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Introduction

I I will discuss a problem: the classification or description of
Nash groups, as well as a solution in the commutative case
(joint with Starchenko).

I This will also be an opportunity to discuss the model theory of
the structure (R,+,×), real algebraic groups, Lie groups, and
the mutual interactions.

I This is in principle an old problem, that I began thinking
about in the mid 1980’s.

I But for various reasons, including psychological, it seems to
be currently accessible.
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Model theory I

I The original motivation was model theoretic: the description
of definable groups in the structure (R,+,×) up to definable
isomorphism.

I A structure M is simply an underlying set or universe (which I
also call M) together with some distinguished relations,
functions on M,M ×M, .....

I A first order formula (with respect to a structure M) is an
expression built up from the disinguished relations and
functions, the “logical connectives” and, or, not, as well as
“quantifiers” there exists, for all, as well as some variables or
indeterminates x, y, z, .. and parameters from M .

I A definable set in M is simply a subset of M × ..×M
“defined by” such an expression.
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Model theory II

I For example a real algebraic variety X ⊆ Rn is (by definition)
a set defined by a finite system of polynomial equations
P (x1, .., xn) = 0 over R so is definable in the structure
(R.+,×).

I The ordering x ≤ y on R is definable by the expression
∃z(z2 = y − x) (which note has an existential quantifier).

I A basic theorem (of Tarski) says that that is about it:

I X ⊆ Rn is definable in (R,+,×) iff X is semialgebraic,
namely a finite union of sets of the following kind:

I {x̄ ∈ Rn : f(x̄) = 0 ∧ ∧i=1,..,mgi(x̄) > 0} where f and the gi
are polynomials over R.

I The real exponential function is not semialgebraic.
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Model theory III

I The model-theoretic understanding of a structure M involves
the description or classification of sets definable in M , up to
definable bijection.

I A definable group in a structure M is just a group such that
both the underlying set and (graph of the) group operation
are definable.

I So the original motivation was: describe the definable groups
in (R,+,×), equivalently semialgebraic groups, up to
definable isomorphism.

I Note that any real algebraic group (both the underlying set
and group operation are given by polynomials) is
semialgebraic.

I On the face of it a semialgebraic group need not be a
topological group: the interval [0, 1) with group operation +
modulo 1, is a definable group, but is not, at least naively, a
topological group.
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Nash manifolds I

I Nash manifolds originated in work of John Nash (1952) where
he introduced “real algebraic manifolds”, which in current
parlance are “compact affine Nash manifolds”. (The complex
analogues are the Moishezon compact complex manifolds.)

I Nash manifolds appear again in work of Artin and Mazur
(1965)in connection with dynamical systems, and were
systematically studied in books by Shiota and Coste-Roy in
the 80’s.

I Firstly if U is an open semialgebraic subset of Rn, then a
function f : U → R is said to be Nash if f is both analytic
and semialgebraic, which essentially means that there is a
polynomial P (x̄, y) such that P (x̄, f(x̄)) = 0 for all x̄ ∈ U .
(e.g. f(x) = +

√
x on (0,∞)).
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Nash manifolds II

I An (n-dimensional) Nash manifold is a Hausdorff topological
space X with a covering by finitely many open sets Vi, each
homeomorphic via some fi to an open semialgebraic subset Ui
of Rn such that the transition maps fi ◦ f−1

j between the
open semialgebraic sets fj(Vi ∩ Vj) and fi(Vi ∩ Vj) are Nash
(i.e each coordinate is Nash).

I Intuitively a Nash manifold is a definable or semialgebraic real
analytic manifold.

I By a locally Nash manifold we mean as above, except that we
allow the possibility of infinitely many Vi. And again this is
intuitively a “locally definable” or “ind-definable” real analytic
manifold.

I There is a natural notion of a Nash map between Nash
manifolds, and a Nash group is a Nash manifold X with group
operation given by a Nash map X ×X → X (i.e. a group
object in the category of Nash manifolds).
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Nash manifolds III

I Likewise for local versions (locally Nash group).

I A Nash manifold is said to be affine if it has a Nash
embedding in some Rn.

I Somewhat paradoxically real projective space is affine as a
Nash manifold, via stereographic projection, whereby any real
nonsingular quasiprojective variety is affine as a Nash
manifold.

I Conversely it was proved that any affine Nash manifold is
Nash isomorphic to a nonsingular real algebraic variety.

I R/Z has naturally the structure of a Nash manifold: [0, 1]
with 0, 1 identified, but it is non affine. In general little is
known about arbitrary (not necessarily affine) Nash manifolds.
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Nash groups I

We mention some early results:

Theorem 0.1
(P 1986 ) Any semialgebraic group G can be semialgebraically
equipped with the structure of a Nash group (in particular a Lie
group) unique up to Nash isomorphism. The category of
semialgebraic groups coincides with that of Nash groups.

We have four categories: real algebraic groups ⊂ Nash groups ⊂
locally Nash groups ⊂ Lie groups.

Theorem 0.2
(Hrushovski-P, 1994, with model theory proof) Any Nash group G
is locally, Nash isomorphic to a real algebraic group H in the sense
that there is Nash isomorphism between open semialgebraic
neighbourhoods of the identity of G and of H.
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Nash groups II

I Earlier, in the late 80’s Madden-Stanton had noted the
one-dimensional case of Theorem 0.2 and used it to classify
one-dimensional Nash groups (included in our main result, to
be stated later). In particular there are many distinct
incarnations of the 1-dimensional compact Lie group S1 as
Nash groups. Examples....

I We used Theorem 0.2 to prove the following (Hrushovski-P,
1994, with corrected proof 2012):

Theorem 0.3
The affine Nash groups are precisely the finite covers of real
algebraic groups.

Note this already takes us out of the category of algebraic groups:
the proper finite covers of SL(2,R) are neither real algebraic nor
linear.
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Nash groups III

We have the following easy fact about locally Nash groups:

Theorem 0.4
The class of locally Nash groups is closed under taking universal
covers and quotients by discrete subgroups.

We conclude from Theorem 0.2 a classification of locally Nash
groups.

Corollary 0.5

The locally Nash groups are, up to local Nash isomorphism
precisely the quotients of universal covers of real algebraic groups
by discrete subgroups.
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Problem

I To answer the original problem of classifying Nash groups up
to Nash isomorphism, by Theorem 0.2, we must carry out the
following:

I (i) For any real algebraic group G, describe those discrete
subgroups Γ of the universal cover G̃ such that the locally
Nash group G̃/Γ has a compatible structure of Nash group.
(For example the universal cover of SL(2,R) does not itself
have the structure of a Nash group.)

I (ii) Classify the resulting Nash groups up to Nash
isomorphism.

I We will answer question (i) in the commutative case, and give
some examples showing some subtleties around (ii) compared
to the one-dimensional case.
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to the one-dimensional case.



Commutative real algebraic groups

I We need to know something of the structure of commutative
real algebraic groups G (where we feel free to pass to real
connected components).

I A basic fact is that there is an exact sequence (of real
algebraic groups) 0→ L→ G→ C → 0, where

I L is a finite product of copies of (R,+) and (R>0,×) and C
is compact.

I C itself is understood by an exact sequence
0→ C1 → C → C2 → 0 where C1 is a product of copies of
SO(2,R) and C2 a real abelian variety.

I This passes to universal covers: in particular we have
0→ L→ G̃→π C̃ → 0.
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Result

We have, with above notation the solution to (i) in the
commutative case:

Theorem 0.6
(P-Starchenko, 2013) Let G be a commutative real algebraic
group, and let Γ be a discrete subgroup of G̃ (maybe trivial). Then
G̃/Γ has a (compatible) structure of Nash group just if C̃/π(Γ) is
compact.

I Some ingredients in the proof are:

I The (obvious) fact that a compact locally Nash group is Nash.

I The universal cover of either SO(2,R) or a real abelian
variety does not have the compatible structure of a Nash
group (a point that seems to have been overlooked by
Madden-Stanton).

I G̃/Γ has structure of Nash (definable) group if and only if G̃
has a “definable fundamental region” for Γ.
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Fundamental region I

I A fundamental region Ω of G̃ for Γ is simply a neighbourhood
Ω of 0 in G̃ such that every coset of Γ in G̃ meets Ω and both
Ω and Ω + Ω contain only finitely many elements of Γ.

I Such a fundamental region is definable if Ω is a definable
subset of the locally definable G̃ and the restriction of + to Ω
is definable.

I The choice of a definable fundamental region in G̃ for Γ
determines a Nash or definable group structure on G̃/Γ (in
the obvious way; explain).

I The interesting new phenomena, compared with the
one-dimensional case, is that different choices of definable
fundamental region may give non isomorphic Nash group
structures on the same locally Nash group G̃/Γ.
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Fundamental region II

I An example is G̃ = G = L = (R,+)× (R>0,×).

I By Theorem 0.6 any quotient of L by a discrete subgroup has
Nash group structure.

I Let Γ be the cyclic subgroup of L generated by (1, 2).

I Then we have at least two definable fundamental regions in L
for Γ:

I Ω1 = {(x, y) : x ∈ R, 1 ≤ y ≤ 2}.
I Ω2 = {(x, y) : 0 ≤ x ≤ 1, y ∈ R>0}.
I For the first choice L/Γ contains a definable copy of (R,+)

but not of (R>0,×).

I For the second choice it is the other way round, so they
cannot be Nash isomorphic.
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