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Abstract

We give accounts and proofs, using model-theoretic methods among
other things, of the following results: Suppose ∂y = Ay is a linear dif-
ferential equation over a differential field K of characteristic 0, and
the field CK of constants of K is existentially closed in K. Then: (i)
There exists a Picard-Vessiot extension L of K, namely a differential
field extension L of K which is generated by a fundamental system
of solutions of the equation, and has no new constants. (ii) If L1 and
L2 are two Picard Vessiot extensions of K which (as fields) have a
common embedding over K into an elementary extension of CK , then
L1 and L2 are isomorphic over K as differential fields. (iii) Suppose
that CK is large in the sense of Pop [21] and also has only finitely
many extensions of degree n for all n (Serre’s property (F)). Then K
has a Picard-Vessiot extension L such that CK is existentially closed
in L.

In fact we state and prove our results in the more general context
of logarithmic differential equations over K on (not necessarily linear)
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algebraic groups over CK , and the corresponding strongly normal ex-
tensions of K. We make use of interpretations from model theory as
well the Galois groupoid, which are related to the Tannakian theory
in [3] and [4], but go beyond the linear context. Towards the proof of
(iii) we obtain a Galois-cohomological result of possibly independent
interest: if k is a field of characteristic 0 with property (F), and G is
any algebraic group over k, then H1(k,G) is countable.

The current paper replaces the preprint [8] which only dealt with
the linear differential equations case and had some mistakes.

1 Introduction

Let K be a differential field of characteristic 0 with field of constants CK ,
and let ∂y = Ay be a (homogeneous) linear differential equation over K (in
vector form). Namely y is a n× 1 column vector of indeterminates and A is
an n × n matrix over K. If L is a differential field extension of K then the
solution set of the equation in L is a vector space over CL of dimension at
most n. A fundamental system of solutions of this equation, in a differential
field L extending K, is by definition a set Y1, ..., Yn of solutions in L which
form a basis of the CL-vector space of solutions (which thus has maximal
dimension). It is well known that linear independence of Y1, .., Yn over CL

is equivalent to the n × n matrix over L whose columns are Y1, .., Yn being
nonsingular. In any case by a Picard-Vessiot (or PV) extension of K for the
equation we mean a differential field extension L of K which is generated
over K by such a fundamental system Y1, .., Yn of solutions, and has no
new constants, i.e. CL = CK . When CK is algebraically closed it is well-
known that such a PV extension of K exists and is moreover unique up to
isomorphism over K (and is generated over K by some/any fundamental
system of solutions in the differential closure Kdiff of K, bearing in mind
that CKdiff = Calg

K = CK). In general (CK algebraically closed or not) we
can always find a fundamental system of solutions in Kdiff , and the question
is whether we can find such a fundamental system Z such that the constants
of K(Z) coincide with CK . Moreover one can ask for uniqueness: for another
such Z1, K(Z1) is isomorphic to K(Z2) over K. In general one has neither
existence nor uniqueness. Some recent papers [5], [2] give sufficient conditions
for the existence of PV-extensions possibly with additional properties, and
also uniqueness under additional constraints: In [5] the existence is proved
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when CK is existentially closed in K (as fields). In [2] it is shown that if CK

is a real closed field and K is a formally real field then a formally real PV-
extension of K exists, and moreover two formally real extensions of K which
are compatible (have common embeddings over K in a common real closed
extension of K) are isomorphic over K, as differential fields. Likewise in the
p-adic case. These results use the full strength of the theory of Tannakian
categories [3] and [4]. The aim of the current paper is to give an account of
these results and more, at a somewhat greater level of generality, to which
the Tannakian theory, as such, does not apply.

We now discuss logarithmic differential equations on algebraic groups
and “strongly normal extensions”. The general theory of strongly normal
extensions of differential fields was introduced by Kolchin in [10] and further
developed in Chapter VI of his book [9]. Another exposition with a scheme-
theoretic flavour appears in [11]. Strongly normal extensions of a differential
field K generalize Picard-Vessiot extensions of K. In this introduction and
in sections 3 and 4 we give an exposition of this theory from the point of
view of logarithmic differential equations on algebraic groups, analogous to
the way the Picard-Vessiot theory is introduced above via linear differential
equations. This point of view appears briefly in Section 7, Chapter VI of [9]
on “G-Primitives”. However objects such as the“intrinsic” Galois group H+

described in section 3, and the Galois groupoid, described in section 4, do
not make an appearance in the afore-cited works, although they do appear in
more general forms in the model-theoretic literature (such as [18], [7]). This
explains our somewhat extended exposition.

We start to assume familiarity with differential algebra in the style of
Kolchin [9], and in particular with the notion of the differential closure Kdiff

of a differential field K and the fact that the field of constants of Kdiff is the
algebraic closure of the field of constants of K. The reader is also referred
to [14] and [15] for basic model theory and the model theory of differential
fields. Fix K as above (an arbitrary differential field of characteristic 0) and
let G be an algebraic group over CK which we will take to be connected. By
a logarithmic differential equation on G over K, we mean something of the
form (∂y)y−1 = A for some A ∈ LG(K) (where LG denotes the Lie algebra of
G), where y ranges over G (i.e. over L-points of G for L any differential field
containing K). Here (∂y)y−1 is Kolchin’s logarithmic derivative, a crossed
homomorphism from G to its Lie algebra, which can be explained as follows:
For g ∈ G(L), ∂g can be considered as a point in the the tangent space to G
at g. The tangent bundle TG of G is an algebraic group which splits as the
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semidirect product of G and LG. Identifying g with the point (g, 0) of TG,
both ∂g and g are points of TGg so their difference (∂g)g−1 lies in LG.

We will write dlogG(−) for this logarithmic derivative map from G to
LG, where G is an algebraic group over CK (namely for any differential field
L containing K, dlogG takes G(L) to LG(L)). Of course dlogG(g) = A if
and only if ∂g = Ag where the right hand side is multiplication in the sense
of the algebraic group TG. We typically write the group operation on LG
additively. dlogG being a crossed homomorphism means that dlogG(gh) =
dlogG(g)+(dlogG(h))g. The kernel of dlogG, {g : dlogG(g) = 0} is a subgroup
and its points in any differential field L > K coincide with G(CL). For any
A ∈ LG, {g ∈ G : dlogG(g) = A} is a left coset of the kernel.

When G = GLn, then dlogG actually coincides with multiplication of
matrices (∂y)y−1 in gln. When G is an elliptic curve in Weierstrass form
the logarithmic derivative coincides with ∂y/x. Returning to GLn we note
that if g ∈ GLn(L) and A is an n × n matrix over K and (∂g)g−1 = A
then the columns of g form a fundamental system of solutions for the linear
differential equation ∂y = Ay. Hence seeking a solution of a logarithmic
differential equation on an algebraic group G is a generalization of seeking
a fundamental system of solutions for a (homogeneous) linear differential
equation. The generalization of the notion of Picard-Vessiot extension to this
broader class of equations is what is called a “strongly normal” extension.
We will present below Kolchin’s original definition from [9] so as to keep
our notations consistent with the literature. We will work in a “universal
differential field” U (in the sense of Kolchin, or of model theory), and K,L, ..
will denote small differential subfields unless we say otherwise. C denotes the
field of constants of U and CK the field of constants of K.

Definition 1.1. Let K,L be differential fields with L finitely generated over
K. L is said to be a strongly normal extension of K if
(i) for each isomorphic copy L1 of L over K in U , L1 ⊆ L(C) (the differential
field generated over L by C), and
(ii) CL = CK.

Including (ii) in the definition (as Kolchin does) makes for consistency
with the notion of Picard-Vessiot extension. The following is well-known (at
least to model theorists, see for example Section 5 of [19]). See also Theorem
6 of Chapter VI of [9].

Remark 1.2. Suppose dlogG(y) = A is a logarithmic differential equation on
G over K where G is over CK. Let g be a solution of the equation in G(U)
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and let L = K(g) be the (differential) field generated over K by g. Then
(a) Condition (i) in Definition 1.1 is automatically satisfied, as any two
solutions differ by an element of G(C).
(b) If L is a strongly normal extension of K (namely condition (ii) is also
satisfied) then L is contained in some differential closure of K.
(c) Conversely if L is contained in some differential closure of K and CK is
algebraically closed, then L is a strongly normal extension of K.
(d) As we can always find a solution of dlogG(y) = A in a differential closure
of K, (c) gives the existence of a strongly normal extension of K generated
by a solution of the equation, when CK is algebraically closed.
(e) When CK is algebraically closed, there is a unique (as differential field,
up to isomorphism over K) strongly normal extension of K generated by a
solution of dlogG(y) = A.

Remark 1.2 (a) justifies us calling L a strongly normal extension of K for
the equation dlogG(y) = A, if L is generated over K by a solution g ∈ G(L)
of the equation, and CL = CK .

From the model-theoretic point of view the question of the existence of
such L is an almost orthogonality statement: we seek a solution y ∈ G(U) of
the equation such that tp(y/K) has a unique extension to a complete type
over KC.

We are here focusing on strongly normal extensions generated by certain
kinds of differential equations. But this is close to the general case; see
Section 10 of [9] on V -primitives, and our results can suitably be extended
to these logarithmic differential equations on principal homogeneous spaces
for algebraic groups over the constants.

There is a Galois theory of strongly normal extensions generalizing the
linear case. But from our point of view the relevant Galois group intrinsic
to the equation dlogG(y) = A is the group of automorphisms of K(C)(Y)
over K(C), where Y is the solution set of dlogG(y) = A in G(U), and where
the automorphisms should respect the derivation. This is discussed more in
section 3.

If M ⊆ N are structures for a common language L, M is said to be exis-
tentially closed in N if any quantifier-free formula over M with a solution in
N has a solution in M . When we are concerned with fields K ≤ L (of char-
acteristic 0 say) in the language of unitary rings, this is equivalent to asking
that any algebraic variety V overK (not necessarily affine or irreducible) with
an L-rational point, has a K-rational point. M being existentially closed in
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N is equivalent to each of the following
(i) N is a model of the universal part of the complete diagram of M ,
(ii) N embeds over M into an elementary extension of M .

We now state the main results, as well as giving some comments on the
proofs. A logarithmic differential equation

(*) dlogG(y) = A

is fixed in advance, where G is a connected algebraic group over CK and
A ∈ LG(K).

Theorem 1.3. Suppose CK is existentially closed in K (as a field). Then
there is a strongly normal extension L of K for the equation (*).

The idea is as follows. In Section 2 we prove an interpretability result
which is roughly that the solution set Y of (*) in the differentially closed
field U , equipped with all relations definable over K in U , is (canonically)
interpretable in ACFK (theory of algebraicallly closed fields with constants
for elements of K). Strictly speaking we are interpreting the theory of the
two sorted structure (C,Y). We call this interpretation ω. In Section 3 we
show that there is a (quantifier-free) formula O(x) in the language of fields
with parameters from CK such that among other things the solutions of O(x)
in CK parametrize the set of strongly normal extensions of K for the given
equation (*). Properties of O together with the interpretation ω from Section
2, show that O(x) has a solution in K, so as CK is existentially closed in K,
O(x) has a solution in CK yielding the desired strongly normal extension of
K.

The remainder of the results consist of uniqueness and existence theorems
when we demand additional properties of the strongly normal extension L .
It is natural to ask for CK to be also existentially closed in L, so for example
if CK is real closed then we can choose L to be formally real. First the
uniqueness theorem, proved in Section 4.

Theorem 1.4. Suppose that L1 and L2 are strongly normal extensions of K
for (*) such that there is a common embedding over K of L1 and L2 into an
elementary extension of CK (as fields). Then L1 and L2 are isomorphic over
K (as differential fields).

The idea of the proof is similar to that of Theorem 1.3. First the field-
definable (over CK) set O obtained earlier is shown to be the set of objects of
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the Galois groupoid G (definable in ACF over CK) attached to the equation
(*). In the same way as the points a of O in CK parametrize strongly normal
extensions of K, morphisms between such points parametrise isomorphisms
over K between the corresponding strongly normal extensions. To prove
Theorem 1.4, we show that if the strongly normal extensions L1, L2 of K
correspond to a1, a2 ∈ O(CK), then the (definable over CK) set Mor(a1, a2)
of morphisms between a1 and a2 has a point in some elementary extension of
CK (using the interpretation ω), hence has a CK-point. The above theorem
subsumes Theorem 1.2 (2), (3) of [2].

Finally here is the (strong) existence statement, proved in Section 5.

Theorem 1.5. Suppose again CK is existentially closed in K. Suppose that
CK is large in the sense of [21] and also has only finitely many extensions of
degree n for each n (Serre’s property (F)). Then there is a strongly normal
extension L of K for (*) such that CK is existentially closed in L.

Large fields were introduced by Florian Pop, and we refer the reader to his
recent survey paper [21] for the basic results and examples. The definition
of k being large is that any k-irreducible curve over k with a nonsingular k-
point has infinitely many k-points. An equivalent statement (see Proposition
2.6 of [21]) is that any irreducible k-variety with a nonsingular k-point has a
Zariski-dense set of k-points. Real closed and p-adically closed fields are large,
hence, as they also have property (F), Theorem 1.5 includes the existence
result Theorem 1.2 (1) of [2]. Here is a sketch of the proof of Theorem 1.5.
First for any a ∈ O(CK) there is a smooth variety Xa over K such that the
strongly normal extension L of K determined by a is, as a field equal to
K(Xa) the function field of Xa over K. If Xa has a point in an elementary
extension K1 of CK containing K then it will follow from largeness of K1

that CK is existentially closed in L = K(Xa). Now the interpretation ω
gives rise to a′ ∈ O(K) such that Xa′ has a K-point. The key issue is to
find a ∈ O(CK) such that Mor(a′, a) has a point in K1 , giving rise to a K1-
point of Xa as required. This is done by showing, using the (F) property,
that G(CK) has only finitely many connected components. And this in turn
is a consequence of the following result of possibly independent interest (our
(Theorem 5.2):
Let k be a field of characteristic 0 with the (F) property. Let G be an
algebraic group over k. Then H1(k,G) is countable.
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The notions of Picard-Vessiot and strongly normal extensions of differential
fields and their automorphism groups, are a special case of a phenomenon
widely studied in model theory, namely “internality” and definable automor-
phism groups (also called “liason” or “binding” groups). This was initiated
by Zilber, with subsequent refinements by Poizat, Hrushovski, and others,
including the current authors. Poizat [19] in particular made clear the con-
nection of the general model theoretic constructions with differential Galois
theory. A kind of culmination of the model-theoretic perspective appears in
[7] where not only a definable automorphism group but also a definable au-
tomorphism groupoid, is attached to an “internal cover”. This point of view
will be present throughout the current paper, but in the concrete context of
logarithmic differential equations.

As already mentioned we will assume familiarity with basic model theory
from say [14], as well as some basic model theory of differentially closed fields
which can be found in [15]. We will on the whole be using elementary model
theory, as we aim to give presentation and proofs of the main theorems which
will be accessible to a broad audience, including differential algebraists. The
exposition is on purpose rather heavy handed, so as to be relatively self-
contained and so that a differential algebraist can see the point of view if
they so wish. In several places we could have quoted references rather than
re-introduce objects ourselves, but the notation may have been different, the
references obscure, or, as in the case of the strongly normal theory, the only
references are at much greater model-theoretic level of generality. In Section
5 we assume some familiarity with Galois cohomology for which there are of
course very elegant sources. We use the expressions “principal homogeneous
space” and “torsor” interchangeably.

Our model-theoretic notation is standard. The main complete theories we
consider are ACF0 (theory of algebraically closed fields of characteristic 0 in
the language of unitary rings), DCF0 (theory of differentially closed fields of
characteristic 0 in the language of unitary rings with a derivation), and vari-
ous reducts. Both ACF0 and DCF0 are complete with quantifier elimination
in their respective languages. For T a complete theory in language L and A a
substructure of a model M of T , TA denotes the complete theory of (M,a)a∈A
the expansion of M by adjoining constants for elements of A. When T has
quantifier elimination, TA depends only on T and the isomorphism type of A.
When we talk about definability in a given structure M , we allow parameters
and try to make it explicit by saying A-definable, ∅-definable etc...

8



Concerning DCF0, we often work in an ambient “saturated” differentially
closed field U with field C of constants. We will make use of the following
fact, which although well-known to model-theorists, is somewhat subtle and
related to stablility theoretic phenomena:

Fact 1.6. Suppose that F is a differentially closed field, and K is a differen-
tial subfield. Then the subsets of Cartesian powers of CF which are definable
with parameters from K in the structure (F,+,−,×, 0, 1, ∂) are precisely the
sets definable with parameters from CK in the field (CF ,+,−, 0, 1,×).

Proof. There is no harm in assuming F to be saturated, and let C denote its
field of constants CF . Firstly, by quantifier elimination for DCF0, any subset
of Cn definable (without parameters) in the differential field F is definable
(without parameters) in the field C.
Secondly stability of DCF0 implies that any subset of Cn definable with
parameters in the differential field F , is definable with parameters from C in
the differential field F .
Putting these two points together, given a subset X of Cn definable in the
differential field F with parameters d from K, there is a formula φ(x, e) in
the language of fields and with parameters e from C such that X is defined
in the field C by φ(x, e). So far we have just observed that the field C is
(so-called) stably embedded in the differential field F . Now we may assume,
by elimination of imaginaries in ACF0 that e is a canonical parameter for
the definable set X in the field C. Now in the saturated differential field
F any automorphism which fixes d, fixes X as a set, and hence fixes e. So
e ∈ dcl(d) in the differential field F . But the field K is definably closed in F
(again by quantifier elimination), so as d is in K, so is e. Namely e ∈ CK .
So X is definable over CK in the field C.

Of course a special case, which is the first step of the proof is that the
field of constants of a differentially closed field F with all its “induced struc-
ture” is just an algebraically closed field. But we also obtain the following
consequence (which the referee pointed out can also be seen from the fact
that K and C are linearly disjoint over their intersection):

Corollary 1.7. Suppose that K is a (small) differential subfield of U , and
that C is a subfield of C containing CK. Then the field of constants of the
(differential) field K(C) generated by K and C is precisely C.
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Proof. Let c ∈ C. Then c is a constant of K(C) iff c ∈ dcl(K,C) in the
sense of DCF0 which by Fact 1.6 is equivalent to c ∈ dcl(C) in the structure
(C,+,−, 0, 1,×) expanded by parameters from CK . But as CK ≤ C this last
statement is equivalent to c ∈ C.

We will use freely facts such as that a definable over k group in an ambient
algebraically closed field has a unique structure of algebraic group over k.
Also where necessary that a definable (in ACF ) subgroup of an algebraic
group is an algebraic subgroup. Sometimes we will mention constants in the
sense of logic, namely constant symbols, which should not be confused with
constants in a differential field.

Acknowledgement. Thanks to the referees, whose reports led to a substantial
rewriting of the paper.

2 Interpretations

To a logarithmic differential equation over K we can and will attach a two-
sorted structure (C,Y) consisting of the constants C, and the solution set Y
of the equation, in an ambient differentially closed field, equipped with all
relations which are definable over K in the differentially closed field U . The
main point of this section is to show that this structure, or rather its first
order theory, is interpretable in a rather special way in ACFK the theory of
algebraically closed fields of characteristic 0 with constant symbols for ele-
ments of K. Our interpretation result is related to “quantifier-elimination
for algebraic ∂-groups” from [12] which implies that the theory of any finite-
dimensional differential algebraic group is interpretable in the theory of alge-
braically closed fields. However in our situation we are dealing with a torsor
for a definable group rather than the group itself, which requires a few addi-
tional words. On the other hand the relevant definable groups are living in
the constants already, yielding simplifications. In any case we cannot simply
refer to [12] for our main result, although we will make use of some lemmas
from that paper.

The reader is referred to Section 5.3 of [6], Section 3.1 of [16], and Sec-
tion 9.4 of [20] for the notion of an interpretation of one structure in another
structure, and to page 196 in [13] for the (syntatic) notion of the interpre-
tation of a language in another language. We are interested in the related
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notion of an interpretation of one theory in another theory, so we give some
definitions suitable for our purposes and for establishing notation.

First let L1, L2 be possibly many sorted languages which we assume to
be relational for simplicity. An interpretation ω of L1 in L2 is an assignment,
to each sort S of L1 a formula ω(S) of L2. and to each L1-symbol R, an
L2-formula ω(R) (appropriately sorted). Note that such an interpretation
gives rise, for each formula φ of L1, to a formula ω(φ) of L2. Moreover if φ
is a sentence, so is ω(φ).

Such an interpretation ω also acts on structures: if M is an L2-structure,
then we we obtain an L1-structure whose sorts are the ω(S)(M) (interpre-
tation of the formula ω(S) in M) and relations the ω(R)(M), and we call
this L1-structure ω∗(M). So we obtain an interpretation of the L1-structure
ω∗(M) in M in the sense of the earlier references.

Now suppose that T1 and T2 are L1 and L2-theories respectively, which
need not be complete, and let ω be an interpretation of L1 in L2. Then we
say that ω is an interpretation of T1 in T2 if for every σ ∈ T1, ω(σ) ∈ T2.
This is equivalent to saying that for every model M of T2, ω

∗(M) is a model
of T1. If T1 and T2 happen to be complete theories, then an interpretation of
T1 in T2 in our sense is determined by (and determines) an interpretation of
some model M1 of T1 in some model M2 of T2 (with M1 = ω∗(M2)). In any
case if T1 is interpretable in T2 and M1 is a model of T1 then there will be an
elementary extension M ′

1 of M1 which is of the form ω∗(M2) for some model
M2 of T2.

We now fix, once and for all, the data consisting of a logarithmic differential
equation
(*) dlogG(y) = A
where G is a connected algebraic group over CK , and A ∈ LG(K).

We will fix a differentially closed field U containing K. In later sections we
may want to apply compactness and so will choose U to be saturated, but in
this section there is no harm in taking U to be the differential closure Kdiff of
K. Let C be the field of constants of U and let Y be the solution set of (*) in
U , namely {y ∈ G(U) : dlogG(y) = A}. As mentioned earlier Ker(dlogG) =
G(C), and Y is the left coset (so right torsor) bG(C) for some/any b ∈ Y .

Let M be (C,Y) equipped with all relations which are definable over K
in U , so a 2-sorted structure. Let L(M) be the language of M , namely with
symbols for all these relations. We will show that we can make (U , G(U))
into an L(M)-structure N say in such a way that
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(i) M ≺ N , and
(ii) All the relations on N are definable over K in the algebraically closed
field (U ,+, ·).

This will yield the interpretation we are looking for. Note that by def-
inition of the language L(M) of M , the subsets of Cn definable (without
parameters) in the structure M are by definition the subsets of Cn definable
over K in the differential field U . Hence by Fact 1.6:

Remark 2.1. The subsets of Cn which are ∅-definable in M are precisely the
subsets definable over CK in the algebraically closed field (C,+, ·).

To facilitate the construction and proof we will choose some auxiliary lan-
guages: L∂,U and L∂,K , the languages of (algebraic) ∂-varieties over U and
∂-varieties over K, respectively (with respect to the “connections” or differ-
ential equations ∂(y) = Ay on G, and ∂(x) = 0 on U). We refer to [12] for
more details and/or background. The reader may also want to refer to Sec-
tion 4 of [17], in particular the proof of Proposition 4.1, for parts of Remark
2.3 below.

Definition 2.2. (i) By a ∂-subvariety of Un×G(U)m (over U), we mean an
algebraic subvariety X over U , such that X∂ =def X ∩ (Cn ×Ym) is Zariski-
dense in X.
(ii) L∂,U is the language with symbols RX for each such ∂-subvariety, and
L∂,K is the sublanguage consisting of the RX where X is defined over K.
(iii) (U , G)L∂,U is the L∂,U structure with sorts U and G, and with the tauto-
logical interpretations of the RX . Similarly for (U , G)L∂,K

(iv) (C,Y)L∂,U is the L∂,U -structure with sorts C and Y and with X∂ as the
interpretation of RX . Similarly for (C,Y)L∂,K

Note that according to our definition, a ∂-variety is a special case of an
algebraic variety, so definable in algebraically closed fields. Note also that the
structure (U , G)L∂,K

is interpretable in the structure (U ,+,×,−, 0, 1, a)a∈K .
Analogously for the structure (U , G)L∂,U .

Remark 2.3. (i) The class of ∂-subvarieties of the various Cartesian powers
Un × G(U)m is closed under finite unions, finite intersections, Cartesian
products, and passing to irreducible components.
(ii) If A is a Boolean combination of ∂-subvarieties of Un × G(U)m, then
A∂ =def A ∩ (Cn × Ym) is Zariski-dense in A.
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(iii) The ∂-subvarieties of Un are precisely the subvarieties defined over C.
(iv) The ∅-definable sets in the structure M = (C,Y)L∂,K

above are precisely
the Boolean combinations of the X∂ for X a ∂ -subvariety defined over K, so
from now on we identify M with the L∂,K-structure on (C,Y). In particular
the structure (C,Y)L∂,K

has quantifier-elimination.

Proof. (i) and (ii) are contained in Facts 2.2, Fact 2.3, and Lemma 2.5 of [12].
(iii) is obvious, and (iv) follows from quantifier elimination in DCF0.

Lemma 2.4. The structure (U , G)L∂,U has quantifier elimination.

Proof. Let us fix a point d ∈ Y . Let f be translation by d−1, taking G to G.
f induces a bijection between Y and G(C). So for any subvariety X of G,
X ∩ Y is Zariski-dense in X if and only if G(C) is Zariski-dense in f(X) if
and only if f(X) is defined over C. More generally, fixing n and m,
(**) a subset Z of Un ×Gm is a ∂-subvariety if and only if (idn, fm)(Z) is a
subvariety of Un ×Gm which is defined over C.
Now let W ⊆ Un×Gm be ∂-constructible, namely a Boolean combination of
∂-varieties over U . Then (idn, fm) is a Boolean combination of subvarieties
of Un × Gm which are defined over C. Let π be any projection of Un × Gm

onto some coordinate axes, say onto Un′ × Gm′
. Then by quantifier elimi-

nation in algebraically closed fields (rather than differentially closed fields),
π ◦ (idn, fm)(W ) is also a Boolean combination of subvarieties of Un′ ×Gm′

defined over C. Applying (idn
′
, fm′

) and using (**), we see that π(W ) is a
Boolean combination of ∂-subvarieties of Un′ ×Gm′

, as required.

Corollary 2.5. The structure (U , G)L∂,K
has quantifier elimination.

Proof. Let X ⊆ Un ×Gm be a Boolean combination of ∂-varieties which are
defined over K, and let π be some projection on coordinate axes. We have to
show that π(X) is a Boolean combination of ∂-varieties defined over K. By
Lemma 2.4, π(X) is a Boolean combination of ∂-varieties which are defined
over U , and clearly, π(X), as a definable set in (U ,+, ·) is invariant under
K-automorphisms, as is its Zariski closure π(X). So it suffices to prove that
if Y ⊆ Un′ ×Gm′

is a Boolean combination of ∂-varieties over U and is also
K-invariant, then Y is a Boolean combination of ∂-varieties over K. And
this follows by induction on the dimension of the Zariski closure of Y : by
2.3, Y is a ∂-variety, and as it is K-invariant, is a ∂-variety over K. So Y \Y
is a Boolean combination of ∂-varieties and is K-invariant, so by induction
hypothesis is a Boolean combination of ∂-varieties over K. Hence so is Y .
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Corollary 2.6. (C,Y)L∂,K
is an elementary substructure of (U , G)L∂,K

Proof. First note that by definition (C,Y)L∂,K
is a substructure of (U , G)L∂,K

.
Now suppose that Z is a nonempty definable set in (U , G)L∂,K

, defined with
parameters from (C,Y)L∂,K

. So Z is definable by a formula φ(x, c) where c is
a tuple from (C,Y)L∂,K

, and φ(x, z) is a formula in L∂,K . By Definition 2.2(i)
the tuple c is itself a (0-dimensional) ∂-variety. By 2.4 (or 2.5), φ(x, z) defines
a Boolean combination of ∂-varieties. By 2.3 (i) (in particular closure under
intersections) φ(x, z) ∧ z = c defines a Boolean combination of ∂-varieties.
So by Lemma 2.4, the projection of this set on the x-coordinate, which is
precisely Z, is a Boolean combination of ∂-varieties. By 2.3(ii), Z has a point
in (C,Y)L∂,K

. The result follows (Tarski-Vaught).

We deduce immediately:

Theorem 2.7. The map assigning to each relation symbol RX ∈ L∂,K the
formula (over K) defining X in (U ,+,−,×, 0, 1) is an interpretation of
Th((C,Y)L∂,K

) in ACFK, and we call this interpretation ω.

Finally we explain how Corollary 2.6 and Theorem 2.7 will be used in
practice. Suppose that Z is a ∅-definable set in the structure (C,Y)L∂,K

.
Then Z is defined by an L∂,K-formula ψ say. We let ω(Z) denote the inter-
pretation of the formula ω(ψ) in the algebraically closed field U . So ω(Z) is
definable over K in the field U . Moreover ω(Z) coincides as a set with the
interpretation of ψ in the structure (U , G(U))L∂ ,K . One of the main special
cases is where Z is defined by the relation symbol RX with X a ∂-variety
over K, in which case ω(Z) is precisely X. We extend this notation to sets
Z definable in (C,Y)L∂,K

with parameters. Again a special case is where Z is
defined by RX for X a ∂-variety over K ∪C ∪Y , in which case ω(Z) is again
X.

Note that if Z happens to be the set of C points of an algebraic variety
defined over C then ω(Z) is precisely the set of U -points of that variety. So
we write ω(Z) as Z(U). Likewise if Z is a constructible subset of some Cm.

Give this notation, we will use 2.6 to transfer facts expressed by first
order sentences, from (C,Y) to the algebraically closed field U .
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3 The Galois group and the proof of Theorem

1.3

We remain in the general setup of the previous section, namely a con-
nected algebraic group G over CK , and a logarithmic differential equation
dlogG(−) = A over K, and again we take Y to be the solution set in U , an
ambient differentially closed field extending K, which we will now take to be
saturated. C denotes the constants of U as before. Note that Y is a subset
of G(U) and as noted earlier is also a left coset bG(C) of G(C).

By Aut(Y/K(C)) we mean the group of permutations of Y induced by
automorphisms of U which fix K(C) pointwise. Equivalently, via quantifier-
elimination it is the simply the group of automorphisms of the differential
field K(C)(Y) which fix the differential subfield K(C) pointwise.

We will work in the structure U (as a differential field). The aim (accom-
plished in Lemma 3.4) is to obtain a K-definable function f from Y to Cm
(some m) such that for each b ∈ Y , b is “constrained over K(C)” by some
differential equations and inequations over K(f(b)). Or in model-theoretic
notation tp(b/K(C)) is isolated by a formula over K(f(b)). It will follow that
CK(b) = CK(f(b)) as also noted in Lemma 3.4 below.

Lemma 3.1. Y is contained in any differential closure of K(C) in U . In
particular for all b ∈ Y, tp(b/K(C)) is isolated.

Proof. Let us fix a solution b1 ∈ Y in some differential closure K1 of K(C)
in U . Any other b ∈ Y differs from b1 by an element of G(C) so is also in
K1.

We first describe the “intrinsic” Galois group of the equation (*) (which
does not appear explicitly in the differential algebraic literature on strongly
normal extensions).

Lemma 3.2. Let b ∈ Y and σ ∈ Aut(Y/K(C)). Then σ(b)b−1 (multiplication
in the group G) does not depend on b

Proof. Let b1 be another element of Y . As Y is a left coset of G(C) there
is d ∈ G(C) such that b = b1d. Applying σ we get σ(b) = σ(b1)d. So
σ(b)b−1 = σ(b1)dd

−1b−11 = σ(b1)b
−1
1 .

Lemma 3.3. (i) The map ρ from Aut(Y/K(C)) to G taking σ to σ(b)b−1 (for
some/any b ∈ Y) is an isomorphism between Aut(Y/K(C)) and a definable

15



over K subgroup H+ of G.
(ii) This is also an isomorphism of group actions where the action of H+ on
Y is by left multiplication in G (so Y is a union of right cosets of H+).

Proof. (i) By Lemma 3.2, ρ(σ) = σ(b)b−1 does not depend on the choice
of b ∈ Y . Given σ, τ ∈ Aut(Y/K(C), and b ∈ Y , let b1 = τ(b). So
ρ(στ) = στ(b)b−1 = σ(b1)b

−1
1 b1b = σ(b1)b

−1
1 τ(b)b−1 = ρ(σ)ρ(τ). So ρ is a

homomorphism. If σ(b) = b then clearly σ is the identity, so σ is an isomor-
phism with its image, which we call H+. Now H+ is definable, for example
as {yb−1 :|= φb(y)} where φb(y) isolates tp(b/K(C)). As H+ is also invariant
under Aut(U/K) it is defined over K.
(ii) σ(b) = σ(b)b−1b.

Hence we see that the group Aut(Y/K(C)) together with its action, is
definable over K in the differentially closed field U . In particular it is a
differential algebraic subgroup of G.

We now construct the function f : Y → Cm, definable over K in U . In fact
the key object will be the set Y/H+ of right cosets of H+ in Y , equivalently
orbits under the action of H+ on Y by left multiplication in G. Y/H+

is interpretable over K in U . Note also that Y/H+ is fixed pointwise by
Aut(U/K(C)). So by compactness and elimination of imaginaries in DCF0,
Y/H+ is in definable (over K) bijection with a K-definable subset of Cm
which we call O. By Fact 1.6, O is definable over CK in the algebraically
closed field C. In other words we have a K-definable map f from Y onto
a CK-definable subset O of Cm such that for b1, b2 ∈ Y , f(b1) = f(b2) iff
b1 = hb2 for some h ∈ H+. This f is the required function. Here are some of
its properties:

Lemma 3.4. (i) Let a ∈ O. Then the formula “y ∈ Y”∧ f(y) = a isolates a
complete type over K(C), which of course is tp(b/K(C)) for some/any b ∈ Y
such that f(b) = a.
(ii) For any a ∈ O and b with f(b) = a, the field of constants of the (differ-
ential) field K(b) is precisely CK(a).
(iii) In particular if a ∈ O(CK), namely has coordinates in CK and f(b) = a,
then K(b) is a strongly normal extension of K (for the equation (*)).

Proof. (i) By definition as well as Lemma 3.3, f−1(a) is an orbit under
Aut(Y/K(C) so all elements of f−1(a) have the same type over K(C).
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(ii) Note that as a = f(b) and f is definable over K, a ∈ K(b), so a ∈ CK(b)

(or rather the coordinates of a are in CK(b)). Conversely, suppose d is a con-
stant in K(b). So d = g(b) for some K-definable function g and d ∈ C. By
(i) the following sentence (over K(a)) is true in U :
∀y ∈ Y(f(y) = a→ g(y) = d). Hence d ∈ dcl(K(a)) = K(a) so is a constant
in CK(a) which equals CK(a) by 1.7.
(iii) follows immediately from (ii).

Conclusion of proof of Theorem 1.3.
Let f be the function we have just constructed. So f is ∅-definable in the
structure M = (C,Y)L∂,K

discussed in Section 2. We have already remarked
that the image O is definable (so constructible) over CK in the algebraically
closed field C. We now apply the interpretation ω, or more precisely Corollary
2.6, as described at the end of Section 2. ω(O) is just O(U), the interpretation
of the field formula defining O in U . Let F = ω(f). Then F : G → O(U)
is definable over K in the algebraically closed field U . In particular, as the
identity e of G has coordinates in CK , F (e) ∈ O(K). So O(K) 6= ∅. As O is
definable over CK and CK is existentially closed in K (as fields), O(CK) is
nonempty. By Lemma 3.4 (iii), this gives rise to a strongly normal extension
of K for the given logarithmic differential equation.

4 The Galois groupoid and proof of Theorem

1.4

We elaborate on the map f : Y → O defined in the previous section. For
a ∈ O we write Ya for the fibre f−1(a). We feel free to identify H+ (acting by
left multiplication on Y) with Aut(Y/K(C)). Multiplication is always meant
in the sense of the ambient group G.

Definition 4.1. For a1, a2 ∈ O, let Ha1,a2 = {b−11 b2 : b1 ∈ Ya1 , b2 ∈ Ya2}.

Remark 4.2. Given a1, a2 ∈ O, fix b1 ∈ Ya1 and fix b2 ∈ Ya2. Then Ha1,a2 =
{b−11 b : b ∈ Ya2} = {b−1b2 : b ∈ Ya1}.

Proof. Let c ∈ Ya1 , and b ∈ Ya2 , then using the definition of f , b1c
−1 ∈ H+,

and hence b1c
−1b = d ∈ Ya2 , whereby c−1b = b−11 d as required. Similarly for

the second equality.
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We write Ha for Ha,a and record some key facts.

Lemma 4.3. (i) Ha1,a2 is a subset of G(C) which is definable over CK , a1, a2
in the algebraically closed field C and uniformly so (as a1, a2 vary).
(ii) For any a1, a2 ∈ O and c ∈ Ha1,a2 (right) multiplication by c defines a
bijection between Ya1 and Ya2.
(iii) For a ∈ O, Ha is a group, and for any b ∈ Ya, bHa = Ya = H+b,
whereby bHab

−1 = H+.
(iv) For a ∈ O and b ∈ Ya, the map taking σ to b−1σ(b) is a group isomor-
phism between Aut(Y/K(C)) and Ha.
(v) For any a1, a2, a3 ∈ O, Ha1,a3 = Ha1,a2 ·Ha2,a3 =def {cd : c ∈ Ha1,a2 , d ∈
Ha2,a3}. In particular Ha1,a2 is a right coset (or left torsor) of Ha1 and left
coset (right torsor) of Ha2

Proof. For (i), note that {(a1, a2, c) : a1, a2 ∈ O, c ∈ Ha1,a2} is a subset of a
suitable Cartesian power of C which is definable in the differentially closed
field U overK. So apply 1.6 to see that this set is definable in the algebraically
closed field C over CK which is precisely the meaning of statement (i). The
rest of the Lemma, although very important, consists of easy computations,
using the definitions and Remark 4.2 where needed.

Remark 4.4. For a ∈ O, Ha is of course an algebraic subgroup of G(C) and
is the “usual” Galois group of the equation (*) (as an algebraic group in the
constants).

We briefly recall groupoids. We follow the formalism of section 2 of [7]
and repeat the definitions. A category is considered as a 2-sorted structure
with sorts Ob for the objects, Mor for the morphisms and maps i0, i1 :
Mor → Ob, a partially defined composition ◦ : Mor ×Mor → Mor, and
identity Id : Ob → Mor. So for example if x ∈ Mor then x will be a
morphism between the objects i0(x) and i2(x). We write Mor(a, b) for the set
of morphisms between a and b, and unless we say otherwise, if x ∈Mor(a, b)
and y ∈Mor(b, c) we write xy ∈Mor(a, c) for their composition. A groupoid
is a category where every morphism x has a 2-sided inverse x−1. For a, b
objects of the groupoid G, write a ∼ b if Mor(a, b) 6= ∅. Then ∼ is an
equivalence relation and the classes are called the connected components of
G. As a groupoid is in particular a category, and is already considered as a
structure by our conventions, it makes sense to speak of a groupoid G being
definable (or interpretable) in a given structure over a set of parameters
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A. Namely Ob,Mor, i0, i1, ◦, Id should all be definable over A in the given
structure

We return to the earlier discussion and notation, and we obtain from
Lemma 4.3:

Lemma 4.5. (i) The category whose set of objects is O and such that for
a1, a2 ∈ O, the set Mor(a1, a2) of morphisms between a1 and a2 is Ha1,a2, and
where we define composition of morphisms to be multiplication in G(C), is a
connected groupoid, G say, which we call the Galois groupoid of the equation
(*).
(ii) Moreover G is definable over CK in the algebraically closed field C.

Now as ACFCK
has quantifier elimination, G is quantifier-free definable,

hence for any field C containing CK we can consider G(C), the category
with objects O(C) and for a1, a2 ∈ O(C), morphisms Mor(a1, a2)(C). G(C)
is clearly a groupoid but is not necessarily connected. The following shows
that G(CK) parametrizes the family of strongly normal extensions of K, in
a strong sense.

Proposition 4.6. There is a natural one-one correspondence between:
(a) The set of strongly normal extensions of K for (*) up to isomorphism
over K as differential fields, and
(b) The set of connected components of the groupoid G(CK).

Proof. Given a ∈ OCK
, pick any b ∈ Ya, and by Lemma 3.4(iii) we obtain

a strongly normal extension K(b) of K. Conversely if b ∈ Y and K(b) is
a strongly normal extension of K then f(b) ∈ O(CK) as K and K(b) have
the same constants. Hence it suffices to prove that if a1, a2 ∈ O(CK) and
bi ∈ Yai for i = 1, 2, then Mor(a1, a2)(CK) is nonempty if and only if K(b1)
and K(b2) are isomorphic over K as differential fields. First suppose K(b1) is
isomorphic to K(b2) over K. Applying an automorphism of U over K (which
of course fixes a1 and a2) we may assume that K(b1) = K(b2) = L, say. Now
b−12 b1 ∈ G(CL) = G(CK), and is also in Mor(a1, a2). So Mor(a1, a2)(CK) 6=
∅.
Conversely, suppose that c ∈ Mor(a1, a2)(CK). By definition c = b′−11 b′2 for
some b′i ∈ Yai , i = 1, 2. So clearly K(b′1) = K(b′2). As b1 and b′1 are both in
Ya1 , by Lemma 3.4(i), tp(b1/K) = tp(b′1/K) (in DCF ) so K(b1) and K(b′1)
are isomorphic over K as differential fields. Likewise K(b2) and K(b′2) are
isomorphic over K. So therefore are K(b1) and K(b2).
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It is convenient at this point to record some facts about the interpretation ω.
We fix some notation, bearing in mind the discussion at the end of section 2.

Notation.
F denotes ω(f), a function from G to O(U) definable over K in the alge-
braically closed field U , and we write Xa for F−1(a), a ∈ O(U).
H denotes the Zariski closure of H+, an algebraic subgroup of G, defined
over K.
We write G(U) for ω(G), as G is definable in C over CK .

Lemma 4.7. (i) Let h : Y × Y → G(C) be h(x, y) = x−1y. Then ω(h) :
G×G→ G is also the map taking (x, y)→ (x−1y).
(ii) The fibres Xa for a ∈ O(U) are the right cosets of H in G, in particular
smooth algebraic subvarieties of G. (So O(U)“ = ”G/H .)
(iii) For a ∈ O(CK), Xa is K-irreducible, and the strongly normal extension
L of K corresponding to a is, as a field, precisely the function field K(Xa)
of Xa over K.
(iv) Mor(U)(a1, a2) = {b−11 b2 : b1 ∈ Xa1 , b2 ∈ Xa2, for a1, a2 ∈ O(U)}.

Proof. (i) If Z is the graph of the map taking (x, y) ∈ G × G to x−1y ∈ G,
then Z ∩ (Y × Y × G(C)) is Zariski-dense in Z, so Z is a ∂-variety over K,
and so Z = ω(graph(h)) as required.
(ii) Fix b ∈ Y , let hb : Y → G(C) taking y to b−1y, then ω(hb) : G → G is
again premultiplication by b−1. Let f1 = f ◦ h−1b : G(C) → O. So by 2.6,
F1 =def ω(f1) = F ◦ ω(h−1b ) (as ω(f1) is the interpretation in (U , G) of the
formula defining f1 in (C,Y) etc.). Let f(b) = a ∈ O(C). Then the fibres
of f1 : G(C) → O are clearly the right cosets of Ha. Hence as all this is
definable in the algebraically closed field C, the fibres of F1 : G→ O(U) are
the right cosets of Ha(U). Hence the fibres of F : G → O(C) are the right
cosets of bHa(U)b−1. But notice that bHab

−1 = H+ (by 4.3), so by taking
Zariski closures bHa(U)b−1 = H, and we have proved (ii).
(iii) Let a ∈ O(CK) (in fact even in O(C)) and let b ∈ Ya. We have seen
in the proof of (ii) that Xa = Hb where H is the Zariski closure of H+.
As Ya = H+b it follows that Xa is the Zariski closure of Ya. Now suppose
a ∈ O(CK). As all elements of Ya have the same type over K (in DCF0 so
also in ACF0) it follows that Xa which is clearly an algebraic variety over
K is K-irreducible. In particular b is a generic point of Xa over K, whereby
K(b) is the function field of Xa over K.
(iv) This is a direct application of 2.6, using (i), (ii): In the L∂,K-structure
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(C,Y) the following holds: For all a1, a2 ∈ O, Mor(a1, a2) = {b−11 b2 : b1 ∈
f−1(a1), b2 ∈ f−1(a2)}. So apply the interpretation ω, 2.6, and parts (i) and
(ii) to get the desired conclusion.

Proof of Theorem 1.4.
Let L1, L2 be strongly normal extensions of K. By Proposition 4.6 they
correspond to a1, a2 ∈ O(CK). Assuming that L1 and L2 have a common
embedding (as fields) over K into an elementary extension of CK we need,
by Proposition 4.6, to show that Mor(a1, a2) has a CK-point. Suppose Li =
K(bi) where f(bi) = ai for i = 1, 2. So F (bi) = ai. By hypothesis we
can find a subfield L3 of U containing K which is an elementary extension
of CK , and embeddings hi of L1 into L3 for i = 1, 2. Let b′i = hi(bi) for
i = 1, 2. As F is field-definable over K in U , F (b′i) = ai for i = 1, 2.
Then b′−11 b′2 ∈ Mor(a1, a2)(L3). As CK is an elementary substructure of
L3 and Mor(a1, a2) is quantifier-free field definable over CK , it follows that
Mor(a1, a2)(CK) is nonempty, as required.

5 Galois cohomology and the proof of Theo-

rem 1.5

To prove Theorem 1.5, we will need to know, among other things, that if
CK has the (F)-property then G(CK) has only finitely many connected com-
ponents, where G is the Galois groupoid defined in the previous section.
To prove this we will go through Galois cohomology. In fact in the linear
case (when G = GLn), then assuming G(CK) to be nonempty, and choosing
a ∈ G(CK), the set of connected components of G(CK) will be in natural
one-one correspondence with H1(Ck, Ha), which follows from 4.6 together
with results in [3] and [4].(See Propositions 1.5 and 1.6 of [2].) This is no
longer the case for G an arbitrary algebraic group, but the set of connected
components of G(CK) will be a “definable” part of H1(CK , Ha), so we will be
able to deduce the required finiteness result from countability of the Galois
cohomology group as we explain later.

For convenience, all our fields will be of characteristic 0. We will be
making use of

Fact 5.1. Suppose k has the (F) property, then so does any field elementarily
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equivalent to k. Moreover if k ≺ K then the natural map from Gal(Kalg/K)→
Gal(kalg/k) is an isomorphism of profinite groups.

Explanation. This should be considered folklore, but see Section 2 of [1] for
coding of finite field extensions and Galois groups.

Galois cohomology is well-known and Serre’s book [22] is the established
reference. For G an algebraic group over k, H1(k,G) denotes
H1(Gal(kalg/k), G(kalg)), the first cohomology set of the profinite group
Gal(kalg/k), acting on the discrete group G(kalg). (Here kalg denotes the
algebraic closure of k.) One of the main points for us is that H1(k,G)
classifies the set of principal homogeneous spaces for G defined over k up
to k-isomorphism (section I.5.2 of [22]). In section 4 of Chapter III of [22]
the (F) property is introduced, namely that Gal(kalg/k) has finitely many
open subgroups of index n for each n. Equivalently k has only finitely many
extensions of degree n for each n. It is proved there that if k has property
(F) then for any linear algebraic group G over k, H1(k,G) is finite. The
following theorem gives an extension to arbitrary algebraic groups G. We
make one reference to the proof of Theorem 1.1 in [2], but it is an elementary
observation in the cohomology of groups.

Theorem 5.2. Let k be a field (of characteristic 0) which has property (F)
and G an arbitrary algebraic group over k. Then H1(k,G) is countable.

Proof. Let G be an algebraic group over k. We have the exact sequence (of
pointed sets): H1(k,G0)→ H1(k,G)→ H1(k,G/G0). As the latter is finite
(Proposition 8, Chapter III of [22]), we may assume G to be connected. In
that case we have the exact sequence 1 → L → G → A → 1, where L is
linear, and A an abelian variety, all over k. By Exercise 1 in section 4.4 of
Chapter III of [22], the induced map from H1(k,G) to H1(k,A)) is finite-to-
one. So it suffices to prove that H1(k,A) is countable when A is an abelian
variety.

Let k0 be a countable elementary substructure of k over which A is de-
fined. By Fact 5.1, the natural map from Gal(kalg/k) to Gal(kalg0 /k0) is a
bijection. Now part (2) of the proof of Theorem 1.1 in [2] says that in this
situation, for any commutative algebraic group C over k0, the natural map
Hn(k0, C) → H1(k, C) is bijective, for all n > 0. In particular the natural
map H1(k0, A)→ H1(k,A) is bijective. As H1(k0, A) is clearly countable, so
is H1(k,A).
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Corollary 5.3. Let k be a field with property (F), and G a connected groupoid
definable over k in ACF (namely a groupoid definable over k in some alge-
braically closed field containing k). Then G(k) has finitely many connected
components.

Proof. We may assume that O(k) is nonempty, and let a ∈ O(k). So
Ha = Mor(a, a) is an algebraic group over k. For any b ∈ O(k), Mor(a, b) is
a (left) principal homogeneous space for Ha defined over k,
Claim. Let b, c ∈ O(k). Then Mor(a, b) and Mor(a, c) are isomorphic over
k (as left torsors for Ha) iff Mor(b, c)(k) 6= ∅.
Proof of claim. If h ∈ Mor(b, c)(k), then the map (bijection) taking any
h1 ∈Mor(a, b) to h1h ∈Mor(a, c) is k-definable and commutes with the left
action of Ha.
Conversely, if χ is an isomorphism over k between Mor(a, b) and Mor(a, c),
let h ∈ Mor(a, b) (in the ambient algebraically closed field) and consider
h−1χ(h) ∈ Mor(b, c). We claim it is defined over k. Let σ be an au-
tomorphism (of the ambient algebraically closed field) fixing k pointwise,
and let h1 = σ(h) ∈ Mor(a, b), so h1 = h2h for some h ∈ Ha. Then
σ(h−1χ(h)) = h−11 χ(h1) = h−1h−12 χ(h2h) = h−1h−12 h2χ(h) = h−1χ(h). So
h−1χ(h) ∈Mor(b, c)(k) as required.

It follows from the claim that the set of connected components of G(k) em-
beds into H1(k,Ha). Supposing for a contradiction that G(k) had infinitely
many connected components, then by compactness, there would be an ele-
mentary extension K of k such that G(K) has uncountably many connected
components. But then by the previous sentence applied to K, we conclude
that H1(K,Ha) is uncountable, contradicting Theorem 5.2, bearing in mind
5.1.

We now prove Theorem 1.5.

Proof. Before starting the proof it is worth remarking how the largeness as-
sumption is used, which is as follows: Suppose X is a smooth variety over a
large field k, which is k-irreducible. Then from the existence of a k-rational
point of X we deduce from largeness that X(k) is Zariski-dense in X from
which we conclude that k is existentially closed in the function field k(X).
See Fact 2.3 of [21].
We use notation from Lemma 4.7 and just before. We aim for:

23



Main Claim. There is a ∈ O(CK) such that Xa has a point in some elemen-
tary extension K1 of CK which contains K.

Let us suppose first that we have the Main Claim. By 4.7 the strongly normal
extension of K corresponding to a is precisely the function field K(Xa) of
the algebraic variety Xa over K. Let K1 be the elementary extension of
CK containing K such that Xa has a K1-point. Notice that Xa, being a
coset of an algebraic group, is equidimensional, and a disjoint union of its
irreducible components, all of which are smooth. Let Z be a K-irreducible
component of Xa such that Z(K1) 6= ∅. By Proposition 2.1 of [21], K1 is
large. Hence as Z is smooth and has a K1-rational point, K1 is existentially
closed in the function field K1(Z) (using again Fact 2.3 of [21]). As CK is an
elementary substructure of K1, CK is existentially closed in K1(Z). But the
embedding of K in K1 extends to an embedding of K(Xa) in K1(Z). Hence
CK is existentially closed in the strongly normal extension K(Xa) of K, as
required.

So it remains to prove the Main Claim. We already know from Theorem 1.3
that O(CK) is nonempty. We again consider F = ω(f) : G → O(U) and let
again F (e) = a′ ∈ O(K). Note that Xa′ is precisely H, by 4.7(ii). As CK is
existentially closed in K, let K1 be an elementary extension of CK containing
K which we may assume is a subfield of U . So a′ ∈ O(K1). By Corollary 5.3,
G(CK) has only finitely many connected components. As K1 is an elementary
extension of CK there is a ∈ O(CK) such that Mor(a, a′)(K1) is nonempty.
By 4.7 (iv) we obtain a (field-) definable over K1 bijection between Xa and
X ′a. But Xa′(K1) = H(K1) is nonempty (as it contains the identity). Hence
Xa(K1) is nonempty, as required. This completes the proof of the main claim
and hence of Theorem 1.5.
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