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Abstract

We prove that a differential field K is algebraically closed and
Picard-Vessiot closed if and only if the differential Galois cohomology
group, H1

∂(K,G), is trivial for any linear differential algebraic group
G over K. We give applications to the parameterized Picard-Vessiot
theory and pose several problems.

1 Introduction and preliminaries

In this paper we are mainly concerned with differential fields (K, ∂) of char-
acteristic 0 and we try to relate two “theories”, the Galois theory of linear
differential equations over K (i.e. the Picard-Vessiot theory), and Kolchin’s
“constrained cohomology” (which we prefer to call “differential Galois co-
homology”) of linear differential algebraic groups over K. We work in the
category of differential algebraic varieties in the sense of Kolchin [12]. Be-
cause we are concerned with differential algebraic groups and their torsors,
we may equally well (and in fact do) work in the category of definable sets
in the first order theory DCF0 of differentially closed fields (with respect to
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a single derivation ∂) of characteristic 0. The main result is the following,
where we explain the notions later.

Theorem 1.1. Let (K, ∂) be a differential field. Then K is algebraically
closed and Picard-Vessiot closed if and only if H1

∂(K,G) = {1} for any linear
differential algebraic group G over K, namely if every differential algebraic
principal homogeneous space X for G, defined over K, has a K-point.

Remark 1.2. (i) A Picard-Vessiot (or PV ) extension L of K is by defini-
tion a differential field extension L of K generated over K by a fundamental
system of solutions Y1, .., Yn of a linear differential system ∂Y = AY over
K, such that CL = CK, namely L has “no new constants”. So formally, to
be PV -closed means that K has no proper PV extension L.
(ii) When CK is algebraically closed (in particular when K is algebraically
closed), then there always exists a PV extension of K for any linear differ-
ential sytem ∂Y = AY , hence to be Picard-Vessiot closed is equivalent to K
containing a fundamental system of solutions for any linear system ∂Y = AY
over K.
(iii) When CK is algebraically closed then K being PV -closed implies K al-
gebraically closed.
(iv) For G a differential algebraic group over K, H1

∂(K,G) is defined in
[12], Chapter VII, in terms of certain cocycles from G = Aut)Kdiff/K) to
G(Kdiff ), where Kdiff is the differential closure of K inside some “univer-
sal” differentially closed field U . H1

∂(K,G) parametrizes the set of differential
algebraic principal homogeneous spaces X for G over K up to isomorphism
over K (in the appropriate category). So triviality of H1

∂(K,G) means that
for every such PHS X for G over K, X(K) 6= ∅.

We will also point out how our proof of Theorem 1.1 extends to prove the
following:

Theorem 1.3. Let K be a differential field. Then K is algebraically closed
and closed under generalized strongly normal extensions if and only if H1

∂(K,G) =
{1} for any (not necessarily linear) differential algebraic group G over K.

Theorem 1.3 can be seen as evidence for the naturalness of the generalized
strongly normal theory.

Theorem 1.1 has the following consequence for the parameterized Picard-
Vessiot theory [7], where again the additional notions will be explained sub-
sequently.
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Corollary 1.4. Let K be a {∂x, ∂t}-differential field where ∂x and ∂t are
commuting derivations. Let K∂x denote the field of constants of K with
respect to ∂x. Let ∂xY = AY be a parametrized linear differential equation
over K. Assume that K∂x is both algebraically closed and PV -closed as a
∂t-field. Then K has a unique parameterized Picard Vessiot extension for the
equation.

Although our results are stated in purely differential algebraic terms, we will
freely use a mixture of differential algebraic and model-theoretic notations
and methods in the proofs. In fact, differential algebraic geometry in the
sense of Kolchin is synonymous with the model theory of differentially closed
fields, in terms of content and subject matter, although model theory brings
with it a certain generality in point of view.

This paper is concerned mainly with ordinary differential fields of charac-
teristic 0, namely fields K of characteristic 0 equipped with a single deriva-
tion, although in Corollary 1.4 and section 3 we touch on the case of a set ∆
of commuting derivations. For the majority of the introduction we will focus
on ∆ = {∂}. For differential algebraic geometry, namely the theory (and
category) of differential algebraic varieties defined over a differential field K,
the reader could consult [12], although some of the axiomatic presentation is
a bit obscure. But Section 1.1 of [8] can also serve as an introduction to this
material. The reader is also referred to Buium’s book [3] for an approach
somewhat more informed by modern algebraic geometry. Key objects of this
paper are differential algebraic groups G and their principal homogeneous
spaces (or torsors) X. Namely G is a differential algebraic group defined
over K, X is a differential algebraic variety defined over K, and we have a
regular (strictly transitive) group action of G on X (on the left) which is a
morphism G × X → X over K defined over K in the sense of differential
algebraic varieties.

DCF0 is the first order theory of differentially closed fields of character-
istic 0 in the languageL = {+,−, 0, 1,×, ∂}. It is complete, ω-stable, with
quantifier elimination, and elimination of imaginaries. We take U to be a
“saturated” model of DCF0 in which all differential fields we are concerned
with are assumed to embed. U is precisely a “universal” differential field in
the sense of Kolchin. K will usually denote a “small” differential subfield of
U . C denotes the field of constants of U , and CK the field of constants of
K. But when we work with partial fields (several commuting derivations)
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notation will be a bit different. The reader is referred to [14] for the basic
model theory of DCF0. By a K-definable set we mean a subset of Un which is
definable with parameters from K in the L-structure U . Our paper [19] gives
an exhaustive account of Kolchin’s theory of differential algebraic varieties
and groups, and its relation to the category of definable sets and definable
groups, and the interested reader is referred there. We summarize:

Fact 1.5. (i) any group G definable over K has a unique structure of a
differential algebraic group over K.
(ii) If G is a definable group over K and X is a principal homogeneous space
for G over K, in the category of definable sets over K, then X can be given
(uniquely) the structure of a differential algebraic variety over K such that
X is a PHS for G over K in the category of differentiak algebraic varieties
over K,
(iii) If (G,X) is a definable (differential algebraic) PHS over K then there
is an embedding (over K) in an algebraic PHS (G1, X1) over K.

Also connectedness of groups has the same meaning in the definable and
differential algebraic categories.

An important notion in this paper is the differential closure Kdiff of a differ-
ential field K. It is the analogue in differential algebra of the algebraic closure
Kalg of a field K, and from the point of view of model theory is the “prime
model over K”. Now Aut(Kalg/K) is a profinite group, but Aut(Kdiff/K)
does not have such a nice “geometric”structure. As in the case of usual Galois
cohomology, the set of PHS’s over K for a given differential algebraic group
G over K can be described in terms of suitable cocycles from Aut(Kdiff/K)
to G(Kdiff ), modulo the equivalence relation of being cohologous. This is put
into a somewhat more general model-theoretic environment in [20], where it
is pointed out that definable cocycles suffice. For the purposes of the current
paper, these descriptions are not needed. In any case H1

∂(K,G) denotes the
set of (differential algebraic) PHS’s for G, overK up to isomorphism over
K, where the isomorphism should respect the G-action. We will make use of
Kolchin’s theorem (Theorem 4, Chapter VII, [12]) which says:

Fact 1.6. Suppose G is an algebraic group over K. Then H1
∂(K,G) =

H1(K,G). In particular if K is algebraically closed then H1(K,G) = {1}.

Definition 1.7. (i) A linear differential algebraic group (LDAG)over K is
a subgroup of GLn(U) which is differential algebraic over K, equivalently
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definable over K in U .
(ii) An Abelian differential algebraic group over K is a differential algebraic
(equivalently definable) over K subgroup of A(U) for some Abelian variety A
over K.

Due to Fact 1.5 (iii) and the Chevalley decomposition for algebraic groups
we have:

Fact 1.8. Let G be a connected differential algebraic group over K. Then
we have an exact sequence 1 → C → G → B → 1 of connected differential
algebraic groups over K where C is linear and B is Abelian.

We will make use of the following result from [4]:

Fact 1.9. If G is a LDAG over K and N is a normal definable (over K)
subgroup, then G/N is an LDAG over K.

The analogous result for Abelian DAG’s fails.

Model theory provides various ordinal-valued dimensions attached to de-
finable sets and types in DCF0, the most important for our purposes being
Morley rank RM and U -rank. In DCF0 every complete type p(x) (in finitely
many variables) has U -rank < ω2. The U -rank of a definable set is the
supremum of the U -ranks of complete types extending that definable set.
For definable groups G in DCF0, RM(G) = U(G) and moreover the supre-
mum above is attained by the so-called “generic types” of G. (See [22]). We
will call G finite-dimensional if RM(G) < ω. This is Buium’s nomenclature
[3] and corresponds to G having ”differential type 0” in the notation of [8]
for example. In general the Morley rank and U -rank of a definable group G
will have the form ω ·m+ k, for m, k nonnegative integers. The “leading co-
efficient” (which is k when m = 0 and m otherwise) is related to but distinct
from the “typical differential dimension” in the Kolchin theory.

We will be making use of a number of results about U -rank and definable
groups from [23] (some of which come from the seminal paper [1])with full
references.

The model theoretic environment for partial differential algebraic geom-
etry is the theory DCF0,m of differentially closed fields with respect to m
commuting derivations ∂1, ..., ∂m. Essentially everything we have said above
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about the ordinary case passes over to the partial case, except now the U -
ranks (and Morley ranks) of types are bounded by ωm+1, namely every com-
plete type has the form ωmkm + ωm−1km−1 + ... + ωk1 + k0, where k0, .., km
are nonnegative integers.

Finally we discuss the Galois theoretic notions which are central to this
paper. We are mainly concerned with the Picard-Vessiot theory, but we men-
tion “generalized strongly normal extensions” in Theorem 1.3, and the pa-
rameterized Picard-Vessiot (PPV ) theory, with respect to DCF0,2 in Corol-
lary 1.4.

We repeat part of Remark 1.2. A linear differential equation over K, in
vector form, is something of the form

(∗)∂Y = AY

where Y is a n × 1 (column) vector and A is an n × n matrix over K. The
set V of solutions in U is a subset of Un which is an n-dimensional C-vector
space. What we call a fundamental system of solutions is precisely a C-basis
of V , and is the same thing as a matrix Z ∈ GLn(U) whose columns are
solutions of (*). A PV extension of K for (*) is a differential field extension
L of the form K(Z) for some fundamental system Z of solutions, such that
CK = CL. L is always contained in some differential closure Kdiff of K, and
when CK is algebraically closed, such a PV extension L exists and is unique.

A first generalization of the notion of Picard-Vessiot extension is that of a
strongly normal extension and is due to Kolchin [11]. L is a strongly normal
extension of K if for some α such that L is generated over K by α, we have
(i) for any realization β of tp(α/K), β is in the differential field generated by
K, α and C, and (ii) CK = CL.

A further generalization is the notion of a “generalized strongly normal
extension of K” which was introduced in [16] and elaborated on in [17],
[15] and [18]. Let X be a K-definable set (such as the field of constants).
L = K〈α〉 is an X-strongly normal extension of K if (i) for any realization
β of tp(α/K), β is in the differential field generated by α, K, and (the
coordinates of elements of) X, and (ii) X(K) = X(Kdiff ). (We should
mention that condition (ii) has been weakened in [13], although this does
not affect the current paper.)

When K is algebraically closed, generalized strongly normal extensions
(as well as strongly normal extensions) can be explicitly described in terms of
solving certain kinds of differential equations, as follows: Given a connected
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algebraic group over K, a ∂-structure on G is an extension of the derivation
∂ on K to a derivation D of the structure sheaf (coordinate ring when G is
affine) of G. Such a derivation D is equivalent to a homomorphic regular
section s over K of a certain “shifted tangent bundle” T∂G of G. We call
(G, s) an algebraic ∂-group over K, which is an object belonging to algebraic
geometry (and was introduced and studied in [3]). It gives rise to a map
(in fact crossed homomorphism) dlog(G,s) belonging to differential algebraic
geometry, from G to its Lie algebra LG, namely the map taking y ∈ G(U) to
∂(y)s(y)−1 where the latter is computed in the algebraic group T∂(G). We
let (G, s)∂ be the kernel of dlog(G,s), a finite-dimensional differential algebraic
group over K, and if a ∈ LG(K), we call the equation dlog(G,s)(y) = a a
logarithmic differential equation over K on (G, s). In any case, it is shown in
[18] that (assuming K to be algebraically closed), L is a generalized strongly
normal extension of K (i.e. an X-strongly normal extension of K for some
X) iff there is a connected algebraic ∂-group (G, s) over K, a logarithmic
differential equation dlog(G,s)(−) = a ∈ LG(K) over K and a solution y ∈
G(Kdiff ) of the equation such that (i) L = K(y) and (ii) (G, s)∂(K) =
(G, s)∂(Kdiff ). The case when G is over CK and s is the “trivial” ∂-structure
on G recovers Kolchin’s strongly normal theory.

2 Proofs of Main results

We use notation and conventions from the previous section. We use repeat-
edly the fact that CKdiff = Calg

K , in particular if CK is algebraically closed
then it coincides with the constants of Kdiff .

Proof of Theorem 1.1.
We first point out the (trivial) right to left direction. If K is not algebraically
closed, then a proper Galois extension of K gives a finite principal homoge-
neous space X over K for a finite group G, such that X(K) = ∅. So we
may assume K is algebraically closed. If K is not PV -closed K has a proper
PV extension for a system ∂Y = AY over K. L is generated by a funda-
mental system b = (b1, .., bn) of solutions for the equation. The map taking
σ ∈ Aut∂(L/K) to σ(b)b−1 (multiplication in GLn) does not depend on the
choice of b, and establishes an isomorphism between Aut∂(L/K) and a differ-
ential algebraic subgroup G of GLn defined over K. The orbit of b under G
(where G acts on the left) is a differential algebraic left PHS for G, defined
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over K, and with no K-point, contradicting our assumptions. (The above
construction of G should be considered well-known but details are also given
in Section 3 of [10]. )

We now prove the left to right direction. We are assuming that K is alge-
braically closed and PV closed. We let G be an arbitrary linear differential
algebraic group over K and we aim to prove that H1

∂(K,G) = {1}.
We will be using the following:

Lemma 2.1 (INDUCTIVE PRINCIPLE). Suppose that we have a short
exact sequence 1→ N → G→ H → 1 of differential algebraic groups over K.
Suppose that H1

∂(K,H) = {1} and H1
∂(K,N) = {1}. Then H1

∂(K,G) = {1}.

Proof. This follows from the usual exact sequence in cohomology, but we can
be more explicit: Suppose X is a differential algebraic PHS for G over K.
Then the set Y of N -orbits in X is a differential algebraic PHS for H over
K. If Y has a K-point, then this yields an N -orbit Z ⊆ X, defined over K,
and then a K-point of Z yields a K-point of X.

There are several ways to proceed, modulo Lemma 2.1 above, depending
on what and how much to quote of the differential algebraic and model-
theoretic literature. Cassidy and Singer [8], working in the context of several
commuting derivations, prove that an arbitrary “strongly connected” differ-
ential algebraic group over K has a subnormal series (of differential algebraic
groups over K) where the successive quotients are “almost simple”. More-
over in the ordinary case (one derivation) they describe the “almost simple”
linear differential algebraic groups, so it would be enough to check Theorem
1.1 for each of these. In fact we will take a slightly different route, with
more model-theoretic input, notation, and information about the structure
of linear differential algebraic groups, but ending up checking Theorem 1.1
in essentially the same special cases (and more or less recovering the decom-
position theorem of [8]).

Case (1) G is “finite-dimensional” (so finite Morley rank, or finite U -rank).
By the inductive principle we may assume G is connected. Let N be the
“definable solvable radical of G”, namely the maximal normal solvable con-
nected definable subgroup. It exists and is unique as G has finite Morley
rank, in particular N is defined over K. Then clearly H = G/N is defined
over K, linear (by Fact 1.9), and semisimple in the sense that H has no
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connected normal abelian definable subgroup. This notion of semisimplicity
agrees with the notion in [5].

By Lemma 2.1, we can separate into subcases:
Case (1)(a). G = N , namely G is solvable.

As G is a differential algebraic subgroup of GLn(U) defined over K, we
can consider Ḡ, the Zariski closure of G, a connected solvable linear algebraic
group over K (in the algebraic geometric sense). By the results in Section
III.10 of [2], Ḡ is filtered by a chain of normal algebraic subgroups (over K)
each successive quotient being isomorphic over K to the additive group Ga

or multiplicative group Gm. Intersecting this chain with G, we see that G
is filtered by a chain of normal definable (over K) subgroups, where we may
assume that each successive quotient is a subgroup of (U ,+) or (U∗,×). By
Lemma 2.1 we may assume that either G is a (finite-dimensional) differential
algebraic subgroup of (U ,+), or a (finite-dimensional) differential algebraic
subgroup of (U∗,×).

Suppose first G ≤ (U ,+). By Cassidy [6], G (being finite dimensional) is
defined by a homogeneous linear differential equation over K (in a single inde-
terminate y but of arbitrary finite order). So G(Kdiff ) is a finite-dimensional
vector space over CK (the latter being algebraically closed) and adjoining to
K a basis, yields a Picard-Vessiot extension of K. By our assumptions such a
basis must already lie in K whereby G(Kdiff ) is isomorphic, over K to (CK)d)
for some d. Suppose now that X is a PHS for G over K, so X(Kdiff ) is a
PHS for (CK)d over K. Let α ∈ X(Kdiff ), so L = K〈α〉 is clearly a strongly
normal extension of K. For σ ∈ Aut∂(L/K) there is unique gσ ∈ (CK)d such
that σ(α) = gσα. As (CK)d is commutative we see that the map taking σ to
gσ yields an isomorphism between Aut∂(L/K) and some algebraic subgroup
of Cd

K , in particular with a linear algebraic group (in the constants), whereby,
by Corollary 2 in Section 9, Chapter VI of [11], L is a PV extension of K.
So by our assumptions, α ∈ X(K). We have shown that H1

∂(K,G) = {1}.
(Alexey Ovchinnikov mentioned that we can also use Corollary 1 on p. 193
of [12] in this case.)

Now suppose G ≤ (U∗,×). We can use the logarithmic derivative map
from (U∗,×) to (U ,+) which takes y to ∂(y)/y to map G onto a finite-
dimensional definable (over K) subgroup of (U,+) with kernel a definable
(over CK) subgroup of Gm(C). We can apply the previous paragraph to the
image of G. The kernel is handled in a similar fashion (any PHS for it over
K will yield a strongly normal, hence PV extension of K, so has to trivial).
So Lemma 2.1 tells that H1

∂(K,G) is again trivial.
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We have completed Case (1)(a).

Case (1)(b). G = H, namely G is “semisimple”. So G is a linear (con-
nected) ∂-semisimple group over K in the sense of [5]. Putting together
Theorems 14 and 15 of [5], G is isogenous over K to a direct product of
simple (up to finite centres) noncommutative finite-dimensional linear dif-
ferential algebraic groups G1, .., Gk, each over K. By Lemma 2.1, we may
assume that G is equal to some Gi and is moreover centreless. By Theo-
rem 1.5 of [21] G(Kdiff ) is isomorphic over Kdiff to a group of the form
H(CKdiff ) = H(CK) where H is a simple linear algebraic group over CK .
By Proposition 4.1 of [18] and our assumptions, such an isomorphism can
be found defined over K. So we may assume G = H(C). Now suppose X
is a (left) PHS for H(C), over K. Let again α ∈ X(Kdiff ) and L = K〈α〉.
The map taking σ ∈ Aut∂(L/K) to gσ in H(CK) establishes an isomorphism
between Aut∂(L/K) and Bopp for some algebraic subgroup B of H(CK). As
Bopp is also a linear algebraic group in CK , we see again by the result of
Kolchin mentioned earlier, that L is a PV extension of K. So by our as-
sumptions α ∈ X(K). So X has a K-point, and we have completed Case
(1)(b) and also Case (1).

Case (2). G is arbitrary.
We will again use model theoretic notions although purely differential alge-
braic notions would also suffice. In general G has U -rank ω.m + k for some
nonnegative integers, m, k and G is “finite dimensional” iff m = 0. We call
G 1-connected if G has no definable quotient G/H (a homogeneous space)
with U(G/H) finite (or G/H finite-dimensional). By the descending chain
condition on definable subgroups (given by ω-stability) G has a unique 1-
connected component, namely a smallest subgroup G1,0 such that G/G1,0 is
finite-dimensional. Moreover if G is defined over K so is G1,0. By Corollary
6.3 of [23] ( U -rank inequalities for groups) and Theorem 6.7 of [23] (the
Berline-Lascar decomposition), G is 1-connected iff it is connected and has
U -rank of the form ω.m. In any case by Case (1) and Lemma 2.1,
We may assume that G is 1-connected.

We let N be the maximal normal solvable 1-connected definable sub-
group of G, clearly defined over K, which exists and is unique for the same
reasons as in Case (1). Then H = G/N is also 1-connected, and is “almost
semisimple” in the sense that H has no proper nontrivial normal 1-connected
abelian definable subgroup. By Lemma 2.1 it is enough to treat the cases
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where G = N and where G = H. So:
Case (2)(a). G = N . Exactly as in Case (1)(a), by looking at the Zariski
closure Ḡ ofG, a connected solvable linear algebraic group, we find a sequence
Gi of normal K-definable subgroups of G with the quotients (without loss of
generality) subgroups of (U ,+) or (U ,×). By Case (1) we may assume that
each quotient Gi/Gi−1 has infinite Morley rank (or U -rank) and thus has
Morley rank (or U -rank) ω. But both (U ,+) and (U∗,×) are connected with
U -rank ω whereby Gi/Gi−1 is equal to (U ,+) or (U∗,×). In particular each
quotient is an algebraic group over K. We can now use Fact 1.6 to deduce
that H1

∂(G) is trivial.

Case (2)(b). G = H. Let Z be the centre of G. By “almost semisimplicity”
of G, Z is finite-dimensional. On the other hand using the 1-connectedness
of G, G/Z(G) is simple (and centreless). So by the inductive argument and
Case (1), we may assume that G is centreless (and still linear). We may
assume that the Zariski closure of G (in the ambient general linear group)
is semisimple and even centreless (for example by Theorem 14 of [5]). By
Theorem 15 of [5] we may assume that G is simple and and its Zariski closure
Ḡ is a simple algebraic group over K. As G has infinite Morley rank, we can
conclude from Theorem 17 of [5], or Proposition 5.1 of [21], that G = Ḡ,
namely G is an algebraic group. Again by Fact 1.6, H1

∂(K,G) is trivial. The
proof is complete.

Proof of Theorem 1.3. The nontrivial (left to right) direction of Theorem
1.3 is actually implicitly claimed in [17]: Corollary 3.6 in that paper proves
that if the first order theory of K is superstable, G is a finite Morley rank
group definable over K, and X is a K-definable PHS for G, then X(K) =
X(Kdiff ). And the sentence following the proof of that result says that it is
not hard to prove (assuming Th(K) superstable) that X(K) 6= ∅ whenever
X is a PHS over K for any definable group G over K, although no actual
proof is given. As is readily seen the only use of superstability in the proof of
Corollary 3.6 is Theorem 1.2 in that paper which says that superstability of
Th(K) implies that K is closed under generalized strongly normal extensions.
As the proof of 3.6 in [17] makes heavy use of the full trichotomy theorem for
U -rank 1-types in DCF0, we take the opportunity to sketch how to extend
the rather direct proof of Theorem 1.1 above to a proof of Theorem 1.3.

First the right to left direction: If K is not algebraically closed then
a Galois extension of K gives rise to a PHS over K for a finite group,
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as before. So we assume K to be algebraically closed. By [18], described
in the last paragraph of the introduction to the current paper, a gener-
alized strongly normal extension L of K is given by adjoining a solution
α ∈ G(Kdiff ) of a logarithmic differential equation dlogG,s(−) = a on an
algebraic D-group (G, s) over K with a ∈ LG(K), where (G, s) is K-large,
namely (G, s)∂(Kdiff ) = (G, s)∂(K). As in the proof of Theorem 1.1 the map
taking σ ∈ Aut∂(L/K) to σ(α)α−1 (multiplication etc. in G) established an
isomorphism with a differential algebraic subgroup H+ of G(Kdiff ), defined
over K. Moreover the orbit of α under left multiplication by H+ is a left
PHS for H+ with no K-point, contradicting the assumptions.

For the left to right direction we first use Fact 1.8 to obtain an exact se-
quence 1→ N → G→ H → 1 of differential algebraic groups over K, where
N is linear (namely embeds over K into some GLn) and H is “Abelian”,
namely embeds over K in an abelian variety. Hence the proof proceeds ex-
actly as in the proof of Theorem 1.1 (left to right), using Lemma 2.1, but
with an additional case, namely when G is a definable (over K) subgroup of
a simple abelian variety A (over K). We will now refer to Fact 1.7(ii) of [15]
where the following is stated, with explanations and references. The so-called
Manin map µ is a definable (over K) homomorphism from A onto (U,+)d

where d = dim(A) and where ker(µ) is the unique smallest connected infinite
definable subgroup of A, which we usually write as A]. In the case when A
descends to the constants (so to CK) then µ coincides with Kolchin’s loga-
rithmic derivative, and A] is simply A(C), and as CK is algebraically closed
we see that A](K) = A](Kdiff ). In the case when A does not descend to the
constants, then A] is strongly minimal. Strong minimality plus the fact that
A] contains the torsion subgroup of A implies that A](K) = A](Kdiff ) (see
Lemma 2.2 of [15]).

Going back to our K-definable subgroup G of A, let B = µ(A), and C =
G∩A]. So B is a linear DAG over K and by Theorem 1.1, H1

∂(K,B) is trivial.
So using Lemma 2.1, it remains to show that H1

∂(K,C) is trivial. If C is finite,
we are fine as K is algebraically closed. Otherwise by strong minimality of
A], C = A]. Let X be a left PHS for C defined over K. Let α ∈ X(Kdiff ).
Then clearly L = K〈α〉 is a generalized strongly normal extension of K (with
respect to C), as C(K) = C(Kdiff )), so by our assumption α ∈ X(K), and
we finish.

Proof of Corollary 1.4.
We are in the context of fields K equipped with two commuting derivations
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∂x and ∂t. The model-theoretic environment is DCF0,2, mentioned earlier.
Our notation for fields of constants is now a bit different. Given a differential
field K, K∂x denotes the field of constants of K with respect to ∂x, which
note is a ∂t field. If K is a model of DCF0,2 then (K∂x , ∂t) is a model of
DCF0.

As K∂x is algebraically closed, by [25] there exists a PPV extension L of K
for the equation ∂xY = AY . Let Z be a fundamental matrix of solutions
which generates L over K (as a {∂x, ∂t}-field). Let Kdiff be a differential
closure of K (with respect to both derivations). Let L1 be the differential
field generated by L and (Kdiff )∂x , and let K1 be the differential field gen-
erated by K and (Kdiff )∂x , and let Aut(L1/K1) be group of automorphisms
of L1 over K1 (as a {∂x, ∂t}-field). If σ ∈ Aut(L1/K1) then σ(Z) = Zcσ for
some matrix cσ ∈ GLn((Kdiff )∂x). The map σ → cσ gives an isomorphism
between Aut(L1/K1) and some linear differential algebraic (with respect to
∂t) subgroup G of GLn((Kdiff )∂x) defined over K∂x . Now Propositions 4.25,
4.28, and Theorem 5.5 of [9] (which use a differential Tannakian formalism)
yield a 1 − 1 map from the set of PPV extensions of K for the equation
∂xY = AY , up to isomorphism over K (as {∂x, ∂t}-fields) to H1

∂(K∂x, G)
(with respect to the ambient differentially closed field (Kdiff )∂x , ∂t) which
actually coincides with the differential closure of (K∂x , ∂t)). The assumption
that (K∂x , ∂t) is both algebraically closed and PV -closed, together with The-
orem 1.1, implies that H1

∂(K∂x , G) is trivial, whereby we obtain uniqueness
of the PPV extension L of K.

3 Additional questions and remarks.

There are several natural environments to which one would like to extend
Theorem 1.1. The first is the positive characteristic case, where the field is
equipped with an iterative Hasse derivation. The model theoretic context
is the theory of separably closed fields of characteristic p > 0 with Ershov
invariant 1. Even an appropriate formulation of the problem would be in-
teresting as from the model theoretic point of view we are working with
type-definable linear groups.

The second is difference Galois theory, with respect to a single automor-
phism. From the model-theoretic point of view, the first order theory would
be ACFA. An appropriate formulation of the problem would be interesting.

The third is that of several commuting derivations. The right hand side
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condition would be that the constrained cohomology of any linear differential
algebraic group over K is trivial. There are various possibilities for the
left hand side condition, namely the generalization of “PV -closed” to this
context.

We expect that in the second and third cases, the existence of “exotic”
linear difference (differential) algebraic groups implies that the analogues of
Theorem 1.1 fail. A paper on the topic, joint with Zoé Chatzidakis, is in
preparation.

Finally: We can view Theorem 1.1 as a strong differential analogue of
the trivial fact that a field K is algebraically closed iff H1(K,G) is trivial
for every linear algebraic group over K. What then would be the differential
analogue of Serre’s theorem [24] that a field K has finitely many extensions
of degree n for all n iff H1(K,G) is finite for every linear algebraic group G
over K?
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algebraic groups, Journal of Algebra, 328 (2011), 190-217.

[9] H.Gillet, S. Gorchinskiy, and A. Ovchinnikov, Parameterized Picard-
Vessiot extensions and Atiyah extensions, Advances in Mathematics 238
(2013), 322-411

[10] M. Kamensky and A. Pillay, Interpretations and differential Galois ex-
tensions, International Math. Research Notices, 2016.

[11] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic
Press, 1973.

[12] E. R. Kolchin, Differential Algebraic Groups, Academic Press, 1985.
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