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Abstract

We prove that the common theory Tfg of nonabelian groups has

the dimensional order property, or DOP, implying, for example, that

there is no reasonable structure theorem for ℵ1-saturated models of

Tfg.

1 Introduction

By the work of Sela [12] and Kharlampovich-Myasnikov [4], all noncommu-
tative free groups are elementarily equivalent (as structures in the group
language) and we denote the common (complete) �rst order theory by Tfg.
For some time we have been suggesting that �algebraic geometry over the
free group" should be the study of the category Def(Tfg) of de�nable sets in
the free group. In a major piece of work [13], Sela proved that Tfg is a stable

theory. This gives a really new kind of stable theory (or group), and there
are a host of notions, properties, and invariants, that one can ask about.
The issue has been raised of what groups are de�nable (or more generally
interpretable) in a free group [8],[1]. The latter paper succeeds in provnig
the conjecture that no in�nite �eld is de�nable in the free group. The same
paper also shows that centralizers in a free group are cyclic groups with no
additional induced structure. The latter statement and other results from
[1] will be heavily used in the current paper.

A basic invariant of a (complete) �rst order theory T is the category
Mod(T ) of models of T (with elementary embeddings) and the focus of much
work especially in [14] was the problem of computing the possible functions
I(λ, T ) = number of models of T of cardinality λ, up to isomorphism, as
T varies, and where possible describing the models of T . Now Tfg being
unsuperstable has maximum spectrum function, namely I(λ, T ) = 2λ for
any λ > ℵ0. But within the class of (countable) stable, unsuperstable, the-
ories, there is also the possibility of describing or classi�ng the ℵ1-saturated
∗Partially supported by NSF grant DMS-1360702
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models. The dimensional order property (DOP), which will be formally de-
�ned in section 2, rules out such a classi�cation, and implies that for typical
uncountable λ, T has 2λ ℵ1-saturated models of cardinality λ. So we prove:

Theorem 1: Tfg has the dimensional order property.

It is worth noting that there is a classi�cation of the ℵ1-saturated models
of the theory Th(Z,+) of the free group on 1 generator: any such model is
of the form Ẑ + Q(κ), where Ẑ is the pro�nite completion of Z, and κ ≥ ℵ1.
In particular for κ > 2ℵ0 there is a unique ℵ1-saturated model of cardinality
κ. We had wondered for some time about whether there is a reasonable
description of the ℵ1-saturated models of the theory Tfg of the free group
on 2 generators, and our main theorem implies a negative answer.

We will prove that Tfg has the DOP by showing
(*) if e1, e2 are independent generics then the centralizers C(e1), C(e2) are
orthogonal.

It is well-known that (*) implies the DOP but we nevertheless give details
of the reduction (and more) in Section 2.

The proof of (*) makes use of recent results in [1]. In fact there is a further
reduction, using some geometric stability, to proving that the centralizers
C(e1), C(e2) are not de�nably isomorphic, and the latter statement is what
is actually proved in section 3.

The question of whether Tfg has the DOP was raised by the �rst author
when the second author was his Ph.D. student in Leeds.

In the remainder of the introduction we recall some general facts about
the model theory of the free group. In section 2 we discuss stability and the
DOP property. In Section 3 the main technical result is proved and we will
introduce there the required machinery.

We will assume some familiairity with model theory and stability, al-
though in section 2 we will recall details of some classi�cation-theoretic no-
tions.

As above, Tfg denotes the common theory of �nitely generated non-
abelian free groups, and is complete. We typically let F denote a standard
model, namely a free group Fk on k generators with k ≥ 2. Tfg being stable,
stable group theory applies. We let M̄ be a saturated mode. We recall some
facts and results.

Fact 1.1: (i) The free group is connected.

(ii) Denoting by p0 the unique generic type of the free group over ∅, p0 =
tp(a/∅) when a is any primitive element of F (i.e. member of a free basis).

Moreover, if a1, ..., an ∈ F extends to a basis of F then a1, .., an are indepen-

dent (in the sense of nonforking) realizations of p0.
(iii) The proper nontrivial de�nable (with parameters) subgroups of F are

precisely the cyclic subgroups, and hence are the �nite index subgroups of

centralizers.

(iv) Let a ∈ F \ {1}. Then (C(a), .) as a subgroup of the saturated model,
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is �stably embedded" in the sense that any set of n-tuples from C(a) which

is de�nable (with parameters) in the ambient structure M̄ is de�nable (with

parameters) in the structure (C(a), .). In particular C(a) has U -rank 1 and

is locally modular (or 1-based), as a de�nable group in M̄ .

References. (i) and (ii) appears in [10] (although a quick proof follows
from results of Poizat [11] on Fω), (iii) is Theorem 3 of [8], and (iv) is
Corollary 6.27 of [1].

2 Stability

The aim of this section is to give more precise details about the DOP and
how we will plan to prove it in the case at hand.

The book [14] is the basic reference for classi�cation theory and associ-
ated notions. But we also refer the reader to Section 4 of Chapter 1 of [9],
where there is an account of notions such as a-model, domination, weight,
etc., which we summarize here.

T will denote a countable, complete, stable theory, and we often work in
a saturated model M̄ .

What we call (following Makkai [7]) an a-model in [9] is what Shelah
calls an F aκ(T )-saturated model. When T is superstable κ(T ) = ℵ0, and an
a-model is just a model in which all strong types over �nite sets are realized.
When T is not superstable, as is the case for Tfg, κ(T ) = ℵ1, and an a-model
is precisely a model in which all strong types over countable sets are realized,
which just amounts to being ℵ1-saturated.

If p, q are stationary types over A,B, respectively, they are said to be
orthogonal if for any C ⊇ A∪B, the nonforking extensions p|C and q|C of p, q
over C, are almost orthogonal in the sense that if a realizes p|C and b realizes
q|C then a is independent from b over C. Note that almost orthogonality for
the stationary types p|C, q|C is equivalent to saying that (p|C)(x)∪(q|C)(y)
determines a complete type r(x, y) over C.

There is also the notion of orthogonality to a set. The stationary type
p(B) ∈ S(A) is said to be orthogonal to a set A if p is orthogonal to every
strong type over A. This is also characterized as follows: Let B′ realize
stp(B/A) such that B′ is independent from B over A. Then p is orthogonal
to the copy p′ of p over B.

There are prime models in the category of a-models, and the correspond-
ing notion of isolation is closely related to domination. For example, suppose
M is an a-model, c a tuple, and M1 is a-prime over Mc. Then c dominates

M1 over M , namely whenever c is independent from a set B over M , then
M1 is independent from B over M .

De�nition 2.1: T has the dimensional order property, or DOP, if there are

a-models M0,M1,M2,M3 and p(x) ∈ S(M3) such that

(i) M0 ⊆M1, M0 ⊆M2, and M1 is independent from M2 over M0.
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(ii) M3 is a-prime over M1 ∪M2, and

(iii) p is orthogonal to both M1 and M2.

For superstable T the DOP is a Shelah-style dividing line for a-models, in
the sense that assuming DOP gives a nonstructure theorem (many a- models)
and assuming NDOP gives a structure theorem (any a-model is a-prime over
a suitable tree of small models). This leads to the so-called Main Gap for
a-models of superstable theories, see [14], [3]. For stable, nonsuperstable
theories, we have the nonstructure theorem [14]:

Fact 2.2: Suppose T is non superstable and has DOP. Then for any un-

countable λ such that λ = λω, T has 2λ ℵ1-saturated models of cardinality

λ.

However there is in general no nice structure theorem for ℵ1-saturated
models of nonsuperstable theories with NDOP, and the �Main Gap" for ℵ1-
saturated models remains open.

We now aim towards reducing the proof of the Theorem in the introduc-
tion to a concrete nonde�nability statement about a standard model F.
Proposition 2.3: Fix a free group F with free generators (e1, e2, .., ..), and
assume that the unique isomorphism between 〈e1〉 and 〈e2〉 (taking en1 to en2 ,
for n ∈ Z) is not de�nable in F. Then Tfg has the DOP.

Proof. We consider F as an elementary substructure of a very saturated
model M̄ . Let q1 be the generic type of C(e1)

0, a stationary type over e1.
Likewise for q2.
Claim 1. q1 is orthogonal to q2.
Proof of Claim 1. Suppose otherwise. So for some model M containing
the data, there are a realizing q1M and b realizing q2|M , a forks with b
over M . As q1,. q2 have U -rank 1, a and b are interalgebraic overM ,
and U(tp(a, b/M)) = 1. But using Fact 1.1, the group C(e1) × C(e2) is
1-based hence byChapter 4, Section 4, of [9], tp(a, b/M) is the generic type
of a coset of a connected type-de�nable subgroup H of C(e1) × C(e2) of
U -rank 1, where moreover H is type-de�ned over acl(e1, e2), so over F. As
H ≤ C(e1)

0 ×C(e2)
0 which is torsion free divisible, it is clear that H is the

graph of an isomorphism between C(e1)
0 and C(e2)

0 de�ned over acl(e1, e2).
By compactness, there are de�nable �nite index subgroups G1 of C(e1) and
G2 of C(e2) and a de�nable isomorphism f between G1 and G2 with every-
thing de�ned over F. Looking at points in the model F, f restricts to an
isomorphism between G1(F) and G2(F) which we still call f . But G1(F),
being a �nite index subgroup of the cyclic group 〈e1〉 is precisely 〈ek1〉 for
some k > 0, and likewise G2(F) is 〈e`2〉 for some ` > 0, and f takes ek1 to e`2.

By precomposing with the isomorphism between 〈e1〉 and 〈ek1〉 obtained
by raising to the kth power, and postcomposing with the inverse of the
analogous isomorphism between 〈e2〉 and 〈e`2〉, gives an isomorphism between

4



〈e1〉 and 〈e2〉 de�nable in F, contradicting our assumption. The claim is
proved.

Now let M0 be an a-model independent from e1, e2. Then e1 is independent
from e2 over M0. Let M1 be a-prime over (M0, e1) and M2 a-prime over
(M0, e2). Finally let M3 be a-prime over M1 ∪ M2. Let c = e1 + e2, so
c ∈ M3. Let qc be the generic type (over c) of C(c)0, and rc its nonforking
extension over M3.
Claim 2. rc is orthogonal to each of M1, M2.
Proof of Claim 2. We will just show orthogonality to M1. Let α be an auto-
morphism of M̄ �xing M1 pointwise, such that M ′3 = α(M3) is independent
withM3 overM1. Let c

′ = α(c), and qc′ (over c
′), rc′ (overM

′
3) be the copies

under α of qc and rc respectively.
So by the earlier characterizationof orthogonality to a set, we have to

show that rc is orthogonal to rc′ . As rc is the unique nonforking extension
over M3 of qc, and rc′ the unique nonforking extension of qc′ over M

′
3, this

is equivalent to showing that qc and qc′ are orthogonal. But it is easy to see
that c and c′ are independent realizations of the generic type p0, whereby
the group they generate is an elementary substructure of M̄ isomorphic to
F2, so by Claim 1, qc is orthogonal to qc′ .

3 Cyclic towers, and the proof of the main theorem

We start this section with the notion of an amalgamated free product, we
refer the reader to [5, Chapter IV] or to [6, Section 4.4] for more details and
motivation. We �x two groups A,B a subgroup C of B and an embedding
f : C → A. Then the amalgamated free product G := A ∗C B is the group
〈A,B|c = f(c), c ∈ C〉. Note that G can be viewed as the free product
A ∗B quotiened by the normal subgroup containing {cf(c)−1 | c ∈ C}. This
construction naturally arises in the context of algebraic topology for example
in the Seifert - van Kampen theorem (see [2, Section 1.2]).

For the rest of the section we �x a non abelian �nitely generated free
group F := 〈ē〉. For notational purposes, when an in�nite cyclic group is
denoted by a capital letter, say C, its generator will be denoted by the
corresponding small letter c.

De�nition 3.1: Let C be an in�nite cyclic group. Then a cyclic tower over

F is the amalgamated free product F∗C (C⊕Z) where C embeds isomorphically

onto a maximal abelian subgroup of F.

Remark 3.2: A cyclic tower G := F ∗C (C ⊕ Z) over F (with f : C ↪→ F)
has an obvious group presentation. Suppose f embeds C isomorphically onto

CF(a). Assume, without loss of generality, that a ∈ F is an element such that

CF (a) = 〈a〉, i.e. an element wihout proper roots. Then G has the following
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presentation: 〈F, z | [z, a]〉.
De�nition 3.3: Let G := F ∗C (C ⊕ Z) be a cyclic tower over F. Let D be

an in�nite cyclic group and f : C ⊕ Z ↪→ C ⊕ D be an injective morphism

that is the identity on C, i.e. f(c) = c. Then the closure of G with respect

to f , Clf (G), is the amalgamated free product F ∗C B where B is the group

C ⊕ Z⊕D quotiented by the (normal) subgroup generated by f(z)z−1.

Remark 3.4: Let G := F ∗C (C ⊕ Z) be a cyclic tower over F with presen-

tation 〈F, z | [z, a]〉. Let f : C ⊕ Z ↪→ C ⊕D be an injective morphism with

f(c) = c and f(z) = cmdk. Suppose Clf (G) is the closure of G with respect

to f . Then:

• the injectivity of f implies that k must be non-zero;

• the closure of G with respect to f , has an obvious presentation: 〈F, z, d |
[d, a], amdkz−1〉;

• the group G can be indenti�ed with the subgroup generated by F, z in

its closure.

De�nition 3.5: Let G be a cyclic tower over F with presentation 〈F, z | [z, a]〉.
Then a test sequence with respect to G is a sequence of morphisms (hn)n<ω :
G→ F with the following properties:

• hn � F = Id for all n < ω;

• hn(z) = akn with (kn)n<ω strictly increasing.

De�nition 3.6: Let G be a cyclic tower over F and Clf (G) be a closure

(with respect to some f). We say that a test sequence (hn)n<ω : G → F
extends to Clf (G) if for all but �nitely many n, hn extends to a morphism

h′n : Clf (G)→ F.

Remark 3.7: Let G be a cyclic tower over F with presentation 〈F, z | [z, a]〉.
Then:

• a morphism from G to F that is the identity on F is determined by the

value it gives to z, which in turn must commute with a;

• a test sequence with respect to G can be identi�ed with a sequence

(akn)n<ω of strictly increasing powers of a;

• if f : C ⊕ Z ↪→ C ⊕D is an injective morphism with f(z) = cmdk and

Clf (G) a closure of G with respect to f . Then a test sequence (akn)n<ω
with respect to G extends to Clf (G) if and only if for all but �nitely

many n, kn ∈ m+ kZ.

The following theorem is a special case of Theorem 6.33 in [1].
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Theorem 3.8: Let G := 〈F, z | [z, a]〉 be a cyclic tower over F. Let φ(x, y)
be a formula over F such that F |= ∀y∃<∞xφ(x, y).

Suppose there exists a test sequence (hn)n<ω : G → F with respect to G
and a sequence (bn)n<ω of elements of F such that F |= φ(bn, hn(z)) for all

n.
Then there exists a closure Clf (G) := 〈F, z, d | [d, a], z−1f(z)〉 and a

word w = w(d, z, ē) in Clf (G) such that an in�nite subsequence of (hn)n<ω
extends to a sequence of morphisms (h′n)n<ω : Clf (G) → F. Moreover, the

extended sequence gives values to the couple (w, z) that satisfy the formula

φ(x, y), i.e. F |= φ(h′n(w), h′(z)).

We can now prove as a corollary that the diagonal subgroup of CF(e1)×
CF(e2), i.e. the cyclic group 〈(e1, e2)〉 is not de�nable in F.
Corollary 3.9: The subgroup Γ := 〈(e1, e2)〉 of CF(e1) × CF(e2) is not de-

�nable in F.

Proof. Suppose for a contradiction that the formula φ(x, y) over F de�nes
Γ. We apply Theorem 3.8 to the cyclic tower G := 〈F, z | [z, e2]〉 and the
formula φ(x, y). We �rst see that F |= ∀y∃<∞xφ(x, y). Moreover, for the
test sequence (en2 )n<ω (with respect to G) there exists a sequence of el-
ements of F, namely (en1 )n<ω, such that F |= φ(en1 , e

n
2 ) for all n. Thus,

there exists a closure Clf (G) := 〈F, z, d | [d, e2], z
−1f(z)〉 of G and a word

w = w(d, z, ē) such that a subsequence (ekn2 )n<ω of (en2 )n<ω extends to
Clf (G) and moreover if (h′n)n<ω : Clf (G) → F is the extended sequence,

then F |= φ(h′n(w(d, z, ē)), ekn2 )) for all n.
We observe that, since d and z commute with e2 in G, for each n, h

′
n(d)

and h′n(z) must be powers of e2. On the other hand, in the word w(d, z, ē),
the letter e1 appears �nitely many times. Since the only solution of φ(x, ekn2 )
is ekn1 , and by de�nition h′n(z) = ekn2 , we must have that h′n(w(d, z, ē) =
w(eln2 , e

kn
2 , ē) = ekn1 . But for n large enough this is impossible.

Theorem 1 follows directly from the Corollary above and Proposition 2.3.
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