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Exponential Growth

Many quantities grow or decay at a rate proportional to their size.

I For example a colony of bacteria may double every hour.

I If the size of the colony after t hours is given by y(t), then we can express
this information in mathematical language in the form of an equation:

dy/dt = 2y .

A quantity y that grows or decays at a rate proportional to its size fits in an
equation of the form

dy

dt
= ky .

I This is a special example of a differential equation because it gives a
relationship between a function and one or more of its derivatives.

I If k < 0, the above equation is called the law of natural decay and if
k > 0, the equation is called the law of natural growth.

I A solution to a differential equation is a function y which satisfies the
equation.
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Solutions to the Differential Equation dy(t)
dt = ky(t)

It is not difficult to see that y(t) = ekt is one solution to the differential

equation dy(t)
dt

= ky(t).

I as with antiderivatives, the above differential equation has many solutions.

I In fact any function of the form

y(t) = Cekt

is a solution for any constant C .

I We will prove later that every solution to the differential equation above
has the form y(t) = Cekt .

I Setting t = 0, we get
The only solutions to the differential equation dy/dt = ky are the
exponential functions

y(t) = y(0)ekt
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Solutions to the Differential Equation dy(t)
dt = 2y(t)

Here is a picture of three solutions to the differential equation dy/dt = 2y ,
each with a different value y(0).
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We see that each one ”starts” with a different initial value y(0).
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Population Growth

Population Growth Let P be the size of a population at time t. The law of
natural growth is a good model for population growth (up to a certain point):

dP

dt
= kP and P(t) = P(0)ekt

Note that the relative growth rate, dP
dt

/P = k is constant.

I In class, we will look at examples such as

I Example The population of Mathland at the end the year 2000 was 500.
The population increases (continuously or steadily) by approximately 10%
per year. What is the function P(t), the size of the population after t
years, using the exponential model above?

I Example The population of Calculand was 700 in the year 2000 and was
3000 in the year 2010. Using the exponential model for population
growth, find an estimate for the population of Calculand in 2015.
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Radioactive Decay

Radioactive Decay Radioactive substances decay at a rate proportional to
their mass.

dm

dt
= km and m(t) = m0e

kt ,

where m(t) denotes the mass of the substance at time t and m0 denotes the
mass of the substance at time t = 0. The half-life of a radioactive substance
is the time required for half of the quantity to decay.

Carbon Dating the haf-life of Carbon-14 is approximately t1/2 = 5, 730 years
(there is some variety in this depending on variables such as location). When a
plant or animal dies, it stops taking in Carbon and the carbon it contains starts
to decay. We can use this to figure out the age of artifacts by estimating the
original mass of Carbon-14 in the object and the amount at present. We use
the half-life to find the value of k above.

I In class, we will look at examples such as

I Example Example A bowl made of oak has about 40% of the carbon-14
that a similar quantity of living oak has today. Estimate the age of the
bowl.
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Example

Example A bowl made of oak has about 40% of the carbon-14 that a similar
quantity of living oak has today. Estimate the age of the bowl.

I m(t) = m(0)ekt where m(t) is the amount of carbon in the bowl t years
after it was made.

I To find k, we use the half-life of Carbon-14:

m(5, 730)

m(0)
=

1

2
=

m(0)e5730k

m(0)
= e5730k .

I Applying the natural logarithm, we get ln( 1
2
) = ln(e5730k) = 5730k giving

us that k =
ln( 1

2
)

5730
.

I To find the age we solve for the time t when the Carbon-14 had decayed

to 40% of its original value. We solve for t is m(t)
m(0)

= m(0)ekt

m(0)
= .4

I that is
ekt = .4 or ln(ekt) = ln(.4) or kt = ln(.4)

I This gives t = ln(.4)

ln( 1
2

)

5730

≈ 7575 years.

I The formula used for reference by scientists t = ln(M/M0)
ln(1/2)

t1/2.
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2
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Compund Interest

This differential equation also applies to interest compunded continuously

dA(t)

dt
= rA(t)

A(t) = amount in account at time t, r = interest rate (see below) Interest If
we invest $A0 in an account paying r × 100 % interest per anumn and the
interest is compounded continuously, the amount in the account after t years is
given by

A(t) = A0e
rt .
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Interest Compounded Continuously

Example If I invest $1000 for 5 years at a 4% interest rate with the interest
compounded continuously,
(a) how much will be in my account at the end of the 5 years?

I We are given that A0 = 1000 and r = 0.04.

I Because the interest is compounded continuously, we have
A(t) = A0e

0.04t = 1000e0.04t

I A(5) = 1000e0.04(5) = $1221.4.

(b) How long before there is $2000 in the account?

I We must solve for t in the equation 2000 = 1000e0.04t .

I Dividing by 1000 and taking the natural logarithm of both sides, we get

2 = e0.04t → ln 2 = 0.04t → t = ln 2/0.04 ≈ 17.33yrs.
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Interest compounded n times per year

Sometimes interest is not compounded continuously. If I invest $A0 in an
account with an interest rate of r × 100% per annum, the amount in the bank
account after t years depends on the number of times the interest is
compounded per year. In the chart below

A0 = A(0) is the initial amount invested at time t = 0.
A(t) is the amount in the account after t years.

n = the number of times the interest is compounded per year.

We Have A(t) = A0(1 +
r

n
)nt

Amt.
after t years A(0) A(1) A(2) . . . A(t)

n = 1 A0 A0(1 + r) A0(1 + r)2 . . . A0(1 + r)t

n = 2 A0 A0(1 + r
2

)2 A0(1 + r
2

)4 . . . A0(1 + r
2

)2t

n = 12 A0 A0(1 + r
12

)12 A0(1 + r
12

)24 . . . A0(1 + r
12

)12t

.

.

.

.

.

.

.

.

.

.

.

.

n A0 A0(1 + r
n

)n A0(1 + r
n

)2n . . . A0(1 + r
n

)nt

.

.

.

.

.

.

.

.

.

.

.

.

n → ∞ A0 lim
n→∞ A0(1 +

r

n
)n lim

n→∞ A0(1 +
r

n
)2n

. . . lim
n→∞ A0(1 +

r

n
)nt

(compounded

continuously) = A0 = A0er = A0e2r . . . = A0ert
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Examples

Example If I borrow $50,000 at a 10% interest rate for 5 years with the
interest compounded quarterly, how much will I owe after 5 years?

I A(t) = A0(1 + r
n

)nt

I A(t) = 50, 000(1 + .1
4

)4t

I A(5) = 50, 000(1 + .1
4

)20 ≈ 81, 930.82
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