Lecture 11 : Implicit differentiation

For more on the graphs of functions vs. the graphs of general equations see ' Graphs of Functions
under Algebra/Precalculus Review on the class webpage. For more on graphing general equations,
see |Coordinate Geometry.

The graph of an equation relating 2 variables x and y is just the set of all points in the plane which
satisfy the equation. We saw in Lecture 1 that in some equations relating x and y, we cannot solve for
y uniquely in terms of x. For example if we take the equation

? +y* =25
and try to solve for y in terms of x, we get 2 new equations
y = V25— a2 and y=—Vv25— 122

The graph of the equation 2% + y? = 25 is a circle centered at the origin (0,0) with radius 5 and the
above two equations describe the upper and lower halves of the circle respectively.

67 x2+y2=25

flx)=J25-x2

gx) =—/25 - x? 21

Now suppose we want to find the equation of the tangent to the circle at the point where z = 4 and
y = 3. One method of solving the problem would be to

1. Solve for y in terms of x, (getting 2 equations y = /25 — x2 and y=—v25—2a2%)
2. Decide which of these parts of the curve pass through the relevant point. (y = /25 — x? )


http://www3.nd.edu/~apilking/Precalculus/Lectures/Lecture%2011%20Graphs%20of%20Functions.pdf
http://www3.nd.edu/~apilking/Precalculus/Lectures/Lecture%208%20Coordinate%20Geometry.pdf

3. Take the derivative of y with respect to = for the equation describing that part of the curve

_ —2x
(v =1/2 m)
4. Calculate the value of ¥ when x = 4 giving us the slope of the tangent (y' = —4/3)

5. Find the equation of the line with that slope through the point (4,3). (y —3) = —4/3(z —4) .

The above example was not difficult. However to apply the same method to find the tangent to the

curve:
2(2* + y°)* = 25(2° — %)

when z = 3 and y = 1 would be much more difficult. (See Notes at the end)

Implicit Differentiation
There is a much easier method (called implicit differentiation) for finding such tangents thanks to
the chain rule:

If y is defined implicitly as a function of x by an equation relating x and y, we treat y as a differentiable
function of x and proceed as follows:

Implicit Differentiation

1. Differentiate both sides of the equation with respect to z, treating y as a differentiable function
of x.

2. Collect the terms with ' (or g—z) on one side of the equation and solve for y/'.

Example Find the equation of a tangent to the circle 22 4+ y? = 25 when x = 4 and y = 3.

Note that we do not have to solve for y in terms of x and the calculations involved are much less
wearisome. In particular it applies to curves where solving for y in terms of x is very difficult. Both
approaches for the example given below are compared at the end of the notes:

Example Find the equation of a tangent line to the curve described by the equation
2(2” +y*)* = 25(2” — )

when z = 3 and y = 1.



When using implicit differentiation it is important to keep the following in mind:

dy ., dy : dry :

-7 _ -z —9 =7 =

dﬂj y Y d:L’ yy Y d:L’ y + xy Y
where the middle identity follows from the chain rule and the one on the right follows from the product
rule.

Example Find % = ¢/ using implicit differentiation if y° + zy* = 2.

(Please attempt to solve this before looking at the solution on the next page)

Example Find y” (or 227‘12’) using implicit differentiation if /z + ,/y = 1.
(Please attempt to solve this before looking at the solution on the next page)



d dl
%(\/5+ V) = I

1 —1/2 1 1/2dy
z 2 0
2" T

Solving for %, we bring the terms with % to the left and all other terms to the right:

L dy 1

2/ydr 2z
multiplying both sides by 2,/y, we get
b 2\
dx 2\/x T

To calculate y” = %(d—g), we have

, o d (ﬂ) _ _[\/Ed(d\f) _ yd(d—f)] _ _[\/E[ﬁyj—i] —\/g[ﬁ]]

Cdr \Jz x

From above, we know that % = —%. Substituting that into the expression for y”, we get

) [ﬁ[ﬁg[—%ﬂ - ﬂ[ﬁ;]]

T

After cancellation and factoring —1/2 out of each term, we get

31— 2]
e

!

y:

Example Find % by implicit differentiation if ysin(x?) = x sin(y?).
(Please attempt to solve this before looking at the solution on the next page)



Differentiating both sides with respect to x, we get

d d
T (ysin(a?) = o (wsin(y?))
Using the product rule on both sides, we get
(02 c (2
SIH(ZEQ);Z—i _f_yd(Slgiw )) — Sln(y2)cdi_i _I_xd(Sl;l;y ))
Using the chain rule, we get
d dx? dy?
sin(xQ)ﬁ +y cos(a:Q)% = sin(y?) + cos(yQ)%
Using the chain rule again, we get
sin(a:Q)% + gy cos(2?)[22] = sin(y?) + z cos(y?) [2y]@
dx dx’

To solve for %, we bring all of the terms with % to the left hand side to get
sin(x2)—y — 2y cos(gf)—y = sin(y?) — 2xy cos(z?)
dx dx

Factoring % out of every term on the left hand side, we get

d
d—i[sin(xQ) — 2xy cos(y?)] = sin(y?) — 2zy cos(z?).

To solve for %, we divide both sides by sin(x?) — 2xy cos(y?), to get

dy  sin(y®) — 2zy cos(z?)

dr  sin(2?) — 2xy cos(y?)’



Example The following curve is called the bouncing wagon. At what values of x does the graph have
horizontal tangents?




We find ¢’ and set it equal to 0.

%08 4+ y? — o = 2t — 22° + 22

%[Qy?’ +y? =y’ = %[1‘4 —22° + 2]
6%y + 2y’ — byty' = 42® — 62% + 2z
y'[622 + 2y — by'] = 42® — 62° + 22
, Aa® — 62+ 2z

622 + 2y — Syt

When ' = 0, we have the numerator must equal 0 and

Y

43 — 622 422 =0
or
z(42® — 6r +2) =0

SO
L6+ 36—-4(4)2 6+vV4  6+2

:0 pum—
T or 3 3 3

1

We have horizontal tangents at z = 0,z =1 and = = 3.



Example (Not a good approach) Find the tangent to the curve:
2(2" + )" = 25(z" — )

when x = 3 and y = 1. This curve describes a lemniscate, the graph is shown below.
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To apply our method from page 1 of today’s notes (wrong way to go), we solve for y in terms of z. we
look at the equation as a quadratic equation in y? treating the x’s as constants,

2(y*) + (42 + 25)y* + (22 — 252%) = 0.

We get 4 equations for y:

i\/—(4x2 + 25) £ /(422 + 25)% — 8(221 — 2522)
Yy = .
4

Only two have graphs, since we cannot take the square root of negative numbers. The graphs are shown
below.
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This is in fact an easy example, solving quartic polynomials (in y) is in general is difficult but there is
a formula. With powers of 5 and above, there is no general formula.



Example Find the equation of a tangent line to the curve described by the equation
2(2" + )" = 25(2" — )

when z = 3 and y = 1.

Lo 4y = &

- —[25(2% = )]

4(z% 4+ ) (22 + 2yy) = 25(22 — 2yy/)
8(x? + y?)x + 8(2* + y)yy' = 502 — 50yy’
8(2 + y¥)z — 50z = —8(2 + y>)yy' — 50yy/
8(2* + ) — 50z = —[8(2* + y*) + 50]yy’
[8(x* +y*) =50l

—[8(2? +y?) + 50]y]

When z =3 and y = 1, we get

[8(10) —50]3
—[8(10) +50]]
or
9 -9
—130 13 7
The equation of the tangent at this point is
(y—1) = —(x—3).
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