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Abstract

We give a reduction of the function field Mordell-Lang conjecture
to the function field Manin-Mumford conjecture, for abelian varieties,
in all characteristics, via model theory, but avoiding recourse to the
dichotomy theorems for (generalized) Zariski geometries. Additional
ingredients include the “Theorem of the kernel”, and a result of Wag-
ner on commutative groups of finite Morley rank without proper in-
finite definable subgroups. In characteristic 0 the methods also yield
another account of the local modularity of A] for A a traceless sim-
ple abelian variety. In positive characteristic, where the main interest
lies, we require another result to make the strategy work: so-called
quantifier-elimination for the corresponding A] = p∞A(U) where U is
a saturated separably closed field, which we prove in the last section.
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1 Introduction and preliminaries

1.1 Introduction

This paper concerns relationships between “known” results. The original mo-
tivation was to supply a transparent account of function field Mordell-Lang in
positive characteristic. After the third author gave a talk on the topic of re-
ducing Mordell-Lang to Manin-Mumford, in Paris, December 2010, Damian
Rössler picked up the theme, and eventually with Corpet, produced a success-
ful algebraic-geometric account of such a reduction, in positive characteristic
([22], [8]). In the current paper we outline our original strategy, where the
model-theoretic notion of “quantifier-elimination” for certain type-definable
groups, as well as some other nice but soft stable-group theoretic results, play
a role. And we prove that it works, supplying the so far missing ingredient
in characteristic p, the “quantifier elimination” result for abelian varieties.

The subtext is Hrushovski’s proof of function field Mordell-Lang [11],
which depends on a dichotomy theorem for (generalized) Zariski geometries.
In the characteristic 0 case, it is classical (strongly minimal) Zariski geome-
tries which are relevant and the dichotomy theorem is proved in [13] and
in [25], although all proofs are complicated, to say the least. But in posi-
tive characteristic, type-definable Zariski geometries are the relevant objects.
In [13] there is an axiomatic treatment of “how to construct a field” which
does not presuppose that one is working in a strongly minimal set. In [11]
arguments are given for how to prove that the axioms are satisfied in the
particular case of the minimal types we are interested in. Nevertheless, in
all cases, this very important model-theoretic proof of function field Mordell-
Lang has some “black boxes”, and the current authors have been preoccupied
for some years about seeing what is really going on, in particular avoiding
the recourse to (generalized) Zariski geometries, and/or recovering the “black
box” results by more direct arguments.

In [19] this issue was taken up, and an approach using differential jet
spaces was developed. This succeeded in characteristic 0, but not entirely in
positive characteristic due to inseparability issues, although the approach re-
covered some cases due to Abramovich and Voloch [1]. It is still open whether
the approach can be tweaked so as to work in general in the characteristic p
case.

In [20] Pink and Rössler gave a reasonably transparent algebraic-geometric
proof of function field Manin-Mumford in positive characteristic with all tor-
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sion points in place of prime-to-p torsion points. This suggested to us to try
to reduce function field Mordell-Lang to function field Manin-Mumford. The
current paper is devoted to explaining a certain strategy, and how it works.
Exploring connections between the methods of Rössler and Corpet and either
the jet space ideas in [19], or the current paper, would be interesting.

Of course we could also consider the absolute Mordell-Lang conjecture in
characteristic 0 (proved by Faltings, McQuillan,..) and ask whether there is
a “soft” reduction to absolute Manin-Mumford. We doubt that this is the
case as these two theorems seem to us (maybe incorrectly) to be of different
orders of difficulty. That such a reduction is possible in the function field
case has additional interest.

Acknowledgements. We would like to thank both Université Paris-Sud, Orsay,
where the third author was a Professeur Invité in March-April 2010 and
the Mathematical Sciences Research Institute, Berkeley, where the authors
participated in the Spring 2014 model theory program. The first author
would like to thank Françoise Delon for very useful discussions about the
quantifier elimination question.

1.2 Preliminaries

Let us now state the function field statements in the precise form that we
will prove them. We restrict to function fields of one variable, although
the higher-dimensional case also works. Both the statements below and the
arguments we use in this paper are specific to abelian varieties. However
the appropriate statement for semiabelian varieties, as in Theorem 1.1 of
[11], should follow from the methods here (using versions of the “weak” socle
theorem: Lemma 2.1 in the current paper, among other things).

Statement of function field Mordell-Lang in characteristic 0. Let
K = k(t)alg, the algebraic closure of k(t), where k = C. Let A be an abelian
variety over K with k-trace 0. Let X be an irreducible subvariety of A
(defined over K), and let Γ be a “finite-rank” subgroup of A(K), namely Γ
is contained in the division points of a finitely generated subgroup of A(K).
Suppose X ∩ Γ is Zariski-dense in X. Then X is a translate of an abelian
subvariety of A.

Statement of function field Manin-Mumford in characteristic 0. As
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above, except that the hypothesis on Γ is strengthened to: Γ is contained in
the group of torsion points of A.

Statement of function field Mordell-Lang in characteristic p > 0.
Let K be the separable closure of k(t) where k is an algebraically closed field
of characteristic p which we will be taking to be Falg

p . Let A be an abelian
variety over K with k-trace 0. Let X be an irreducible subvariety of A,
defined over K. And let Γ be a subgroup of A(K) contained in the prime-
to-p-division points of a finitely generated subgroup. Suppose that X ∩ Γ is
Zariski-dense in X. Then X is a translate of an abelian subvariety of A.

The formulation involving prime-to-p division points is due to Abramovich
and Voloch [1]. One could also ask what happens when K is the algebraic
closure of k(t) and Γ < A(K) is the group of all division points of some
finitely generated subgroup. No obstacle is currently known to this.

Statement of function field Manin-Mumford in characteristic p. As
above, except that Γ is assumed to be contained in the group of all torsion
points of A.

We will write MM for Manin-Mumford and ML for Mordell-Lang. The
general idea is:
Basic strategy: MM + “Theorem of the kernel” + “structure of
g-minimal groups of finite Morley rank” (Wagner) implies ML.

We will explain these ingredients (including the truth of the “Theorem of the
Kernel”) as well as the object A] shortly. In sections 2 and 3 respectively we
prove:

Theorem 1.1. (i) In characteristic 0 the Basic Strategy holds.
(ii) In characteristic p, the Basic Strategy holds, assuming that the type-
definable group A](U) has “quantifier-elimination”, where U is a saturated
elementary extension of K.

The proof of (i) will use additional relatively soft ingredients from the
approaches of Hrushovski (as well as Buium [6]), namely embedding the
data into a differential algebraic framework, and the (weak) socle theorem.
Moreover, assuming MM for the the universal vectorial extension of A, we
will also deduce the local modularity (or 1-basedness) of A]. The proof of
(ii) will be easier and more direct.
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In Section 4, we complete the paper by proving the main result:

Theorem 1.2. (i) In characteristic p > 0, A](U) has quantifier-elimination.
(ii) Hence by Theorem 1.1(ii), the Basic Strategy works in positive charac-
teristic too.

Let us explain the remaining ingredients. We assume, both above and
below, familiarity with model theory, basic stability, as well as differentially
and separably closed fields. The book [14] is a reasonable reference, as well as
[17] for more on stability theory. Definability means with parameters unless
we say otherwise.
We fix some more notation.

In characteristic 0, K has a unique derivation ∂ extending d/dt on k(t) and
Kdiff denotes a differential closure of (K, ∂), in the language of differential
fields. It is convenient sometimes to work in a saturated elementary extension
U of Kdiff . In any case DCF0, the first order theory of Kdiff is ω-stable
with quantifier-elimination.

In characteristic p, U denotes a saturated elementary extension of K in
the language of fields. It will be crucial to pass to U . The first order theory
of K in the language of fields is known as or denoted by SCFp,1, the theory
of separably closed fields of characteristic p and degree of imperfection 1.
It is stable, but not superstable, and has quantifier-elimination after either
adding symbols for so-called λ-functions, or symbols for a strict iterative
Hasse derivation.

Definition 1.3. (i) In characteristic 0, A] is the “Kolchin closure of the
torsion”, namely the smallest definable subgroup of A(U) which contains the
torsion subgroup (so note A] is definable over K.)
(ii) In positive characteristic, A] denotes p∞(A(U)) =def

⋂
n p

n(A(U)).

Remark 1.4. In positive characteristic A] is the maximal divisible subgroup
of A(U). Moreover A](K) is also the maximal divisible subgroup of A(K)
and coincides with

⋂
n p

n(A(K)).

Statement of The Theorem of the Kernel. In all characteristics, A](K)
is contained in the group of torsion points of A.

This is a differential algebraic or model-theoretic theorem of the kernel. In
Corollary K3 of [5], the characteristic 0 case is given, where it is deduced
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from Chai’s strengthening of a theorem of Manin. In [21], the positive char-
acteristic case is proved.

In characteristic 0, function field MM as stated is clearly a special case
of function field ML. And it follows from the absolute case of MM , of
which there are many proofs. In positive characteristic MM (with all tor-
sion points) is proved by Pink and Rössler [20]. The proof uses a variety of
methods, including Dieudonné modules, but is accessible. A proof was also
given by Scanlon [23] which uses the dichotomy theorem in ACFAp (alge-
braically closed fields of characteristic p with a generic automorphism) which
itself depends on an even more generalized notion of Zariski geometries than
used in separably closed fields.

We now pass to the other model-theoretic ingredients.

Definition 1.5. Let G be a group with additional structure, which has finite
Morley rank and is commutative and connected. We say that G is g-minimal
if it has no proper nontrivial connected definable subgroup (equivalently, no
proper infinite definable subgroup).

Let us remark that g-minimality of G passes to saturated elementary
extensions (in groups of finite Morley rank, there is a bound on the cardinality
of uniformly definable families of finite subgroups, as they do not have the
“finite cover property”).

The following appears in [24]:

Theorem 1.6. Suppose that G is g-minimal. Then any infinite algebraically
closed subset of G is (the universe of) an elementary substructure of G.

So a g-minimal group behaves a bit like a strongly minimal set. By
Zilber’s indecomposability theorem a g-minimal group is “almost strongly
minimal” namely in the algebraic closure of a strongly minimal definable
subset. But parameters may be required, so one cannot immediately deduce
Theorem 1.6 from the strongly minimal case.

We now fix an ambient saturated stable structure U . A subset X of Un is
called type-definable if it is the intersection of a small collection of definable
sets, namely defined by a small partial type. In the case of interest X will
be a countable intersection of definable sets.
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Suppose X is type-definable over the small set of parameters A. By
a relatively definable subset Y of Xm we mean the intersection of some
definable (with parameters) subset Z of a suitable Cartesian power of U
with Xm. We will say that Y is relatively A-definable, or relatively definable
over A, if Z can be chosen to be A-definable.

Let us fix a set X, type-definable over some small set of parameters A.

Lemma 1.7. Let Y be a relatively definable subset of X (or some Cartesian
power of X) which is invariant under automorphisms of U fixing A pointwise.
Then Y is relatively A-definable.

Proof. Suppose Y is relatively definable by formula φ(x, b) (namely Y is
the set of solutions in X of φ(x, b)), where we are exhibiting the required
parameters b. By our assumptions, we have that if tp(b1/A) = tp(b/A) then
φ(x, b1) relatively defines the same subset of X as does φ(x, b). We can
apply compactness to find a formula ψ(y) ∈ tp(b/A) such that Y is relatively
defined by the formula ∃y(ψ(y) ∧ φ(x, y)).

Let us denote by XA the structure with universe X and predicates for
relatively definable over A subsets of Xn, for all n. With this notation:

Definition 1.8. We will say that XA has quantifier elimination or QE, if
Th(XA) has quantifier elimination in the language above.

It is clear from this definition that:

Remark 1.9. XA has QE if and only if whenever Y is a relatively A-definable
subset of Xn+1 then the projection of Y to Xn is relatively A-definable.

Lemma 1.10. (i) Suppose A ⊆ B. Then XA has QE iff XB has QE (in
which case we just say that X has QE).
(ii) X has QE just if the projection of any relatively definable subset of any
Xn+1 to Xn is relatively definable (noting that in general it is only type-
definable).
(iii) X having QE is equivalent to XA being a saturated structure.

Proof. (i) Right implies left follows from Lemma 1.7 as a projection of an
A-invariant set is also A-invariant. For left to right: Suppose Y ⊂ Xn+1

is relatively definable over B, by φ(x1, .., xn+1, b) where we witness the pa-
rameters b ∈ B, which may live outside X. Let Y1 be the projection of Y
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to Xn. By Lemma 1.7 it suffices to prove that Y1 is relatively definable (as
clearly it is invariant under automorphisms of U fixing b pointwise). Now
by definability of types we may find some L-formula ψ(x1, .., xn+1, z) and c
from X such that Y is relatively definable by ψ(x1, .., xn+1, c). Suppose z is
an m-tuple of variables. Let Y ′ be the subset of Xn+1+m relatively defined
by ψ. By our assumption that XA has QE, the projection Y ′′ of Y obtained
by existentially quantifying out xn+1, is a relatively A-definable subset of
Xn+m, (relatively) defined by a formula χ(x1, .., xn, z) say. So χ(x1, .., xn, c)
relatively defines Y1, as required.
(ii) By (i) and Lemma 1.7.
(iii) The point is that to say that XA has QE means precisely that if b1, b2 are
n-tuples from X, then tp(b1/A) = tp(b2/A) in the sense of U iff tp(b1) = tp(b2)
in the sense of XA.

Note that in general XA is only quantifier-free saturated (and homoge-
neous) and is sometimes referred to as a Robinson structure.

Of course when X is definable (rather than type-definable) over A, then
XA always has QE and is sometimes referred to as “X with its induced
structure”.

Using Theorem 1.6 applied to the Gi’s with their induced structure, we
deduce easily:

Corollary 1.11. Suppose G is a (saturated) commutative, connected, group
of finite Morley rank (with additional structure) which is a sum of finitely
many g-minimal ∅-definable subgroups Gi. Then any algebraically closed sub-
set of G which meets each Gi in an infinite set, is an elementary substructure
of G.

So in positive characteristic we will suppose that A] has QE, and use it
to show that we can apply Theorem 1.6 and Corollary 1.11. Now the (gener-
alized) Zariski geometry arguments from [11] give the dichotomy theorem for
minimal “thin” types in separably closed fields, implying that if A is simple
with k-trace 0, then A] is minimal (i.e. U -rank 1), connected, and 1-based,
from which it easily follows that A] has QE. For arbitrary traceless abelian
varieties A, A] will be a sum of such minimals, hence also 1-based and so we
also have QE. So the QE hypothesis is true, after the fact so to speak.

In section 4 we give a direct proof of QE for A].
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On the face of it, the QE hypothesis is substantially weaker than the 1-
based hypothesis. In any case our method of proving QE is related to proofs
that minimal thin types in SCF are Zariski, but does not use the dichotomy
theorem for (type-definable) Zariski geometries (nor in fact even the so called
dimension theorem).

On the other hand we can define G] in the same way for semiabelian
varieties G, and building on work in [2], Alexandra Omar Aziz, in her Ph.D.
thesis [15] gave semiabelian examples G for which G] does not have QE. In
any case Theorem 1.2(ii) solves to some extent a problem that we have been
grappling with for a long time.

2 Proof of Theorem 1.1: characteristic 0

We first deal with the characteristic 0 case, namely prove Theorem 1.1(i).
with notation as in Section 1. We want to avoid reference to the dichotomy
theorem for minimal types in differentially closed fields and/or the 1-basedness
and strong minimality of A] when A is simple with k-trace 0. But we will
use relatively softer ingredients of Hrushovski’s proof, among them the socle
theorem, which we now recall. Let G be a commutative connected group
of finite Morley rank, definable in some ambient stable structure M . The
model-theoretic (or stability-theoretic) socle s(G) of G, is the greatest con-
nected definable subgroup of G which is generated (abstractly) by strongly
minimal definable subsets of G. For X a definable subset of G with Morley
degree 1, define StabG(X) to be {g ∈ G : RM(X ∩ (X + g)) = RM(X)} (so
the stabilizer of the generic type of X over M). In this context, Hrushovski’s
socle theorem is:

Lemma 2.1. Suppose that s(G) is “rigid” in the sense that (passing to a
saturated model) all connected definable subgroups of s(G) are defined over
acl(B) (where G is defined over B). Suppose that StabG(X) is finite. Then
some translate of X is contained in s(G).

A is our abelian variety over K with k-trace 0. Kdiff is a the differen-
tial closure of the differential field (K, d/dt) and U a saturated elementary
extension. We defined A] = A](U) to be be smallest definable subgroup of
A(U) containing the torsion subgroup Atorsion of A (which exists as DCF0 is
ω-stable). Note that A] is K-definable. The following is well-known except
maybe (vi). But we give references for completeness.
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Lemma 2.2. (i) A] is also the unique smallest Zariski-dense definable sub-
group of A(U).
(ii) A] is connected with finite Morley rank.
(iii) A(U)/A] embeds definably in (the group of U-points of) a unipotent al-
gebraic group over U .
(iv) If A is a simple abelian variety then A] is g-minimal.
(v) If A is the sum of simple Ai then A] is the sum of the A]

i.
(vi) If H is a finite Morley rank definable subgroup of A = A(Kdiff ), con-
taining A] then s(H) = A].
(vii) A] is rigid.

Proof. We will use repeatedly the following fact, due to Buium, and also
proved in [16]:
(*) Suppose G = G(U) is a commutative connected algebraic group over U
and H is a Zariski-dense definable subgroup. Then G/H definably embeds
in a unipotent algebraic group, namely (U ,+)d for some d.
(i) By (*) any Zariski dense definable subgroup of A(U) contains Atorsion,
which suffices.
(ii) Maybe the simplest way of seeing it is via so-called algebraic ∂-groups,
as in [7] and outlined again in [5]. The universal vectorial extension Ã of A,
also an algebraic group over K, is equipped with a unique structure of an
algebraic ∂-group, namely an extension of the derivation ∂ to a derivation of
the structure sheaf of Ã, commuting with co-multiplication. Equivalently a
rational homomorphic section s, defined over K, of a certain shifted tangent
bundle T∂(Ã). Then Ã∂ = {x ∈ Ã(U) : ∂(x) = s(x)} is a finite Morley rank
connected definable subgroup of Ã and A] is its image under the canonical
surjective homomorphism Ã→ A.
(iii) is given by (*).
(iv) If A is simple, any infinite subgroup is Zariski-dense, so it follows from
(i).
(v) is immediate.
(vi). This reduces to the case where A is simple. Assuming the local modu-
larity of A] gives an easy account, but of course we don’t want to make that
assumption. Now A] is g-minimal, hence as observed earlier, generated by
some strongly minimal subset, so contained in s(H). Suppose by way of con-
tradiction that s(H) properly contains A]. Then by (*) s(H)/A] is a finite
dimensional vector space over the constants C of U . Now on general grounds
s(H) is an almost direct sum of mutually orthogonal definable groups Hi
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(where Hi is generated by a collection of mutually nonorthogonal strongly
minimal sets). If A] is nonorthogonal to s(H)/A] then A] is nonorthogonal
to the constants, which implies easily that A is defined over C and thus k,
contradiction. Hence we have orthogonality, and by the statement above
s(H) = A] + V where V is definable and has trivial intersection with A].
This contradicts part (i).
(vii) Again there are various ways of seeing this. Let Ã be as in the proof of
(ii), equipped with its unique algebraic ∂-group structure.We again refer to
[5] for background and details. Let U be the maximal unipotent algebraic
∂-subgroup of Ã. Then the canonical projection from Ã/U to A induces
an isomorphism between (Ã/U)∂ and A]. But the connected definable sub-
groups of (Ã/U)∂ are precisely the intersections with (Ã/U)∂ of connected
algebraic ∂-subgroups of Ã/U and by the choice of U these are preimages of
abelian subvarieties of A, so defined over the algebraic closure of the base set
of parameters.

Proof of Theorem 1.1 (i). First, quotienting by StabA(X) we obtain
another abelian variety over K with k-trace 0. In order to show that X is
the translate of an abelian subvariety of A, we will assume that StabA(X) is
finite, and look for a contradiction. To be consistent with earlier notation we
work in the saturated elementary extension U of Kdiff with field of constants
C (although it is not really necessary). In any case all data we discuss will
be defined over K or at the most Kdiff . By (*) in the proof of Lemma 2.2,
A/A] definably embeds via some µ in a vector group. So µ(Γ) is contained
in a finite-dimensional vector space over C, the preimage of which we call
H: a connected definable finite Morley rank subgroup of A containing both
A] and Γ, and defined over K. Now X] = X ∩ H is Zariski-dense in X.
For simplicity we assume X] irreducible as a differential algebraic variety. It
follows that StabA](X]) is finite, so by Lemma 2.1 and Lemma 2.2 (vi), (vii),
after replacing X] (and so X) by a suitable translate (which can be assumed
to be defined over Kdiff ), X] is contained in A]. We now consider the K-
definable group A] with all its induced structure over K, namely equipped
with predicates for K-definable subsets of Cartesian powers. Now A is a
sum of K-definable g-minimal subgroups Ai. And we likewise have the A]

i

with the induced structure. Now A]
i(K) is clearly infinite as it contains the

torsion. So by Corollary 1.11, A](K) is an elementary substructure of A].
Claim. A](K) = A](Kdiff ).
Proof of claim. If b ∈ A](Kdiff ) then tp(b/K) is isolated in DCF0. But
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then tp(b/A](K)) is isolated in the structure A]. As A](K) is an elementary
substructure of A], b ∈ A](K).

Note that X is now defined over Kdiff , and X ∩ A](Kdiff ) is Zariski-dense
in X. By the claim and the Theorem of the kernel, A](Kdiff ) = Atorsion,
hence by Manin-Mumford, X is a translate of an abelian subvariety of A.
The proof is complete.

We now briefly discuss how to deduce the 1-basedness and strong minimality
of A] when A is a simple abelian variety with k-trace 0. (Aside: The reader
might think that this follows as in [18] where the truth of Mordell-Lang is
shown to be equivalent to the 1-basedness of Γ in the expansion (C,+,×,Γ)
by the relevant finite rank subgroup Γ of the relevant (semi) abelian variety.
However we are working here with A] with its induced structure from an
ambient differentially closed field, so additional arguments are needed.) We
already discussed algebraic ∂-groups in the proof of Lemma 2.2 above. The
universal vectorial extension π : Ã→ A has a unique ∂-group structure. We
mentioned that A] is the image of Ã∂. Let U be the maximal unipotent alge-
braic ∂-subgroup of Ã, and let A be Ã/U (which also has a unique algebraic
∂-group structure). Then π factors through π1 : A → A and π2 : Ã → A.

Moreover π1 induces an isomorphism between A
∂

and A]. (See [5].)
Recall that a definable connected (commutative) group G (in a stable

theory) is called 1-based if every definable subset of Gn is a Boolean com-
bination of translates of definable subgroups. Assuming G defined over an
algebraically closed set of parameters B, it suffices that every B-definable
subset of Gn is of the appropriate form.

When we say that a commutative algebraic group G satisfies Manin-
Mumford we mean that if X is an irreducible subvariety of G such that the
torsion points in X are Zarisk-dense then X is a translate of an algebraic sub-
group. In fact Manin-Mumford for commutative algebraic groups is known.
(See for example [12].) But in the proof of the proposition below we will only
be using its truth for Cartesian powers of Ã where A is an abelian variety
over K with k-trace 0. In any case, keeping to our earlier notation we have:

Proposition 2.3. Let A be an abelian variety over K with k-trace 0. Assume
Manin-Mumford for Cartesian powers of Ã. Then
(i) A] is 1-based.
(ii) If moreover A is simple, then A] is strongly minimal.
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Proof. (i) It is enough to work in the model Kdiff and show that every K-
definable subset of (A])n is a Boolean combination of translates of subgroups.
We use the maps π1, π2 discussed above, and their properties. As in the proof

of 1.1 (i), A](Kdiff ) and thus also A
∂
(Kdiff ) consists just of the torsion

points of the relevant groups. Moreover π2 induces an isomorphism between
the torsion subgroups of of Ã and A. All this also works for Cartesian

powers. Now the K-definable subsets of Cartesian powers of A
∂

are just the
intersections with K-subvarieties of Cartesian powers of A. The assumption
of Manin-Mumford for Cartesian powers of Ã and above observations implies
that such an intersection is a finite union of translates of subgroups, proving
1-basedness.
(ii) If A is simple, then A] is g-minimal. By part (i) every definable subset
of A] is a finite Boolean combination of translates of definable subgroups, so
by g-minimality has to be finite or cofinite.

3 Theorem 1.1: Characteristic p

We prove Theorem 1.1(ii). This will be substantially simpler than the char-
acteristic 0 case, avoiding any recourse to the socle theorem or to any Buium
homomorphism. We will be using the fact that A] has QE, which is proved
in the next section. We again work with notation as in Section 1: A,X are
over K = k(t)sep, Γ is contained in the prime-to-p division points of a finitely
generated subgroup of A(K) (so Γ < A(K) too), X ∩ Γ is Zariski-dense in
X, and we take U to be a saturated elementary extension of K. As before,
A] denotes A](U) and A is a sum of simple abelian subvarieties A1, .., An,
all defined over K. By Lemma 3.6 of [2], for each i, A]

i is the connected
component of Ai ∩ A] and A] is the sum of the A]

i. Moreover A is assumed
to have k-trace 0.

We refer the reader to [2] where we give a precise account of relative
Morley rank for type-definable sets in a stable structure (called “internal
Morley dimension” in [11]).

Fact 3.1. Both A] and the A]
i are connected, with finite relative Morley rank.

Moreover, A]
i is relatively definable in A] and A]

i has no proper relatively
definable infinite subgroup.

Comments The fact that A] has finite relative Morley rank is claimed in
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Remark 2.19 of [11]. However it is also implicitly claimed there that G] =
p∞(G(U)) also has finite relative Morley rank, whenever G is semiabelian,
and this is actually wrong, as pointed out in [2]. So we refer the reader rather
to the proof of Fact 3.8 from [2]. It is worth remarking that the semiabelian
counterexample from [2] is shown in [15] not to have QE. But in general
there is no reason why a type-definable group of finite relative Morley rank
should have QE. Once we know that A] has relative finite Morley rank, as,
for each i, A]

i is the connected component of Ai ∩ A], it follows that A]
i is

relatively definable in A], but again this is no longer true in the semiabelian
counterexample.
The fact that for a simple abelian variety Ai, A

]
i has no proper infinite rela-

tively definable subgroup was originally proved in [11] (see also [4]).

We now consider A] and the A]
i with their induced structure over K; by

assumption they have quantifier elimination. It follows that each of the A]
i

(with its induced structure) remains a g-minimal group. Noting that A]
i(K)

is infinite (it contains all the prime-to-p torsion of Ai) and using Corollary
1.11, we conclude:

Corollary 3.2. The groups A] and the A]
i are connected groups of finite

Morley rank and A](K) is an elementary substructure of A].

We now complete the proof. Note that pn+1Γ has finite index in pnΓ for
all n. As Γ meets X in a Zariski-dense set, we find cosets Di of piΓ in Γ such
that i < j implies Dj ⊆ Di, and each Di meets X in a Zariski-dense set.
Hence we obtain a descending chain of cosets Ci of piA](K) in A](K), each
meeting X in a Zariski-dense set. Passing to the saturated model U , let C
be the intersection of the Ci. Then by compactness X ∩ C is Zariski-dense
in X. Note that C is type-definable over K, although C(K) may be empty.

We consider the two sorted structure M = (A], C) with all K-induced
structure. It easily follows from Corollary 3.2 that Th(M) has finite Morley
rank and moreover that the sort A] with induced structure has A](K) as an
elementary substructure. Let M0 ≺ M be prime (so atomic) over A](K). It
follows that M0 is of the form (A](K), C0) for some elementary substructure
C0 of C. Note that C0 is definably (without parameters) a PHS (principal
homogeneous space) for A](K).
Claim. X ∩ C0 is Zariski-dense in X.
Proof of claim. Suppose not. Then there is a proper subvariety Z of X
(defined over some field) such that X ∩ C0 ⊆ Z. We may replace Z by the

14



Zariski closure of X ∩ C0, and so we may assume that Z is defined over C0.
We now have that X ∩C0 = Z ∩C0. Now Z ∩C viewed as a set definable in
the structure C (or M) is defined over C0, so as C0 ≺ C we easily conclude
that X ∩ C = Z ∩ C, contradicting Zariski-denseness of X ∩ C in X. This
completes the proof of the claim.

Let a ∈ X ∩ C0. Let X1 = X − a. Then X1 ∩ A](K) is Zariski-dense in
X1. In particular X1 is defined over K. Moreover using the theorem of the
kernel, X1 ∩ Atorsion is Zariski-dense in X1, so by MM , X1 is a translate of
an abelian subvariety of A. This completes the proof of Theorem 1.1(ii).

4 QE for A]

Here we prove Theorem 1.2. in slightly more generality.
So we assume A to be an abelian variety over any separably closed field

K of finite degree of imperfection, U is a saturated extension of K. We
consider A] = p∞A(U), and we denote by A the structure A] with relatively
definable sets (with parameters from K). By Lemma 1.10 it suffices to prove
that Th(A) has quantifier elimination, which we will accomplish here. For
each n, let ΠnA be obtained from A by Weil’s restriction of the scalars from
K to Kpn . Recall ([3]) that there are definable bijective homomorphisms
φn : A(U) → ΠnA(Upn) (they are compatible sections for the projections
πm,n : ΠmA → ΠnA for m ≥ n) and algebraic subgroups An ⊂ ΠnA over
Kpn , with An isogenous to A, such that for x ∈ A(U), x ∈ pnA(U) iff
φn(x) ∈ An. Looking at A(U) affine chart by affine chart, A(U)d and (A])d

are equipped with the λ -topology (or equivalently, the Hasse differential
algebraic topology), the basic closed sets are of the form X = 〈Xn〉 := {x ∈
A(U)d : φn(x) ∈ Xn} for some integer n and some algebraic subvariety Xn of
ΠnA (note that Xn can be chosen as the Zariski closure of φn(X(U)), hence
defined over Upn). By quantifier elimination for separably closed fields in
the language with the λ-functions (or the Hasse derivations), in U , relatively
definable subsets of A(U)d are Boolean combinations of sets of the form 〈Xn〉
(using preimages by the projection πm,n, we may assume n being the same
for each of the pieces). It follows from the characterization of piA(U) that
relatively definable subsets of (A])d are Boolean combinations of sets 〈Xn〉,
for Xn algebraic subvarieties of An.
Recall that A is a sum of simple abelian varieties, A = Σ0≤i≤nAi. We will
also use the following consequence of the Zilber indecomposability theorem
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(see Fact 3.8 in [2]): as Ai is simple, Ai
] is g-minimal and hence, there exists

a minimal type in Ai
] whose set of realizations, which will be denoted by Qi

in the following, is such that Ai
] = Qi + . . .+Qi (mi times for some m).

Basic facts about the λ-topology can also be found in [10].

By Lemma 1.10, in order to prove QE, we can suppose that K itself is
sufficiently saturated (this will be used in Claim 4.3).

Proposition 4.1. For every n ≥ 1, the λ-topology on (A])n is Noetherian of
finite dimension.

Note that, in the examples of semiabelian varieties which do not have
finite relative finite Morley rank given in [2], the topology is not Noetherian.

It was shown in [11] that the trace of the λ-topology on each Qk is Noethe-
rian and has finite dimension, if Q is a thin minimal type, i.e. one with
finite transcendence rank, which is the case here. Now the Noetherianity for
Ai

] follows as we have a continuous relatively definable surjective map from

Qi
md → Ai

]d.

Passing to A] itself will be a little more complicated.

Let us first note that, once we know that the topology is Noetherian, it is
easy to see that it is finite dimensional, that is, that every closed set has
finite topological dimension. Indeed, by Noetherianity, every closed set is a
finite union of irreducible closed sets, and in (A])n, there is a finite bound
on the length of strictly decreasing sequences of irreducible closed sets. This
follows from “thinness” of the types involved. Recall that if a ∈ (A])n then
the type of a over K is thin, that is, the field generated over K by a and
its images by the λ-functions has finite transcendence degree over K ([11]
or [4]). More precisely, the transcendence rank of the prime separable ideal
I(a/K), of all λ-polynomials vanishing at a, has finite transcendence rank
smaller than (dimA)n. Now if F ( G ⊆ (A])n are two irreducible closed
sets and I(G) ( I(F ) are the associated two prime separable ideals then,
the transcendence rank of both are finite and bounded by (dimA)n and the
transcendence rank of I(F ) must be strictly smaller than the transcendence
rank of I(G).

So we just need to show Noetherianity.

Lemma 4.2. Let p1, . . . , pk be thin minimal types over K and for each i, let
Pi denote the set of realizations of pi in U . Then for every n1, . . . , nk the
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topology on P1
n1× . . .×Pk

nk is Noetherian of finite dimension. In particular
every closed subset is relatively definable.

We proceed in two steps.

Claim 4.3. Suppose q1, . . . qn are pairwise non orthogonal minimal thin types
(not necessarily distinct) and Qj denotes the set of realizations of qj in U .
Then there is minimal thin type over K, r, such that, if R denotes the set
of realizations of r in U , then there is a continuous map f from Rn onto
Q1 × . . .×Qn. It follows that the topology on Q1 × . . .×Qn is Noetherian.

Proof. Once we have shown that such a type r and the required continuous
maps exist, the Noetherianity follows directly from that of Cartesian products
of R, which was shown in [11].

Let (a1, a2, . . . , an), realizing q1×q2×. . .×qn, be such that r := tp(a1, a2, . . . , an)
has U-rank equal to one. This exists by the assumption of non pairwise or-
thogonality and the saturation assumption on K. So the type r is minimal
and is easily seen to be also thin (the transcendence degree of the field gen-
erated by the ai and their images by the λ-functions will be finite as each qi
has this property).

For each i, the i-th projection, πi from R to Qi is surjective, as all elements
of Qi realize the same type over K.

Now consider the Cartesian product Rn. We claim that there is a surjec-
tive definable map f from Rn onto Q1×. . .×Qn and that it is continuous. Let
(b1, . . . bn) ∈ Rn, and let f(b1, . . . , bn) := (π1(b1), . . . , πn(bn)) ∈ Q1× . . .×Qn.
Let (a1, . . . , an) be any tuple from Q1× . . .×Qn. for each i there is some ele-
ment bi from R such that πi(bi) = ai, so f is surjective. Now f is a projection
map, so it is continuous.

Note that as we have not supposed that the non orthogonal types in Claim
4.3 were distinct, this gives the Noetherianity for any cartesian product of
finitely many non pairwise orthogonal minimal thin types.

Claim 4.4. Suppose q1, . . . qm are pairwise orthogonal minimal thin types,
and for each i, 1 ≤ i ≤ m, {p(i,1), . . . , p(i,ni)} is a set of minimal (thin) types
non orthogonal to qi. Let Pk denote the set of realizations of pk in U , and
let Qi denote the cartesian product P(i,1) × . . . × P(i,ni). Then the topology
on Q1 × . . .×Qm is Noetherian, and every closed set C is a finite union of
closed sets of the form W1 × . . .×Wm, where Wi is a closed subset of Qi.
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Proof. First we note that by pairwise orthogonality and minimality of the
types qj and pk, if āj is a tuple of elements from Qj, then {ā1, . . . , ām},
is an independent set of tuples over K: indeed by minimality, each āj is
contained in the algebraic closure (over K) of a K-independent subtuple Bj,
each element in Bj realizing one of the types {p(j,1), . . . , p(j,nj)}, which are all
non orthogonal to qj. By orthogonality of the qj, the set B1 ∪ . . .∪Bm form
an independent set over K and the rest follows.

A first observation: Let Z = Zb ⊆ Q2 × . . . × Qm be a closed set (hence
infinitely definable) defined over K ∪ b where b is a tuple of elements in Q1.
Then Z is in fact defined over K. Indeed Z is K-invariant: let b′ realize the
same type as b over K. By the remark above b and b′ must be independent
from Q2∪ . . .∪Qm over K, it follows that b and b′ also realize the same type
over K ∪Q2 ∪ . . . ∪Qm, hence Zb = Zb′ .

Now we show by induction on m ≥ 1 that the topology on Q1× . . .×Qm

is Noetherian, and that every closed set is of the required form.
The case m = 1, that is, cartesian products of a finite set of pairwise non

orthogonal thin minimal type, is Claim 4.3, which says that the topology is
Noetherian.

Now, for m > 1, let C ⊆ Q1 × . . . × Qm be any closed subset, and let
a := (a1, a2, . . . , am) ∈ C. We show that

(*) a is contained in a set of the form W × Z ⊆ C where W is a closed
subset of Q1 defined over K and Z is a closed subset of Q2 × . . .×Qm, also
defined over K.

The Noetherianity and form of the closed sets will follow: by induction
assumption, W is a relatively definable closed subset in Q1 and Z is a rela-
tively definable closed subset in Q2 × . . .×Qm of the right form. By (*), C
which is infinitely definable (over K) is covered by a union of such relatively
definable sets each of the form W × Z each defined over K. By (model the-
oretic) compactness, it follows that C is a finite union of such sets. And as
Q1 and Q2 × . . .×Qm are both Noetherian, the result follows.

It remains only to check condition (*).
Let Z := Za1 = {(a2, . . . , am) ∈ Q2×. . .×Qm : (a1, a2, . . . , am) ∈ C}. The

set Z is closed and defined overK∪a1. By the first observation made above, Z
is in fact defined over K. Now let W = {x ∈ Q1 : for all y ∈ Z, (x, y) ∈ C}.
Then W is closed (it is the intersection of the Cy, for y ∈ Z) and clearly
defined over K.

And of course a ∈ W × Z and W × Z ⊆ C.
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We can now conclude the proof of Lemma 4.2: For each non orthogonality
class represented amongst the pi, choose a representative q and apply Claim
4.4.

We now go back to Proposition 4.1: Let A be any abelian variety over K,
A = Σ0≤i≤nAi, where each Ai is a simple abelian variety over K. It follows
that A] = Σ0≤i≤nAi

]. For each i there is a minimal thin type qi such that
Ai

] = Qi + . . .+Qi (mi times). So A] = Q1 + . . .+Q1 +Q2 + . . . Q2 + . . .+
Qn + . . .+Qn.

So we have a continuous relatively definable surjective map, for every d

from the Cartesian product (Q1
m1×. . .×Qn

mn)d onto A]d. And Noetherianity
now follows from Lemma 4.2, and this concludes the proof of Proposition 4.1.

Note, as a corollary, that each closed set of (A])n is actually relatively
definable.

If U0 ≺ U , and a ∈ U , U0{a} denotes the ring generated by a and its
images by the λ-functions over U0 and U0({a}), the fraction field of U0{a}.

Lemma 4.5. Let X and Y be closed sets in (A])d, with X irreducible, and
pr : X × Y → X the projection. Let G ( F be closed subsets of X × Y ,
such that pr(F ) = X and F is irreducible. Let a be a topological generic of
X over some small model U0 of definition for F and G, we denote F (a) =
{y ∈ Y | (a, y) ∈ F}, and similarly for G. Then G(a) ( F (a). Moreover
F (a) is irreducible as a closed set over U0({a}) (note however that it may be
reducible as a closed set over U , or even over U0({a})sep).

Proof. We denote by U0{X} := U0[λiTj]/I(X) the ring of λ-coordinates of X
over U0, and U0{Y } in a similar way. By irreducibility, U0{X} is an integral
domain, and by choice of a, U0{X} ' U0{a}; we denote by U0({a}) the
fraction field of the latter.
We denote by I(F ) and I(G) the separable ideals in U0{a}{Y } ' U0{X×Y }
corresponding to F and G. Since pr(F ) = X, I(F )∩U0{a} = 0. Now I(F (a))
is the ideal generated by I(F ) in U0({a}){Y }, and similarly for I(G(a)). We
claim that I(F ) ( I(G) implies that I(F (a)) ( I(G(a)). If I(F (a)) =
I(G(a)), then for every P ∈ I(G), there is some non zero d ∈ U0{a} such
that dP ∈ I(F ), which implies that P ∈ I(F ) since d 6∈ I(F ), which is prime.
That contradicts I(F ) 6= I(G). We get that I(F (a)) is prime by the same
kind of argument. This means that F (a) is irreducible as a closed set over
U0({a}).
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We will now use completeness of abelian varieties to show that the family
of closed subsets is closed under projection.

Lemma 4.6. Let F be a definable closed set of Ad and pr : (A])d → (A])d−1

be the projection on the first coordinates. Then pr(F ∩ (A])d) is closed and
relatively definable.

Proof. Let x = (x1, . . . , xd−1) be in (A])d−1. By saturation of U , x ∈ pr(F ∩
(A])d) if and only if, for every m (big enough), there is ym ∈ pmA(U) such
that (x, ym) ∈ F . We know that F = 〈Xn〉 for some (closed) subvariety Xn

of ΠnA. Note that by letting Xm = π−1m,n(Xn) ⊆ ΠmA for m ≥ n, we also
have F = 〈Xm〉. Now we use the fact that, in U , there is ym ∈ pmA(U)
such that (x, ym) ∈ F if and only if φm(x) ∈ pr(Xm ∩ Ad

m). Since Am is an
abelian variety, Ym := pr(Xm ∩ Ad

m) is a closed subvariety of Ad−1
m , hence,

by Noetherianity, pr(F ∩ (A])d) = ∩m≥n〈Ym〉 is a relatively definable closed
set.

In order to go from the case of closed sets to the case of constructible
sets, we really follow the lines of the proof of quantifier elimination for one-
dimensional Zariski geometries given in [25] or [13] (note that QE for one
dimensional Zariski geometries is a basic consequence of the axioms and does
not involve the deep dichotomy result). We know that A] = Q1 + . . .+Q1 +
Q2 + . . . Q2 + . . .+Qn + . . .+Qn, where Qi is the set of realizations of a thin
minimal type. It would be convenient to work with the relatively definable
closed sets Qi, the closure of Qi in the sense of the λ-topology, but it is not
clear a priori why it should be of topological dimension 1. A more general
fact would be that the U -rank of a type t coincides with the topological
dimension of t (the closure of the set of its realizations, or equivalently, the
closed set given by the type ideal corresponding to t). It is true for types in
A], actually, but we know it only a posteriori, via the dichotomy theorem,
which we do not want to use. We know however that U -rank (t) ≤ dim(t):
because of the correspondence between closed type-definable sets and prime
separable ideals in a suitable polynomials algebra, dim(t) is given by the
separable depth of the corresponding ideal It, and the separable depth is a
stability rank, hence greater than or equal to the U -rank (see [9]).

It follows that if F ⊆ A] is irreducible closed of topological dimension
one, then F has a unique type of U-rank one, which is of maximal rank and
is also its topological generic.
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So, rather than Qi, we will consider suitable relatively definable irre-
ducible closed sets Hi of dimension 1. We proceed as follows. For each i, let
Hi be a relatively definable irreducible closed subset of Ai

] of dimension 1 (it
exists since we know that the topology is Noetherian, and since translations
are bicontinuous, we are allowed to replace Hi by any of its translates in
the following). By the comparison between the U -rank and the topological
dimension above, it is clear that the generic type (in the topological sense)
of Hi is minimal, hence, by g-minimality of Ai

], we can apply the indecom-
posability theorem to get A]

i = Hi + . . .+Hi (mi times for some mi).
Hence A] =

∑
m1
H1 + . . . +

∑
mn
Hn, where the Hi are relatively definable

closed subsets of A] of (topological) dimension 1.
Now for any formula φ(x, a) with parameters in A], A |= ∃xφ(x, a) if and
only if

A |= ∃x1,1 ∈ H1 . . . ∃x1,m1 ∈ H1 . . . ∃xn,1 ∈ Hn . . . ∃xn,mn ∈ Hn φ(
∑
i,j

xi,j, a).

Hence it is sufficient to consider projections of the form pr : H × (A])d →
(A])d, where H is one of the Hi’s. From Lemma 4.6 and the fact that H
is closed, we get that pr takes closed sets to closed sets. From quantifier
elimination in the separably closed field U and Noetherianity in A, we just
have to consider projections of definable sets F \G, where G ( F ⊆ H×(A])d

are closed relatively definable sets, with F irreducible.

Proposition 4.7. The projection pr(F \G) is constructible in A.

Proof. We proceed by induction on dim(F ). The case dim(F ) = 0 is obvious
since it implies that F is a singleton.
Now dim(F ) = k + 1. We consider the closed sets F1 = pr(F ), G1 = pr(G),
F0 = {y ∈ (A])d | ∀x ∈ H, (x, y) ∈ F} =

⋂
x∈H Fx, where Fx = {y ∈ (A])d |

(x, y) ∈ F} is closed (note that we allow parameters in A] in the definition of
the topology), and G0 = {y ∈ (A])d | ∀x ∈ H, (x, y) ∈ G}. There are three
cases:

1. if F0 = F1, we see easily that pr(F \G) = F0\G0, hence is constructible.

2. if G1 ( F1, we have a proper closed subset (H × G1) ∩ F ( F , hence
dim((H ×G1)∩F ) < dim(F ) since F is irreducible. But we can write
pr(F \ G) = F1 \ G1 ∪ pr(((H × G1) ∩ F ) \ G), and the result comes
from the induction hypothesis.
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3. if F0 ( F1 = G1, we consider a generic point a of F1 over U0, a model
of definition for F and G (note that F1 is irreducible since F is). In
particular a 6∈ F0, which implies that the fibre F (a) is finite, as it is
a proper closed set of the irreducible dimension one H. Furthermore,
by Lemma 4.5, G(a) ( F (a), and F (a) is irreducible as a closed set
over U0({a}). It follows that F (a) is the orbit of any of its points
under Aut(U/U0({a})) (note that U0({a}) is definably closed in U , see
[10]), and a fortiori, it is the orbit of G(a). Hence F (a) = G(a), a
contradiction.

Corollary 4.8. The structure A has QE.

So we have proved Theorem 1.2, and this completes the paper.
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