ U1 ⊂ Sn ⊂ Rn+1

and (0, 0, 1) with the plane Rn. It is clear that ϕ1 is a homeomorphism. Similarly,
define ϕ−1 : U−1 → Rn by letting ϕ−1(p) be the unique intersection point of the
line joining p ∈ U−1 ⊂ Sn ⊂ Rn+1 and (0, 0,−1) with the plane Rn. Again, ϕ−1 is a
homeomorphism. In the exercises, you will show that the set {ϕ1 : U1 → Rn, ϕ−1 :
U−1 → Rn} is a smooth atlas for Sn which is equivalent to the smooth atlas for Sn

given in the previous example. □

Example. Define RPn to be real projective space, i.e. the quotient Sn/ ∼,
where ∼ identifies antipodal points (that is, x ∼ −x for all x ∈ Sn). For 1 ≤
i ≤ n + 1, define Ui ⊂ RPn to be the image of Uxi>0 ⊂ Sn under the quotient
map Sn → RPn. Since Uxi>0 does not contain any antipodal points, the map
Uxi>0 → Ui is a homeomorphism. Clearly the Ui cover RPn. Letting V be the unit
disc in Rn, we can define homeomorphisms ϕi : Ui → V as the composition

Ui ∼= Uxi>0

ϕxi>0−−−−→ V.

The set A = {ϕi : Ui → V }n+1
i=1 then forms a smooth atlas for RPn; the fact that

the transition maps for the sphere are smooth implies that the transition maps for
A are. □

Example. For j = 1, 2, let M
nj

j be a smooth nj-dimensional manifold with

smooth atlas {ϕji : U ji → V ji }i∈Ij . Then Mn1
1 × Mn2

2 is a smooth (n1 + n2)-

dimensional manifold with smooth atlas {ϕ1i ×ϕ2i′ : U1
i ×U2

i′ → V 1
i ×V 2

i′ }(i,i′)∈I1×I2 .
An important special case of a product is the n-torus, i.e. the product S1×· · ·×S1

of n copies of S1. □

For our final family of examples of smooth manifolds, we need the following
definition.

Definition. Let X ⊂ Rn be an arbitrary set and let f : X → Rm be a
function. We say that f is smooth if there exists an open set U ⊂ Rn with X ⊂ U
and a smooth function g : U → Rn such that g|X = f . If Y ⊂ Rm is the image of
f , then we say that f : X → Y is a diffeomorphism if f is a homeomorphism and
both f : X → Y and f−1 : Y → X are smooth. □

Example. An n-dimensional smooth submanifold of Rm is a subset Mn ⊂ Rm
such that for each point p ∈ Mn, there exists a chart ϕ : U → V around p such
that ϕ is a diffeomorphism. Here we emphasize that we are using the definition
of diffeomorphism discussed in the previous definition. The collection of all such
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Figure 2.1. On the left is a genus 2 surface (a “donut with two
holes”), which is a 2-dimensional smooth submanifold of R3. On
the right is a trefoil knot, which is a 1-dimensional smooth sub-
manifold of R3.

charts forms a smooth atlas on Mn; the fact that we require the charts to be
diffeomorphisms makes the fact that the transition functions are smooth automatic.
It is easy to draw many interesting examples of smooth submanifolds of R3; see,
for example, the genus 2 surface and the knotted circle in Figure 2.1. □

Remark. The charts in the first smooth atlas on Sn we gave above are diffeo-
morphisms, so we were really making use of the fact that Sn is an n-dimensional
smooth submanifold of Rn+1. □

Remark. In fact, all smooth manifolds can be realized as smooth submanifolds
of Rm for some m≫ 0 (in other words, all smooth manifolds can be “embedded” in
Rm). We will prove this for compact smooth manifolds in Theorem 5.1 below. □

2.3. Smooth functions

One of the reasons for introducing smooth atlases is to allow us to make the
following definition; see the proof of the lemma that immediately follows.

Definition. Let Mn be a smooth n-manifold and let f : Mn → R be a
function. We say that f is smooth at a point p ∈ Mn if the following condition
holds.

• Let ϕ : U → V be a chart such that p ∈ U . Then the function f ◦ ϕ−1 :
V → R is smooth at ϕ(p); here recall that V is an open subset of Rn, so
smoothness for f ◦ϕ−1 means as in Chapter 1 that all of its mixed partial
derivatives exist.

We say that f is smooth if it is smooth at all points p ∈ Mn. We will denote the
set of all smooth functions on Mn by C∞(Mn,R). □

Lemma 2.1. The notion of f : Mn → R being smooth at a point p ∈ Mn is
well-defined, i.e. it does not depend on the choice of chart ϕ : U → V such that
p ∈ U .

Proof. Let ϕ1 : U1 → V1 be another chart such that p ∈ U1. We must prove
that f ◦ ϕ−1 : V → R is smooth at ϕ(p) if and only if f ◦ ϕ−1

1 : V1 → R is smooth
at ϕ1(p). Let τ : ϕ(U ∩ U1) → ϕ1(U ∩ U1) be the transition map between our two
charts, so τ = ϕ1 ◦ (ϕ|U∩U1)

−1. On ϕ(U ∩ U1), we have

f ◦ ϕ−1 = f ◦ ϕ−1
1 ◦ ϕ1 ◦ ϕ−1 = f ◦ ϕ−1

1 ◦ τ.
Since τ is smooth, the function f ◦ϕ−1 is smooth at ϕ(p) if and only if the function
f ◦ ϕ−1

1 is smooth at ϕ1(p), as desired. □
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Definition. If f : Mn → R is a smooth function on Mn and ϕ : U → V
is a chart on Mn, then the smooth function f ◦ ϕ−1 : V → R will be called the
expression for f in the local coordinates V . □

Remark. IfMn is a smooth submanifold of Rm, then we now have two different
definitions of what it means for a function f :Mn → R to be smooth:

• The definition we just gave, and
• The definition given right before the definition of a smooth submanifold
of Rm, i.e. a function f : Mn → R that can be extended to a smooth
function g : U → R for some open set U ⊂ Rm containing Mn.

In the exercises, you will prove that these two definitions are equivalent. By the
way, this makes it easy to write down many examples of smooth functions. For
example, the function f : Sn → R defined via the formula

f(x1, . . . , xn+1) =

n+1∑
i=1

ix2i+1
i

is smooth; here we are regarding Sn as a smooth submanifold of Rn+1. □
Defining what it means for a map between arbitrary manifolds to be smooth is

a little complicated. Consider the following example.

Example. Define a map f : R → S1 via the formula f(t) = (cos(t), sin(t)) ∈
S1 ⊂ R2. We clearly want f to be smooth. Recall that R is endowed with the
smooth atlas with a single chart, namely the identity map R → R. The image of
this chart under f is not contained in any single chart for S1, so we cannot define
smoothness for f locally using this smooth atlas. □

The problem with the above example is that we really need to use “smaller”
charts on R. We now adapt the following convention to circumvent this.

Convention. If Mn is a smooth manifold with smooth atlas A, then we will
automatically enlarge A to the maximal atlas compatible with A (remember our
equivalence relation on smooth atlases!). In particular, if ϕ : U → V is a chart for
Mn, then so is ϕ|U ′ : U ′ → ϕ(U ′) for any open set U ′ ⊂ U . □

With this convention, we make the following definition.

Definition. Let f : Mn1
1 → Mn2

2 be a map between smooth manifolds. We
say that f is smooth at a point p ∈Mn1

1 if there exist charts ϕ1 : U1 → V1 for Mn1
1

and ϕ2 : U2 → V2 for Mn2
2 with the following properties.

• p ∈ U1.
• f(U1) ⊂ U2.
• The composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2

is smooth at ϕ1(p); this makes sense since V1 and V2 are open subsets of
Rn1 and Rn2 , respectively.

We say that f is smooth if it is smooth at all points p ∈Mn1
1 . We will denote the set

of all smooth functions from Mn1
1 to Mn2

2 by C∞(Mn1
1 ,Mn2

2 ). A diffeomorphism
is a smooth bijection whose inverse is also smooth. □

Just like for real-valued smooth functions, this does not depend on the choice
of charts.
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Definition. If f : Mn1
1 → Mn2

2 is a smooth function between smooth mani-
folds, ϕ1 : U1 → V1 is a chart for Mn1

1 , and ϕ2 : U2 → V2 is a chart for Mn2
2 such

that f(U1) ⊂ U2, then the smooth function V1 → V2 obtained as the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2

will be called the expression for f in the local coordinates V1 and V2. □

Example. It is immediate that the function f : R → S1 discussed above
defined via the formula f(t) = (cos(t), sin(t)) ∈ S1 ⊂ R2 is smooth. □

Remark. Just as before, if M1 and M2 are smooth submanifolds of Euclidean
space this definition agrees with the definition given just before the definition of
smooth submanifolds. This allows us to write down many interesting examples of
smooth maps. For example, regarding S1 as a smooth submanifold of R2 we can
define a smooth map f : S1 → S1 via the formula f(x1, x2) = (x21 −x22, 2x1x2). □

2.4. Manifolds with boundary

The following spaces are not manifolds.

Example. The set Dn = {(x1, . . . , xn) ∈ Rn | x21 + · · ·+ x2n ≤ 1} is not a man-
ifold since the points of Sn−1 ⊂ Dn do not have open neighborhoods in Dn homeo-
morphic to open subsets of Rn. In particular, [0, 1] is not a manifold. □

However, Dn is an example of a manifold with boundary, which we now define.

Notation. Define

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}
and

∂Hn = {(x1, . . . , xn) ∈ Rn | xn = 0}. □

Definition. A smooth n-manifold with boundary is a Hausdorff paracompact
space Mn together with a smooth atlas {ϕi : Ui → Vi}i∈I , which is defined exactly
like for ordinary smooth manifolds except that now Vi is an open subset of Hn. □

There is one subtle aspect of the above definition: since Vi is an open subset
of Hn, we need to be careful about what it means for the transition functions to be
smooth. The correct definition of a smooth function on an arbitrary (not necessarily
open) subset of Rn is as follows.

Definition. Let X ⊂ Rn be arbitrary and let f : X → Rm be a function. We
say that f is smooth if there exists an open set U ⊂ Rn such that X ⊂ U as well as
a smooth function g : U → Rm such that g|X = f . □

Smooth maps between manifolds with boundary are defined exactly like those
between ordinary manifolds.

We now define the boundary of a smooth manifold with boundary.

Definition. Let Mn be a smooth manifold with boundary. The boundary of
Mn, denoted ∂Mn, is the set of all points x ∈ Mn such that there exists a chart
ϕ : U → V with x ∈ U and V ⊂ Hn and ϕ(x) ∈ ∂Hn. The interior of Mn, denoted
Int(Mn), is the set of all points x ∈ Mn such that there exists a chart ϕ : U → V
with x ∈ U and V ⊂ Hn and ϕ(x) /∈ ∂Hn. □
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Figure 2.2. Removing the shaded submanifold of the genus 2
surface results in a surface with boundary whose boundary consists
of the union of two circles.

Of course, with this definition it is not immediately obvious that ∂Mn is disjoint
from Int(Mn). However, the following lemma says that it is.

Lemma 2.2. Let Mn be a smooth manifold with boundary. Then ∂Mn ∩
Int(Mn) = ∅.

Proof. To prove this, it is enough to prove that if U ⊂ Hn is an open set such
that U ∩ ∂Hn ̸= ∅, then there does not exist a diffeomorphism f : U → U ′, where
U ′ ⊂ Hn satisfies U ′ ∩ ∂Hn = ∅. Assume that such a diffeomorphism f : U → U ′

exists. By definition, we can find an open set V ⊂ Rn such that U = Hn ∩V
and a function g : V → Rn such that f = g|U . Let p ∈ U ∩ ∂Hn. Since f is a
diffeomorphism, the derivative Dpg = Dpf is an isomorphism. By Theorem 5.2
(the Implicit Function Theorem), the map g is a local diffeomorphism around p,
i.e. there exists an open neighborhood V ′ of p such that V ′ ⊂ V and such that g
restricts to a diffeomorphism between V ′ and an open set W in Rn. Since U ′ is
open in Rn (after all, it does not intersect ∂Hn), the set U ′∩W is open in Rn. But
this implies that

g−1(U ′ ∩W ) = f−1(U ′ ∩W ) ⊂ Hn

is an open subset of Rn. Since f−1(U ′ ∩W ) contains the point p ∈ ∂Hn, this is
impossible, as desired. □

We now discuss some examples.

Example. Every smooth manifold is a smooth manifold with boundary. The
point is that every open subset of Rn is diffeomorphic to an open subset of Hn.
The boundary of a smooth manifold is empty. □

Example. The set [0, 1] is a smooth 1-manifold with boundary and ∂[0, 1] is
{0, 1}. □

We will later prove (see Theorem 11.1) that all compact connected 1-manifolds
with boundary are diffeomorphic to either S1 or [0, 1].

Example. More generally, Dn is a smooth n-manifold with boundary and
∂Dn = Sn−1. This is not hard to prove directly, but we will derive it from more
general considerations in §5.6. □

Example. Our final example will be intuitively plausible, but we will not be
able to justify it until Chapter 5 (where it will appear in the exercises). Let Mn

be a smooth n-manifold and let Xn be a smooth n-manifold with boundary that
is a smooth submanifold of Mn (we have not yet defined what this means, but we
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hope that the idea is intuitively clear). Then Mn \ Int(Xn) is a smooth n-manifold
with boundary and ∂(Mn \ Int(Xn)) = ∂Xn. As an example, see Figure 2.2. This
kind of example shows one important role played by manifolds with boundary: they
appear during “cut-and-paste” operations on manifolds. □

2.5. Partitions of unity

We now introduce an important technical device. In calculus, we learned how to
construct many interesting functions on open subsets of Rn. To use these functions
to prove theorems about manifolds, we need a tool for assembling local information
into global information. This tool is called a smooth partition of unity, which we
now define. Recall that if f :Mn → R is a function, then the support of f , denoted
Supp(f), is the closure of the set {x ∈Mn | f(x) ̸= 0}.

Definition. Let Mn be a smooth manifold with boundary and let {Ui}i∈I
be an open cover of Mn. A smooth partition of unity subordinate to {Ui}ki=1 is a
collection of smooth functions {fi :Mn → R}i∈I satisfying the following properties.

• We have 0 ≤ fi(x) ≤ 1 for all 1 ≤ i ≤ k and x ∈Mn.
• We have Supp(fi) ⊂ Ui for all 1 ≤ i ≤ k.
• For all p ∈ Mn, there exists an open neighborhood W of p such that the
set {i ∈ I | W ∩ Supp(fi) ̸= ∅} is finite.

• For all p ∈ Mn, we have
∑
i∈I fi(p) = 1. This sum makes sense since

the previous condition ensures that only finitely many terms in it are
nonzero. □

Theorem 2.3 (Existence of partitions of unity). Let Mn be a smooth manifold
with boundary and let {Ui}i∈I be an open cover of Mn. Then there exists a smooth
partition of unity subordinate to {Ui}i∈I .

For the proof of Theorem 2.3, we need the following lemma.

Lemma 2.4 (Bump functions, weak). LetMn be a smooth manifold with bound-
ary, let p ∈ Mn be a point, and let U ⊂ Mn be a neighborhood of p. Then there
exists a smooth function f :Mn → R such that 0 ≤ f(x) ≤ 1 for all x ∈Mn, such
that f equals 1 in some neighborhood of p, and such that Supp(f) ⊂ U .

Proof. We will construct f in a sequence of steps.

Step 1. There exists a smooth function g : R → R such that 0 ≤ g(x) ≤ 1 for
all x ∈ R, such that g(x) = 1 when |x| ≤ 1, and such that Supp(g) ⊂ (−3, 3).

Define g1 : R → R via the formula

g1(x) =

{
0 if x ≤ 0,

e−1/x if x > 0.
(x ∈ R).

The function g1 is a smooth function such that g1(x) ≥ 0 for all x ∈ R, such
that g1(x) = 0 when x ≤ 0, and such that g1(x) > 0 when x > 0. Next, define
g2 : R → R via the formula

g2(x) =
g1(x)

g1(x) + g1(1− x)
,

so g2 is a smooth function such that 0 ≤ g2(x) ≤ 1 for all x ∈ R, such that g2(x) = 0
when x ≤ 0, and such that g2(x) = 1 when x ≥ 1. Finally, define g via the formula

g(x) = g1(2 + x)g1(2− x).
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Clearly g satisfies the desired conditions.

Step 2. Let C0 = {x ∈ Rn | ∥x∥ ≤ 1} and U0 = {x ∈ Rn | ∥x∥ < 2}. Then
there exists a smooth function h : Rn → R such that 0 ≤ h(x) ≤ 1 for all x ∈ Rn,
such that h|C0 = 1, and such that Supp(h) ⊂ U0.

Let g be as in Step 1. Define h via the formula

h(x1, . . . , xn) = g(x21 + · · ·+ x2n).

Clearly h satisfies the desired conditions.

Step 3. There exists a smooth function f as in the statement of the lemma.

Let C0 and U0 and h be as in Step 2. We can then find an open set U ′ ⊂ U such
that p ∈ U ′ and a diffeomorphism ϕ : U ′ → V , where V is either an open subset of
Rn containing U0 or an open subset of Hn containing U0 ∩ Hn and ϕ(p) = 0. The
function f :Mn → R can then be defined via the formula

f(x) =

{
g(ϕ(x)) if x ∈ U ′,

0 otherwise.
(x ∈Mn).

Clearly f satisfies the conditions of the lemma. □

Proof of Theorem 2.3. Since Mn is paracompact and locally compact, we
can find open covers {U ′

j}j∈J and {U ′′
j }j∈J of Mn with the following properties.

• The cover {U ′
j}j∈J refines the cover {Ui}i∈I , i.e. for all j ∈ J there exists

some ij ∈ I such that the closure of U ′
j is contained in Uij .

• The cover {U ′
j}j∈J is locally finite, i.e. for all p ∈ Mn there exists some

open neighborhood W of p such that {j ∈ J | W ∩ U ′
j ̸= ∅} is finite.

• The closure of U ′′
j is a compact subset of U ′

j for all j ∈ J .
For each p ∈ Mn, choose jp such that p ∈ U ′′

jp
and use Lemma 2.4 to find a

smooth function gp : Mn → R such that 0 ≤ gp(x) ≤ 1 for all x ∈ Mn, such that
Supp(gp) ⊂ U ′

jp
, and such that gp equals 1 in some neighborhood Vp of p. Since the

closure of U ′′
j in U ′

j is compact for all j ∈ J , we can find a set {pk}k∈K of points
of Mn such that the set {Vpk | k ∈ K, jpk = j} is a finite cover of U ′′

j for all j ∈ J .
For all j ∈ J , define hj : M

n → R to be the sum of all the gpk such that jpk = j
(a finite sum), so hj is a smooth function such that hj(x) ≥ 0 for all x ∈Mn, such
that hj(x) > 0 for all x ∈ U ′′

j , and such that Supp(hj) ⊂ U ′
j . Finally, for all i ∈ I,

define fi :M
n → R via the formula

fi(x) =

∑
ij=i

hj(x)∑
j∈J hj(x)

(x ∈Mn).

These are not finite sums, but because the cover {U ′
j}j∈J is locally finite and

Supp(hj) ⊂ U ′
j for all j ∈ J , only finitely many terms in each are nonzero for

any choice of x ∈ Mn and the numerator and denominator are smooth functions.
Also, the denominator is nonzero since hj(x) > 0 for all x ∈ U ′′

j and the set {U ′′
j }j∈J

is a cover.
By construction, we have Supp(fi) ⊂ Ui. Moreover, for all x ∈Mn the fact that

the cover {U ′
j}j∈J is locally finite and Supp(hj) ⊂ U ′

j for all j ∈ J implies that there
exists some open neighborhoodW of x such that the set {i ∈ I | W ∩ Supp(fi) = ∅}
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is finite. Finally, for all x ∈Mn we have∑
i∈I

fi(x) =

∑
i∈I

∑
ij=i

hj(x)∑
j∈J hj(x)

=

∑
j∈J hj(x)∑
j∈J hj(x)

= 1,

as desired. □

As a first illustration of how Theorem 2.3 can be used, we prove the following
lemma.

Lemma 2.5 (Bump functions, strong). Let Mn be a smooth manifold with
boundary, let C ⊂ Mn be a closed set, and let U ⊂ Mn be an open set such that
C ⊂ U . Then there exists a smooth function f : Mn → R such that 0 ≤ f(x) ≤ 1
for all x ∈Mn, such that f(x) = 1 for all x ∈ C, and such that Supp(f) ⊂ U .

Proof. Set U ′ =Mn \C. The set {U,U ′} is then an open cover ofMn. Using
Theorem 2.3, we can find smooth functions f :Mn → R and g :Mn → R such that
0 ≤ f(x), g(x) ≤ 1 for all x ∈ Mn, such that Supp(f) ⊂ U and Supp(g) ⊂ U ′, and
such that f + g = 1. The function f then satisfies the conditions of the lemma. □

This has the following useful consequence. Just like for functions on Euclidean
space, if C is an arbitrary subset of a smooth manifold M1 and f : C → M2 is a
function to another smooth manifold, then f is said to be smooth if there exists
an open set U ⊂ M1 containing C and a smooth function g : U → M2 such that
g|C = f .

Lemma 2.6 (Extending smooth functions). Let M be a smooth manifold with
boundary, let C ⊂ M be a closed set, and let U ⊂ M be an open set such that
C ⊂ U . Let f : C → R be a smooth function. Then there exists a smooth function
g :M → R such that g|C = f and such that Supp(g) ⊂ U .

Proof. By definition, there exists an open set U ′ ⊂ M containing C and a
smooth function g1 : U ′ → R such that g1|C = f . Shrinking U ′ if necessary, we can
assume that U ′ ⊂ U . Use Lemma 2.5 to construct a smooth function h : M → R
such that 0 ≤ h(x) ≤ 1 for all x ∈ M , such that h(x) = 1 for all x ∈ C, and such
that Supp(h) ⊂ U ′. Define g :M → R via the formula

g(x) =

{
h(x)g1(x) if x ∈ U ′,

0 otherwise.
(x ∈M).

Clearly g satisfies the conclusions of the lemma. □

2.6. Approximating continuous functions, I

As another illustration of how partitions of unity can be used, we will prove
the following.

Theorem 2.7. Let Mn be a smooth manifold with boundary and let f :Mn →
Rm be a continuous function. Then for all ϵ > 0 there exists a smooth function
g :Mn → Rm such that ∥f(x)− g(x)∥ < ϵ for all x ∈Mn.

Remark. If Mn is not compact, then it is often useful to require that ∥f(x)−
g(x)∥ < ϵ(x) for all x ∈ Mn, where ϵ : Mn → R is a fixed function such that
ϵ(x) > 0 for all x ∈Mn. The proof is exactly the same. □
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Remark. We will later use an important tool called the tubular neighborhood
theorem to generalize Theorem 2.7 to show that continuous functions between ar-
bitrary smooth manifolds can be approximated in an appropriate sense by smooth
functions; see Theorem 6.5. □

For the proof of Theorem 2.7, we need the following lemma.

Lemma 2.8. Let U ⊂ Rn be an open set and let f : U → Rm be a continuous
function such that Supp(f) ⊂ U . Then for all ϵ > 0 there exists a smooth function
g : U → Rm such that Supp(g) ⊂ U and such that ∥f(x)−g(x)∥ < ϵ for all x ∈Mn.

Proof. The Stone-Weierstrass theorem says that we can find a smooth func-
tion g1 : U → Rm such that ∥f(x) − g1(x)∥ < ϵ for all x ∈ U (in fact, it says
that we can take g1 to be a function whose coordinate functions are polynomi-
als). Let C = Supp(f), so C is a closed subset of U . Using Lemma 2.5, we can
find a smooth function β : U → R such that 0 ≤ β(x) ≤ 1 for all x ∈ U , such
that β|C = 1, and such that Supp(β) ⊂ U . Define g : U → Rm via the formula
g(x) = β(x) · g1(x). Since Supp(β) ⊂ U , we also have Supp(g) ⊂ U . Also, we
clearly have ∥f(x)− g(x)∥ < ϵ for all x ∈ C. For x ∈ U \ C, we have f(x) = 0, so
∥g1(x)∥ < ϵ and hence

∥f(x)− g(x)∥ = ∥β(x) · g1(x)∥ ≤ ∥g1(x)∥ < ϵ,

as desired. □

Proof of Theorem 2.7. In the exercises, you will construct a smooth atlas
A = {ϕi : Ui → Vi}i∈I for Mn and a large integer K such that for all p ∈ Mn,
there exists a neighborhood W of p with |{i ∈ I | Ui ∩W ̸= ∅}| < K. We remark
that this is trivial if Mn is compact. Using Theorem 2.3, we can find a smooth
partition of unity {νi : Ui → R}i∈I subordinate to {Ui}i∈I . Define fi : M

n → Rm
via the formula fi(x) = νi(x) · f(x). We thus have∑

i∈I

fi(x) = (
∑
i∈I

νi(x)) · f(x) = f(x) (x ∈Mn).

These sums makes sense since only finitely many terms in them are nonzero for

any fixed x ∈ Mn. Moreover, Supp(fi) ⊂ Ui. Define f̂i : Vi → Rm to be the

expression for fi in the local coordinates Vi, so f̂i = f ◦ϕ−1
i . Applying Lemma 2.8,

we can find a smooth function ĝi : Vi → Rm such that Supp(ĝi) ⊂ Vi and such that

∥f̂i(x)− ĝi(x)∥ < ϵ/K for all x ∈ Vi. Define gi :M
n → Rm via the formula

gi(x) =

{
ĝi(ϕi(x)) if x ∈ Ui,

0 otherwise
(x ∈Mn).

Since Supp(ĝi) ⊂ Vi, this is a smooth function on Mn satisfying Supp(gi) ⊂ Ui.
Moreover, ∥fi(x) − gi(x)∥ < ϵ/K for all x ∈ Mn. Define g : Mn → Rm via the
formula

g(x) =
∑
i∈I

gi(x) (x ∈Mn);

this makes sense because Supp(gi) ⊂ Ui, and hence only finitely many terms in this
sum are nonzero for any fixed x ∈Mn. The function g is a smooth function and

∥f(x)− g(x)∥ = ∥
∑
i∈I

(fi(x)− gi(x))∥ ≤
∑
i∈I

∥fi(x)− gi(x)∥ < K(ϵ/K) = ϵ,
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as desired. □
The following “relative” version of Theorem 2.7 will also be useful.

Theorem 2.9. Let Mn be a smooth manifold with boundary and let f :Mn →
Rm be a continuous function. Assume that f |U is smooth for some open set U .
Then for all ϵ > 0 and all closed sets C ⊂ Mn with C ⊂ U , there exists a smooth
function g : Mn → Rm such that ∥f(x) − g(x)∥ < ϵ for all x ∈ Mn and such that
g|C = f |C .

Proof. The proof is very similar to the proof of Theorem 2.7, so we only
describe how it differs. The key is to choose the smooth atlas A = {ϕi : Ui → Vi}i∈I
for Mn at the beginning of the proof such that if Ui ∩ C ̸= ∅ for some i ∈ I, then
Ui ⊂ U . For i ∈ I with Ui ⊂ U , we can then take our “approximating functions”

ĝi to simply equal f̂i, and thus gi = fi. These choices ensure that the function
g : Mn → Rm constructed in the proof of Theorem 2.7 satisfies g|C = f |C , as
desired. □



CHAPTER 3

The tangent bundle

In this chapter, we will construct the tangent bundle of a smooth manifold and
describe how to differentiate smooth functions. We will then discuss vector fields
and show how then can be integrated to flows. Finally, as an application we will
prove that if M is a smooth manifold and p, q ∈ M are points, then there exists a
diffeomorphism f :M →M such that f(p) = q.

3.1. Tangent spaces

Let Mn be a smooth n-manifold and let p ∈Mn. Our first goal is to construct
an n-dimensional vector space TpM

n called the tangent space to Mn at p. If
ϕ : U → V is a chart around p, then vectors in TpM

n should be represented by
elements of Tϕ(p)V = Rn. To make a definition that does not depend on any
particular choice of chart, we introduce the following equivalence relation.

Definition. Let Mn be a smooth n-manifold, let p ∈Mn, and let {ϕi : Ui →
Vi}i∈I be the set of charts around p. For i, j ∈ I, let τji : ϕi(Ui∩Uj) → ϕj(Ui∩Uj)
be the transition function from Ui to Uj . Finally, let X (Mn, p) be the set of pairs
(i, v⃗), where i ∈ I and v⃗ ∈ Tϕi(p)Vi. Define ∼ to be the relation on X (Mn, p) where
where (i, v⃗) ∼ (j, w⃗) when (Dϕi(p)τji)(v⃗) = w⃗. □

Lemma 3.1. The relation ∼ defined in the previous definition is an equivalence
relation on X (Mn, p).

Proof. We must check reflexivity, symmetry, and transitivity.
For (i, v⃗) ∈ X (Mn, p), we have (i, v⃗) ∼ (i, v⃗) since the relevant transition

function τii : ϕi(Ui ∩ Ui) → ϕi(Ui ∩ Ui) is the identity.
If (i, v⃗), (j, w⃗) ∈ X (Mn, p) satisfy (i, v⃗) ∼ (j, w⃗), then by definition we have

(Dϕi(p)τji)(v⃗) = w⃗. From its definition, we see that τij : ϕj(Ui ∩Uj) → ϕi(Ui ∩Uj)
is the inverse of τji : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj). From Theorem 1.1 (the Chain
Rule I), we have (Dϕj(p)τij) ◦ (Dϕi(p)τji) = id, so (Dϕj(p)τij)(w⃗) = v⃗ and hence
(j, w⃗) ∼ (i, v⃗).

If (i, v⃗), (j, w⃗), (k, u⃗) ∈ X (Mn, p) satisfy (i, v⃗) ∼ (j, w⃗) and (j, w⃗) ∼ (k, u⃗),
then by definition we have (Dϕi(p)τji)(v⃗) = w⃗ and (Dϕj(p)τkj)(w⃗) = u⃗. From its
definition, we see that on ϕi(Ui ∩ Uj ∩ Uk) we have τki = τkj ◦ τji. Again using
Theorem 1.1 (the Chain Rule I), we see that Dϕi(p)τki = (Dϕj(p)τkj) ◦ (Dϕi(p)τji),
so (Dϕi(p)τki)(v⃗) = u⃗ and hence (i, v⃗) ∼ (k, u⃗). □

This allows us to make the following definition.

Definition. Let Mn be a smooth manifold and let p ∈ Mn. Let {ϕi : Ui →
Vi}i∈I be the set of charts around p. The tangent space to Mn at p, denoted TpM

n,
is the set of equivalence classes of elements of X (Mn, p) under the equivalence
relation given by Lemma 3.1. □

17
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Lemma 3.2. Let Mn be a smooth manifold and let p ∈Mn. Then the tangent
space TpM

n is an n-dimensional vector space.

Proof. This follows from the fact that the derivatives used to define the equiv-
alence relation are vector space isomorphisms, so the vector space structures on
the various Tϕi(p)Vi used to define TpM

n descend to a vector space structure on
TpM

n. □
Convention. The notation X (Mn, p) that we used when defining TpM

n will
not be used again. In the future, instead of talking about elements of TpM

n being
equivalence classes of pairs (i, v⃗), we will simply say that a given element of TpM

n

is represented by some v⃗ ∈ Tϕi(p)Vi. □

3.2. Derivatives I

Let f : Mn1
1 → Mn2

2 be a smooth map between smooth manifolds and let
p ∈Mn1

1 . We now show how to construct the derivative Dpf : TpM
n1
1 → Tf(p)M

n2
2 ,

which is a linear map between these vector spaces. Let ϕ1 : U1 → V1 be a chart
around p and let ϕ2 : U2 → V2 be a chart around ϕ(p) such that f(U1) ⊂ U2. We
thus have identifications TpM

n1
1 = Tϕ1(p)V1 and Tf(p)M

n2
2 = Tϕ2(f(p))V2. We define

Dpf : TpM
n1
1 → Tf(p)M

n2
2 to be composition

TpM
n1
1

=−→ Tϕ1(p)V1
Dϕ1(p)(ϕ2◦f◦ϕ−1

1 )
−−−−−−−−−−−−→ Tϕ2(f(p))V2

=−→ Tf(p)M
n2
2 .

Lemma 3.3. This does not depend on the choice of charts.

Proof. This is in the exercises; it provides good practice in the various iden-
tifications we have made. □

Theorem 1.1 (the Chain Rule I) immediately implies the following version of
the chain rule.

Theorem 3.4 (Manifold Chain Rule I). Let f : Mn1
1 → Mn2

2 and g : Mn2
2 →

Mn3
3 be smooth maps between smooth manifolds. Then for all p ∈Mn1

1 we have

Dp(g ◦ f) = (Df(p)g) ◦ (Dpf).

3.3. The tangent bundle

Let Mn be a smooth manifold. The goal of this section is to construct the
tangent bundle of Mn. Recall that if V ⊂ Rn is an open subset, then TV =
V × Rn. This contains all the individual tangent spaces TpV for p ∈ V , namely
TpV = {p} × Rn ⊂ TV . We wish to do a similar thing with the tangent spaces
TpM

n for p ∈Mn. The result will be a 2n-dimensional smooth manifold TMn.
Just like for the tangent spaces, we will define TMn using an equivalence rela-

tion.

Definition. Let Mn be a smooth n-manifold with smooth atlas {ϕi : Ui →
Vi}i∈I . For i, j ∈ I, let τji : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) be the transition function
from Ui to Uj . Finally, let Y(Mn) be the set of triples (i, p, v⃗), where i ∈ I and
p ∈ Ui and v⃗ ∈ Tϕi(p)Vi. Define ∼ to be the relation on Y(Mn) where (i, p, v⃗) and
(j, q, w⃗) satisfy (i, p, v⃗) ∼ (j, q, w⃗) when p = q and (Dpτji)(v⃗) = w⃗. □

Lemma 3.5. The relation ∼ defined in the previous definition is an equivalence
relation on Y(Mn).
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Proof. Immediate from Lemma 3.1. □

This allows us to make the following definition.

Definition. Let Mn be a smooth manifold with smooth atlas {ϕi : Ui →
Vi}i∈I . The tangent bundle of Mn, denoted TMn, is the set of equivalence classes
of elements of Y(Mn) under the equivalence relation given by Lemma 3.5. □

We can identify Y(Mn) with the disjoint union of all the TVi by identifying
(i, p, v⃗) with (ϕi(p), v⃗) ∈ TVi. This endows Y(Mn) with a topology. We give TMn

the quotient topology, so by definition, a set U ⊂ TMn is open if its preimage
under the projection

Y(Mn)
mod ∼−−−−→ TMn

is open. Under this projection, each TVi maps injectively into TMn; as temporary
notation, let its image be TVi ⊂ TMn. Since TVi = Vi × Rn is an open subset of
R2n = Rn × Rn and there is an evident (and trivial) homeomorphism ψi : TVi →
TVi, we deduce that TMn is a manifold. Even better, the set {ψi : TVi → TVi}i∈I
is a smooth atlas: the transition function from TVi to TVj equals the derivative
Dτji : Tϕi(Ui ∩ Uj) → Tϕj(Ui ∩ Uj) of the transition function τji : ϕi(Ui ∩ Uj) →
ϕj(Ui ∩ Uj), which is clearly smooth. We have proved the following theorem.

Theorem 3.6. LetMn be a smooth n-manifold. Then the tangent bundle TMn

of Mn is a smooth 2n-dimensional manifold.

Convention. Just like for the tangent space, we will never again use the
notation Y(Mn) or the formalism of triples (i, p, v⃗) when discussing TMn. Instead,
we will say that a given point of TMn is represented by a given point of TVi. □

Remark. See §3.5 for a discussion of how to visualize the tangent bundle. □

3.4. Derivatives II

If f :M1 →M2 is a smooth map between smooth manifolds, then we previously
have defined linear maps Dpf : TpM1 → Tf(p)M2 for all p ∈ M1. These piece
together to define a map Df : TM1 → TM2 that restricted to the subspace TpM1

of TM1 equals Dpf . It is clear that this is a smooth map. Just like for Theorem
1.2 (Chain Rule II), Theorem 3.4 implies the following.

Theorem 3.7 (Manifold Chain Rule II). Let f : Mn1
1 → Mn2

2 and g : Mn2
2 →

Mn3
3 be smooth maps between smooth manifolds. Then

D(g ◦ f) = (Dg) ◦ (Df).

3.5. Visualizing the tangent bundle

Our construction of the tangent bundle was very abstract. In the case of
smooth submanifolds of Rm, there is a simpler construction which is a great aid
to visualization. Consider a smooth submanifold Mn ⊂ Rm. For p ∈ Mn, we can
regard TpM

n as a subspace of TpRm = Rm in the following way. By definition,
there is a diffeomorphism ϕ : U → V , where U ⊂ Mn is an open neighborhood of
p and V ⊂ Rn is an open set. The inverse ϕ−1 can be regarded as a smooth map
from V to Rm, and thus it has a derivative

Dϕ(p)ϕ
−1 : Tϕ(p)V → TpRm = Rm.
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p

v∈TpS
1

Figure 3.1. A vector v⃗ ∈ TpS
1 is orthogonal to the line from 0 to p.

The image of this derivative can be identified with the tangent space TpM
n; it is

easy to see that it does not depend on the choice of diffeomorphism ϕ : U → V .
Using this, we can regard the tangent bundle TMn as the subspace

{(p, v⃗) ∈ TRm | p ∈Mn, v⃗ ∈ TpM
n ⊂ TpRm} ⊂ TRm = Rm × Rm.

This results in the familar picture of tangent vectors to Mn as being arrows in Rm
that “point in the direction of the tangent plane to Mn”.

Example. For Sn ⊂ Rn+1, you will prove in the exercises that

TSn = {(p, v⃗) ∈ TRn+1 | ∥p∥ = 1 and v⃗ is orthogonal to the line from 0 to p}.

See Figure 3.1. □

The derivative map can also be understood from this perspective. Let Mn1
1 ⊂

Rm1 and Mn2
2 ⊂ Rm2 be smooth submanifolds of Euclidean space and let f :

Mn1
1 → Mn2

2 be a smooth map. By definition, this means that there exists an
open set U ⊂ Rm1 and a smooth map g : U → Rm2 such that g|Mn1

1
= f . As

discussed in Chapter 1 (our review of multivariable calculus), the map g induces a
derivative map Dg : TU → TRm2 ; on TpU ⊂ TU for p ∈ U , this is just the linear
derivative map Dpg : TpU → Tg(p)Rm2 . The derivative Df : TMn1

1 → TMn2
2 is

then just the restriction of Dg to TMn1
1 ⊂ TU ; this image of this restriction lies in

TMn2
2 ⊂ TRm2 .
Often the smooth map f : Mn1

1 → Mn2
2 is given by a formula which can be

extended to an open set U (often all of Rm1 , or at least Rm1 minus some isolated
points where the formula has a singularity). Using this formula, it is easy to use
the above recipe to work out the effect of Df .
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3.6. Directional derivatives

Let M be a smooth manifold, let p ∈ M , and let v⃗ ∈ TpM . Our goal in this
section is to construct a linear map ∇v⃗ from the set C∞(Mn,R) of smooth real-
valued functions on Mn to R; for f ∈ C∞(Mn,R), the value ∇v⃗(f) ∈ R will be
called the directional derivative of f in the direction v⃗.

Consider a smooth function f : Mn → R. The derivative Dpf is a linear map
from TpM

n to Tf(p)R = R. We define

∇v⃗(f) = (Dpf)(v⃗) ∈ R.

This can be easily related to the usual directional derivative from multivariable
calculus. Namely, if ϕ : U → V is a chart around p and g : V → R is the expression
for f in the local coordinates V (so g = f ◦ϕ−1), then we can regard v⃗ as an element
of Tϕ(p)V and ∇v⃗(f) is easily seen to be the usual multivariable calculus directional
derivative of g in the direction v⃗.

The operator ∇v⃗ has the following properties.

Lemma 3.8. Let M be a smooth manifold and let p ∈M . The following hold.
(1) For v⃗ ∈ TpM and f, g ∈∈ C∞(Mn,R), we have

∇v⃗(f + g) = ∇v⃗(f) +∇v⃗(g)

and

∇v⃗(fg) = ∇v⃗(f) · g(p) + f(p) · ∇v⃗(g).

(2) For v⃗, w⃗ ∈ TpM and c, d ∈ R and f ∈ C∞(Mn,R), we have

∇cv⃗+dw⃗(f) = c∇v⃗(f) + d∇w⃗(f).

Proof. These properties are inherited from corresponding properties of direc-
tional derivatives of functions defined on open subsets of Euclidean space. □

Remark. A linear map Ψ : C∞(Mn,R) → R such that

Ψ(fg) = Ψ(f) · g(p) + f(p) ·Ψ(g) (f, g ∈ C∞(Mn,R))

is called a derivation of C∞(Mn,R) at p. In the exercises, you will prove that
every derivation Ψ at p equals ∇v⃗ for some v⃗ ∈ TpM . Many sources define tangent
vectors as derivations. □

3.7. Manifolds with boundary

Let Mn be a smooth n-manifold with boundary. The constructions of this
chapter go through with little change to define the tangent space TpM

n for p ∈Mn

and the tangent bundle TMn. The only potentially confusing point is that one has
to define TV = V × Rn for any open subset V of Hn. The tangent space TpM

n

is thus an n-dimensional vector even when p ∈ ∂Mn; tangent vectors on ∂Mn are
allowed to point “outwards”.

3.8. Vector bundles

The tangent bundle TM of a smooth manifold M is an example of a vector
bundle over M , whose definition is as follows. We will not use other vector bundles
very often, but they will show up in a few places.
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Definition. Let X be a topological space. A k-dimensional vector bundle over
X is a topological space E together with a continuous map π : E → X such that
the following hold for all all x ∈ X.

• The preimage π−1(x) is equipped with the structure of a k-dimensional
vector space. We will denote this vector space by Ex.

• There exists an open neighborhood U ⊂ X of x and a homeomorphism
ψ : U ×Rk → π−1(U) such that for all y ∈ U , we have ψ({y} ×Rk) = Ey
and the composition

Rk
∼=−→ {y} × Rk ψ−→ Ey

is a vector space isomorphism.
The second condition is called local triviality. If X and E are smooth manifolds
and both π : E → X and all the isomorphisms ψ appearing above are smooth, then
E is a smooth vector bundle. □

Example. Let Mn be an n-dimensional smooth manifold. The projection
π : TMn → Mn taking TpM

n to p makes TMn into a smooth n-dimensional
vector bundle overMn. Indeed, the preimage π−1(Mn) is the n-dimensional vector
space TpM

n. Moreover, by definition for every chart ϕ : U → V of Mn we have
π−1(U) ∼= TV ∼= V × Rn. □

Example. If X is a topological space, then E = X × Rk is a k-dimensional
vector bundle over X whose map π : E → X is simply the projection onto the first
factor. This will be called the trivial k-dimensional vector bundle over X. If X is
a smooth manifold, then this is a smooth vector bundle. □

The vector bundles that we will use will all be built out of the tangent bundle
using linear-algebraic operations. Rather than prove a general theorem about such
operations, we will give several examples.

Construction. Fix a topological space X, and for i = 1, 2, let πi : Ei → X
be a ki-dimensional vector bundle over X. Define

E1 ⊕ E2 = {(e1, e2) ∈ E1 × E2 | π(e1) = π(e2)}
and let ρ : E1 ⊕E2 → X be the map taking (e1, e2) to π(e1). You will prove in the
exercises that ρ : E1⊕E2 → X is a (k1+k2)-dimensional vector bundle over X such
that for x ∈ X the vector space (E1 ⊕ E2)x is the vector space (E1)x ⊕ (E2)x. □

Construction. Let π : E → X be a k-dimensional vector bundle. Define

E∗ = {(x, τ) | x ∈ X and τ : Ex → R is a linear map}
and let ρ : E∗ → X take (x, τ) to x. You will prove in the exercises that ρ : E∗ → X
is a k-dimensional vector bundle over X such that for x ∈ X the fiber (E∗)x is the
dual vector space (Ex)

∗. This is called the dual bundle to X. The dual bundle of
the tangent bundle of a smooth manifold M is the cotangent bundle and is denoted
T ∗M . □

Construction. Let π : E → X be a k-dimensional vector bundle. Define

∧iE = {(x, v⃗) | x ∈ X and v⃗ ∈ ∧iEx}
and let ρ : E∗ → X take (x, v⃗) to x. You will prove in the exercises that ρ : ∧iE →
X is a

(
k
i

)
-dimensional vector bundle over X such that for x ∈ X the fiber (∧iE)x

is the wedge product ∧iEx. □



3.8. VECTOR BUNDLES 23

Remark. All of the above constructions take smooth vector bundles to smooth
vector bundles. □

Maps between vector bundles are defined as follows.

Definition. A vector bundle map between vector bundles π1 : E1 → X1 and
π2 : E2 → X2 is a pair of continuous maps f : X1 → X2 and g : E1 → E2 with the
following two properties.

• We have π2 ◦ g = f ◦ π1, i.e. the diagram

E1
g−−−−→ E2

π1

y yπ2

X1
f−−−−→ X2

commutes.
• The previous condition implies that for x ∈ X1, the map g restricts to a
map from the vector space (E1)x to the vector space (E2)x. We require
that this map be linear.

If X1 = X2 = X and f = id, then we say that this is a vector bundle map over X.
We will often not write f and simply say that g : E1 → E2 is a vector bundle map.
If g : E1 → E2 is a bijective map of vector bundles over X and g−1 is continuous,
then we will call g an isomorphism. □

Example. If f : M1 → M2 is a smooth map between smooth manifolds, then
the derivative Df : TM1 → TM2 is a vector bundle map. □

This allows us to define our final four vector bundle operations.

Construction. For i = 1, 2, let πi : Ei → X be a ki-dimensional vector
bundle and let g : E1 → E2 be a vector bundle map over X. Assume that the
vector space map (E1)x → (E2)x induced by g is surjective for all x ∈ X. Define
ker(g) to be the set of pairs

{(x, v⃗) | x ∈ X and v⃗ lies in the kernel of the map (E1)x → (E2)x induced by g}
and let ρ : ker(g) → X to be the map taking (x, v⃗) to x. You will prove in the
exercises that ρ : ker(g) → X is a (k1 − k2)-dimensional vector bundle over X such
that for x ∈ X the fiber ker(g)x is the kernel of the map (E1)x → (E2)x induced
by g. □

Construction. For i = 1, 2, let πi : Ei → X be a ki-dimensional vector
bundle and let g : E1 → E2 be a vector bundle map over X. Assume that the
vector space map (E1)x → (E2)x induced by g is injective for all x ∈ X. Define
coker(g) to be the set of pairs

{(x, v⃗) | x ∈ X and v⃗ lies in the quotient vector space (E2)x/g((E1)x)}
and let ρ : coker(g) → X to be the map taking (x, v⃗) to x. You will prove in the
exercises that ρ : coker(g) → X is a (k2 − k1)-dimensional vector bundle over X
such that for x ∈ X the fiber coker(g)x is the quotient (E2)x/g((E1)x). □

Construction. Let π : E → X be a k-dimensional vector bundle and let
f : Y → X be a continuous map. Define

f∗(E) = {(y, e) | y ∈ Y , e ∈ E, f(y) = π(e)} ⊂ Y × E.



24 3. THE TANGENT BUNDLE

The projection Y ×E → Y restricts to a map f∗(π) : f∗(E) → Y . In the exercises,
you will prove that f∗(E) is a k-dimensional vector bundle with f∗(E)y = Ef(y)
for all y ∈ Y . This fits into a map of vector bundles

f∗(E) −−−−→ E

f∗(π)

y yπ
Y

f−−−−→ X
where the top row is the restriction of the projection Y × E → E. We will call
f∗(E) the pull-back of E along f . □

Example. IfX is a topological space, X×Rk is the trivial k-dimensional vector
bundle, and f : Y → X is any continuous map, then f∗(X × Rk) is isomorphic as
a vector bundle over Y to the trivial k-dimensional vector bundle Y ×Rk. Indeed,
by definition we have

f∗(X × Rk) = {(y, (x, v⃗)) ∈ Y × (X × Rk) | y ∈ Y };
the vector bundle isomorphism simply takes (y, (x, v⃗)) ∈ f∗(X × Rk) to (y, v⃗) ∈
Y × Rk. □

Construction. If X is a topological space, π : E → X is a vector bundle, and
Y ⊂ X is a subspace, then the restriction of E to Y , denoted E|Y , is the pullback
of E along the inclusion map Y ↪→ X. □

Remark. Again, all of the above constructions take smooth vector bundles to
smooth vector bundles. □



CHAPTER 4

Vector fields

In this chapter, we discuss some basic results about vector fields, including their
integral curves and flows. As an application, we will prove that ifMn is a connected
smooth manifold and p, q ∈Mn, then there exists a diffeomorphism f :Mn →Mn

such that f(p) = q.

4.1. Definition and basic examples

Let Mn be a smooth manifold with boundary. Intuitively, a smooth vector
field on Mn is a smoothly varying choice of vector TpM

n for each p ∈ Mn. More
precisely, a smooth vector field on Mn is a smooth map ν : Mn → TMn such
that ν(p) ∈ TpM

n for all p ∈ Mn. Let X(Mn) be the set of smooth vector fields
on Mn. The vector space structures on each TpM

n together endow X(Mn) with
the structure of a real vector space (infinite dimensional unless Mn is a compact
0-manifold).

If ν ∈ X(Mn) and ϕ : U → V is a chart onMn, then the expression for ν in the
local coordinates V is the function η : V → Rn such that η(ϕ(p)) ∈ Tϕ(p)V = Rn
represents ν(p) for all p ∈ U .

It is particularly easy to write down smooth vector fields on smooth subman-
ifolds Mn of Rm. Namely, recall that the embedding of Mn in Rm identifies
each TpM

n with an n-dimensional subspace of TRm = Rm. A smooth vector
field on Mn can thus be identified with a smooth map ν : Mn → Rm such that
ν(p) ∈ TpM

n ⊂ Rm for each p ∈ Mn. We warn the reader that this is different
from the expressions for ν in local coordinates defined above.

Example. Consider an odd-dimensional sphere S2n−1 ⊂ R2n. Recall that

TS2n−1 = {(p, v⃗) ∈ TR2n | ∥p∥ = 1 and v⃗ is orthogonal to the line from 0 to p}.

We can then define a smooth vector field on S2n−1 via the formula

ν(x1, . . . , x2n) = (x2,−x1, x4,−x3, . . . , x2n,−x2n−1) ∈ T(x1,...,x2n)S
2n−1 ⊂ Rm

for each (x1, . . . , x2n) ∈ S2n−1. The smooth vector field ν has the property that
ν(p) ̸= 0 for all p ∈ S2n−1. We will later prove the “hairy ball theorem”, which
asserts that no such nonvanishing smooth vector field exists on an even-dimensional
sphere. See Theorem 14.1. □

Example. Let Mn be a smooth submanifold of Rm and let f :Mn → R be a
smooth function. We can then define a smooth vector field grad(f) on Mn in the
following way. Consider p ∈ Mn. We can define a linear map ηp : TpM

n → R via
the formula

ηp(v⃗) = Xv⃗(f).

25
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This is linear because of the second conclusion of Lemma 3.8. Let ω(·, ·) be the
usual inner product on Rm. There then exists a unique vector grad(f)(p) ∈ TpM

n

such that

ηp(v⃗) = ω(grad(f)(p), v⃗) (v⃗ ∈ TpM
n).

It is easy to see that this map grad(f) :Mn → TMn is a smooth vector field. □

Remark. In the construction of grad(f), we used the embedding of Mn into
Rm to obtain an inner product on each TpM

n. More generally, a Riemannian metric
on Mn is a choice of a nondegenerate symmetric bilinear form on each TpM

n that
varies smoothly in an appropriate sense. Given a Riemannian metric onMn, we can
define a smooth vector field grad(f) on Mn for any smooth function F : Mn → R
via the above procedure. □

Given a smooth vector field ν onMn, we can define a map ∇ν : C∞(Mn,R) →
C∞(Mn,R) by setting

∇ν(f)(p) = ∇ν(p)(f) (f ∈ C∞(Mn,R), p ∈Mn).

This has the following properties.

Lemma 4.1. Let Mn be a smooth manifold with boundary. The following then
hold.

(1) For ν ∈ X(Mn) and f, g ∈ C∞(Mn,R), we have

∇ν(f + g) = ∇ν(f) +∇ν(g)

and

∇ν(fg) = ∇ν(f) · g + f · ∇ν(g).

(2) For ν1, ν2 ∈ X(Mn) and c, d ∈ R and f ∈ C∞(Mn,R), we have

∇cν1+dν2(f) = c∇ν1(f) + d∇ν2(f).

Proof. Immediate from Lemma 3.8. □

4.2. Extending vector fields

We now prove a vector field version of Lemma 2.6 (Extending smooth func-
tions). First, some preliminaries. If M is a smooth manifold with boundary and
ν ∈ X(M), then the support of ν, denoted Supp(ν), is the closure of the set of
points p ∈ M such that ν(p) ̸= 0. If C ⊂ M is an arbitrary set, then the notion
of a vector field on C can be defined in the obvious way. A vector field ν on C is
said to be smooth if there exists an open subset U ⊂M containing C and a smooth
vector field η on U such that η|C = ν.

Lemma 4.2 (Extending smooth vector fields). Let M be a smooth manifold
with boundary, let C ⊂M be a closed set, and let U ⊂M be an open set such that
C ⊂ U . Let ν be a smooth vector field on C. Then there exists a smooth vector
field η on M such that η|C = ν and such that Supp(η) ⊂ U .

Proof. By definition, there exists an open set U ′ ⊂ M containing C and a
smooth vector field function η1 on U ′ such that η1|C = ν. Shrinking U ′ if necessary,
we can assume that U ′ ⊂ U . Use Lemma 2.5 to construct a smooth function
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h :M → R such that 0 ≤ h(x) ≤ 1 for all x ∈M , such that h(x) = 1 for all x ∈ C,
and such that Supp(h) ⊂ U ′. Define a vector field η on M via the formula

η(x) =

{
h(x)η1(x) if x ∈ U ′,

0 otherwise.
(x ∈M).

Clearly η satisfies the conclusions of the lemma. □

4.3. Integral curves of vector fields

Let M be a smooth manifold with boundary and let ν ∈ X(M). Informally,
an integral curve of ν is a smoothly embedded curve that moves in the direction
of ν. To make this precise, if U ⊂ R is a connected open set and γ : U → M is a
smooth map, then for t ∈ U we define γ′(t) ∈ Tγ(t)M to be the image under the
map Dtγ : TtU → Tγ(t)M of the element 1 ∈ TtU = Rn. The curve γ is an integral
curve of ν if U = R and γ′(t) = ν(γ(t)) for all t ∈ R. Our main theorem then is as
follows.

Theorem 4.3 (Existence of integral curves). Let M be a smooth manifold with
boundary and let ν ∈ X(M). Assume that Supp(ν) is a compact subset of Int(Mn).
Then for all p ∈M , there a unique integral curve γ of ν such that γ(0) = p.

Remark. The hypothesis that Supp(ν) is compact holds automatically if M
is compact. □

Remark. The theorem is not necessarily true if Supp(ν) is not compact. For
instance, if M = Rn, then an integral curve could diverge to infinity in finite time
and thus not be defined for all points of R. Similarly, the theorem is not necessarily
true if Supp(ν) contains points of ∂Mn. The problem is if it contain such points,
then an integral curve could cross the boundary and “leave the manifold” in finite
time. □

The key technical input to the proof is the following lemma.

Lemma 4.4. Consider a chain of open sets V ′′ ⊂ V ′ ⊂ V ⊂ Rn such that the
closure of V ′′ is a compact subset of V ′ and such that the closure of V ′ is a compact
subset of V . Consider ν ∈ X(V ). Then there is an ϵ > 0 such that for all p ∈ V ′′,
there exists a smooth map γ : (−ϵ, ϵ) → V such that γ(0) = p and γ′(t) = ν(γ(t))
for all t ∈ (−ϵ, ϵ). The curve γ is unique in the following sense: if for some δ > 0
there is another smooth map λ : (−δ, δ) → V with λ(0) = p and λ′(t) = ν(λ(t)) for
all t ∈ (−δ, δ), then γ(t) = λ(t) for all t ∈ (−ϵ, ϵ) ∩ (−δ, δ).

Proof. This is simply a restatement into our language of the usual existence
and uniqueness for solutions of systems of ordinary differential equations. □

This lemma provides the local result needed for the following.

Lemma 4.5. Let M be a smooth manifold with boundary and let ν ∈ X(M).
Assume that Supp(ν) is a compact subset of Int(M). There then exists some ϵ > 0
such that for all p ∈ M , there exists a smooth map γ : (−ϵ, ϵ) → M such that
γ(0) = p and γ′(t) = ν(γ(t)) for all t ∈ (−ϵ, ϵ). The curve γ is unique in the
following sense: if for some δ > 0 there is another smooth map λ : (−δ, δ) → M
with λ(0) = p and λ′(t) = ν(λ(t)) for all t ∈ (−δ, δ), then γ(t) = λ(t) for all
t ∈ (−ϵ, ϵ) ∩ (−δ, δ).
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Proof. Let {Ui}ki=1 and {U ′
i}ki=1 and {U ′′

i }ki=1 be finite open covers of the
compact set Supp(ν) such that the following hold for all 1 ≤ i ≤ k.

• There exists a chart ϕi : Ui → Vi.
• The set Ui lies in Int(M).
• The closure of U ′

i is a compact subset of Ui.
• The closure of U ′′

i is a compact subset of U ′
i .

For 1 ≤ i ≤ k, we can apply Lemma 4.4 to find some ϵi > 0 such that for all p ∈ U ′′
i ,

there exists a smooth map γ : (−ϵi, ϵi) → Ui with γ(0) = 0 and γ′(t) = ν(γ(t))
for all t ∈ (−ϵi, ϵi). Let ϵ > 0 be the minimum of the ϵi. Then the desired curve
γ : (−ϵ, ϵ) → M exists and is unique for all p ∈ Supp(ν). But for p /∈ Supp(ν)
we have ν(p) = 0, and thus the desired curve is the constant curve γ : (ϵ, ϵ) → M
defined by γ(t) = p for all t. □

Proof of Theorem 4.3. Let ϵ > 0 be the constant given by Lemma 4.5
and let p ∈ M . For k ≥ 1, we will prove that there exists a unique smooth
function γk : (−kϵ/2, kϵ/2) → M such that γk(0) = p and γ′k(t) = ν(γk(t)) for all
t ∈ (−kϵ/2, kϵ/2). Before we do that, observe that the uniqueness of γk implies
that γk+1(t) = γk(t) for t ∈ (−kϵ/2, kϵ/2), so the desired integral curve γ : R →M
can be defined by γ(t) = γk(t), where k is chosen large enough such that t ∈
(−kϵ/2, kϵ/2). The uniqueness of our integral curve follows from the uniqueness of
the γk.

It remains to construct the γk. This construction will be inductive. First, we
can use Lemma 4.5 to construct and prove unique the desired γ1 : (−ϵ/2, ϵ/2) →M
(in fact, we could ensure that γ1 was defined on (−ϵ, ϵ), but this will simplify our
inductive procedure). Now assume that γk has been constructed and proven to be
unique. Set qk = γk((k − 1)ϵ/2) and rk = γk(−(k − 1)ϵ/2). Another application
of Lemma 4.5 implies that there exists smooth functions ζk : (−ϵ, ϵ) → M and
κk : (−ϵ, ϵ) →M such that

ζk(0) = pk and κk(0) = rk

and such that

ζ ′k(t) = ν(ζk(t)) and κ′k(t) = ν(κk(t))

for all t ∈ (−ϵ, ϵ). The uniqueness statement in Lemma 4.5 implies that

ζk(t) = γk((k − 1)ϵ/2 + t) and κk(t) = γk(−(k − 1)ϵ/2 + t)

for all t ∈ (−ϵ/2, ϵ/2). The desired function γk+1 : (−(k + 1)ϵ/2, (k + 1)ϵ/2) → M
is then defined via the formula

γk+1(t) =


κk(t+ (k − 1)ϵ/2) if −(k + 1)ϵ/2 < t < −(k − 1)ϵ/2,

γk(t) if −kϵ/2 < t < kϵ/2,

ζk(t− (k − 1)ϵ/2) if (k − 1)ϵ/2 < t < (k + 11)ϵ/2.

Its uniqueness follows from the uniqueness statement in Lemma 4.5. □

4.4. Flows

LetM be a smooth manifold with boundary and let ν ∈ X(M). In this section,
we use the results of the previous section to prove an important theorem which says
that in most cases ν determines a flow, that is, a family of diffeomorphisms of M
that move points in the direction of ν. More precisely, a flow on M in the direction
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of ν consists of smooth maps ft : M → M for each t ∈ R with the following
properties.

• For all t ∈ R, the map ft is a diffeomorphism.
• Define F : M × R → M via the formula F (p, t) = ft(p). Then F is
smooth.

• For all t, s ∈ R, we have ft+s = ft ◦ fs. In particular, f0 = id.
• For all p ∈M , define γp : R →M via the formula γp(t) = ft(p). Then γp
is an integral curve for ν starting at p.

Our main theorem is as follows.

Theorem 4.6 (Existence of flows). Let M be a smooth manifold with boundary
and let ν ∈ X(M) be such that Supp(ν) is a compact subset of Int(M). Then there
exists a unique flow on M in the direction of ν.

Remark. Since Supp(ν) ⊂ Int(M), the flow in the direction of ν fixes ∂M
pointwise. □

Proof of Theorem 4.6. Theorem 4.3 implies that for all p ∈M , there exists
a unique integral curve γp : R → M for ν starting at p. From the uniqueness of
this integral curve, we see that

(1) γp(s+ t) = γγp(s)(t) (p ∈M, s, t ∈ R).
Define F :M ×R →M via the formula F (p, t) = γp(t). It follows from the smooth
dependence on initial conditions of solutions to systems of ordinary differential
equations that F is smooth. For t ∈ R, define ft : M → M via the formula
ft(p) = F (p, t) for p ∈ M . The equation (1) implies that fs+t = fs ◦ ft for all
s, t ∈ R. Since f0 = id by construction, this implies that f−t ◦ ft = id for all t ∈ R,
and hence each ft is a diffeomorphism. The theorem follows. □

4.5. Moving points around by diffeomorphisms

As an application of the results in the previous section, we prove the following
useful theorem.

Theorem 4.7. Let M be a connected smooth manifold with boundary and let
p, q ∈ Int(M) be points. Then there exists a diffeomorphism f :M →M such that
f(p) = q. In fact, f can be chosen as f1 for some flow ft on M .

Proof. Since M is connected, there exists a continuous function γ : R → M
such that γ(0) = p and γ(1) = q. In fact, in the exercises you will show that we can
choose γ such that it is a smooth homeomorphism onto its image. Set C = γ([0, 1]).
Let ν be the vector field on C defined via ν(p) = γ′(t), where t ∈ [0, 1] is such that
γ(t) = p. Let U ⊂ M be an open set containing C such that the closure of U is
compact. Using Lemma 4.2 (Extending smooth vector fields), we can find a smooth
vector field η on M such that η|C = ν and such that Supp(η) ⊂ U ; in particular,
Supp(η) is compact. Theorem 4.6 (Existence of flows) says that there is a flow
ft : M → M in the direction of η. By construction, the restriction to [0, 1] of
the integral curve for η starting at p equals γ, so we deduce that f1(p) = q, as
desired. □





CHAPTER 5

The structure of smooth maps

In this section, we will discuss features of smooth maps, mostly focusing on
local properties. Highlights include the fact that every manifold can be embedded
in Euclidean space (see §5.2 and §5.9), the Brouwer fixed point theorem (see §5.11),
and a topological proof of the fundamental theorem of algebra (see §5.10).

5.1. Embeddings

The first type of map we will discuss are embeddings, which are defined as
follows.

Definition. LetM1 be a smooth manifold with boundary andM2 be a smooth
manifold. A smooth map f : M1 → M2 is an embedding if f is a homeomorphism
onto its image (i.e. a topological embedding) and the derivative map Dpf : TpM1 →
Tf(p)M2 is injective for all p ∈M1. □

Remark. The correct definition of an embedding f : M1 → M2 when M2 is
a manifold with boundary is a little subtle, so we prefer to not give it. In general,
manifolds with boundary are technical devices, so we do not dwell on them unless
we are forced to. □

The canonical example is as follows.

Example. If Mn is a smooth submanifold of Rm, then the inclusion map
Mn ↪→ Rm is an embedding. □

More generally, we make the following definition.

Definition. If f : M1 → M2 is an embedding from a smooth manifold with
boundaryM1 into a smooth manifoldM2, then we will call the image of f a smooth
submanifold of M2. □

We thus have two different definitions of smooth submanifolds of Euclidean
space, one in terms of charts and the other as the image of an embedding. In the
exercises, you will prove that these two definitions are equivalent and also show
that smooth submanifolds of arbitrary manifolds can be characterized in terms of
charts.

5.2. Embedding manifolds in Euclidean space I

We now prove that every smooth manifold with boundary can be realized as a
smooth submanifold of Euclidean space.

Theorem 5.1. If Mn is a compact smooth manifold with boundary, then for
some m≫ 0 there exists an embedding f :Mn → Rm.

31
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Remark. This is also true for noncompact manifolds manifolds with boundary,
though the proof is a little more complicated. Whitney proved a difficult theorem
that says that we can take m = 2n. Later, we will prove a much easier theorem
that says that we can take m = 2n+ 1; see Theorem 5.9 below. □

Proof of Theorem 5.1. Since Mn is compact, there exists a finite atlas

A = {ϕi : Ui → Vi}ki=1.

Choose open subsets Wi ⊂ Ui such that {Wi}ki=1 is still a cover of Mn and such
that the closure of Wi in Ui is compact. Using Lemma 2.5, we can find a smooth
function νi : M

n → R such that (νi)|Wi = 1 and (νi)|Mn\Ui
= 0. Next, define a

function ηi :M
n → Rn via the formula

ηi(p) =

{
νi(p) · ϕi(p) if p ∈ Ui,

0 otherwise.

Here we are regarding the image of ϕi as lying in Rn even though technically it lies
in Hn. Clearly ηi is a smooth function. Finally, define f : Mn → Rk(n+1) via the
formula

f(p) = (ν1(p), η1(p), . . . , νk(p), ηk(p)).

The function f is then a smooth map. In the exercises you will prove that f is an
embedding. □

5.3. Local diffeomorphisms

The next property of smooth maps we will study is as follows.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
with boundary and let p ∈ M1. The map f is a local diffeomorphism at p if there
exists an open neighborhood U1 of p such that U2 := f(U1) is an open subset of
M2 and f |U1 : U1 → U2 is a diffeomorphism. The map f is a local diffeomorphism
if it is a local diffeomorphisms at all points. □

Remark. This implies that M1 and M2 have the same dimension. □

Example. Let f : R → S1 be the smooth map defined via the formula f(t) =
(cos(t), sin(t)) ∈ S1 ⊂ R2. Then f is a local diffeomorphism. Since f is not
injective, f is not itself a diffeomorphism. □

Example. Recall that RPn is the quotient space of Sn via the equivalence
relation ∼ that identifies antipodal points x ∈ Sn and −x ∈ Sn. The projection
map f : Sn → RPn is a smooth map which is a local diffeomorphism. □

The following is an easy criterion for recognizing a local diffeomorphism. As
we will see, it is essentially a restatement of the implicit function theorem.

Theorem 5.2 (Implicit Function Theorem). Let f : M1 → M2 be a smooth
map between smooth manifolds with boundary and let p ∈ Int(M1). Then f is a local
diffeomorphism at p ∈ M1 if and only if the linear map Dpf : TpM1 → Tf(p)M2 is
an isomorphism.

Proof. Assume first that f is a local diffeomorphism at p ∈ M1 and let
U1 ⊂ Int(M1) be an open neighborhood of p such that U2 := f(U1) is open and
f |U1 : U1 → U2 is a diffeomorphism. Replacing U1 with a smaller open subset if
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necessary, we can find charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2. Let
F : V1 → V2 be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Setting q = ϕ1(p), we have identifications TqV1 ∼= TpM1 and TF (q)V2 = Tf(q)M2,
and it is enough to prove that DqF : TqV1 → TF (q)V2 is an isomorphism. Since F
is a diffeomorphism, it has an inverse G : V2 → V1. Applying Theorem 1.1 (Chain
Rule I) to idV1 = G ◦ F , we see that

id = DqidV1 = (DF (q)G) ◦ (DpF ).

Similarly, we have

id = DF (q)idV2 = (DpF ) ◦ (DF (q)G).

We conclude that DpF is an isomorphism, as desired.
Now assume conversely that the linear map Dpf : TpM1 → Tf(p)M2 is an

isomorphism. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Setting q = ϕ1(p), our assumptions imply that DqF : TqV1 → TF (q)V2 is an isomor-
phism. Since V1 and V2 are open subsets of Euclidean space, we can now apply the
ordinary inverse function theorem to deduce that F is a local diffeomorphism at q.
This implies that f is a local diffeomorphism at p, as desired. □

5.4. Immersions

We now turn to the following property.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
with boundary and let p ∈ M1. The map f is an immersion at p if the derivative
Dpf : TpM1 → Tf(p)M2 is an injective linear map. The map f is an immersion if
it is an immersion at all points. □

Remark. This implies that the dimension of M2 is at least the dimension of
M1. □

Example. If f : M1 → M2 is a local diffeomorphism at p, then f is an
immersion at p. □

Example. If f : M → Rm is an embedding of a smooth manifold, then f is
an immersion. □

Example. Consider the smooth map f : R → R2 whose image is as in Figure
5.1. Then f is an immersion but is not an embedding. □

Example. If M1 and M2 are smooth manifolds and x ∈ M2, then the map
f :M1 →M1 ×M2 defined via the formula f(p) = (p, x) is an immersion. □

The following theorem says that all immersions look locally like the final ex-
ample above.
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Figure 5.1. An immersion f : R → R2 that is not an embedding.

Theorem 5.3 (Local Immersion Theorem). Let f : Mn1
1 → Mn2

2 be a smooth
map between smooth manifolds with boundary that is an immersion at p ∈ Int(Mn1

1 ).
There then exists an open neighborhood U1 ⊂ Mn1

1 of p and an open subset U2 ⊂
Mn2

2 satisfying f(U1) ⊂ U2 such that the following hold. There exists an open
subset W ⊂ Rn2−n1 , a point w ∈W , and a diffeomorphism ψ : U2 → U1 ×W such
that the composition

U1
f−→ U2

ψ−→ U1 ×W

takes u ∈ U1 to (u,w) ∈ U1 ×W .

Proof. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Set q = ϕ1(p). The map F is an immersion at q, and it is enough to prove the
theorem for this immersion.

By assumption, the map DqF : TqV1 → TF (q)V2 is an injection. Let

X ⊂ TF (q)V2 = Rn2

be a vector subspace such that

TF (q)V2 = Im(DqF )⊕X.

We thus have X ∼= Rn2−n1 . Define G : V1 ×X → Rn2 via the formula

G(p, x) = F (q) + x.

We have T(q,0)(V1 ×X) = (TqV1)⊕X and by construction the derivative D(q,0)G :
T(q,0)(V1 ×X) → TF (q)V2 is an isomorphism. Theorem 5.2 (the Implicit Function
Theorem) thus implies that G is a local diffeomorphism at (q, 0). This implies that
we can find open subsets V ′

1 ×W ⊂ V1 ×X and V ′
2 ⊂ V2 such that (q, 0) ∈ V ′

1 ×W
and G(V ′

1×W ) = V ′
2 and such that G restricts to a diffeomorphism between V ′

1×W
and V ′

2 . The composition

V ′
1
F−→ V ′

2
G−1

−−−→ V ′
1 ×W

then takes v ∈ V ′
1 to (v, 0) ∈ V ′

1 ×W , as desired. □
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5.5. Submersions

We now turn to the following.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
with boundary and let p ∈ M1. The map f is a submersion at p if the derivative
Dpf : TpM1 → Tf(p)M2 is a surjective linear map. The map f is a submersion if it
is a submersion at all points. □

Remark. This implies that the dimension of M1 is at least the dimension of
M2. □

Example. If f :M1 →M2 is a local diffeomorphism at p, then f is a submer-
sion at p. □

Example. If M1 and M2 are smooth manifolds, then the map f :M1 ×M2 →
M1 defined via the formula f(p1, p2) = p2 is a submersion. □

The following theorem says that all submersions look locally like the final ex-
ample above.

Theorem 5.4 (Local Submersion Theorem). Let f :Mn1
1 →Mn2

2 be a smooth
map between smooth manifolds with boundary that is a submersion at p ∈ Int(Mn1

1 ).
There then exists an open neighborhood U1 ⊂ Mn1

1 of p and an open subset U2 ⊂
Mn2

2 satisfying f(U1) ⊂ U2 such that the following hold. There exists an open subset
W ⊂ Rn1−n2 and a diffeomorphism ψ : U2 ×W → U1 such that the composition

U2 ×W
ψ−→ U1

f−→ U2

takes (u,w) ∈ U2 ×W to u ∈ U2.

Proof. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Set q = ϕ1(p). The map F is a submersion at q, and it is enough to prove the
theorem for this submersion.

By assumption, the map DqF : TqV1 → TF (q)V2 is a surjection. Let X =

ker(DqF ), so X ∼= Rn1−n2 . Identifying TqV1 with Rn1 , let π : Rn1 → X be a linear
map such that π|X = id. Define G : V1 → V2 ×X via the formula

G(v) = (F (v), π(v)).

We have T(F (q),π(q))(V2 ×X) = (TF (q)V2) ×X and by construction the derivative
DqG : TqV1 → T(F (q),π(q))(V2 ×X) is an isomorphism. Theorem 5.2 (the Implicit
Function Theorem) thus implies that G is a local diffeomorphism at q. This implies
that we can find open subset V ′

1 ⊂ V1 and V ′
2 ×W ⊂ V2 ×X such that q ∈ V ′

1 and
G(V ′

1) ⊂ V ′
2 ×W and such that G restricts to a diffeomorphism between V ′

1 and
V ′
2 ×W . The composition

V ′
2 ×W

G−1

−−−→ V ′
1 −→ V ′

2

then takes (v, w) ∈ V ′
2 ×W to v ∈ V ′

2 , as desired. □
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5.6. Regular values

We now discuss regular values, which are defined as follows.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
with boundary and let q ∈M2. Then q ∈M2 is a regular value if f is a submersion
at each point of f−1(q). □

Before we discuss some examples, we prove the following theorem.

Theorem 5.5. Let f :Mn1
1 →Mn2

2 be a smooth map between smooth manifolds
(without boundary) and let q ∈Mn2

2 be a regular value such that f−1(q) is nonempty.
Then f−1(q) is a smooth (n1 − n2)-dimensional smooth submanifold of Mn1

1 .

Proof. Consider p ∈ f−1(q). Theorem 5.4 (the Submersion Theorem) im-
plies that there exists an open neighborhood U1 ⊂ Mn1

1 of p and an open subset
U2 ⊂ Mn2

2 satisfying f(U1) ⊂ U2 such that the following hold. There exists an
open subset W ⊂ Rn1−n2 and a diffeomorphism ψ : U2 ×W → U1 such that the
composition

U2 ×W
ψ−→ U1

f−→ U2

takes (u,w) ∈ U2×W to u ∈ U2. This implies that ψ−1 restricts to a diffeomorphism
between f−1(q)∩U1 and {q}×W , i.e. that the point p ∈ f−1(q) has a neighborhood
diffeomorphic to the open subset W of Rn1−n2 , as desired. □

We now discuss a large number of illustrations of Theorem 5.5.

Example. Let f : Mn1
1 → Mn2

2 be a smooth map such that n1 < n2. For
instance, f might be an embedding of an n-manifold into Rm for some m > n.
Then f is clearly not a submersion anywhere, so the only regular values of f are
the points not in the image of f . For such a point q, we have f−1(q) = ∅, which
is what Theorem 5.5 predicts. Theorem 5.8 (Sard’s Theorem) implies that such
regular values must exist. This implies in particular that there does not exist a
smooth surjective map f : S1 → Rn with n ≥ 2. This is in contrast to the fact that
there exist continuous space-filling curves. □

Example. As in Figure 5.2, consider the 2-torus T embedded in R3 and let
f : T → R be the “height function”, i.e. the function defined by the formula
f(x, y, z) = z for all (x, y, z) ∈ T . The only non-regular values of f are then
{0, 2, 4, 6}. For a regular value x ∈ R \ {0, 2, 4, 6}, the subset f−1(x) ⊂ T is a
1-manifold. There are several cases:

• If x < 0 or x > 6, then f−1(x) = ∅.
• If 0 < x < 2 or 4 < x < 6, then f−1(x) consists of a single circle.
• If 2 < x < 4, then f−1(x) consists of the disjoint union of two circles.

For x ∈ {0, 2, 4, 6}, the set f−1(x) is not a 1-manifold. For x ∈ {0, 6}, the set
f−1(x) consists of a single point (a 0-manifold). For x ∈ {2, 4}, the set f−1(x) is
not even a manifold (it is a “figure 8”). □

Example. Consider the map f : Rn+1 → R defined via the formula

f(x1, . . . , xn+1) = x21 + · · ·+ x2n+1.

The derivative of this at p = (p1, . . . , pn+1) is the linear map Dpf : TpRn+1 →
Tf(p)R1 represented by the 1× (n+ 1)-matrix(

2p1 2p2 · · · 2pn+1

)
.
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Figure 5.2. The torus T in R3 together with the height function
f : T → R.

This is surjective as long as it is nonzero. We conclude that f is a submersion at
every point except for 0 ∈ Rn+1, and thus that every nonzero point of R is a regular
value. Since f−1(1) = Sn, applying Theorem 5.5 furnishes us with another proof
that Sn is a smooth n-manifold. □

Many smooth manifolds can be constructed like Sn was above. The following
example is a very important case of this.

Example. We can identify the set Matn of n× n real matrices with Rn2

, and
thus endow it with the structure of a smooth manifold. The map f : Matn → R
defined via f(A) = det(A) is clearly a smooth map. We claim that f is a submersion
at all points A ∈ Matn such that f(A) ̸= 0. Indeed, fixing such an A we define a
smooth map g : R → Matn via the formula g(t) = tA. We have

f(g(t)) = det(tA) = tn det(A).

The ordinary calculus derivative of the map f ◦ g : R → R is thus nonzero at t = 1,
which implies that the derivative map D1(f ◦ g) : T1R → Tdet(A)R is a surjective
linear map (it is just multiplication by our nonzero ordinary calculus derivative!).
Theorem 3.4 (the Manifold Chain Rule I) implies that

D1(f ◦ g) = (DAf) ◦ (D1g).

Since D1(f ◦ g) is surjective, we conclude that DAf is surjective, i.e. that f is a
submersion at A, as claimed. The upshot is that all nonzero numbers are regular
values of f : Matn → R. In particular, Theorem 5.5 implies that

SLn(R) = f−1(1)
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Figure 5.3. The function f : S2 → S2 equals g ◦π. It takes X to
p0 and each open disc Di diffeomorphically to S2 \ {p0}.

is a smooth manifold of dimension n2 − 1. Just like GLn(R), this is an example
of a Lie group (a group which is also a smooth manifold and for which the group
operations are smooth). We will discuss Lie groups in more detail in Chapter 9. □

Example. As in Figure 5.3, letD1 andD2 andD3 be three disjoint open round
discs in S2 and let X = S2 \ (D1 ∪D2 ∪D3). We construct a function f : S2 → S2

as follows.
• Let S2 ∨ S2 ∨ S2 be the result of gluing three copies of S2 together at a
single point (which we will call the “wedge point”). The space S2∨S2∨S2

is not a manifold because the wedge point does not have a neighborhood
homeomorphic to an open set in Euclidean space. There is a map π : S2 →
S2∨S2∨S2 obtained by collapsing the subset X to a single point; the map
π takes X to the wedge point and each open disc Di homeomorphically
to the result of removing the wedge point from one of the S2’s.

• Fix some basepoint p0 ∈ S2. There is a map g : S2 ∨ S2 ∨ S2 → S2 that
takes each copy of S2 homeomorphically onto S2 and takes the wedge
point to p0.

• We define f = g ◦ π.
If one is careful in the above construction, we can ensure that f is a smooth map.
The regular values of f are S2 \ {p0}. For x ∈ S2 \ {p0}, the set f−1(x) consists
of three point, one in each disc Di. As we expect, this is a 0-manifold. The set
f−1(p0) is X; this is not even a manifold. □

5.7. Regular values and manifolds with boundary

We now discuss two variants of Theorem 5.5 for manifolds with boundary. The
first is as follows.

Theorem 5.6. Let Mn be a smooth n-manifold (without boundary) and let
f :Mn → R be a smooth map.

• If a ∈ R is a regular value of f , then f−1((∞, a]) is a smooth n-manifold
with boundary and ∂f−1((∞, a])) = f−1(a). Similarly, f−1([a,∞)) is a
smooth n-manifold with boundary and ∂f−1([a,∞)) = f−1(a).

• If a, b ∈ R are regular values with a < b, then f−1([a, b]) is a smooth
n-manifold with boundary and ∂f−1([a, b]) = f−1(a) ∪ f−1(b).

Proof. This can be proved using Theorem 5.4 (the Local Submersion Theo-
rem) just like Theorem 5.5. We omit the proof, though we point out that if U ⊂ R
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Figure 5.4. The torus T in R3 together with the height function
f : T → R.

is an open set, then f−1(U) is an open subset ofMn, and thus a smooth n-manifold.
The only place where Theorem 5.4 needs to be used therefore is on the boundary
(i.e. the pullbacks of the regular values in question). □

Example. Let f : Rn → R be defined via the formula f(x1, . . . , xn) = x21 +
· · ·+x2n. Then as we proved before, every nonzero point of R is a regular value, so we
can apply Theorem 5.6 to deduce that Dn = f−1((−∞, 1]) is a smooth n-manifold
with boundary and ∂ Dn = f−1(1) = Sn−1. □

Example. As in Figure 5.4, consider the 2-torus T embedded in R3 and let
f : T → R be the “height function”, i.e. the function defined by the formula
f(x, y, z) = z for all (x, y, z) ∈ T . The only non-regular values of f are then
{0, 2, 4, 6}. As is illustrated in Figure 5.4, we can apply Theorem 5.6 to deduce
that f−1([1, 3]) is a smooth 2-manifold with boundary and that ∂f−1([1, 3]) =
f−1(1) ∪ f−1(3), a union of three circles. □

The other variant of Theorem 5.5 we need is as follows.

Theorem 5.7. Let Mn1
1 be a smooth manifold with boundary and let Mn2

2 be a
smooth manifold (with empty boundary). Let f :Mn1

1 →Mn2
2 be a smooth function

and let p ∈ Mn2
2 be a point which is a regular value for both f and f |∂Mn1

1
. Then

f−1(p) ⊂Mn1
1 is a smooth (n1−n2)-dimensional manifold with boundary satisfying

∂f−1(p) = (f |∂Mn1
1

)−1(p).

Proof. PROVE IT!!! □
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5.8. Sard’s theorem

The following important theorem says that every smooth map has many regular
values.

Theorem 5.8 (Sard’s theorem). Let f : M1 → M2 be a smooth map between
smooth manifolds with boundary. Assume that M1 is compact. Then the set of
regular values of f is open and dense in M2.

Proof. PROVE IT!!! □

5.9. Embedding manifolds in Euclidean space II

We now strengthen Theorem 5.1.

Theorem 5.9. If Mn is a compact smooth n-manifold with boundary, then
there exist an embedding f :Mn → R2n+1.

Proof. PROVE IT!!! □

5.10. Application: the fundamental theorem of algebra

We now show how to apply the ideas we have introduced to prove the funda-
mental theorem of algebra, which can be stated as follows.

Theorem 5.10 (Fundamental theorem of algebra). Let f(z) be a nonconstant
polynomial whose coefficients are complex numbers. Then there exists some z0 ∈ C
such that f(z0) = 0.

For the proof of Theorem 5.10, we will need the following.

Lemma 5.11. Let Mn be a compact connected manifold whose dimension n is
at least 2 and let f : Mn → Mn be a smooth map which is a submersion except at
possibly finitely many points. Then for all regular values p1 ∈ Mn and p2 ∈ Mn,
we have |f−1(p1)| = |f−1(p2)|.

Proof. Let R be the set of regular values of f . Define ψ : R → Z ∪ {∞} via
the formula

ψ(p) = |f−1(p)| (p ∈ R).

We must prove that ψ is constant. Our assumptions imply that all but finitely many
points of Mn are regular values for f . Since n ≥ 2, this implies that R is open and
connected, so it is enough to prove that the function ψ is locally constant. In other
words, fixing some p ∈ R we must prove that there exists some neighborhood of p
in R such that ψ restricted to that neighborhood is constant.

By Theorem 5.5, the set f−1(p) is a 0-dimensional submanifold of Mn. Since
Mn is compact, this implies that f−1(p) is a finite set; enumerate it as {q1, . . . , qk}.
The function f is a submersion at each qi, so by Theorem 5.2 (the Implicit Function
Theorem) the function f is a local diffeomorphism at qi, i.e. there exists neighbor-
hoods Ui of qi and Wi of p such that f restricts to a diffeomorphism from Ui to
Wi. Shrinking the Ui if necessary, we can assume that they are all disjoint. Set

W =W1 ∩W2 ∩ · · · ∩Wk

and

U ′
i = U1 ∩ f−1(Wi).
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By construction, W is a neighborhood of p and f |U ′
i
is a diffeomorphism between

U ′
i and W . What we would really like would be for f−1(W ) to equal U ′

1 ∪ · · · ∪U ′
k;

however, this might not hold. To fix this, let C be the closure of the set

f−1(W ) \ (U ′
1 ∪ · · · ∪ U ′

k).

The set C is a closed (hence compact) subset of Mn that does not contain any qi.
The image f(C) is thus a compact subset of Mn that does not contain p, so we can
find an open neighborhood W ′ of p such that W ′ ⊂ W and W ′ ∩ f(C) = ∅. Set
U ′′
i = f−1(W ′)∩U ′

i . The restriction f |U ′′
i
is thus a diffeomorphism from U ′′

i to W ′

and f−1(W ′) = U ′′
1 ∪ · · · ∪ U ′′

k .
We are now done: for p′ ∈W ′, the preimage f−1(p′) contains exactly one point

from each U ′′
i and nothing else. In other words, ψ|W ′ = k, as desired. □

Proof of Theorem 5.10. We will use the second smooth atlas for S2 that
was discussed in §2.2, which we now recall. Let U1 = S2 \ {(0, 0, 1)} and U−1 =
S2 \ {(0, 0,−1)}. Identifying R2 with the subspace of R3 consisting of points whose
last coordinate is 0, define a function ϕ1 : U1 → R2 by letting ϕ1(p) be the unique
intersection point of the line joining p ∈ U1 ⊂ S2 ⊂ R3 and (0, 0, 1) with the plane
R2. It is clear that ϕ1 is a homeomorphism. Similarly, define ϕ−1 : U−1 → R2 by
letting ϕ−1(p) be the unique intersection point of the line joining p ∈ U−1 ⊂ S2 ⊂
R3 and (0, 0,−1) with the plane R2. Again, ϕ−1 is a homeomorphism. Then the
set {ϕ1 : U1 → Rn, ϕ−1 : U−1 → Rn} is a smooth atlas for S2.

Identify C with R2 in the usual way, so we can plug points of R2 into the
polynomial f . Also, for simplicity set ∞ = (0, 0, 1) ∈ S2. Define a function
F : S2 → S2 via the formula

F (x) =

{
∞ if x = ∞,

ϕ−1
1 (f(ϕ1(x))) if x ∈ S2 \ {∞}.

(x ∈ S2).

It is easy to see that F is a smooth map and that F takes S2 \ {∞} to itself
(the omitted calculation showing that F is smooth at ∞ uses the fact that f is
nonconstant; if f were constant, then F might not even be continuous at ∞). To
prove the fundamental theorem of algebra, it is enough to prove that F is surjective.
An easy calculation shows that the only points of S2 where F is not a submersion
are

• ϕ−1
1 (z0), where z0 is a root of the derivative f ′(z), and

• possibly ∞.
Since f ′(z) is a polynomial that is not identically 0, it has finitely many roots. We
deduce that F is a submersion except at finitely many points. Letting R ⊂ S2

be the set of regular values of F , Lemma 5.11 therefore implies that the function
Ψ : R → Z defined via the formula Ψ−1(p) = |F−1(p)| is constant. Clearly Ψ
is not identically 0, so this implies that the image of F contains all points of R.
Since F definitely contains all points of S2 \ R, we deduce that F is surjective, as
desired. □

5.11. Application: the Brouwer fixed point theorem

We now apply the ideas we have introduced to prove the following theorem. Let
Dn denote the closed unit disc {(x1, . . . , xn) ∈ Rn | x21 + · · ·+ x2n ≤ 1}, so ∂ Dn =
Sn ⊂ Dn.



42 5. THE STRUCTURE OF SMOOTH MAPS

Theorem 5.12 (Brouwer Fixed Point Theorem). Let f : Dn → Dn be a con-
tinuous function. Then there exists some point x ∈ Dn such that f(x) = x.

Remark. To illustrate what is going on here, consider the case n = 1, so
Dn = [−1, 1] ⊂ R. The theorem asserts that if f : [−1, 1] → [−1, 1] is a continuous
function, then there exists some point x ∈ [−1, 1] such that f(x) = x. Another
way of saying this is that the theorem is asserting that the function g : [−1, 1] → R
defined via the formula g(x) = f(x) − x has a zero. Since g(−1) = f(−1) + 1 ≥ 0
and g(1) = f(1)−1 ≤ 0, this is an immediate consequence of the intermediate value
theorem. □

Proof of Theorem 5.12. We will do this in several steps.

Step 1. There does not exist a smooth function f : Dn → ∂ Dn such that
f |∂ Dn = id.

Assume that such a function exists. Using Theorem 5.8 (Sard’s Theorem),
there exists a regular value p ∈ ∂ Dn for f . Since f |∂ Dn = id, the point p is also a
regular value for f |∂ Dn . We can therefore apply Theorem 5.7 to deduce that f−1(p)
is a smooth 1-manifold with boundary embedded in Dn such that

∂f−1(p) = (f |∂ Dn)−1(p) = {p}.

Recall that every connected compact 1-manifold with boundary is diffeomorphic to
either S1 or [0, 1] (this will be proven in Theorem 11.1 below). But this implies
that that any compact 1-manifold with boundary (connected or not) has a boundary
consisting of an even number of points, so this is a contradiction.

Step 2. Let f : Dn → Dn be a smooth function. Then there exists some point
x ∈ Dn such that f(x) = x.

Assume that f(x) ̸= x for all x ∈ Dn. Define a function g : Dn → ∂ Dn as
follows. For x ∈ Dn, let ℓx be the ray starting at x and passing through f(x). This
is well-defined since f(x) ̸= x. The ray ℓx intersects ∂ Dn at a unique point; let
g(x) be this point of intersection. Writing out equations for ℓx, it is clear that the
function g is smooth. Moreover, by definition we have g|∂ Dn = id. This contradicts
Step 1.

Step 3. Let f : Dn → Dn be a continuous function. Then there exists some
point x ∈ Dn such that f(x) = x.

We will reduce this to Step 2 by approximating f by a smooth function. Assume
that f(x) ̸= x for all x ∈ Dn. Set

ϵ = inf{∥f(x)− x∥ | x ∈ Dn}.

Since Dn is compact, this infimum is realized and ϵ > 0. Use Lemma 2.8 to find a
smooth function g : Dn → Rn such that ∥g(x) − f(x)∥ < ϵ/3 for all x ∈ Dn. The
image of g need not lie in Dn; however, we have ∥g(x)∥ ≤ ∥f(x)∥ + ϵ/3 ≤ 1 + ϵ/3
for all x ∈ Dn. Defining h : Dn → Rn via the formula

h(x) =
g(x)

1 + ϵ/3
,

we deduce that h(Dn) ⊂ Dn. To get a contradiction to Step 2, we will prove
that h has no fixed points. For all x ∈ Dn, it follows from the definitions that
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∥h(x)− g(x)∥ ≤ ϵ/3. The triangle inequality then implies that

∥h(x)− x∥ ≥ ∥f(x)− x∥ − ∥f(x)− g(x)∥ − ∥g(x)− h(x)∥ ≥ ϵ− ϵ/3− ϵ/3 = ϵ/3.

Since ϵ > 0, this implies that h(x) ̸= x. This contradicts Step 2, and we are
done. □





CHAPTER 6

Tubular neighborhoods

In this chapter, we discuss tubular neighborhoods together with some of their
applications. For simplicity, we will restrict ourselves to tubular neighborhoods of
submanifolds of Euclidean space.

6.1. Normal bundles

We first must discuss normal bundles. To define these, we will use the vector
bundle operations that we discussed in §3.8.

Definition. Let Mn1
1 and Mn2

2 be smooth manifolds and let f :Mn1
1 →Mn2

2

be an embedding. There is a map g : TMn1
1 → f∗(TMn1

2 ) of vector bundles over
Mn1

1 which since f is an embedding restricts to an injection (TMn1
1 )p → f∗(TMn1

2 )p
for each p ∈Mn1

1 . The normal bundle to f , denoted Nf , is the cokernel of g. This
is an (n2 − n1)-dimensional vector bundle over Mn1

1 . □

The following special case of this will be particularly important.

Definition. Let Mn be a smooth submanifold of Rm. We will denote by
NRm/Mn the normal bundle to the inclusion map Mn ↪→ Rm. □

The normal bundle to a smooth submanifold of Rm can be expressed in a
particuarly simple form. Recall that if Mn is a smooth submanifold of Rm, then
TpM

n is canonically identified with an n-dimensional subspace of TpRm = Rm for
all p ∈Mn.

Definition. If Mn is a smooth submanifold of Rm and p ∈ Mn, then denote
by Np,Rm/Mn the orthogonal complement to TpM

n in TpRm = Rm. □

Lemma 6.1. Let Mn be a smooth submanifold of Rm. Then

NRm/Mn ∼= {(p, v⃗) ∈ TRm | p ∈Mn and v⃗ ∈ Np,Rm/Mn}.

Proof. This is an exercise. □

Example. For Sn ⊂ Rn+1 and p ∈ Sn, recall that TpS
n consists of all vectors

in TpRn+1 = Rn+1 that are orthgonal to the line from 0 to p. This implies that

NRn+1/Sn = {(p, tp) | p ∈ Sn, t ∈ R} ∼= Sn × R. □

Since NRm/Mn is an (m−n)-dimensional vector bundle overMn, it is a smooth
m-dimensional manifold. The following lemma identifies its tangent space. In it,
we make use of the fact that

T (TRn) = T (Rn × Rn) = (Rn × Rn)× (Rn × Rn).

45
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Figure 6.1. A tubular neighborhood of a loop S1 embedded in R2

Lemma 6.2. LetMn be a smooth submanifold of Rm and let (p, v⃗) ∈ NRm/Mn ⊂
TRm = Rm × Rm. Then the tangent space T(p,v⃗)NRm/Mn consists of all points
(w⃗, w⃗′) ∈ T(p,v⃗)(Rm × Rm) = Rm × Rm such that w⃗ ∈ TpM

n ⊂ Rm and w⃗′ ∈
Np,Rm/Mn ⊂ Rm.

Proof. This is another exercise. □

6.2. The tubular neighborhood theorem

We now come to the tubular neighborhood theorem. This requires a definition.
In it, we make use of the identification described in Lemma 6.1

Definition. Let Mn be a smooth submanifold of Rm. For ϵ > 0, define
N ϵ

Rm/Mn to be the subspace of NRm/Mn consisting of points (p, v⃗) such that p ∈Mn

and v⃗ ∈ Np,Rm/Mn ⊂ Rm and ∥v⃗∥ < ϵ. □
Theorem 6.3 (Tubular Neighborhood Theorem). LetMn be a smooth compact

submanifold of Rm. Define n : NRm/Mn → Rm to be the map taking (p, v⃗) to p+ v⃗.
Then there exists some ϵ such that the restriction of n to N ϵ

Rm/Mn is an embedding.

The image of the restriction of n : NRm/Mn → Rm to N ϵ
Rm/Mn will be called an

ϵ-tubular neighborhood of Mn. To illustrate why it is called this, see Figure 6.1.

Proof of Theorem 6.3. For ϵ > 0 and a set U ⊂ Mn, let N ϵ
Rm/Mn(U)

denote the subspace of N ϵ
Rm/Mn consisting of points (p, v⃗) such that p ∈ U . The

proof will have two steps.

Step 1. There exists an open cover {Ui}ki=1 of Mn and an ϵ > 0 such that n
restricts to an embedding from N ϵ

Rm/Mn(Ui) into Rm for all 1 ≤ i ≤ k.

Since Mn is compact, it is enough to prove that the map n is a local diffeomor-
phism at each point (p, 0) ∈ NRm/Mn . By Theorem 5.2 (the Implicit Function The-
orem), this is equivalent to showing that D(p,0) n : T(p,0)NRm/Mn → T(p,0)Rm = Rm
is an isomorphism. Lemma 6.2 says that T(p,0)NRm/Mn consists of all point (w⃗, w⃗′) ∈
T(p,0)(Rm×Rm) = Rm×Rm such that w⃗ ∈ TpM

n ⊂ Rm and w⃗′ ∈ Np,Rm/Mn ⊂ Rm.
Under this identification, the derivative D(p,0) n takes (w⃗, w⃗′) to w⃗ + w⃗′. Since Rm
is the orthogonal direct sum of TpM

n and Np,Rm/Mn , it follows that D(p,0) n is an
isomorphism, as desired.



6.3. APPROXIMATING CONTINUOUS FUNCTIONS BY SMOOTH ONES, II 47

Step 2. There exists some 0 < ϵ′ < ϵ such that the restriction of n to N ϵ′

Rm/Mn

is an embedding.

Set ϵ′′ = ϵ/2 and define N≤ϵ′
Rm/Mn to be the subspace of NRm/Mn consisting of

points (p, v⃗) such that p ∈ Mn and v⃗ ∈ Np,Rm/Mn ⊂ Rm and ∥v⃗∥ ≤ ϵ′. Define

N≤ϵ′
Rm/Mn(Ui) in the obvious way. Since Mn is compact, it follows that N≤ϵ′

Rm/Mn is

compact. Let X = N≤ϵ′
Rm/Mn × N≤ϵ′

Rm/Mn and Y = {(x, y) ∈ X | n(x) = n(y)} and

∆ = {(x, y) ∈ X | x = y}, so both Y and ∆ are closed (hence compact) and ∆ ⊂ Y .
Define Z = Y \∆. We claim that Z is compact. Indeed, define

W =
k∪
i=1

N≤ϵ′
Rm/Mn(Ui)×N≤ϵ′

Rm/Mn(Ui) ⊂ X.

The setW is open and by Step 1 we haveW ∩Y = ∆. This implies that Z = Y \W ,
so Z is compact, as claimed.

Define

A = {((p, v⃗), (p′, v⃗′)) ∈ X | v⃗ = v⃗′ = 0} ∼=Mn ×Mn,

so A is compact. Since n takes {(p, v⃗) ∈ N≤ϵ′
Rm/Mn | v⃗ = 0} diffeomorphically onto

Mn, it follows that Z ∩A = ∅. Since both Z and A are compact, this implies that
we can choose 0 < ϵ′ < ϵ′′ such that for all ((p, v⃗), (p′, v⃗′)) ∈ Z we have ∥v⃗∥ ≥ ϵ′

and ∥v⃗′∥ ≥ ϵ′. Unwinding the definitions, this implies that the restriction of n

to N ϵ′

Rm/Mn is injective. Since Step 1 implies that the restriction of n to N ϵ′

Rm/Mn

is a local diffeomorphism, we conclude that the restriction of n to N ϵ′

Rm/Mn is an

embedding, as desired. □

The following corollary to Theorem 6.3 will be frequently used.

Corollary 6.4. Let Mn be a smooth compact submanifold of Rm. Then for
all ϵ > 0, there exists some open set Uϵ ⊂ Rm containingMn and a smooth function
π : Uϵ →Mn with the following properties.

• π(p) = p for all p ∈Mn.
• ∥π(p)− p∥ < ϵ for all p ∈ Uϵ.

Proof. Decreasing ϵ if necessary, we can apply Theorem 6.3 to construct an ϵ-
tubular neighborhood Uϵ of M

n. We have Uϵ ∼= N ϵ
Rm/Mn ; under this identification,

the desired function π : Uϵ → Mn is function that takes (p, v⃗) ∈ N ϵ
Rm/Mn to p.

This clearly satisfies the claimed properties. □

6.3. Approximating continuous functions by smooth ones, II

Recall that in Theorem 2.7 we proved that if M is a smooth manifold and
f :M → Rm is a continuous function, the f can be approximated arbitrarly well by
smooth functions. As a first application of the tubular neighborhood, we now show
how to approximate continuous functions between arbitrary compact manifolds by
smooth ones.

Theorem 6.5. LetM1 be a smooth manifold with boundary, letM2 be a smooth
compact manifold, and let f : M1 → M2 be a continuous function. Let dM2(·, ·)
be a metric (in the sense of metric spaces) on M2 that induces the topology on
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M2. Then for all ϵ > 0 there exists a smooth function g : M1 → M2 such that
dM2(f(x), g(x)) < ϵ for all x ∈M1.

Proof. Using Theorem 5.1, we can embed M2 into Rm for some m≫ 0. The
subspace topology on M2 induced by Rm is the same as the topology induced by
the metric dM2(·, ·), so we can find some ϵ′ > 0 such that if ∥y1 − y2∥ < ϵ′ for some
y1, y2 ∈M2, then dM2(y1, y2) < ϵ. Shrinking ϵ′ if necessary, we can apply Corollary
6.4 to construct an open neighborhood Uϵ′/2 of M2 together with a function π :
Uϵ′/2 → M2 such that π(p) = p for all p ∈ M2 and ∥π(p) − p∥ < ϵ′/2 for all
p ∈ Uϵ′/2. Applying Theorem 2.7 to our continuous function f : M1 → M2 ⊂ Rm,
we can find a smooth function g1 : M1 → Rm such that ∥f(x) − g1(x)∥ < ϵ′/2 for
all x ∈ M1. The image of g1 will no longer lie in the subspace M2 of Rm, but it
will lie in Uϵ′/2. Define g = π ◦ g1, so g is a smooth function from M1 to M2. For
x ∈M1, we then have

∥f(x)− g(x)∥ ≤ ∥f(x)− g1(x)∥+ ∥g1(x) + π(g1(x))∥ < ϵ′/2 + ϵ′/2 = ϵ′,

and hence dM2(f(x), g(x)) < ϵ, as desired. □
The following “relative” version of Theorem 6.5 will also be useful.

Theorem 6.6. LetM1 be a smooth manifold with boundary, letM2 be a smooth
compact manifold, and let f :M1 →M2 be a continuous function. Also, let U ⊂M1

be an open set such that f |U is smooth and let C ⊂M1 be a closed set with C ⊂ U .
Let dM2(·, ·) be a metric (in the sense of metric spaces) on M2 that induces the
topology on M2. Then for all ϵ > 0, there exists a smooth function g : M1 → M2

such that dM2(f(x), g(x)) < ϵ for all x ∈M1 and such that g|C = f |C .

Proof. Simply replace the invocation of Theorem 2.7 in the proof of Theorem
6.5 with Theorem 2.9. □



CHAPTER 7

The degree of a map

7.1. Homotopies and smooth homotopies

We begin with the following topological relationship between functions.

Definition. Let f0, f1 : X → Y be continuous functions between topological
spaces. We say that f0 and f1 are homotopic if there exists a continuous function
F : X × I → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X. The
function F will be called a homotopy. □

In other words, the function f0 can be “deformed” to the function f1. Here is
one easy example of this.

Example. Let X be a topological space and let f0, f1 : X → Rn be continuous
functions. Then f0 and f1 are homotopic via the homotopy F : X×I → Rn defined
by the formula

F (x, t) = (1− t)f0(x) + tf1(x) (x ∈ X).

In other words, F moves the point f0(x) to the point f1(x) along the straight line
connecting these two points. □

Lemma 7.1. For topological spaces X and Y , the relation of homotopy between
continuous functions from X to Y is an equivalence relation.

Proof. Trivial. □
If M1 and M2 are smooth manifolds, then we have two seemingly different

equivalence classes of functions from M1 to M2.
• Continuous functions up to homotopy.
• Smooth functions up to smooth homotopy, that is, homotopies F : M1 ×
I →M2 that are themselves smooth.

The two main theorems in this section show that these are really the same thing.
The first is as follows.

Theorem 7.2. Let f : M1 → M2 be a continuous function between smooth
compact manifolds. Then f is homotopic to a smooth function g :M1 →M2.

Proof. Using Theorem 5.1, we can embed M2 into Rm for some m ≫ 0.
Using Corollary 6.4, we can find an open neighborhood U of M2 in Rm and a
smooth function π : U → M2 such that π(p) = p for all p ∈ M2 (the constant ϵ in
that corollary does not matter for this proof). We can now pick δ > 0 small enough
such that if p1, p2 ∈M2 satisfy ∥p1−p2∥ < δ, then the straight line segment from p1
to p2 lies in U . Now use Theorem 6.5 to construct a smooth function g :M1 →M2

such that ∥f(p) − g(p)∥ < δ for all p ∈ M1. We claim that f is homotopic to g.
Indeed, the function F :M1 × I →M2 defined via the formula

F (p, t) = π((1− t)f(p) + tg(p)) (p ∈M1, t ∈ I)

49
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is a homotopy from f to g. This is well-defined since (1 − t)f(p) + tg(p) ∈ U
(the domain of π) for all t ∈ I and p ∈ I, which is a consequence of the fact that
∥f(p)− g(p)∥ < δ. □

The second is as follows.

Theorem 7.3. Let f0 : M1 → M2 and f1 : M1 → M2 be homotopic smooth
functions between smooth compact manifolds. Then there exists a smooth homotopy
between f0 and f1.

Proof. Let F : M1 × I → M2 be a continuous homotopy between f0 and f1.
Modifying F , we can assume that F (p, t) = f0(p) for 0 ≤ t ≤ 1/3 and F (p, t) =
f1(p) for 2/3 ≤ t ≤ 1. Thus F is smooth on the open set M × ([0, 1/3) ∪ (2/3, 1]).
Applying Theorem 6.6, we can find a smooth function G : M1 × I → M2 such
that G(p, 0) = F (p, 0) = f0(p) and G(p, 1) = F (p, 1) = f1(p) for all p ∈ M1 (we
could also ensure that ∥G(p, t)− F (p, t)∥ < ϵ for all (p, t) ∈M1 × I, but this is not
necessary). The function G is the desired smooth homotopy. □

7.2. Homotopies and regular values

This technical section will discuss the relationship between homotopy classes of
functions and regular values. Our two results augment Theorems 7.2 and 7.3 from
the previous section.

Lemma 7.4. Let f : M1 → M2 be a continuous function between smooth
compact manifolds and let p ∈ M2. Then f is homotopic to a smooth function
g :M1 →M2 such that p is a regular value of g.

Proof. By Theorem 7.2, we can assume that f is itself smooth. Using Theo-
rem 5.8 (Sard’s Theorem), we can find a regular value q ∈ M2 of f . Theorem 4.7
implies that we can find a flow ht :M2 →M2 of a vector field such that h1(q) = p.
Define g = h1 ◦ f . Since h1 is a diffeomorphism, the point p is a regular value of g.
Moreover, f is homotopic to g via the homotopy F :M1 × I →M2 defined via the
formula

F (x, t) = ht(f(x)) (x ∈M1, t ∈ I);

here we are using the fact that h0 = id, which follows from the definition of a
flow. □

Lemma 7.5. Let f0 : M1 → M2 and f1 : M1 → M2 be homotopic smooth
functions between smooth compact manifolds and let p ∈ M2 be a point which is a
regular value of both f0 and f1. Then there exists a smooth homotopy F :M1×I →
M2 such that p is a regular value of both f0 and f1.

Proof. PROVE IT!!! □

7.3. The degree modulo 2

We now come to the first and most primitive notion of the degree of a smooth
map between compact manifolds of the same dimension.

Definition. Let Mn
1 and Mn

2 be smooth compact manifolds of the same di-
mension and let f : Mn

1 → Mn
2 be a continuous function. The mod-2 degree of f ,

denoted deg2(f), is the element of Z/2 defined as follows.
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Figure 7.1. A schematic drawing of Mn
1 × I. The left side is

Mn
1 × {0}, the right side is Mn

1 × {1}, the dots on the two bound-
ary components are the points of g−1

0 (p) and g−1
1 (p), and the 1-

submanifold is Λ = F−1(p)

• Let g : Mn
1 → Mn

2 be a smooth function which is homotopic to f , which
exists by Theorem 7.2. Let p ∈ Mn

2 be a regular value of g, which exists
by Theorem 5.8 (Sard’s theorem). Then deg2(f) is the reduction modulo
2 of the number of points in g−1(p), which is a 0-dimensional submanifold
of the compact manifold Mn

1 , i.e. a finite collection of points. □

Of course, as defined the number deg2(f) depends on the choice of g and p,
but the following theorem says that this dependence is illusionary.

Theorem 7.6. The mod-2 degree is well-defined.

Proof. We will prove this in three steps. The first step is the most important
and contains the geometric heart of the proof. As notation, if g : Mn

1 → Mn
2 is a

smooth function that is homotopic to f and p ∈ Mn
2 is a regular value of g, then

let deg2(f, g, p) ∈ Z/2 denote the number of points modulo 2 of g−1(p). We want
to show that deg2(f, g, p) does not depend on g or p, which will be the content of
the third step.

Step 1. Fix some p ∈ Mn
2 . Let g0 : Mn

1 → Mn
2 and g1 : Mn

1 → Mn
2 be

smooth functions that are homotopic to f and which have p as a regular value.
Then deg2(f, g0, p) = deg2(f, g1, p).

Using Lemma 7.5, we can find a smooth homotopy F :Mn
1 × I →Mn

2 from g0
to g1 such that p is a regular value of F . Define Λ = F−1(p). Using Theorem 5.7,
we see that Λ is a smooth 1-dimensional submanifold of Mn

1 × I such that

∂Λ = (g−1
0 (p)× {0}) ∪ (g−1

1 (p)× {1});

see Figure 7.1. Theorem 11.1 implies that each component of Λ is diffeomorphic to
either a circle S1 or an interval [0, 1]. Those that are intervals can be divided into
three types (see Figure 7.1):

(1) intervals connecting points of g−1
0 (p)×{0} to other points of g−1

0 (p)×{0},
and
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(2) intervals connecting points of g−1
1 (p)×{1} to other points of g−1

1 (p)×{1},
and

(3) intervals connecting points of g−1
0 (p)× {0} to points of g−1

1 (p)× {1}.
Let k0 (resp. k1) be the number of points of g−1

0 (p)×{0} (resp. g−1
1 (p)×{1}) that

occur as endpoints of intervals of the first (resp. second) type. Both k0 and k1
are even. Next, let ℓ0 (resp. ℓ1) be the number of points of g−1

0 (p) × {0} (resp.
g−1
1 (p) × {1}) that occur as endpoints of intervals of the third type. We clearly
have ℓ0 = ℓ1. We have

|g−1
0 (p)| = k0 + ℓ0 and |g−1

1 (p)| = k1 + ℓ1.

Since the ki are even and the ℓi are equal, we deduce that reductions modulo 2 of
|g−1

0 (p)| and |g−1
1 (p)| are the same, as desired.

Step 2. Let g : Mn
1 → Mn

2 be a smooth function that is homotopic to f and
let p, q ∈M2 be regular values of g. Then deg2(f, g, p) = deg2(f, g, q).

Using Theorem 4.7, we can find a flow ht : M2 → M2 of a smooth vector field
such that ht(p) = q. Define g1 = h1 ◦ g. Since h1 is a diffeomorphism of M2, the
point q is a regular value of g1. In fact, we have g−1(p) = g−1

1 (q). Moreover, g1
is homotopic to g (and hence f) via the homotopy F : M1 × I → M2 defined via
F (x, t) = h1−t(g(x)) for (x, t) ∈ M1 × I. This ends at g since h0 = id. We thus
have that

deg2(f, g, p) = deg2(f, g1, q) = deg2(f, g, q),

where the first equality follows from the fact that g−1(p) = g−1
1 (q) and the second

from Step 1.

Step 3. Let g0 : Mn
1 → Mn

2 and g1 : Mn
1 → Mn

2 be smooth functions that are
homotopic to f . Let p0 ∈Mn

2 be a regular value of g0 and let p1 ∈Mn
2 be a regular

value of g1. Then deg2(f, g0, p0) = deg2(f, g1, p1).

By Theorem 5.8 (Sard’s theorem), the regular values of g0 are open and dense
in Mn

2 , and similarly for g1. We can thus find some point q ∈Mn
2 that is a regular

value of both g0 and g1. Applying Steps 1 and 2, we see that

deg2(f, g0, p0) = deg2(f, g0, q) = deg2(f, g1, q) = deg2(f, g1, p1),

as desired. □

7.4. Simple applications of the mod-2 degree

One simple application of the mod-2 degree is as follows.

Theorem 7.7. Let Mn be a smooth compact manifold and let f : Mn → Mn

be a diffeomorphism. Then f is not homotopic to a constant map.

Proof. Since every point ofMn is a regular value of f and has a single preim-
age, we see that deg2(f) = 1. However, if g : Mn → Mn is a constant map, then
the regular values of g are exactly those points not in its image, so deg2(g) = 0.
Since deg2(f) ̸= deg2(g), we see that f and g are not constant. □

This gives an alternate proof of the following result, which we recall is the key
topological fact used to prove the Brouwer fixed point theorem (Theorem 5.12).

Lemma 7.8. There does not exist a smooth map f : Dn → Sn such that f(p) = p
for all p ∈ Sn.
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Proof. Assume that such an f exists. The function F : Sn × I → Sn defined
via the formula

F (p, t) = f((1− t)p) (p ∈ Sn, t ∈ I)

is a homotopy from the identity map on Sn to the constant map with image f(0),
which constradicts Theorem 7.7. □

7.5. Orientations on vector spaces

Our next goal will be to refine the mod-2 degree to a degree that takes integer
values. To do this, we will have to introduce orientations on our manifolds. We
begin in this section by discussing orientations on vector spaces.

Definition. Let V be an n-dimensional real vector space with n ≥ 1. An
orientation on V is an equivalence class of ordered basis (v⃗1, . . . , v⃗n) for V under
the following equivalence relation:

• If b = (v⃗1, . . . , v⃗n) and b′ = (v⃗′1, . . . , v⃗
′
n) are ordered bases for V , then

b ∼ b′ if det(aij) > 0, where (aij) is the n × n change of basis matrix
defined via the identities

v⃗′i =
n∑
j=1

aij v⃗j (1 ≤ i ≤ n).

If V is equipped with a fixed orientation, then we will call V an oriented vector space
and any ordered basis representing that orientation an oriented basis for V . □

The first basic property of orientations is as follows.

Lemma 7.9. Let V be an n-dimensional real vector space with n ≥ 1. Then V
has exactly two orientations.

Proof. Let b = (v⃗1, . . . , v⃗n) and b′ = (v⃗′1, . . . , v⃗
′
n) be two ordered bases for

V . Since multiplying a column of a matrix by −1 has the effect of multiplying its
determinant by −1, it follows that b represents the same orientation as either b′ of
(−v⃗′1, v⃗′2, . . . , v⃗′n). □

This lemma implies that the following definition makes sense.

Definition. Let V be an n-dimensional real vector space and let b be an
orientation of V . Then −b will denote the other orientation. □

The following lemma will be very useful.

Lemma 7.10. Let f : V → W be a surjective map between finite-dimensional
real vector spaces of positive dimension. Set U = ker(f) and assume that U has
positive dimension. Assume that two out of the three vector spaces U and V and
W are equipped with an orientation. There is then a unique way to choose an
orientation for the third such that the following holds.

• Let w⃗1, . . . , w⃗k ∈ V be vectors such that (f(w⃗1), . . . , f(w⃗k)) is an oriented
basis for W . Also, let (u⃗1, . . . , u⃗ℓ) be an oriented basis for U . Then
(w⃗1, . . . , w⃗k, u⃗1, . . . , v⃗ℓ) is an oriented basis for V .

Proof. Homework! I’ll insert this proof after the homework is due. □
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7.6. Orientation on manifolds

We now define orientations on smooth manifolds. Informally, an orientation
on a smooth manifold is a choice of orientation on each tangent space that “vary
smoothly”. Since there are two orientations on a vector space, the set of possi-
ble orientations on a particular tangent space is a discrete set and the notion of
“vary smoothly” should really mean “is locally constant”. We formalize this in the
following definition.

Definition. An orientation on a smooth manifold with boundary Mn is a
choice of orientation bp of TpM

n for all p ∈Mn that satisfy the following continuity
condition:

• Let ϕ : U → V be any chart. For any p ∈ U , let bp be the orientation on
Tϕ(p)V = Rn induced by bp under the canonical identification of TpM

n

with Tϕ(p)V . Then we require that bp = bp′ for all p, p
′ ∈ U .

A manifold with boundary Mn is orientable it there exists an orientation on it.
An oriented manifold with boundary is a smooth manifold with boundary that is
equipped with an orientation. □

The easiest example is as follows.

Example. Let V be an open subset of Rn. Equip each tangent space TpV = Rn
with the orientation corresponding to the standard basis of Rn. This gives an
orientation on V . □

To give more examples, we need the following lemma.

Lemma 7.11. Let f : M1 → M2 be a smooth map between a smooth manifold
with boundary M1 and a smooth oriented manifold M2 and let p ∈M2 be a regular
value of both f and f |∂M1 . Then f−1(p) is orientable.

Proof. Set X = f−1(p). Recall that Theorem 5.7 says that X is a smooth
manifold with boundary and that ∂X = (f |∂M1)

−1(p). For each q ∈ X, we have
that

TqX = ker(Dqf : TqM1 → TpM2).

Since p is a regular value, the map Dqf is surjective. Using Lemma 7.10, our given
orientations on TpM2 and TqM1 induce a canonical orientation on TqX. It is easy
to see that these orientations on the tangent spaces of X vary smoothly, so this
gives us an orientation on X. □

Example. Let f : Rn+1 → R be the function f(x1, . . . , xn+1) =
∑n+1
i=1 x

2
i . We

know that 1 is a regular value of f and that Sn = f−1(1). Since both Rn+1 and R
are orientable, we deduce from Lemma 7.11 that Sn is orientable. □

Our next goal is to show how to orient the boundary of an orientable manifold
with boundary. This requires the following definition.

Definition. Let Mn be a smooth manifold with boundary, let p ∈ ∂Mn, and
let v⃗ ∈ TpM

n. Choose a chart ϕ : U → V with p ∈ U and V ⊂ Hn.
• We say that v⃗ is tangent to the boundary if the last coordinate of the
element of Tϕ(p)V = Rn corresponding to v⃗ is zero. Equivalently, v⃗ lies in
Tp(∂M

n) ⊂ TpM
n.

• We say that v⃗ is inward facing if the last coordinate of the element of
Tϕ(p)V = Rn corresponding to v⃗ is positive.
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• We say that v⃗ is outward facing if the last coordinate of the element of
Tϕ(p)V = Rn corresponding to v⃗ is negative.

It is easy to see that these notions are well-defined. □
Lemma 7.12. Let Mn be a smooth oriented manifold with boundary. Then

there exists a unique orientation on ∂Mn with the following property:
• Let (v⃗1, . . . , v⃗n−1) be an oriented basis for Tp(∂M

n) ⊂ TpM
n and let

v⃗n ∈ TpM
n be an inward facing vector. Then (v⃗1, . . . , v⃗n) is an oriented

basis for TpM
n.

Proof. That this condition picks out a unique orientation on each Tp(∂M
n)

follows from Lemma 7.10. It is easy to see that it varys smoothly, and thus gives
an orientation on ∂Mn. □

We will call the orientation given by Lemma 7.12 the inward facing orientation
on ∂Mn. In a similar way, we can define the outward facing orientation on ∂Mn.

Example. Since Dn ⊂ Rn is orientable, Lemma 7.12 gives another proof that
Sn = ∂Dn is orientable. □

7.7. The integral degree

We now define the degree of a continuous function between compact oriented
n-manifolds. This requires the following preliminary definition.

Definition. Let g : Mn
1 → Mn

2 be a smooth map between orientable n-
manifolds and let q ∈Mn

1 be such that g is a submersion at q. The derivative map
Tqg : TqM

n
1 → Tf(q)M

n
2 is thus an isomorphism. Define ϵg,q to be +1 if Tqg takes

the given orientation on TqM
n
1 to the given orientation on Tf(q)M

n
2 and to be −1

if it does not. □
We then define the degree as follows.

Definition. Let Mn
1 and Mn

2 be smooth compact oriented manifolds of the
same dimension and let f : Mn

1 → Mn
2 be a continuous function. The degree of f ,

denoted deg(f), is the element of Z defined as follows.
• Let g : Mn

1 → Mn
2 be a smooth function which is homotopic to f , which

exists by Theorem 7.2. Let p ∈ Mn
2 be a regular value of g, which exists

by Theorem 5.8 (Sard’s theorem). Then

deg(f) =
∑

q∈f−1(p)

ϵg,q,

which is a finite sum since g−1(p) is a 0-dimensional submanifold of the
compact manifold Mn

1 , i.e. a finite collection of points. □
Just like for the mod-2 degree, we must prove that this is well-defined.

Theorem 7.13. The degree is well-defined.

Proof. The proof of this is very similar to the proof of Theorem 7.6, which
proves the analogous fact for the mod-2 degree. As notation, if g :Mn

1 →Mn
2 is a

smooth function that is homotopic to f and p ∈ Mn
2 is a regular value of g, then

let
deg(f, g, p) =

∑
q∈f−1(p)

ϵg,q.
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We want to show that deg(f, g, p) does not depend on g or p
Again, there will be three steps.

Step 1. Fix some p ∈ Mn
2 . Let g0 : Mn

1 → Mn
2 and g1 : Mn

1 → Mn
2 be

smooth functions that are homotopic to f and which have p as a regular value.
Then deg(f, g0, p) = deg(f, g1, p).

Using Lemma 7.5, we can find a smooth homotopy F :Mn
1 × I →Mn

2 from g0
to g1 such that p is a regular value of F . Define Λ = F−1(p). Using Theorem 5.7,
we see that Λ is a smooth 1-dimensional submanifold of Mn

1 × I such that

∂Λ = (g−1
0 (p)× {0}) ∪ (g−1

1 (p)× {1});
see Figure 7.1.

At this point, we have to be careful with orientations. Observe first that we
can orient Mn

1 × I in such a way that the inward-facing orientation on Mn
1 ×{0} ⊂

∂(Mn
1 × I) is the given orientation on Mn

1 . However, with this choice of orientation
the given orientation on Mn

1 is the outward-facing orientation on Mn
1 × {1} ⊂

∂(Mn
1 × I). Now, Lemma 7.11 says that our given orientations on Mn

1 and Mn
2

induce a canonical orientation on Λ. An orientation on a 1-dimensional manifold is
just a choice of direction for each component. Chasing through the proof of Lemma
7.11, we see that our orientation on Λ satisfies the following property:

• Consider a point q ∈ Λ. We then have that

TqΛ = ker(DqF : Tq(M
n
1 × I) → TpM

n
2 ).

Let v⃗ ∈ TqΛ be a vector such that (v⃗) is an oriented basis for TqΛ. Also, let
w⃗1, . . . , w⃗n ∈ Tq(M

n
1 × I) be elements such that (DqF (w⃗1), . . . , DqF (w⃗n))

is an oriented basis for TpM
n
2 . Then (w⃗1, . . . , w⃗n, v⃗) is an oriented basis

for Tq(M
n
1 × I).

Theorem 11.1 implies that each component of Λ is diffeomorphic to either a circle
S1 or an interval [0, 1]. Those that are intervals can be divided into three types
(see Figure 7.1). In our descriptions of these types, we use our given orientation on
Λ to speak of an interval having an initial and a terminal point.

(1) Intervals having an initial point q ∈ g−1
0 (p)×{0} and a terminal point q′ ∈

g−1
0 (p)×{0}. We claim that ϵg0,q = 1 and ϵg0,q′ = −1. Indeed, let v⃗ ∈ TqΛ
be a vector such that (v⃗) is an oriented basis for TqΛ. We have q ∈ ∂(Mn

1 ×
I) and v⃗ is an inward-facing vector. Choose an ordered basis (w⃗1, . . . , w⃗n)
for Tq(∂M

n
1 × I) ⊂ Tq(M

n
1 × I) such that (DqF (w⃗1), . . . , DqF (w⃗n)) is an

oriented basis for TpM
n
2 . Then by the above discussion of the orientation

on Λ we have that (w⃗1, . . . , w⃗n) is an oriented basis for Tq(M
n
2 × {0}),

which implies that ϵg0,q = 1. In a similar way, we see that ϵg0,q′ = −1;
the reason for the change in sign is that if v⃗′ ∈ Tq′Λ is such that (v⃗′) is
an oriented basis for Tq′Λ, then v⃗

′ is an outward-facing vector.

(2) Intervals having an initial point q ∈ g−1
1 (p) × {1} and a terminal point

q′ ∈ g−1
1 (p) × {1}. Just like in the first case, we have ϵg1,q = −1 and

−ϵg1,q′ = 1.

(3) Intervals having an initial point q ∈ g−1
0 (p) × {0} and a terminal point

q′ ∈ g−1
1 (p)× {1}. In this case, an argument similar to that above shows

that ϵg0,q = ϵg1,q′ . The key point here is that the relevant orientation on
Mn

1 ×{0} is the inward-facing orientation but the relevant orientation on
Mn

1 × {1} is the outward-facing orientation.
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Adding all the points up, we see that the positive and negative signs of the points
appearing at the endpoints of the intervals of the first and second types all cancel,
while the intervals of the third type match up points with identical signs. This
implies that deg(f, g0, p) = deg(f, g1, p), as desired.

Step 2. Let g : Mn
1 → Mn

2 be a smooth function that is homotopic to f and
let p, q ∈M2 be regular values of g. Then deg(f, g, p) = deg(f, g, q).

The proof is identical to that of the analogous step of the proof of Theorem
7.6, so we omit it.

Step 3. Let g0 : Mn
1 → Mn

2 and g1 : Mn
1 → Mn

2 be smooth functions that are
homotopic to f . Let p0 ∈Mn

2 be a regular value of g0 and let p1 ∈Mn
2 be a regular

value of g1. Then deg2(f, g0, p0) = deg2(f, g1, p1).

Again, the proof is identical to that of the analogous step of the proof of
Theorem 7.6, so we omit it. □





CHAPTER 8

Foliations and Frobenius’s theorem

59





CHAPTER 9

Lie groups

61





CHAPTER 10

Transversality

63





CHAPTER 11

Morse theory

Theorem 11.1 (Classification of 1-manifolds). Every compact connected 1-
manifold with boundary is diffeomorphic to either S1 or [0, 1].

65





CHAPTER 12

Orientations and integral degrees

67





CHAPTER 13

Winding numbers and the Hopf invariant

69





CHAPTER 14

The Poincare-Hopf theorem

Theorem 14.1 (Hairy ball theorem). There does not exist a nonvanishing
vector field on an even-dimensional sphere S2n.

71




	Chapter 1. Multivariable calculus
	1.1. Smooth maps and their derivatives
	1.2. The chain rule

	Chapter 2. Smooth manifolds
	2.1. The definition
	2.2. Basic examples
	2.3. Smooth functions
	2.4. Manifolds with boundary
	2.5. Partitions of unity
	2.6. Approximating continuous functions, I

	Chapter 3. The tangent bundle
	3.1. Tangent spaces
	3.2. Derivatives I
	3.3. The tangent bundle
	3.4. Derivatives II
	3.5. Visualizing the tangent bundle
	3.6. Directional derivatives
	3.7. Manifolds with boundary
	3.8. Vector bundles

	Chapter 4. Vector fields
	4.1. Definition and basic examples
	4.2. Extending vector fields
	4.3. Integral curves of vector fields
	4.4. Flows
	4.5. Moving points around by diffeomorphisms

	Chapter 5. The structure of smooth maps
	5.1. Embeddings
	5.2. Embedding manifolds in Euclidean space I
	5.3. Local diffeomorphisms
	5.4. Immersions
	5.5. Submersions
	5.6. Regular values
	5.7. Regular values and manifolds with boundary
	5.8. Sard's theorem
	5.9. Embedding manifolds in Euclidean space II
	5.10. Application: the fundamental theorem of algebra
	5.11. Application: the Brouwer fixed point theorem

	Chapter 6. Tubular neighborhoods
	6.1. Normal bundles
	6.2. The tubular neighborhood theorem
	6.3. Approximating continuous functions by smooth ones, II

	Chapter 7. The degree of a map
	7.1. Homotopies and smooth homotopies
	7.2. Homotopies and regular values
	7.3. The degree modulo 2
	7.4. Simple applications of the mod-2 degree
	7.5. Orientations on vector spaces
	7.6. Orientation on manifolds
	7.7. The integral degree

	Chapter 8. Foliations and Frobenius's theorem
	Chapter 9. Lie groups
	Chapter 10. Transversality
	Chapter 11. Morse theory
	Chapter 12. Orientations and integral degrees
	Chapter 13. Winding numbers and the Hopf invariant
	Chapter 14. The Poincare-Hopf theorem

