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Abstract. Let p = tp(a/A) be a stationary type in an arbitrary finite rank

stable theory, and P an A-invariant family of partial types. The following prop-
erty is introduced and characterised: whenever c is definable over (A, a) and a

is not algebraic over (A, c) then tp(c/A) is almost internal to P. The character-

isation involves among other things an apparently new notion of “descent” for
stationary types. Motivation comes partly from results in Section 2 of [Cam-

pana, Oguiso, and Peternell. Non-algebraic hyperkähler manifolds. Journal

of Differential Geometry, 85(3):397–424, 2010] where structural properties of
generalised hyperkähler manifolds are given. The model-theoretic results ob-

tained here are applied back to the complex analytic setting to prove that the

algebraic reduction of a nonalgebraic (generalised) hyperkähler manifold does
not descend. The results are also applied to the theory of differentially closed

fields, where examples coming from differential algebraic groups are given.
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1. Introduction

A well-known result in stability theory is that any stationary type p of finite U -rank
has an “analysis” via semiminimal types. More precisely if p = tp(a/A) then there
are a0, ..., an all in dcl(a,A) such that tp(ai+1/A, ai) is stationary and semiminimal
for i < n and a ∈ acl(A, an). Here the seminimality of tp(b/B) means that for some
stationary U -rank 1 type q nonorthogonal to B, tp(b/B) is almost internal to the
family of B-conjugates of q. This applies in particular to the many-sorted theory
CCM of compact complex manifolds, in a natural language (see [8]). If p = tp(a)
is the generic type of an irreducible compact complex manifold X then a0, .., an
will be generic types of irreducible compact complex manifolds X0, .., Xn and as
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we may assume that also ai ∈ dcl(ai+1) for i < n we have dominant meromorphic
maps X → Xn → Xn−1 → · · · → X0 such that X → Xn is generically finite to
one, Xi+1 → Xi has general fibres irreducible with generic type semiminimal for
all i < n. In fact this is precisely the method used in bimeromorphic geometry to
understand or describe a (possibly nonalgebraic) Kähler manifold X. The reason
we restrict to Kähler here is that due to essential saturation (see [8]), we may
assume that a and the ai are in the standard model so the fibres of the maps are
also compact complex manifolds. The usual procedure is to begin the analysis with
the so-called algebraic reduction of X, namely taking X0 to be an algebraic (i.e.
Moishezon or even projective) compact complex manifold of maximal dimension
which is an image of X under a dominant meromorphic map (and in fact the general
fibre will automatically be irreducible). Then X0 (and tp(a0)) will be internal to
the strongly minimal sort of the projective line P(C). The dimension of X0 is called
the algebraic dimension a(X) of X.

A compact complex manifold X is said to be hyperkähler if it has dimension 2n
and the space of homolomorphic 2-forms is spanned by a 2-form σ such that σn is
everwhere nonzero. If we relax the condition to ask only that σn 6= 0, then we get
the class of generalised hyperkähler manifolds. In the paper [1] Campana, Oguiso
and Peternell raise a conjecture concerning hyperkähler manifolds X: If X is not
algebraic then a(X) is either 0 or n, and in the latter case there is a holomorphic
model f : X → B of the algebraic reduction such that f is Lagrangian, namely the
restriction of σ to a general fibre of f is zero. The main part of [1] is devoted to
providing evidence for this conjecture, in particular proving it in dimension 4. These
results make heavy use of certain structural results for generalised hyperkähler
manifolds in section 2 of that paper, and it is this section 2 which throws up the
notions that we study here in a general model-theoretic framework.

Theorem 2.3(1) of [1] says that a generalised hyperkähler manifold X has the
following property:

(1) If h : X → Y is any fibration (namely dominant meromorphic map with
general fibre connected), then Y is algebraic, namely h factors through the
algebraic reduction f : X → B.

This can be rewritten model-theoretically as: suppose p is the generic type of X,
a realizes p, and c ∈ dcl(a). Then either a ∈ acl(c) or tp(c) is internal to P(C).
This is precisely the property that we will study in an arbitrary finite rank context,
replacing “internal to P(C)” by “almost internal to P” for some given invariant
family P of partial types. We express the property as: all proper fibrations of p
are over P. Let us remark here that in CCM, internality to P(C) is equivalent to
almost internality to P(C).

It follows immediately from (1) that:

(2) The algebraic reduction f : X → B is a “minimal fibration” in the sense
that one cannot write f as a composition of proper fibrations g : X → S
and h : S → B.

Suppose that a realizes the generic type of X and f(a) = b. The content of (2)
is that if c ∈ dcl(a, b) \ acl(b) then a ∈ acl(b, c). In the general context of stable
theories of finite rank we will say that a complete stationary type p = tp(a) has no
proper fibrations if the above condition holds.

So, in the general finite rank context, if all proper fibrations of a stationary type
p = tp(a) are over a given invariant set of partial types P, and b is the maximal
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tuple in dcl(a) such that tp(b) is almost internal to P (the analogue of the algebraic
reduction), then tp(a/b) has no proper fibrations. The question is: what property
do we have to add to obtain the converse? We find an answer in Theorem 3.6:
tp(a/b) must not “descend” to any proper relatively algebraically closed subset of
dcl(b). This notion of descent has clear geometric content in CCM. In Section 4 we
specialise back to the complex analytic setting, recovering and improving the results
on generalised hyperähler manifolds that motivated this work (see Corollary 4.7).

The following condition is also proved of generalised hyperkähler X as part of
Theorem 2.1 in [1], and is deduced there from (2) by complex analytic arguments:

(3) The generic fibre of the algebraic reduction f : X → B is either algebraic,
in which case it is an abelian variety, or of algebraic dimension zero in which
case it is “isotypically semi-simple”.

Isotypically semisimple means in generic finite-to-finite correspondence with some
Sk = S × ... × S where S is a simple compact complex manifold; “simple” here
means precisely that the generic type of S has U -rank 1. So this is a rather special
case of the the generic type being semiminimal. Note that, in particular, (3) implies
that the generic type of X has a seminimal analysis in two steps.

For this too we try to give a model-theoretic account. Firstly in Section 2,
we show that a stationary type p in an arbitrary finite rank stable theory has no
proper fibrations if and only if it is either almost internal to a non locally modular
minimal type (the analogue of an algebraic manifold) or it is interalgebraic over the
base parameters with a power of a locally modular minimal type (the analogue of
isotypically semi-simple). This is Theorem 2.3. When it is specialised to CCM in You had said here that 2.3

was in some sense ”folk-
lore”. We can put that back
in, but I’m not sure what
you mean. Was no fibra-
tions every considered?

Section 4 we are then able to recover (3) by essentially model-theoretic arguments
(definable automorphism groups or binding groups) but with one use of a result of
Fujiki (see Proposition 4.3.)

But of course, our general model-theoretic results can be specialised to theories
other than CCM. In Section 5 we consider differentially closed fields of character-
istic 0. Here the role of P is played by the field of constants C. So a finite dimen-
sional differential-algebraic variety is considered “algebraic” if it is almost internal
to the constants, we say C-algebraic. Theorems 5.2 and 5.3 can then be viewed
as differential-algebraic geometric analogues of results from complex-analytic ge-
ometry. In Example 5.4 we illustrate a class of non C-algebraic finite dimensional
differential-algebraic varieties (indeed differential-algebraic groups) to which these
theorems apply.

We should mention that the distinction between definable and algebraic closure
is crucial in this paper.

Our stability-theoretic notation is standard, see [10]. For elements of complex
geometry and the translation between this and model theory, see for example [8]
and [9].

2. No Fibrations

In the next two sections we work in the general setting of a sufficiently saturated
model M

eq
of a complete theory T of finite U -rank. The word “minimal” is used in

this paper in various different ways, but by a minimal type we mean a stationary
type of U -rank 1.
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Definition 2.1. A stationary type tp(a/A) admits no proper fibrations if whenever
c ∈ dcl(Aa) \ acl(A) then a ∈ acl(Ac).

Clearly any minimal type admits no proper fibrations. But there exist others.

Proposition 2.2. Suppose p ∈ S(A) is a trivial minimal stationary type. If
a1, . . . , ar are independent realisations of p and a is a code for {a1, . . . , ar}, then
tp(a/A) admits no proper fibrations.

Proof. Let d ∈ dcl(Aa). We wish to show that either d ∈ acl(A) or a ∈ acl(Ad).
Suppose some ai ∈ acl(Ad). Then, as every permutation of {a1, . . . , ar} extends to
an automorphism fixing Aa, and hence fixing Ad, it follows that each a1, . . . , ar ∈
acl(Ad). But then a ∈ acl(Ad), and we are done. We may therefore assume
that each ai /∈ acl(Ad). By triviality, it follows that d |̂

A
(a1, . . . , ar). But d ∈

acl(Aa1 . . . ar), and hence d ∈ acl(A), as desired. �

The above example, while not itself minimal, is very much related to a minimal
type. The following theorem says that having no proper fibrations implies semi-
niminality. Recall that a stationary type p = tp(a/A) is semiminimal if and only if
it is almost internal to a minimal type; that is, there exist B ⊇ A with a |̂

A
B, a

minimal type r over B, and a B-independent tuple (e1, . . . , e`) of realisations of r,
such that acl(Ba) = acl(Be1 . . . e`).

Theorem 2.3. Suppose p = tp(a/A) is stationary and admits no proper fibrations.
Then either

(i) p is almost internal to a non locally modular minimal type, or
(ii) a is interalgebraic over A with a finite tuple of independent realisations of

a locally modular minimal type over A.

In particular, p is semiminimal.

Proof. We may assume that p is nonalgebraic. Hence p is nonorthogonal to some
minimal type r. Let R be the set of acl(A)-conjugates of r. Then, as p is not foreign
to R, there exists c ∈ dcl(Aa) \ acl(A) with stp(c/A) R-internal (see 7.4.6 of [10]).
By the assumption of having no proper fibrations we must have a ∈ acl(Ac), so
that stp(a/A) = p is almost R-internal. But this implies that p is almost internal
to r, and so r-semiminimal.

Suppose now that r is locally modular. Then, with c as above, we have that
stp(c/A) is 1-based. If U(c/A) = 1 then, as a is interalgebraic with c over A, we
have that p itself is minimal locally modular, and we are done. If U(c/A) > 1
then let e be such that U(c/Ae) = U(c/A)− 1, and e = cb(c/Ae). By 1-basedness,
e ∈ acl(Ac), and hence the Lascar inequalities yield that

U(e/A) = U(c/A) + U(e/Ac)− U(c/Ae) = 1

So stp(e/A) is locally modular and minimal. Now let (e1, . . . , en) be the Ac-
conjugates of e, so that (e1, . . . , en) ∈ dcl(Ac) ⊆ dcl(Aa). The assumption of
no fibrations yields that a ∈ acl(Ae1, . . . , en). So (e1, . . . , en) is a finite tuple of
realisations of a locally modular minimal type over A, and a is interalgebraic with
this tuple over A. �

Case (ii) of Theorem 2.3 naturally splits into two further cases; when the min-
imal locally modular type involved is trivial and when it is not trivial. We have
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already seen a non minimal example (2.2) of the trivial case of (ii). The following
construction witnesses that the non trivial case of (ii) also occurs.

Proposition 2.4. Suppose G is a locally modular strongly minimal group over
A = acl(A) that is not 2-torsion. Let E(x, y) be the equivalence relation x = ±y on
G. If g, h are independent generic elements of G, and a is a code for {g/E, h/E},
then tp(a/A) admits no proper fibrations.

Proof. Assume toward a contradiction that there exists a proper fibration. Since
tp(a/A) is of rank 2, this means there exists c ∈ dcl(Aa) such that tp(a/Ac) is of
rank 1. As the E-classes are finite, g, h ∈ acl(a). Hence p(x, y) := stp(g, h/Ac) is
stationary of rank 1, and so by local modularity is the generic type of an acl(Ac)-
definable coset X of a connected rank 1 A-definable subgroup H ≤ G2.

Claim 2.5. The co-ordinate projections πi : H → G, for i = 1, 2, are finite-to-one
surjective group homomorphisms.

Proof of Claim 2.5. If not, by connectedness of H and strong minimality, we may
assume that H = {0} × G. So X = {g} × G, and g is the canonical parameter
for X. As X is acl(Ac)-definable, we get g ∈ acl(Ac). Now, an A-automorphism
taking g to h preserves a, and hence c. So h ∈ acl(Ac) also. This contradicts the
fact that p is of rank 1. �

By the surjectivity of π1, X = (0, e) + H for some e ∈ G. Let σ be an A-
automorphism of the universe fixing g and taking h to −h.

Claim 2.6. a ∈ acl
(
Aeσ(e)

)
.

Proof of Claim 2.6. Since (g, h) ∈ (0, e) + H, we have (g, h − e) ∈ H. Hence
(g,−h− σ(e)) ∈ H also. We obtain that

(
0, 2h− e+ σ(e)

)
and

(
2g,−e− σ(e)

)
are

both in H. Since the co-ordinate projections are finite-to one, and since G is not
2-torsion, this implies that g, h ∈ acl

(
Aeσ(e)

)
. Hence a ∈ acl

(
Aeσ(e)

)
. �

Note that e ∈ acl(Ac). Indeed, any automorphism fixing acl(Ac) preserves X =
(0, e) + H and H, and hence preserves e + ker(π1), which is finite. On the other
hand, σ fixes a by definition, and hence fixes c. So σ(e) ∈ acl(Ac) also. Claim 2.6
then implies that a ∈ acl(Ac), contradicting the assumption that tp(a/Ac) is of
rank 1. �

As for case (i) of Theorem 2.3, we will see later (in §4 and §5) that non minimal
examples appear in the theories CCM and DCF0.

3. All Fibrations over P

Fix an A-invariant set of partial types, P. Often we are interested in the case when
P is the set of all non locally modular minimal types; in DCF0 we usually take P
to be the field of constants and in CCM it is the sort of the projective line. But
the material in this section makes sense for any P.

Definition 3.1. Suppose p := tp(a/A) is stationary. We say that all fibrations of
p are over P if whenever c ∈ dcl(Aa) with a /∈ acl(Ac), then stp(c/A) is almost
P-internal.



6 RAHIM MOOSA AND ANAND PILLAY

The generic type of a generalised hyperkähler manifold in CCM has this property;
this is Theorem 2.3(1) of [1]. See 5.4 below for examples in DCF0 coming from the
logarithmic derivative on a simple abelian variety.

Definition 3.2 (P-reduction). Let IntA(P) := {c : stp(c/A) is almost P-internal}.
We say that b is the P-reduction of a over A if dcl(Ab) = dcl(Aa) ∩ IntA(P).

Remark 3.3. (1) All fibrations of tp(a/A) being over P can be reformulated as
an “exchange” property: if c ∈ dcl(Aa) \ IntA(P) then a ∈ acl(Ac).

(2) The P-reduction of a over A is precisely the canonical base of tp
(
a/ IntA(P)

)
and has the property that tp

(
a/dcl(Aa)∩ IntA(P)

)
` tp

(
a/ IntA(P)

)
. See,

for example, Lemma 1 of the appendix to [3].

We will characterise when tp(a/A) has all fibrations over P in terms of the
structure of the extension tp(a/Ab) where b is the P-reduction of a over A. The key
structural property in this characterisation will be the following natural notion of
descent for types, which is the model-theoretic counterpart to birational descent in
algebraic geometry and bimeromorphic descent in complex-analytic geometry (see
Definition 4.4 below).

Definition 3.4 (Descent for types). A complete stationary type p ∈ S(B) descends
to B0 ⊆ dcl(B) if there exist a stationary q ∈ S(B0) and a B-definable bijection

f : pM → qMB , where by qB we mean the nonforking extension of q to B. If the
map f is only assumed to be finite-to-one and surjective, then we say that p almost
descends to B0.

Remark 3.5. (1) A special case of p ∈ S(B) descending to B0 ⊆ dcl(B), is
when p does not fork over B0 and p � B0 is stationary.

(2) Suppose p = tp(a/Ab) where b is the P-reduction of a over A. If p descends
to Ab0 witnessed by q ∈ S(Ab0), then in fact q is weakly orthogonal to
IntA(P). In particular, q has a unique extension to Ab and we have an

Ab-definable bijection between pM and qM .

Proof of 3.5(2). Let q = tp(a0/Ab0) with a0 |̂ Ab0 b. Since a |̂
Ab

IntA(P) and a0 ∈
dcl(Aba), we have a0 |̂ Ab IntA(P). By transitivity we get that a0 |̂ Ab0 IntA(P).

This implies, by invariance, that q is weakly orthogonal to IntA(P). Using the fact
that b is from IntA(P), we get the “in particular” clause. �

Here is our characterisation of having all fibrations over P.

Theorem 3.6. Suppose p = tp(a/A) is stationary and not almost internal to P,
and b is the P-reduction of a over A. Then the following are equivalent:

(i) all fibrations of p are over P,
(ii) tp(a/Ab) admits no proper fibrations and does not almost descend to any

relatively algebraically closed proper subset of dcl(Ab) containing A.

Proof. We begin with the following characterisation for descent of the P-reduction.

Claim 3.7. tp(a/Ab) almost descends to Ab0 if and only if there exists a0 ∈ dcl(Aa)
such that a ∈ acl(Aba0) and dcl(Ab0) contains the P-reduction of a0 over A.

Proof of Claim 3.7. If a0 ∈ dcl(Aa) and a ∈ acl(Aba0) then there exists an Ab-

definable finite-to-one surjection tp(a/Ab)M → tp(a0/Ab)
M . If, moreover, dcl(Ab0)
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contains the P-reduction of a0 over A, then, as b is from IntA(P), we have a0 |̂ Ab0 b
and tp(a0/Ab0) is stationary. Hence tp(a/Ab) almost descends to Ab0, as desired.

Conversely, suppose q ∈ S(Ab0) and f : tp(a/Ab)M → qMAb witnesses that
tp(a/Ab) almost descends to Ab0. Letting a0 := f(a) it suffices to show that
b0 contains the P-reduction of a0 over A. We know that a0 |̂ Ab0 b since qAb is the

nonforking extension of q. On the other hand, as b is the P-reduction of a over A,
a0 |̂ Ab IntA(P). Hence a0 |̂ Ab0 IntA(P), and so dcl(Ab0) contains the P-reduction

of a0 over A. �

Next, we prove that (i) implies (ii) in Theorem 3.6. It follows more or less
immediately from the definitions that since all fibrations of p = tp(a/A) are over P,
and b is the P-reduction of a over A, that tp(a/Ab) admits no proper fibrations. So
assuming that tp(a/Ab) descends to Ab0 it remains for us to show that b ∈ acl(Ab0).
Let a0 be as given by Claim 3.7. Since p is assumed to not be almost internal to
P and a ∈ acl(Aba0), we must have a0 /∈ IntA(P). By (i), a ∈ acl(Aa0) and hence
b ∈ acl(Aa0). But a0 |̂ Ab0 IntA(P) by the claim, so that b ∈ acl(Ab0), as desired.

Conversely, suppose that (ii) holds and c ∈ dcl(Aa) \ IntA(P). We need to show
that a ∈ acl(Ac). As tp(a/Ab) has no proper fibrations and c /∈ acl(Ab), we must
have a ∈ acl(Abc). Let b0 be the P-reduction of c over A. By Claim 3.7 we have
that tp(a/Ab) almost descends to Ab0, and so by (ii), b ∈ acl(Ab0) ⊂ acl(Ac). So
a ∈ acl(Ac), as desired. �

4. Consequences for CCM

In this section we discuss the above notions in the particular case of the theory
CCM, from which, in any case, the ideas in this paper stem. As we shall see, we
recover the results of §2 of [1] and even add a little to them.

First some preliminaries. By a fibration we will mean a dominant meromorphic
map f : X → S between irreducible compact complex spaces whose general fibres
are irreducible. This differs slightly from standard terminology in that we insist
on irreducibility rather than connectedness (see [1], for example). Up to taking a
normalisation of X these notions will agree; and the reason for our stricter definition
is the following characterisation.

Fact 4.1 (Lemmas 2.7 and 2.11 of [7]). Work in a saturated model of CCM.
Suppose p = tp(a/b), X = loc(a, b), Y = loc(b), and π : X → Y is the co-ordinate
projection. Then the following are equivalent:

(i) The general fibres of π are irreducible.
(ii) p is stationary.
(iii) The generic fibre Xb is absolutely irreducible.

Fibrations are well-behaved with respect to base change. If f : X → S is a
fibration and g : T → S is another dominant meromorphic map between irreducible
compact complex spaces then the Zariski closure of

{(a, b) : f is defined at a, g is defined at b, and f(a) = g(b)}
in X ×T has a unique irreducible component that projects onto T . The projection
of this component onto T is a fibration whose general fibres agree with that of f .
We will denote this fibration by X(T ) → T , and refer to it as the strict pull back
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of X → S in X ×S T → T . Note that X(T ) also projects onto X and is maximal
dimensional in X ×S T .

In [1] a fibration f : X → B is called minimal if whenever there is a factorisation

X

f

��   @
@@

@@
@@

@

B Yoo

then either dimY = dimB or dimY = dimX. If X = loc(a) and B = loc(b), then
it is not hard to see that f is minimal if and only if p = tp(a/b) admits no proper
fibrations in the sense of §2. Our Theorem 2.3 then implies the following slightly
more uniform version of Theorem 2.4(1) of [1].

Theorem 4.2. Suppose X is an irreducible compact complex space of Kähler-type
and f : X → B is minimal. Then either

(I) the general fibres of f are Moishezon; or,
(II) the general fibres of f are uniformly isoptypically semi-simple of algebraic

dimension zero; that is, there is a commutative diagram

X

f   @
@@

@@
@@

@ Z
pXoo pY //

��

Y

~~~~
~~
~~
~~

B

where Y is of the form Y ′×BY ′×B · · ·×BY ′ for some fibration Y ′ → B with
general fibres simple of algebraic dimension zero, and pX , pY are generically
finite surjective holomorphic maps.

Proof. This is essentially a translation of 2.3 which tells us that one of two things
can happen: One possibility is that the generic type of the generic fibre of f is
r-semiminimal for some non locally modular minimal type r. As a consequence
of the manifestation of the Zilber dichotomy in CCM, this will imply that the
general fibres of f are Moishezon (see Fact 3.1 of [9] or Proposition 4.4 of [7]). The
other possibility is that the generic type of the generic fibre of f is interalgebraic
with a finite tuple of (independent) realisations of a minimal locally modular type.
We deduce from this the existence of the diagram in (II) where Y ′ → B has the
property that the generic type of the generic fibre is minimal locally modular. As
we are working in the Kähler case we have “essentially saturation” (see [8]), and
so the general fibres of Y ′ → B will have minimal locally modular generic types.
Minimality yields simplicity of the general fibres, and modularity forces them to
have algebraic dimension zero (see Remark 3.3 of [11]). �

In the second part of Theorem 2.4 of [1] the authors use a structure theorem
of Fujiki’s (Theorem 1 of [4]) on the algebraic reduction of compound Moishezon
spaces of Kähler-type to conclude further that, in the case when f is the algebraic
reduction, case (I) entails that the general fibre of X → B is an abelian variety.1

We can make model-theoretic sense of this too.

1In the statement of Theorem 2.4(2) of [1] the authors fail to mention the assumption that

f is the algebraic reduction. However, it is not hard to find counterexamples if we drop this

assumption, and inspecting the proof shows that the authors have in mind the case when X is
hyperkähler nonalgebraic, in which case f is the algebraic reduction.
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Proposition 4.3. Let X be a non-Moishezon irreducible compact complex space of
Kähler-type, and f : X → B the algebraic reduction. Suppose that f is minimal. If
the general fibre of f is Moishezon then it is in fact an abelian variety.

Proof. We use the theory of internality and follow roughly the ideas of the second
author in [11] (Fact 5.1). Since we are in a Kähler-type space, we can work in a
fixed full countable language for X with respect to which our structure is saturated
(see [8]). Let a be generic in X, b := f(a), and V the set of realisations of tp(a/b).
That the general fibre of f is Moishezon implies that V is internal to P(C), and
hence by the theory of internality (cf. §7.4 of [10]) is b-definably and faithfully acted
upon by a b-definable group G that is definably isomorphic to a connected algebraic
group. The fact that f is the algebraic reduction implies that a |̂

b
P(C), and hence

the action is transitive. Now G has a unique maximal definable subgroup that is
definably isomorphic to a connected linear algebraic group, let’s call it L. Note
that L must be b-definable and normal, and that the quotient G/L is a b-definable
group definably isomorphic to an abelian variety.

We first rule out the possibility that L acts transitively on V . If it did, then the
generic fibre Xb of f would be almost homogeneous unirational. This implies that
f is Moishezon (see Proposition 7 of [5], this is where Kähler-type is used). Since
B is Moishezon this would contradict X being non-Moishezon. So L does not act
transitively on V .

Next we argue that L must fix a; we show that L moving a is ruled out by the
minimality of f . Let c be a code for L · a. So c ∈ dcl(a). Note that for any a′ ∈ V ,
since the type of a′ and a over b agree, the code for L · a′ has the same type as c
over b. Since L does not act transitively it will have infinitely many orbits in V (by
stationarity), and so c /∈ acl(b). On the other hand, note that if a′ ∈ L · a then a′

and a have the same type over bc. If L does not stabilise a the orbit L · a is infinite
(by connectedness), and hence a /∈ acl(bc). But tp(a/b) has no proper fibrations as
f is minimal, and that rules out the possibility of such a c.

It must therefore be the case that L fixes a. Since V is a complete type over
b and everything is b-definable, L must stabilise all of V . By the faithfulness of
the action, L is thus trivial, and G is definably isomorphic to some abelian variety
A ⊆ Pn(C). We thus have a definable transitive action of A on V .

It remains to show that this action of A on V is holomorphic. Indeed, note first
of all that V is a Zariski open subset of Xb; this follows from saturation because V
is a definable set (it is the orbit of a under the action of A) and also an intersection
of Zariski open subsets of Xb (as tp(a/b) is generic in Xb). Hence the question
of whether the action is holomorphic or not makes sense. If it were holomorphic
then by quantifier elimination there is a meromorphic map φ : A ×Xb → Xb that
agrees with the action of A on A × V . But as the action is transitive, it follows
that V = φ(A× {a}) is Zariski closed in Xb and hence equal to Xb. So we have a
transitive holomorphic action of A on Xb, which forces Xb to be an abelian variety.

So we prove that the action of A on V is holomorphic. First of all, because of the
commutativity of A, the parameters over which A and its action on V are defined
can be taken to be a tuple b′ ⊇ b from P(C). Now, by quantifier elimination, the
action restricted to some nonempty b′-definable Zariski open subset U ⊆ A× V is
holomorphic. But as tp(a/b) ` tp(a/P) and both b′ and A live in P(C), this U can
be taken to be of the form A′×V where A′ is a nonempty b′-definable Zariski open
subset of A. It follows that for any x ∈ A′, the action of A restricted to (x+A′)×V
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is holomorphic as it is given by (x+ y, v) 7→ x · (y · v). But such translates of A′ by
elements of A′ cover all of A. So our action of A on V is holomorphic, as desired. �

Next we consider the complex-analytic content of Theorem 3.6. The role of P here
is played by the projective line sort. The first thing to notice is that P-reductions in
the sense of Definition 3.2 when specialised to CCM agree with algebraic reductions.
That is, b is the P-reduction of a if and only if b = f(a) where f is the algebraic
reduction map on X := loc(a). Indeed, this follows from the fact that tp(b) is
almost internal to P if and only if loc(b) is Moishezon – see Fact 3.1 of [9], for
example.

We now recall bimeromorphic descent for fibrations.

Definition 4.4 (Descent for fibrations). Suppose h : X → T is a fibration and
g : T → S is a dominant meromorphic map. We say that h descends to S if there

exists a fibration ĥ : X̂ → S, such that X is bimeromorphically equivalent to X̂(T )

over T . In diagrams

X
≈ //

h
!!B

BB
BB

BB
BB

X̂(T )

��

X̂

ĥ

��
T

g
// S

If instead of a bimeromorphic equivalence we only have that X admits a generically

finite dominant meromorphic map to X̂(T ), then we say that h almost descends to S.

This specialises the notion of descent for types introduced in Definition 3.4.

Lemma 4.5. Suppose X = loc(a), h : X → T is a fibration and g : T → S is a
dominant meromorphic map. The following are equivalent:

(i) h almost descends to S,
(ii) tp

(
a/h(a)

)
almost descends to g

(
h(a)

)
.

Proof. Let b := h(a) and b0 := g(b) ∈ dcl(b). If tp(a/b) almost descends to b0, then
there is a0 ∈ dcl(a) such that a ∈ acl(ba0), a0 |̂ b0 b, and tp(a0/b0) is stationary.

Let X̂ := loc(a0, b0) and ĥ : X̂ → S be the second co-ordinate projection. By

stationarity, h is a fibration, and by independence, X̂(T ) is the locus of tp(a0, b). The
fact that a0 ∈ dcl(a) and a ∈ acl(ba0) implies therefore, that there is a generically

finite meromorphic map from X to X̂(T ) over T , as desired.

For the converse, assume that h almost descends to S witnessed by ĥ : X̂ → S

and a generically finite surjective map f : X → X̂(T ) over T . Let a0 ∈ X̂b0 be such
that f(a) = (a0, b). Note that a0 is then independent from b over b0, and tp(a0/b0)
is stationary by Fact 4.1. Now f restricts to a finite-to-one surjective b-definable
map from the realisations of tp(a/b) to that of tp(a0/b), as desired. �

Using this lemma, Theorem 3.6 readily specialises to:

Theorem 4.6. Suppose X is a non-Moishezon, irreducible, compact complex space.
Then the following are equivalent:

(i) Whenever X → Y is a dominant meromorphic map, either Y is Moishezon
or dimY = dimX.

(ii) The algebraic reduction map X → B is minimal and does not almost de-
scend to any S with dimS < dimB.



FIBRATIONS AND ALGEBRAIC REDUCTIONS 11

The following corollary thus recovers most of what is done in §2 of [1], but with
some additional uniformity and the new observation about descent.

Corollary 4.7. If X is a nonalgebraic generalised hyperkähler manifold then the
algebraic reduction X → B is minimal and does not almost descend to any S with
dimS < dimB. Moreover, either the general fibre of X → B is an abelian variety
or it is uniformly isotypically semi-simple of algebraic dimension 0 (that is, (II) of
Theorem 4.2 holds).

Proof. By 2.3(1) of [1], X satisfies condition (i) of Theorem 4.6, and hence also
condition (ii). The moreover clause is by Theorem 4.2 and 4.3. �

5. Consequences for DCF0

In this section we specialise the results of §3 to the context of differentially closed
fields to obtain differential-algebraic geometric statements. As the proofs are very
much analogous to the complex geometric case dealt with above, we leave them out
entirely. We will illustrate the theorems with an example.

We work throughout in a sufficiently saturated model (K, δ) |= DCF0 and over
an algebraically closed δ-subfield k ⊂ K. The results of §3 apply only to the
stationary types of finite U -rank, and these are precisely the generic types of finite
dimensional irreducible δ-varieties over k. Here, for X an irreducible δ-variety
over k, by finite dimensional we mean that the δ-rational function field k〈X〉 is of
finite transcendence degree over k, and we denote this value by dimδX.

The role of P will be played by C, the field of constants of K. Suppose X is a
finite dimensional irreducible δ-varieties over k with p(x) ∈ S(k) its generic type.
For p(x) to be almost internal to C is equivalent to X being in generically finite-
to-finite correspondence with an algebraic variety in the constants. More precisely,
we say that X is C-algebraic if there exists an irreducible algebraic variety V over
C and an irreducible δ-variety Γ ⊂ X × V (C) that projects generically finite-to-one
onto both X and V (C). Note that V and Γ do not need to be defined over k.

Remark 5.1. Unlike the case of CCM, being C-algebraic is not equivalent to being
δ-birationally equivalent to V (C) for some algebraic variety V over C.

By a fibration of X over k we mean a δ-variety B over k together with a δ-
dominant δ-rational map f : X → B over k whose generic fibre is (absolutely)
irreducible. A fibration is minimal if it does not factor through any proper fibration
X → Z with dimδX > dimδ Z > dimδ B. This is equivalent to the generic type of
the generic fibre admitting no proper fibrations in the sense of Definition 2.1. We
have the following specialisation of Theorem 2.3 to DCF0.

Theorem 5.2. Suppose X is an irreducible finite dimensional δ-variety over k and
f : X → B is a minimal fibration. Let b ∈ B be generic over k. Then either

(I) Xb is C-algebraic; or,
(II) Xb is in generically finite-to-finite δ-rational correspondence over k〈b〉 with

a δ-variety of the form Y n where Y is an irreducible δ-variety over k〈b〉
whose generic type is minimal and locally modular.
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Descent in the differential-algebraic geometric context takes the following form:
Given a fibration f : X → B and a δ-dominant map g : B → S over k, we say that

f almost descends to S if there exists a fibration f̂ : X̂ → S over k, such that X

admits a generically finite-to-one δ-rational map onto X̂(B) over B. Here X̂(B) is

the irreducible component of X̂ ×S B that projects δ-dominantly onto B.
The C-algebraic reduction of X over k is an irreducible C-algebraic δ-variety

B together with a fibration f : X → B over k, such that whenever g : X → Y
is δ-dominant δ-rational over k and Y is C-algebraic, then g factors through f .
This is unique up to δ-birational equivalence. Note that if a ∈ X is generic over
k then dcl

(
kf(a)

)
= dcl(ka) ∩ Intk(C), so that C-algebraic reductions are just the

δ-algebraic geometric manifestation of Definition 3.2.
Theorem 3.6 specialises to:

Theorem 5.3. Suppose X is an irreducible finite dimensional δ-variety over k that
is not C-algebraic. Then the following are equivalent:

(i) All fibrations of X are over C. That is, if X → Y is a fibration with
dimδ Y < dimδX, then Y is C-algebraic.

(ii) The C-algebraic reduction X → B is minimal and does not almost descend
to any S with dimδ S < dimδ B.

We conclude with an example that witnesses the non vacuity of Theorem 5.3.

Example 5.4. Suppose k ⊂ C and fix a simple abelian variety A over k. The
logarithmic-derivative ` : A(K)→ T0A(K) is a δ-rational surjective homomorphism
from A to its Lie algebra, with kernel A(C). (See §3 of [6] for details.) Identifying
T0A(K) with Gda(K), let G := `−1

(
Ga(C) × {0}d−1

)
and set π := `|G. We then

have the following short exact sequence of connected finite dimensional δ-algebraic
subgroups of A(K) over k,

0 // A(C) // G
π // Ga(C) // 0

Then π is the C-algebraic reduction of G, it is a minimal fibration, and it does not
almost descend. In particular, by Theorem 5.3, all fibrations of G are over C.

Proof. We first show that G is not C-algebraic. Indeed, if it were then in fact it
would be definably isomorphic to the C points of some algebraic group over C – see
Corollary 3.10 of [13] – and hence would have to be isomorphic to A(C) × Ga(C)
as there are in algebraic geometry no nontrivial extensions of the additive group
by an abelian variety. So this gives rise to a Zariski-dense (by the simplicity of
A) torsion-free δ-definable subgroup of A(K), namely Ga(C). This is impossible as
any Zariski dense δ-definable subgroup of a commutative and connected algebraic
group must contain the torsion of that algebraic group (see Corollary 4.2 of [12]).

Let p be the generic type of a generic fibre of π. That is, p(x) = tp(a/kb) where
a ∈ G is generic over k and b = π(a). Note that p is stationary and C-internal since
the fibres of π are cosets of A(C). We claim that

Claim 5.5. A(C) together with its action on p(K) is (up to definable isomorphism)
the binding group Aut

(
p(K)/C

)
. In particular, p(K) = a+A(C).
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Proof of 5.5. Let H = Aut
(
p(K)/C

)
. We show that φ : H → A(C) given by

φ(h) = a− ha is an isomorphism. Given h, h′ ∈ H we have

hh′a = h
(
a+ φ(h′)

)
= σh

(
a+ φ(h′)

)
where σh ∈ AutC(K) extends the action of h

= σh(a) + φ(h′) as φ(h′) is a C-point

= a+ φ(h) + φ(h′)

showing that φ is a group homomorphism. Next, suppose ha = a. Then for any
a′ |= p(x) we have a′ = a+c for some c ∈ A(C), so that ha′ = σh(a+c) = a+c = a′.
This shows that φ is injective. By simplicity ofA, eitherH is trivial or φ(H) = A(C).
The former would imply that a ∈ G(C), contradicting the fact that G is not C-
algebraic. Hence φ is surjective. �

One consequence of Claim 5.5 is that the binding group acts transitively on
p(K). Hence a |̂

kb
C. It follows that a |̂

kb
Intk(C) and so kb is the canonical base

of tp
(
a/ Intk(C)

)
. This proves that π is the C-algebraic reduction of G.

Now suppose that π factors through a fibration f : G → Y , and let q(x) =
tp
(
a/kf(a)

)
. Then by Claim 5.5, F = Aut

(
q(K)/C

)
is a connected δ-definable

subgroup of A(C). If F = A(C) then q(K) = p(K) and Y → Ga(C) is δ-birational.
Otherwise, F is trivial and a ∈ dcl(kf(a)C). But as a |̂

kf(a)
C, this forces f to be

δ-birational. We have shown that π is a minimal fibration.
Finally, it remains to show that π does not descend with respect to any δ-

dominant Ga(C) → S with dimδ S < dimδ Ga(C) = 1. But such an S would then
have to be a point, and descent would in this case mean that π factors through

a generically finite-to-one δ-rational map G → Ga(C) × Ĝ. It would follow that

A(C) is a generically finite cover of Ĝ, making the latter C-algebraic, and thereby
contradicting the non-C-algebraicity of G. �

6. An aside on maximal covering families

As we saw in §4, the specialisation of Theorem 2.3 to the theory CCM yields a
uniform version of Theorem 2.4(1) of [1]. However, our proof was not abstracted
from that in [1]. The argument there does not go via a minimal locally modular
type. Instead, the authors establish first a certain fact about maximal covering
families of algebraic dimension zero compact Kähler manifolds (Lemma 2.7 of [1]).
This result seems to be of independent interest, and is it turns out, can be given a
model-theoretic explanation as follows.

Proposition 6.1. Suppose T is the theory of a Zariski structure2 with the CBP3,
and p = stp(a/A) is orthogonal to the set of non locally modular minimal types.
Let q = stp(a/E) be a forking extension of p with maximal locus.4 Let e = cb(q).
Then e ∈ acl(Aa) and U(e/A) = 1.

2This is in the sense of Zilber [14].
3This is the“canonical base property”, see [9] for details.
4The locus of tp(a/E) is the smallest Zariski-closed set defined over E containing a.
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Proof. First we note, without using the CBP, that q being a forking extension of
p of maximal locus is equivalent to U(q) = U(p)− 1. The right to left direction is
clear. For the converse, note that e /∈ acl(A) and hence there is a B ⊃ A such that
U(e/B) = 1. Let q′ = stp(a′/Be) be the nonforking extension of q to Be. Since
e = cb(q′) and e /∈ acl(B), a′ 6 |̂

B
e. That is, e ∈ acl(Ba′). By Lascar inequalities

it follows that U(a′/B) = U(a′/Be) + 1 = U(q) + 1. So if U(q) < U(p) − 1 then
stp(a′/B) is a forking extension of p which has q′ as a forking extension. The locus
of stp(a′/B) thus properly contains loc(q′) = loc(q), which is a contradiction to
maximality.

So U(q) = U(p) − 1. Now if e /∈ acl(Aa), then letting e0 = acl(Ae) ∩ acl(Aa)
we would have a 6 |̂

e0
e since e = cb(a/e). So U(a/e0) > U(a/e) = U(p)− 1 which

forces a |̂
A
e0, and so stp(a/e0) is still orthogonal to the set of non locally modular

minimal types. On the other hand, CBP tells us that stp(e/e0) is almost internal
to the set of non locally modular minimal types (this is Theorem 2.1 of [2] but see
also Proposition 4.4 of [9]). This contradicts a 6 |̂

e0
e. Hence e ∈ acl(Aa). That

U(e/A) = 1 now follows immediately from the Lascar inequalities. �
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