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1 Differential fields: first properties.

All the rings we deal with are assumed to be commutative, with a unit, and
contain Q.

Definition 1.1 By a derivation on a ring R we mean a map ∂ : R → R
such that for all a, b ∈ R
(i) ∂(a+ b) = ∂(a) + ∂(b), and
(ii) ∂(ab) = ∂(a)b+ a∂(b)

Sometimes the derivation is denoted by a→ a′.
A ring equipped with a derivation is called a differential ring. The notions,

differential subring, differential ring extension and homomorphism between
differential rings, are clear.

If (R, ∂) is a differential ring then the set of constants is by definition
{r ∈ R : ∂(r) = 0}, and is easily seen to be a (differential) subring. ∂k

means the k-fold iteration of ∂ and ∂0 is taken to be the identity mapping.
The basic examples of differential rings are rings (or fields) of functions:

for example
(i) C(z) the field of rational functions over C in the single indeterminate z,
with ∂(f) = df/dz,
(ii) C(z, ez) with ∂ as in (i). (Note that this field IS closed under ∂.)

Exercise 1.2 (i) Let (R, ∂) be a differential ring. Let P (x1, , , xn) be a poly-
nomial over R. Let P ∂ denote the polynomial over R obtained from P by
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applyng ∂ to the coefficients. Let a1, .., an ∈ R. Show that ∂(P (a1, .., an)) =
P ∂(a1, .., an) +

∑
i=1,..,n((∂P/∂xi)(a))∂ai.

(iii) Let (R, ∂) be a differential ring, S a differential subring of S and A
a subset of R. Then the differential subring of R generated by S and A is
precisely the subring of R generated by S and {∂k(a) : a ∈ A, k ≥ 0}.

Lemma 1.3 (i) If (R, ∂) is a differential ring and R is an integral domain,
then there is a unique extension of ∂ to a derivation on the quotient field of
R.
(ii) If (K, ∂) is a differential field, then ∂ has a unique extension to a deriva-
tion on the algebraic closure of K.
(ii) Suppose that (K, ∂) is a differential field, K < L, and a1, .., an ∈ L are
such that a1, .., an−1 are algebraically independent over K, but that P (a1, .., an) =
0 for some (nonzero) polynomial P (x1, .., xn) over K. Then there is a unique
extension of ∂ to a derivation ∂∗ on K(a1, .., an) (the field generated by K
together with a1, ..., an) such that ∂(ai) = ai+1 for i = 1, .., n− 1.

Proof. (i) is left as an exercise. (ii) follows by iterating the special case of
(iii) when n = 1.
(iii). We may assume that the polynomial P (x1, .., xn) is irreducible over K,
namely is not the product of two polynomials over K. We will be using the
elementary algebraic fact that (under our assumptions on a = (a1, ..., an)),
P divides every polynomial Q(x1, .., xn) which vanishes on a. Note that it
then follows that ∂P/∂xn does not vanish on a. We will choose a value
for ∂(an) (which it will be forced to have by Exercise 1.2): namely put
an+1 = −(P ∂(a)

∑
i=1,..n−1((∂P/∂xi)(a)ai+1)/(∂P/∂xn)(a)).

Now define ∂∗ on K[a] by:
∂∗(g(a)) = g∂(a)+

∑
i=1,..,n((∂g/∂xi)(a))ai+1, for each polynomial g(x1, .., xn)

over K.
It is immediate that ∂∗(gh(a)) = ∂∗(g(a))h(a) + g(a)∂∗(h(a)), and ∂∗

agrees with ∂ on K. So all that has to be checked is that ∂∗ is well-defined:
namely if g(a) = h(a) then ∂∗(g(a)) = ∂∗(h(a). This is clearly equivalent to
showing that
(*) ∂∗(g(a)) = 0 if g(a) = 0.
Now (*) is true for the case g = P (by choice of an+1). If g(a) = 0 then
as we noted earlier g = P · r for some polynomial r over K. But then
∂∗(g(a)) = ∂∗(P (a))r(a) + P (a)∂∗(r(a)) = 0.
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So ∂∗ is a derivation on K[a] extending ∂ and now use part (i) to extend
to K(a).

The above lemma will be used later to show that the theory of differential
fields (of characteristic zero) has a model companion.

The language of differential rings is the language of rings {+, ·,−, 0, 1}
together with the unary operation symbol ∂. We sometimes call this language
L∂. In any case any differential ring is naturally an L∂-structure. By DF0

we mean the theory of differential fields (of characteristic zero), namely the
axioms for fields of characteristic zero as well as the axioms for the derivation.

If x = (x1, .., xn) is a sequence of variables, then ∂k(x) denotes (∂k(x1), .., ∂k(xn)).

Exercise 1.4 Let θ(x1, .., xn) be a quantifier-free formula of L∂. Then mod-
ulo DF0, θ(x) is equivalent to a finite Boolean combination of formulas of
the form P (x, ∂(x), .., ∂k(x)) = 0, where P is a polynomial with coefficients
from Z.

We have seen in [2] the notion of the quantifier-free type of a over A in
a structure M : it is just the set of quantifier-free formulas with parameters
from A which are true in M . For the moment, if (K, ∂) is a differential field,
then by a complete quantifier-free n-type overK we mean qftpF (a1, .., an/K),
where (F, ∂) is a differential field extension (not necessarily an elementary
extension) of (K, ∂), and a1, .., an ∈ F . (Note this is a notion belonging
entirely to algebra, in spite of the “logical” notation.)

Lemma 1.5 Suppose (K, ∂) is a countable differential field. Then there are
only countably many complete quantifier-free n-types over K.

Proof. It is enough to prove this for n = 1 (why??). This is the actual
content of the discussion in Example 2.54 of [3]. But we will repeat the
argument. So let a ∈ F where F is a differential field extension of K. We
call a differentially transcendental over K, if {a, ∂(a), .., ∂k(a), ...} is algebraic
ally independent over K, namely for NO polynomial P (x1, x2, ...) over K is
P (a, ∂(a), ∂2(a), ...) = 0. By Exercise 1.4, there is a unique quantifier-free
type over K of a differential transcendental (over K) element.

So we will assume that a is NOT differentially transcendental over K. In
this case:
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Claim. Let n be least such that (a, ∂(a), .., ∂n(a)) is algebraically depen-
dent over K. Then qftp(a/K) is determined by the quantifier-free type of
(a, ∂(a), .., ∂n(a)) over K in the language of rings.
Proof. Let P (x1, .., xn) be an irreducible polynomial overK which vanishes on
(a, ∂(a), .., ∂n(a)). Exercise 1.2 gives a formula for ∂n+1(a) as s1(a, ∂(a), .., ∂n(a)),
where s1(x1, ...xn) is a rational function over K depending only on P . We
easily find rational functions sk(x1, .., xn) for all k ≥ 1 (depending only on
P ) such that ∂n+k(a) = sk(a, ∂(a), .., ∂k(a)). Now let L be another differ-
ential field extension of K and b ∈ L such that (b, ∂(b), .., ∂n(b)) has the
ame quantifier-free type over K in the language of rings as (a, ∂(a), .., ∂n(a)).
So again ∂n+k(b) = sk(b, ∂(b), .., ∂n(b)) for all k. It follows that for all k,
(a, ∂(a), ..., ∂k(a)) and (b, ∂(b), .., ∂k(b)) have the same quantifier-free type
over K in the language of rings. Thus (by 1.4 for example), a and b have the
same quantifier-free type over K.

The claim is proved.

But there are only countably many complete quantifier-free finitary types
over K in the language of rings. (Use the fact that ACF0 has quantifier-
elimination and is the model companion of the theory of fields of char. 0, so
every such type is a complete finitary type over K in the sense of ACF0, but
ACF0 is ω-stable.)

Let us make explicit an important observation implicit in the previous proof.

Remark 1.6 Suppose that k < F are differential fields, a ∈ F , a, ∂(a), .., ∂n−1(a)
are algebraically independent over k (in the sense of fields) but ∂n(a) is
algebraic over k(a, .., ∂n−1(a)), of degree m say. Let P (x0, .., xn−1, xn) be
a polynomial over k of degree m in xn such that P (a, ∂(a), .., ∂n(a)) = 0.
Then qftp(a/k) is determined by the formulas {P (x, ∂(x), .., ∂n(x)) = 0} ∪
{Q(x, ∂(x), .., ∂n−1(x)) 6= O : Q(x0, .., xn−1) ∈ k[x0, .., xn−1]}.

Corollary 1.7 Any complete theory T (in L∂) of differential fields which
has quantifier-elimination is ω-stable.

Proof. Let K be a countable model of T . Any complete 1-type over K
(realized in an elementary extension) is by quantifier elimination, determined
by the st of quantifier-free formulas in it. But the latter is clearly a complete
quantifier-free type over K in the sense above. Thus there are only countably
many complete 1-types over K, so T is ω-stable.

4



Proposition 1.8 (i) DF0 has a model companion DCF0 (the theory of dif-
ferentially closed fields).
(ii) DCF0 can be axiomatized by DF0 together with the sentences “ for all
d1, .., dk, e1, .., ek′ there is c such that P (c, ∂(c), .., ∂n(c), d1, .., dk) = 0 and
Q(c, ∂(c), ..∂m(c), e1, .., ek′) 6= 0”, whenever P (x1, .., xn, y1, .., yk) and Q(x1, .., xm, z1, .., zk′)
are polynomials over Z, m < n (or n = 0 and Q is omitted) and xn really
appears in P .
(iii) DCF0 is complete and has quantifier elimination.
(iv) DCF0 is ω-stable.

Proof. We will prove that DCF0 as axiomatized in (ii) is complete with
quantifier elimination, and that moreover every differential field embeds in
a model of DCF0. By 2.39, 2.41 and 2.44 of [3] this will prove (i), (ii) and
(iii). (iv) will then follow from (iii) and 1.6.

First we show that any differential field (K, ∂) embeds in a model of
DCF0. Let P (x1, .., xn) and Q(x1, .., xm) (with m < n) be polynomials over
K, such that xn appears in P . Let a1, .., an−1 be elements of some field
extension L of K, which are algebraically independent over K. Let an be a
solution of P (a1.., an−1, x) = 0 (in an algebraically closure of L), and let F
be the field generated by K and {a1, .., an}. By Lemma 1.3(iii) there is a
derivation ∂∗ on F extending ∂ such that ∂∗(ai) = ai+1 for i = 1, .., n − 1.
So P (a1, ∂(a1, .., ∂(an)) = 0 and Q(a, ∂(a), ., ∂m(a)) 6= 0 for m < n.

So we have solved one instance of the axiom system in an extension of
K. It easilly follows that K embeds in a model of DCF0.

For completeness and quantifier-elimination, we will prove that for any
two saturated models K1, K2 of DCF0 the system of finite partial isomor-
phisms between K1 and K2 is nonempty and has the back-and-forth property
(and apply 2.29 and 2.30 of [2]).

Both K1 and K2 contain the ring Z (with trivial derivation).
Supose a, b are n-tuples from K1, K2 with the same quantifier-free type.

The map f taking a to b then extends to an isomorphism f between the
differential fields k1 and k2 generated by a, b respectively. Let c ∈ K. If c is
differentially transcendental over k1 then (by saturation of L and the axioms)
we can find d ∈ K2 differentially transcendental over k2 and (a, c) and (b, d)
have the same quantifier-free types.

Otherwise let m be least such that {c, ∂(c), .., ∂m(c)} is algebraically de-
pendent over k1, and let P (x1, .., xn) be irreducible such that P (c, .., ∂m(c)) =
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0. Then f(P ) is a polyomial over k2. The axioms, together with saturation,
yield some d ∈ K2 such that d, ∂(d), ..∂m−1(d) are algebraically independent
over k2, but f(P )(d, ∂(d), .., ∂m(d)) = 0. As in the proof of Lemma 1.5, the
quantifier-free type of d over k2 is precisely the image of the quantifier-free
type of c over k1 under f . Thus (a, c) and (b, d) have the same quantifier-free
types.

A model of DCF0 is called a differentially closed field. ¿From now on we
fix a large saturated model (U ,+,−, ·, 0, 1, ∂) of DCF0, in which we work.
k, F, .. denote (small) differential subfields of U and a, b, .. usually denote
finite tuples from U . C denotes the field of constants of U and for any K, CK
denotes the field of constants of K, which note contains Q. We let K denote
the field-theoretic algebraic closure of K.

Exercise 1.9 DF0 has the amalgamation property. Namely if F < K and
F < L are 2 extensions of differential fields, then K and L embed over F
into some differential field.

Hint. Use quantifier elimination and the fact that any (small) differential
field embeds in U as well as homogeneity of |calU .

Remark 1.10 (i) U is an algebraically closed field.
(i) For any k, the (field-theoretic) algebraic closure of Ck is contained in C

Proof. The case of the axioms when n = 0 yields that U is algebraically
closed.
Now suppose that the element a is in Ck. Let P (x) be the minimal polynomial
of a over Ck. Then P ∂ = 0, and (dP/dx)(a) 6= 0. By 1.2, ∂(a) = 0.

Remark 1.11 For any n-tuples a, b, tp(a/k) = tp(b/k) iff for all m tpLr(a, ∂(a), .., ∂m(a)/k) =
tpLr(b, ∂(b), .., ∂m(b)/k).

Proof. By quantifier elimination and 1.4.

For any K we let K̂ denote some copy in U of the prime model over K. K̂ is
called the differential closure of K. By a general fact about ω-stable theories,
its isomorphism type over K is unique.
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Lemma 1.12 For any F , CF̂ = CF .

Proof. Let a be an element of CF̂ , so its type over F is isolated. If a /∈ F
then by 1.4, tp(a/k) is isolated by a formula of the form x′ = 0∧∧iPi(x) 6= 0,
where the Pi(x) are polynomials over F , but such a formula is realized in CF
as the latter is infinite. Thus a ∈ F . Let P (x) be its minimal poynomial over
F . Assume P monic. By 1.2, P ∂(a) = 0. But P ∂ has lower degree than P
(why?), hence P ∂ = 0 and so all coefficients of P are constants. So a ∈ CF .

Recall that from Example 3.7 of [3], any definable subset of Cn which is L∂
definable in U is definable in (C,+, ·). Hence C is strongly minimal as a
definable set in U .

Lemma 1.13 For any set A ⊆ U , the algebraic closure of A in the sense of
the L∂-structure U is precisely k where k is the differential field generated by
A.

Proof. We may assume A = k is small. Suppose a /∈ k.
If a is differentially transcendental over a, then tp(a/k) is determined by

P (a, ∂(a), .., ∂n(a)) 6= 0 for all n. By compactness and the axioms, for any
a1, .., am we can find a realization b of tp(a/k) such that b 6= ai for all i. But
then a /∈ acl(k).

On the other hand if a is not differentially transcendental over k, then
tp(a/k) is determined by: P (a, ∂(a), ..., ∂n(a)) = 0 and “a, ∂(a), .., ∂n−1(a)
are algebraically independent over k”, for some polynomial P over k (where
n ≥ 1). As above we find infinitely many solutions of tp(a/k). So a /∈ acl(k).

Exercise 1.14 For any A ⊂ U , the definable closure of A in the sense of
the L∂-structure U is precisely the differential subfield generated by A.

We now want to characterise independence (nonforking) in U . We will make
use of independence in ACF0. Recall that an algebraically closed field as an
Lr-structure is strongly minimal and algebraic closure in the model-theoretic
sense equals field-theoretic algebraic closure.. Thus in a model of ACF0, if a
is a possibly infinite tuple, and F < K are fields, tp(a/K) does not fork over
F if fr all finite subtuples b of a, tr.deg(F (b)/F ) = tr.deg(K(b)/K).

7



Exercise 1.15 Suppose F < K are differential subfields of U with F alge-
braically closed. Then for any differential field extension F < L there is an
isomorphic copy L1 of L over F , with L1 < U and K independent from L1

in the sense of ACF .

Proposition 1.16 For any finite tuple a, and differential fields F < K,
(*) tp(a/K) does not fork over F if and only if
(**) (a, ∂(a), .., ∂n(a), ....) is independent from K over F in the sense of
ACF .

Proof. We may assume that both F and K are algebraically closed (in any
sense).
Claim I. Suppose that K is a model (of DCF0). Then (**) implies (*).
Proof. By (**), for each n, tpLr(a, ∂(a), ., ∂n(a)/K) is definable over F . By
1.4 and QE it follows that tpL∂ (a/K) is definable over F , so doesn’t fork over
F .

Claim II. Suppose that F is a model. Then (*) implies (**).
Proof. By 2.50 of [3], tp(a/K) is finitely satisfiable in F . In particular
tpLr(a, ∂(a), .., ∂n(a)/K) is finitely satisfiable in F for all n. Again by 2.50
cited above, we get (**).

Now we prove the Proposition for general F < K (algebraically closed dif-
ferential fields). Suppose first that (*) holds. Let L > F be a model (of
DCF0) such that L is independent from K < a > over F in the sense of
ACF (by 1.15). So (a, ∂(a), ...) is independent from L over F in the ACF
sense. K < a > is independent from L over F in the differential sense, by
Claim I. Thus (by forking calculus) a is independent from K1 over L in the
differential sense. where K1 is the (differential) field generated by K and L.
By Claim II. (a, ∂(a), ...) is independent from K1 over L in the ACF sense.
We conclude that (a, ∂(a), ...) is independent from K1 over F in the ACF
sense, which yields (**).

Conversely, suppose (**) holds. Let L > K be a model such that
(a, ∂(a), ...) is independent from L over K in the ACF sense. So (a, ∂(a), ..) is
independent from L over F in the ACF sense. By Claim I, a is independent
from L over F in the differential sense, yielding (*).

Definition 1.17 For A a single element in U , define ord(a/k) to be the
transcendence degree of k(a, ∂(a), .., ..) over k.
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Corollary 1.18 (i) For a a single element, and F < K, tp(a/K) forks over
F if and only if ord(a/K) < ord(a/F ).
(ii) For a a single element, U(a/k) ≤ ord(a/k)

Lemma 1.19 For a single element a, RM(tp(a/k)) ≤ ord(a/k).

Proof. It is enough to prove this for complete 1-types over U (by taking
nonforking extensions and using Corollary 1.18 (i)). So let p(x) be such a
global 1-type. We prove by induction on n < ω, that ord(p) ≤ n implies
RM(p) ≤ n. This is OK for n = 0 (as then p(x) is algebraic). Assume
ord(p) ≤ n + 1. By induction we may assume ord(p) = n + 1. Also by
induction any formula of the form Q(x, ∂(x), .., ∂n(x)) = 0 (Q(x0, .., xn) a
polynomial over U) has Morley rank ≤ n. By Remark 1.6 (and QE) p is
determined by a single formula (P (x, ∂(x), .., ∂n+1(x)) = 0 for suitable P )
together with a collection of negations of formulas of Morley rank ≤ n. It
follows that RM(p) ≤ n+ 1 (why?).

We now want to find definable subsets of U of arbitrarily large (finite) Morley
rank.

Lemma 1.20 For any n ≥ 1, the formula ∂n(x) = 0 has Morley rank n and
Morley degree 1. Moreover the set defined by this formula is a subgroup of
(U ,+) and is an n-dimensional C-vector space.

Proof. Let us introduce some notation. Let Vn be the subset of U defined by
∂n(x) = 0.
Claim I. Vn is a subgroup of (U ,+), and for any c the solution set of ∂n(x) = c
is an additive translate of Vn.
Proof. Clear. Note that ∂n(x) = c DOES have some solution, by the axioms.

Claim II. Vn is a C-vector space.
Proof. If c ∈ C and v ∈ U , then by induction, ∂i(cv) = c · ∂i(v) for all i.
Hence if v ∈ Vn then ∂n(cv) = 0 and so cv ∈ Vn.

Claim III. RM(Vn) ≥ n for all n.
Proof. By induction on n. V1 = C which we already know to be strongly
minimal. Now consider Vn+1. The map ∂n takes Vn+1 onto C (using Claim I).
By Claim I and induction, each fibre (defined by ∂n(x) = c for some c ∈ C)
has Morley rank ≥ n. So we have partitioned Vn+1 into infinitely many
pairwise disjoint definable sets of Morley rank ≥ n, so RM(Vn) ≥ n+ 1.
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By Lemma 1.19, RM(Vn) ≤ n for all n. It follows together with Claim III,
that
Claim IV. RM(Vn) = n.

Now if V is a definable C vector space of dimension r, then (by choosing a
basis for V ), V is in definable bijection with Cr, hence has Morley rank r and
Morley degree 1 (as C is strongly minimal). So by Claim II, and Claim IV,
Vn is an n-dimensional vector space over C so also has Morley degree 1. The
Lemma is proved.

Note that for any F the type over F of an element a which is differentially
transcendental over F is unique. Let us call this type pF,1(x). Note that if
F < K then pK,1(x) is the unique nonforking extension of pF,1(x) over K. In
particular these types are stationary.

Corollary 1.21 (i) x = x has Morley rank ω and Morley degree 1.
(ii) For any F the unique type of Morley rank ω over F is precisely pF,1(x).

Proof. By Lemma 1.20, RM(x = x) ≥ ω. On the other hand, by quantifier-
elimination, and 1.19, for any definable subset X of U , either X or its com-
plement has finite Morley rank (why?). (i) follows.
(ii) If RM(tp(a/F )) = ω then, by 1.19, a is differentially transcendental over
F .

Corollary 1.22 For some (any) F , pF,1(x) has U-rank ω.

Proof. By 1.21 (ii) and the fact that U -rank is ≤ Morley rank, we get
U(pF,1(x)) ≤ ω.

We may assume F = Q. So pQ,1 = tp(a/∅) where a is differentially
trancendental (over Z or equivalently over Q). For each n let a(n) = ∂n(a)).
Then a forks with a(n) over ∅ (by 1.18 (i)).
Claim I. tp(a/a(n)) is isolated by the formula ∂n(x) = a(n).
Proof. Note that a(n) is also differentially transcendental over ∅. So if c is
any solution of ∂n(x) = a(n), then c is differentially transcendental over ∅ so
has the same complete tye as a. Hence tp(c/a(n)) = tp(a/a(n)).

Claim II. U(tp(a/a(n))) = n.
Proof. By Claim I, and 1.20 (and Claim I there), tp(a/a(n)) has Morley rank
n. But the set of solutions of ∂n(x) = a(n) is in definable bijection with Cn,
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and we know that Morley rank = U -rank = dim inside the strongly minimal
set C. It follows (why?) that U(tp(a/a(n))) = n too.

By Claim II, tp(a/∅) has forking extensions of arbitrarily large finite U -rank.
Thus U(tp(a/∅) ≥ ω so by what we saw earlier, is precisely ω.

Corollary 1.23 For a single element a ∈ U , ord(a/k) is finite iff U(tp(a/k))
is finite iff RM(tp(a/k)) is finite.

Example 1.24 Let k and c be such that cc′′ = c′ and ord(c/k) = 2. Then
U(tp(c/K)) = 1 (and also RM(tp(c/k)) = 1).

Discussion. This is Corollary 5.13 of [1]. One has to show that tp(c/k) has
no extension of order 1. Suppose otherwise. So there is K > k such that
ord(c/K) = 1. Let P (x, y) be an irreducible polynomial over K such that
P (c, c′) = 0, and note that P must have positive degree in y. Applying ∂ we
see that
P ∂(c, c′) + (∂P/∂x)(c, c′)c′ + (∂P/∂y)(c, c′)c′/c = 0 and thus
c(P ∂(c, c′) + (∂P/∂x)(c, c′)cc′ + (∂P/∂y)(c, c′)c′ = 0.
It follows that P (x, y) divides the polynomial
xP ∂(x, y) + (∂P/∂x)(x, y)xy+ (∂P/∂y)(x, y)y. A computation shows this to
be impossible.

Proposition 1.25 DCF0 has elimination of imaginaries.

Proof. We will first show that for any stationary type p(x) where x is a finite
tuple of variables, Cb(p) is interdefinable with a tuple of real elements of U .
We may assume that p(x) ∈ S(K) where K is a saturated model (elementary
substructure of U). Let p = tp(a/K). Now ACF0 does have elimination of
imaginaries, hence for each r, tpLr(a, ∂(a), .., ∂r(a)/K) has a canonical base
say cr, a finite tuple from K.
Claim. If f is an automorphism of the differential field K then f(p) = p iff
f(cr) = cr for all r.
Proof. We may assume that f is the restriction to K of an automorphism
f ′ of U . Suppose f(p) = p then f fixes tpLr(a, .., ∂

r(a)/K) for all r, so as f
is also a field automorphism, f(cr) for all r. Conversely if f fixes cr for all
r, then tpLr(a, .., ∂

r(a)/K) = tpLr(f
′(a), .., ∂r(f ′(a))/K) for all r, hence by

1.11, tp(a/K) = tp(f(a)/K).
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By the Claim, Cb(p) is interdefinable with the sequence (ar)r so clearly with
a finite subtuple. On general grounds (Dominika’s project last semester), it
follows that for any imaginary e there is a real tuple c such that e ∈ dcl(c)
and c ∈ acl(e). As we are working in a field, the finite set {c1, .., cn} of
realizations of tp(c/e) is itself interdefinable with a real finite tuple d. So e
and d are interdefinable.

Finally we discuss the “differential Zariski topology”. A differential poly-
nomial over K in indeterminates x1, ., xn is simply an ordinary polynomial
over K in indeterminates x1, ., xn, ∂(x1), .., ∂(xn), .., ∂r(x1, .., ∂

r(xn) for some
r. (We may often write x(m) for ∂m(x).) Such a differential polynomial can be
evaluated on any n-tuple from U . By definition a subset X of Un is Kolchin
closed (over K), if X is the common zero set of some possibly infinite system
of differential polynomials (over K). (In fact for any differential field k we
can speak of a Kolchin closed subset of kn. ) It is rather easy to see that
any finite union of Kolchin closed subsets of Un is also Kolchin closed: Sup-
pose Vi ⊆ Un is the common zero set of the system Q〉, for i = 1, .., n. Let
Q = {P1 · ... ·Pn : Pi ∈ Qi}. Then ∪iVi is the common zero set of Q. On the
other hand, by definition, the intersection of an arbitrary family of Kolhin
closed sets is Kolchin closed. As both ∅ and Un are Kolchin closed, we see
that the Kolchin closed subsets of Un are the closed sets for a topology on
Un, the Kolchin or differential Zariski topology.

We now aim towards a proof of the following important result:

Theorem 1.26 Let V ⊆ Un be Kolchin closed. Then there is a finite set
P1, .., Pm of differential polynomials over U such that V = {x ∈ Un : P1(x) =
P2(x) = .. = Pm(x) = 0}.

Before giving the proof, let us consider some consequences of the theorem.

Remark 1.27 Assume Theorem 1.26 is true for n. Then
(i) For any system S of differential polynomials in differential indeterminates
x1, .., xn, there is a finite subset S ′ of S such that the zero set of S in U equals
the zero set of S ′ in U . (In fact this remains true for any differential field
over which S is defined.)
(ii) There is NO infinite strict descending chain V1 ⊃ V2 ⊃ V3... of Kolchin
closed subsets of Un.
(iii) Define h(V ) for V a Kolchin closed subset of Un, by h(V ) ≥ α + 1 if

12



there is a proper Kolchin closed subset W of V such that h(W ) ≥ α. (Also
h(V ) ≥ 0 iff V is nonempty and for limit δ, h(V ) ≥ δ iff h(V ) ≥ α for
all α < δ.) Then for any Kolchin closed V ⊆ Un, h(V ) is an ordinal. In
particular h(Un) is an ordinal.
(iv) Call a Kolchin closed set V ⊆ Un irreducible, if V is NOT the union of
two proper Kolchin closed subsets of V . Then any Kolchin closed set V can
be written uniquely as an (irredundant) finite union of Kolchin closed sets
V1, .., Vm. The Vi are called the irreducible components of V .
(v) Suppose V ⊆ Un is an irreducible Kolchin closed set defined over a small
differential subfield K of U . (So V is the zero set of a (finite) system of
differential polynomials with coefficients from K.) Then there is a ∈ Un such
that a ∈ V and a /∈ W for every Kolchin closed proper subset W of V which
is defined over K. Moreover tp(a/K) does not depend on the choice of a.
We call a a generic point of V over K, and tp(a/K) the generic type of V
over K.

Proof. (i) We may assume that S is over a small differential subfield K of U .
Let V ⊆ Un be the zero set of S. By 1.26, V is definable. By compactness
V is defined as the zero set of a finite subset S ′ of S.
(ii) This is immediate. For suppose Vi is the zero set of the finite set Si of
differential polynomials. Then the zero set of ∪{Si : i < ω} is by (i) the 0-set
of ∪i=1,..,mSi whereby ∩i<ωVi = Vm.
(iii) Immediate from (ii).
(iv) This is proved by induction on h(V ). If V is already irreducible there
is nothing to do. Otherwise V = V1 ∪ V2 where Vi are proper Kolchin closed
subsets of V . h(Vi) < h(V ) for i = 1, .., 2 so by induction each Vi can
be uniquely written as an (irredundant) finite union of irreducible Kolchin
closed sets. This gives an expression for V as a finite union of irreducible
Kolchin closed subsets, and (after writing this in an irredundant fashion) we
see easily it is unique (using the induction hypothesis for V1 and V2).
(v) Consider the set Σ(x) of formulas {x ∈ V }∪{x /∈ W : W a proper Kolchin
closed subset of V defined over K} over K. If Σ were inconsistent, then by
compactness we could write V as a finite union of proper Kolchin closed
subsets, contradicting irreducibility of V . Thus Σ is consistent, so there is
a ∈ Un as claimed. Note that for any differential polynomial P (x1, .., xn)
over K, P (x) = 0 ∈ tp(a/K) iff |= (∀x)(x ∈ V → P (x) = 0). By quantifier
elimination, the latter information determines a complete type over K (which
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we know to be consistent as it is realized by a).

Exercise 1.28 (Under the same assumptions as Remark 1.27.) Suppose
V ⊆ Un is irreducible and defined over K. Let p(x1, ., xn) be the generic
type of V over K. Then p is stationary and for any L > K the nonforking
extension of p over L is precisely the generic type of V over L.

Proof of Theorem 1.26. We will be making use of the Hilbert basis theorem
(see the next section), which implies that in any field, the 0-set of a possibly
infinite system of polynomials in x1, .., xn, is the 0-set of a finite subsystem.

The proof of 1.26 is by a global induction on n. Let us first do the n = 1
case (although this is also contained in our proof of the induction step). So
let V ⊂ U be our Kolchin closed set. Without loss V is defined by a family
of differential polyomials over a small differential subfield K of U . Let Q be
the family of all differential polynomials over K which vanish on V (so V
is the 0-set of Q). We proceed by induction on (ord, deg)(Q), which is by
definition the least (ord, deg) of a differential polynomial Q(x) in Q (where
ord(Q) is greatest x(m) that appears in Q and deg(Q) is the degree of Q in
this x(m)). (Here and subsequently we view Q as an ordinary polynomial
over K in x, x′, ..... )

Suppose (ord, deg)(Q) = (m, d) witnessed by Q(x). Then ∂(Q(x)) ∈ Q.
By 1.2 (ii),
(*) ∂(Q(x)) = x(m+1)s(x) + g(x)
where s(x) (called the separant of Q) is ∂Q/∂x(m), and g is a differential
polynomial over K of order at most m. Note that (ord, deg) of s(x) is strictly
less than that of Q(x). So by induction the zero set V1 of Q ∪ {s(x)} is
definable.

On the other hand, suppose that (∂Q)(a) = 0, and s(a) 6= 0, then from
(*) for each i ≥ 1, we can write xm+i as si(x) where si(x) is a quotient of
differential polyomials in x over K of order at most m and the denominator
of si is a power of s(x). For each P (x) ∈ Q, replace xm+i for i ≥ 1 by si(x),
and multiply through by the denominators to obtain a differential polyomial
over K of order at most m. Let Q2 be the family of differential polynomials
so obtained. Using the Hilbert basis theorem, it is easy to see that the zero
set V2 of Q2 is definable (why?) Moreover it is clear that if s(a) 6= 0 then
a ∈ V iff a ∈ V2.
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Thus V is the union of V1 together with {a ∈ V2 : s(a) 6= 0}, so is
definable, hence by compactness, V is the 0-set of a finite set of differential
polynomials.

Now we perform the induction step. We assume the theorem is true for n and
prove it for n+1. So we work with differential indeterminates x1, .., xn, xn+1.
Let V ⊆ Un+1 be our Kolchin closed set. We assume V to be defined by a
system of differential polynomials over a small differential field K, and let Q
be all differential polynomials over K vanishing on V . Let V |n be the Kolchin
closure of {(a1, .., an) ∈ Un : ∃an+1, (a1, .., an+1) ∈ V }. So the induction
hypothesis applies to V |n. Using Remark 1.27 we may also assume V |n to
be irreducible. Let a = (a1, .., an) be a generic point of V |n over K. Note that
there IS an+1 such that (a, an+1) ∈ V (why????). For P (x1, .., xn+1) ∈ Q,
let Pa(xn+1) be the differential polynomial (over the differential ring K[a]∂
generated by a over K), obtained by substuting ai for xi for i = 1, .., n, and
let Qa be the set of all such Pa(xn+1) for P ∈ Q. Let (m, d) be the least
(order,degree) (in xn+1) of a differential polynomial in Qa in which xn+1

appears. (Let us remark that if xn+1 does not appear in any polynomial in
Q then V is precisely V |n× U .)

Our induction will be on (h(V |n), (m, d)). x denotes (x1, .., xn)
Suppose first that (m, d) = (0, 1). So there is Q(x, xn+1) ∈ Q of the form
xn+1F (x) + G(x) (F,G differential polyomials in x = (x1, ., xn)) such that
F (a) 6= 0. Then for b ∈ Un such that F (b) 6= 0, clearly (b, bn+1) ∈ V iff
b ∈ V |n and bn+1 = −G(b)/F (b). In particular
(**) {(b, bn+1) ∈ V : F (b) 6= 0} is definable.

On the other hand if V2 is the 0-set of Q∪{F (x)} then clearly h(V2|n) <
h(V |n) so we can apply induction to see that V2 is definable. Together with
(**) this shows that V is definable, which is enough.

Now suppose that (m, d) > (0, 1). Suppose this is witnessed by Pa(xn+1) ∈
Qa. Then ∂(Pa) = x

(m+1)
n+1 (Sa(xn+1) + Ga(xn+1), where Sa(xn+1) has smaller

(ord, deg) than Pa(xn+1) and where Ga(xn+1) has order at most m. The no-
tation implies that Sa(xn+1) comes from some S(x, xn+1) by substituting a
for x.
Claim I. Let V1 be the 0-set of Q ∪ {S(x, xn+1)}. Then the induction hy-
pothesis applies to V1. In particular V1 is definable.
Proof. Clearly V1 ⊆ V , and so V1|n ⊆ V |n. If V1|n is a proper subset of
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V |n then h(V1|n) < h(V |n) and the induction hypothesis applies. Other-
wise V1|n = V |n and so (why?) there IS an+1 such that Sa(an+1) = 0. As
(ord, deg)Sa(xn+1) < the least (ord, deg) of any Qa(xn+1) in Qa the induction
hypothesis again applies.

Claim II. V ∩ {(b, bn+1) : S(b, bn+1) 6= 0} is definable.
Proof. Left to the reader !!

By Claims I and II, V is definable. This completes the proof of Theorem
1.26.

2 Algebraic geometry and algebraic groups

To pursue further the model theory of differential fields and the applications
we have in mind, it will be convenient to introduce some language and basic
notions of algebraic geometry.

¿From the model-theoretic point of view, where the category of definable
sets in a structure is among the central objects of study, it is natural to
think of algebraic varieties, groups,.. as special cases of definable sets (in
an algebraically closed field). However the whole development of algebraic
geometry, post-Weil, was in the opposite direction. First, there was an “in-
trinsic” definition of an algebraic variety, releasing it from any embedding in
some ambient space. Second was the notion a scheme, in which rings played
a central role and arithmetic issues were built into the general theory. I guess
I will stick with the “naive” point of view here but I may try to point out
the more general notions.

k will denote an algebraically closed field. Sometimes we may assume it
to be of uncountable transcendence degree κ (and so also κ-saturated in the
language Lr).

k[x1, .., xn] denotes the polynomial ring over k in indeterminates x1, .., xn.
One of the basic results (Hilbert’s basis theorem) is that any ideal of k[x1, .., xn]
is finitely generated. (See Chapter VI, section 2 of Lang’s Algebra.)

Definition 2.1 An affine algebraic set V is the common zero set in kn of
some system S = {fλ : λ ∈ Λ} of polynomials in k[x1, .., xn]. We write
V = V (S).
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Lemma 2.2 (With notation as in the definition above.)
(i) V (S) = V (I) where I is the ideal generated by S.
(ii) V (S) = V (S ′) for some finite subset S ′ of S.
(iii) The affine algebraic subsets of kn are the closed sets for a Noetherian
topology on kn, called the Zariski topology.

Proof. (i) is clear.
(ii). The ideal I generated by S is finitely generated, by the Hilbert basis
theorem, thus generated by a finite subset S ′ of S. Clearly V (S ′) = V (S).
(iii). By definition a Noetherian topology is a topology such that any inter-
section of closed sets is a finite subintersection. The algebraic subsets of kn

are closed under finite union (by considering products of polynomials) and
the Noetherian condition comes from (ii). Clearly also both kn and ∅ ⊂ kn

are algebraic subsets of kn.

Remark 2.3 (Hilbert’s Nullstellensatz.)
(i) If I is a proper ideal of k[x1, .., xn], then V (I) 6= ∅.
(ii) If I is an ideal of k[x1, .., xn], then the set of f ∈ k[x1, .., xn] which vanish
on V (I) is precisely

√
I =def {f : fm ∈ I for some m}.

Proof. (i) By the Hilbert basis theorem there is some (proper) prime ideal
I ′ of k[x1, .., xn] containing I (a maximal ideal for example). Then R =
k[x1, .., xn]/I ′ is an integral domain containing k. Let K be its field of frac-
tions. Let a = (a1, .., an) be the image of (x1, .., xn) in K. Then f(a) = 0 for
f in some finite generating set S of I. As k is an existentially closed field,
there is a′ ∈ kn such that f(a′) = 0 for f ∈ S. Hence a ∈ V (I).
(ii) Clearly if f ∈

√
I then f is 0 on V (I). Conversely, suppose f is 0 on V (I).

Let x0 be a new variable, and let J ⊂ k[x0, x1, .., xn] be the ideal generated
by I together with 1− x0f(x1, .., xn). If J were a proper ideal of k[x0, .., xn]
then by part (i), V (J) 6= ∅, contradicting our assumptions. (There would
be a = (a1, .., an) ∈ kn such that g(a) = 0 for g ∈ I but f(a) 6= 0.) Hence
J = k[x0, .., xn]. So 1 ∈ J and it easily follows that fm ∈ I for some m: write
1 = h(x0, .., xn)(1− x0f(x1, .., xn) +

∑
j gj(x0, .., xn)fj(x1, .., xn) with fj ∈ I.

Substitute 1/f for x0 and multiply both sides by a suitable power of f .)

If X is an arbitrary subset of kn, we let I(X) denote the set of polynomials
in k[x1, .., xn] which vanish on X. Clearly I(X) is an ideal. By 2.3 we have
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Remark 2.4 The map taking V to I(V ) sets up a bijection between (affine)
algebraic sets V ⊂ kn and radical ideals of k[x1, .., xn]. Moreover V (I(V )) =
V .

We define the affine algebraic set V ⊆ kn to be irreducible if V can not
be written as V1 ∪ V2 for V1, V2 proper algebraic subsets of V . Note that by
Lemma 2.2 (iii) any V decomposes (uniquely) into a finite union of irreducible
algebraic sets.

Exercise 2.5 Let V ⊆ kn be an algebraic set. Then V is irreducible if and
only if I(V ) is a prime ideal of k[x1, .., xn]..

Definition 2.6 Let V ⊆ kn be an affine algebraic set.
(i) By a regular function on V we mean a function from V to k given by a
polynomial f(x1, .., xn) ∈ k[x1, .., xn].
(ii) The coordinate ring k[V ] of V is the ring of all regular functions on V
(with natural addition and multiplication).

Let us first remark that it is immediate that k[V ] is the ring k[x1, .., xn]/I(V ).
For, if f, g ∈ k[x1, .., xn] then f and g define the same (regular) function on
V if and only if f − g vanishes on V iff f − g ∈ I(V ). It follows from 2.5
that V is irreducible iff k[V ] is an integral domain. In the case that V is
irreducible, we define k(V ) the field of rational functions on V to be the field
of fractions of k[V ].

There is another natural candidate for the notion of a “regular” function on
V , namely a “locally rational” function.

Definition 2.7 Let V again be an algebraic subset of kn. Let f : V → k by
an (abstract) function. We call f locally rational if for every a ∈ V there
is a Zariski open neighbourhood U of a and a pair of polynomials g1, g2 ∈
k[x1, .., xn] such that g2 6= 0 on U and f = g1/g2 on U .

Lemma 2.8 (With above notation.) The locally rational functions on V are
precisely the regular (i.e. polynomial) functions on V .

Proof. Clearly any regular function is locally rational.
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Conversely, suppose that f is locally rational. Note that any covering of
V by Zariski open subsets of V has, by 2.2 (iii), a finite subcover. Note also
that any Zariski open subset of V is a finite union of sets defined by polyomial
inequations P (x1, .., xn) 6= 0. It follows that we can find a finite set Q1, .., Qm

of polynomials, and for each i = 1, ..,m a pair fi, gi of polynomials, such that
(i) for each a ∈ V , Qi(a) 6= 0 for some i = 1, ..,m, and
(ii) whenever a ∈ V and Qi(a) 6= 0 then gi(a) 6= 0 and f(a) = fi(a)/gi(a).
Claim I. We may assume that gi = Qi for i = 1, ..,m.
Proof. Let I = I(V ). By 2.3 (ii), and (ii) above, Qi is in the radical ideal
generated by I ∪ {gi}. That is, for some positive integer ri, Q

r
i = higi + ti

for some hi ∈ k[x1, .., xn] and ti ∈ I. Hence for a ∈ V such that Qi(a) 6= 0,
fi/gi = hifi/Q

ri
i . Replace Qi by Qri

i and fi/gi by hifi/Q
ri
i for i = 1, ..,m.

Claim II. There are polynomials h1, .., hm, such that for each i = 1, ..,m,∑
j=1,..,m hjfjQjQ

2
i = fiQi on V .

Proof. First by 2.3 (i), I together with {Q2
1, .., Q

2
m} must generate the trivial

ideal k[x1, .., xn], hence there are h1, .., hm such that
(*)

∑
j=1,..,m hjQ

2
j = 1 modulo I.

On the other hand, whenever a ∈ V and both Qi and Qj are nonzero at a,
then fi/Qifj/Qj at a. Thus (for i, j ∈ {1, ..,m}),
(**) (fiQj − fjQi)QiQj vanishes on V so is in I.
Now fix i. For each j, fjQjQ

2
i = fiQiQ

2
j mod I, by (**). Hence, working

modulo I,∑
j=1,..,m hjfjQjQ

2
i = fiQi

∑
j=1,..,m hjQ

2
j which by (*) equals fiQi. Thus

yields Claim II.

By Claim II f is given on all of V by the polynomial
∑
j=1,..,m hjfjQj. So f

is regular.

Definition 2.9 An affine algebraic variety consists of a pair (V, k[V ]) where
V ⊂ kn is an affine algebraic set and k[V ] is its coordinate ring.

Before continuing let us recall the dimension of an algebraic variety. It
is convenient now to assume k to be reasonably saturated, even just ω-
saturated. Let V ⊂ kn be an algebraic set (variety). The algebraic geometers
say that V is defined over the subfield K of k if I(V ) is generated by poly-
nomials over K, namely if I(V ) is the tensor product of IK(V ) and k over
K where IK(V ) is the set of polynomials over K vanishing on V .
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Fact 2.10 V is defined over K (in the algebraic geometric sense) just if
V is defined over the perfect closure of K in the structure (k,+, ·) in the
model-theoretic sense.

In particular in characteristic zero the two notions coincide. In the follow-
ing all model-theoretic notation will be with respect to k as an Lr-structure.
Now suppose that V is a variety defined over a small subfield K of k.

Definition 2.11 (i) dim(V ) = max{tr.deg(K(a)/K) : a ∈ V }.
(ii) By a generic point of V over K we mean a ∈ V such that tr.deg(K(a)/K) =
dim(V ).

Exercise 2.12 Let V ⊆ kn be a variety, defined over K < k.
(i) dim(V ) = RM(V ).
(ii) If V is irreducible, then dim(V ) = tr.deg(k(V )/k).
(iii) If V is irreducible then dM(V ) = 1.
(iv) If V is irreducible then dim(V ) equals the Krull dimension of V , namely
the greatest m such that there exist a strict chain of irreducible varieties
V0 ⊂ V1 ⊂ ... ⊂ Vm = V .
(v) If V is irreducible, then a ∈ V is a generic point of V over K just if
a /∈ W for all proper Zariski closed subsets W of V which are defined over
K.

Let us now discuss morphisms.

Definition 2.13 Let V ⊆ kn, and W ⊆ km be varieties.
(i) A morphism from V to W is a polynomial map, namely a map f : V → W
such that each of the coordinate maps f1, .., fm is in k[V ].
(ii) By an isomorphism between V and W we mean a bijection f between V
and W such that both f and F−1 are morphisms.
(iii) The morphism f : V → W is said to be defined over K if f can be
represented by a sequence of polynomials with coefficients from K.

Note that if f is an abstract map from V to W then f induces a map f ]

of k-algebras from the k-algebra of k-valued functions on W to the k-algebra
of k-valued functions on V : for g a k-valued function on W , f ](g) is the
function on V whose value at a ∈ V is g(f(a)).

Exercise 2.14 (V,W affine varieties.) Let f be an (abstract) map from V
to W . Then f is a morphism if f ](k[W ]) ⊆ k[V ].
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Definition 2.15 Let V ⊆ kn be an irreducible affine variety. Let a =
(a1, .., an) ∈ V . Then Ma, the “maximal ideal of V at a”, is the set of
f ∈ k[V ] such that f(a) = 0. We may write MV,a to emphasize the depen-
dence on V .

Lemma 2.16 (With above notation.)
(i) Ma is a maximal ideal of k[V ].
(ii) Ma is generated as an ideal by {(x1 − a1), .., (xn − an)} (where by abuse
of notation xi denotes the ith coordinate map on V ).
(iii) Every maximal ideal of k[V ] is of the form Ma for some a ∈ V .

Proof. (i) The map which takes f ∈ k[V ] to f(a) ∈ k is a surjective ring
homomorphism whose kernel is precisely Ma. So k[V ]/Ma is a field, hence
Ma is a maximal ideal.
(ii) Left to the reader.
(iii) Let I be a maximal ideal of k[V ]. By 2.3 (i), there is a ∈ V (I). Then
I ⊆Ma, whereby I =Ma by maximality.

The maximal ideal of an irreducible variety V at a point a ∈ V is often
defined rather to be the (unique) maximal ideal of the local ring Oa of V at
a. Here Oa is the subring of k(V ) consisting of (or rather represented by)
those f/g where f, g ∈ k[V ] and g(a) 6= 0. This is often called the ring of
functions on V which are regular at a. Any element of Oa can be evaluated
at a, and the unique maximal ideal of Oa consists of those h ∈ Oa such that
h(a) = 0. This of course coincides with the “localization” of Ma at itself in
k[V ], that is {f/g ∈ k(V ) : f(a) = 0, g(a) 6= 0}.

Exercise 2.17 Let V ⊆ kn be irreducible, and a ∈ V . Let f1, g1, f2, g2 ∈
k[V ], with gi(a) 6= 0 for i = 1, 2. Then f1/g1 = f2/g2 in k(V ) just if
the function f1/g1 is defined and agrees with f2/g2 on some Zariski open
neighbourhood of a.

Because of the exercise, the local ring of V at a can be thought of as the
ring of “germs of rational functions defined at a”.

Recall that if I is an ideal of a ring R then for any n, In denotes the ideal of
R generated by all products r1...rn where ri ∈ I for i = 1, .., n.
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Lemma 2.18 Suppose that f : V → W is a morphism of irreducible affine
varieties. Let a ∈ V and f(a) = b ∈ W . Then
(i) For any r, f ]((MW,b)

r)) ⊆ (MV,a)
r.

(ii) Moreover, if V ⊆ kn, W = kn and f is the natural embedding, then
f ]((MW,b)

r) = (MV,a)
r for all r.

Proof. (i) is clear. For (ii), it is enough to prove it for r = 1. In this case
a = f(a). If g ∈ k[V ] then g = h/I(V ) for a polynomial h ∈ k[x1, .., xn] =
k[W ], and g(a) = 0 iff h(a) = 0.

Lemma 2.19 Let V ⊆ kn be an irreducible variety, and let a ∈ V . Then for
any positive integer r, Ma/(Ma)

r is a finite-dimensional k-vector space.

Proof. By Lemma 2.10 it is enough to prove this when V = kn. For conve-
nience we restrict our attention to the case when a = (0, .., 0). A polynomial
f is inM0 iff it has no constant term. Moreover two such polynomials yield
the same element in the quotientM0/(M0)r if they have the same terms of
(total) degree < r. Thus the vector space in question is finite-dimensional.

Remark 2.20 (With above notation.) (i) The k-vector space Ma/(Ma)
2 is

called the (Zariski) cotangent space of V at a. Its dual is called the (Zariski)
tangent space of V at a and will be discussed more later in this section.
(ii) If M′ say denotes the maximal ideal of the local ring of V at a, then
there are canonical isomorphisms between Ma/(Ma)

r and M′/(M′)r.

We wll need the following commutative algebraic result (which follows from
Krull’s Theorem, which in turn follows from the Artin-Rees lemma):

Fact 2.21 Let R be a Noetherian domain (that is, an integral domain sat-
isfying the ascending chain condition on ideals). Let I be an ideal of R with
I 6= R. Then ∩nIn = 0.

Sometimes the affine variety kn is denoted by An. Let V ⊆ kn be an
irreducible variety and a ∈ V . Let iV : V → An be the canonical embed-
ding. Then by 2.18(ii), for each r, i]V induces a surjective k-linear map from
MAn,a/(MAn,a)

r to MV,a/(MV,a)
r which we denote (i]V )r for now.
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Lemma 2.22 Let V,W ⊆ kn be irreducible affine varieties. Suppose a ∈ V ∩
W . Then V = W if and only if ker((i]V )r) = ker((i]W )r) for all r = 2, 3, ....

Proof. Clearly the left hand side implies the right hand side.
Suppose now that the RHS holds. We will show that I(V ) ⊆ I(W ).

By symmetry we conclude that I(V ) = I(W ) hence V = W . So let f ∈
k[x1, .., xn] be in I(V ). In particular f(a) = 0. So f is in the maximal ideal
of An at a. As f/I(V ) ∈ k[V ] equals 0, it follows that f (or rather its suitable
quotient) is in the kernel of (i]V )r for all r. By assumption, this implies f is
in the kernel of (i]W )r for all r. This means that f/I(W ) is in (MW,a)

r for
all r. But k[W ] is a Noetherian domain, andMW,a is a proper ideal of k[W ].
So by Fact 2.21, f/I(W ) = 0, that is f ∈ I(W ).

Let us now discuss a little more cotangent and tangent spaces. Let us fix an
irreducible affine variety V ⊆ kn, defined over K < k say. Fix a ∈ V . As
earlier MV,a denotes the maximal ideal of V at a. We let T (V )a denote the
tangent space to V at a.

Fact 2.23 The k-dimension of Ma/(Ma)
2 is ≥ dim(V ). In particular the

dimension of T (V )a (as a k-vector space) is ≥ dim(V ).

Explanation. In some of the books this is done in a purely commutative
algebraic way. The dimension of a ring is defined to be the sup of the
lengths of strictly ascending chains of prime ideals of the ring. So note
that dim(k[V ]) = dim(V ) (why?). Next for R a finitely generated integral
domain over a field k, dim(R) is the same as dim(RM) whereM is any max-
imal ideal of R and RM denotes the localization of R at M. Thus we see
that k[V ] and the local ring Oa of V at a have the same dimension. Lastly, if
A s a local Noetherian ring, then dim(A) is finite and ≤ the A/M-dimension
of M/M2 where M is the unique maximal ideal of A. Applying this to the
local ring of V at a and using Remark 2.20(ii) we obtain the fact above.

Let us give a more explicit description of the cotangent and tangent spaces of
V at a. We will start with the cotangent space. Note that any f ∈ k[x1, .., xn]
has a Taylor expansion at a = (a1, .., an), namely can be written as a poly-
nomial in (x1 − a1), .., (xn − an). We will write La(f) for the linear part of
this expansion. Note that f ∈ MAn,a iff the linear part of f has 0 con-
stant term. Note also that f = La(f) + g where g ∈ (MAn,a)

2. MV,a is
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precisely {f/IV : f ∈ MAn,a}. Thus we can identify (the k-vector space)
MV,a/(MV,a)

2 with kn/ ∼ where (c1, .., cn) ∼ (d1, .., dn) if the linear polyno-
mials c1(x1 − a1) + .. + cn(xn − an) and d1(x1 − a1) + .. + dn(xn − an) are
equivalent modulo I(V ) + (MV,a)

2 = I(V ) + (MAn,a)
2.

Now the space of k-valued linear functions on kn can be considered as kn

itself together with the action (y1, .., yn)((c1, .., cn)) = y1c1 + ..+ yncn. So we
obtain T (V )a as a k-subspace of kn (consisting of those (y1, .., yn) such that
y1c1 + .. + yncn = y1d1 + ... + yndn whenenever (c1, ., cn) ∼ (d1, .., dn)). Let
us now give explicit equations for this subspace of kn.

Fact 2.24 (i) (y1, .., yn) ∈ T (V )a if and only if
(*)

∑
i=1,..,n((∂P/∂xi)(a))yi = 0 for all P (x1, .., xn) ∈ I(V ).

(ii) In (i) it is enough to restrict our attention to those P in a fixed finite
set of generators of I(V ). In particular, if V is defined over K, then T (V )a
is defined over K(a).

Proof. (i) First suppose (*) holds of (y1, .., yn). Now if (c1, .., cn) ∼ (d1, .., dn)
then (c1 − d1)(x1 − a1) + .. + (cn − dn)(xn − an) + g = P ∈ I(V ), for some
g(x1, .., xn) ∈ (MAn,a)

2. Hence by (*) y1(c1 − d1) + ..+ yn(cn − dn) = 0. So
(y1, .., yn) ∈ T (V )a.
Conversely, suppose (y1, .., yn) ∈ T (V )a, and let P (x1, .., xn) ∈ I(V ). Then
P (a) = 0, so P = La(P ) + R where La(f) has no constant term. Let
La(P ) = c1(x1 − a1) + ..+ cn(xn − an). Then clearly
(I).

∑
i=1,..,n((∂P/∂xi)(a))yi =

∑
i=1,..,n ciyi.

On the other hand (c1, .., cn) ∼ (0, .., 0). Hence
(II).

∑
i=1,..,n ciyi = 0.

By (I) and (II), we get that (y1, .., yn) satisfies (*).
(ii) is clear.

Lemma 2.25 Let a be a generic point of V over K. Then dim(T (V )a) =
dim(V ).

Proof. By 2.23 we only have to prove ≤. Suppose that dim(V ) = r.
After reordering we may assume that a1, .., ar are algebraically indepen-
dent over K and each ai for i = r + 1, .., n is algebraic over K(a1, .., ar).
For i = r + 1, .., n, let si be the degree of ai over K(ai, .., ar). So (for
each i) we can find a polynomial over K, Fi(x1, .., xr, xi) say, such that
Fi(a1, .., ar, ai) = 0 and the degree of Fi in xi is si. Now as a is a generic point
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of V over K, Fi(x1, .., xr, xi) ∈ I(V ) (Why??) So for any (y1, .., yn) ∈ T (V )a,
(
∑
j=1,..,r(∂Fi/∂xj)(a)yj) + (∂Fi/∂xi)(a)(yi) = 0. But (∂Fi/∂xi)(a) 6= 0,

hence yi is in the k-linear span of (y1, .., yr). As (y1, .., yn) ∈ T (V )a was
arbitrary we obtain the result.

Definition 2.26 a ∈ V is said to be a nonsingular point of V if dim(T(V ))a) =
dim(V ). V is said to be smooth or nonsingular if all points on V are non-
singular.

Corollary 2.27 The set of nonsingular points of V is a (nonempty) Zariski
open subset of V .

Proof. Note from 2.24 that the tangent spaces of V at various points of V
are uniformly definable. So it follows from 2.25 and quantifier-elimination
that the set of nonsingular points of V CONTAINS a Zariski open subset of
V . We leave it to the reader to conclude the proof.

Remark 2.28 (i) Suppose f(x) is a polynomial of one variable, and a ∈ k.
Then the tangent space to the variety defined by y = f(x) at (a, f(a)) is
the line through the origin with slope (df/dx)(a). After translating this line
by (a, f(a)) we obtain the “usual” tangent line to the graph of y = f(x) at
(a, f(a)).
(ii) More generally the tangent space to the variety V at a point a (as we
defined it above) can be thought of as the totality of points on lines through a
in kn which are “tangent to” V at a (after translating the origin to a). Here
“tangent to” means intersects at a with multiplicity ≥ 2, which can again be
made precise.

We can put all the tangent spaces of V at various points together to form
the “tangent bundle” of V .

Definition 2.29 (Assume V ⊆ kn is an irreducible affine algebraic vari-
ety and that I(V ) is generated by P1, .., Pm.) The tangent bundle T (V ) of
V is the affine algebraic variety, contained in k2n and defined by equations
Pj(x1, .., xn) = 0 and

∑
i=1,..,n((∂Pj/∂xi)(x1, .., xn))yi = 0 for j = 1, ..,m.

So T (V ) is simply the set of pairs (a, v) where a ∈ V and v ∈ T (V )a.
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Fact 2.30 If V ⊂ kn is (irreducible and) smooth then T (V ) is irreducible
and smooth.

Definition 2.31 Let V be an irreducible affine algebraic variety, and f a
regular function on V , then df , the differential of f , is the regular function
on T (V ) defined by df(a, v) =

∑
i=1,..,n(∂f/∂xi)(a)vi.

Remark 2.32 For each a ∈ V , the map taking f ∈ k[V ] to the function
df(a,−) defines an isomorphism between Ma/(Ma)

2 and the dual space to
T (V )a.

Exercise 2.33 Let V ⊂ kn and W ⊆ km be irreducible affine varieties, and
let f : V → W be a morphism. So f = (f1, .., fm) with fi regular functions
on V . Define df (the differential of f) to be (df1, .., dfm). Show that df is
a morphism from T (V ) to T (W ), and that for each a ∈ V , df |T (V )a is a
linear map from T (V )a to T (W )f(a).

Before discussing arbitrary (not necessarily affine) varieties we have to say a
little more about rational functions.

Definition 2.34 Let V ⊂ kn be an affine variety and U a nonempty Zariski-
open subset of V .
(i) A function f : U → k is said to be regular on U if it is locally rational,
namely for every a ∈ U there is a Zariski open neighbourhood U ′ ⊆ U of
a such that on U ′ f is given by a quotient of polynomials, or equivalently a
quotient of functions in k[V ].
(ii) A map f from a Zariski open subset U of an affine V ⊆ kn to a Zariski
open subset U ′ of an affine variety W ⊂ km is said to be a morphism from
U to U ′ if the coordinate functions f1, .., fm are refular functions on U .

Note again that if f is a regular function on the open subset U of V then
there is a finite covering of U by Zariski opens Ui such that for each i f |Ui is
given by a quotient of polynomials. Sometimes we call Zariski open subsets
of affine varieties, quasi-affine varieties (although we should also equip them
with a sheaf of regular functions..). Note that any Zariski open subset of V is
defined by a finite disjunction of polynomial inequations (together with the
equations defining V ). By a principal open subset of V we mean a Zariski
open subset of V defined by a single inequation g(x1, .., xn 6= 0.
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Exercise 2.35 Suppose U is a principal open subset of the affine variety
V ⊂ kn.
(i) Then U is isomorphic to an affine variety.
(ii) Any regular function f on U can be represented by a quotient of polyno-
mials.

Hint. Let U be defined by g(x) 6= 0 (plus x ∈ V ). Consider the affine variety
W ⊂ kn+1 defined by x ∈ V plus g(x)y = 1. Show that the the natural
bijection between U and W is an isomorphism (in the sense of Definition
2.34. Also show that f gives rise to a locally rational function from V to k
which is by 2.8 given by a polynomial.

Let us discuss the relationship between regular functions on Zariski open
subsets of V and rational functions on V when V is affine and irreducible.

Lemma 2.36 Let V ⊆ kn be an affine irreducible variety. Let X be the set
of pairs (U, f) such that U is a nonempty Zariski open subset of V and f is a
regular function on U . Define (U, f) ∼ (U ′, f ′) if there is some Zariski open
U ′′ ⊆ U ∩ U ′ such that f |U ′′ = f ′|U ′′. (We say that f and f ′ have the same
germ.) Then
(i) ∼ is an equivalence relation,
(ii) if (U, f) ∼ (U ′, f ′) then already f |U ∩ U ′ = f ′|U ∩ U ′.
(iii) The set of ∼-equivalence classes is precisely k(V ).

Proof. Note that any two nonempty open subsets of V intersect in a nonempty
open subset. Thus (i) is clear.
(ii). It is enough to show that if O ⊆ U ∩ U ′ is a principal open subset of
V then f agrees with f ′ on V . By 2.35 f |0 is given by P1/Q1 where P1, Q1

are polyomials and Q1 is every nonzero on O. Likewise f ′|O is given by
P2/Q2. Now by assumption there is nonempty Zariski open subset O′ of O
such that f and f ′ agree on O′. In particular P1Q2 = P2Q1 on O′. It follows
(by irreducibility of V ) then P1Q2 = P2Q1 on V , in particular on O. Thus
P1/Q1 = P2/Q2 on O.
(iii). By 2.35, every (U, f) is ∼ to some (U ′, f ′) where f ′ is given by a quotient
P/Q of polynomials, and U ′ is defined by Q 6= 0. That is each equivalence
class of ∼ is “represented” by some quotient P/Q of polynomials. Clearly
P/Q and P ′/Q′ give the same germ if PQ′ = P ′Q on V iff P/Q = P ′/Q′ in
k(V ).
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Definition 2.37 By an (abstract) pre-variety (over k), we mean the follow-
ing data:
(i) a set V ,
(ii) a covering V = V1 ∪ .. ∪ Vm of V .
(iii) for each i = 1, ..,m, an affine variety Ui ⊆ kni and a bijection fi between
Vi and Ui such that for each i, j, fi(Vi∩Vj) is a (possibly empty) Zariski open
subset of Ui, and fj ◦ f−1

i |fi(Vi ∩ Vj) is an isomorphism between fi(Vi ∩ Vj)
and fj(Vi ∩ Vj).
We say that this pre-variety is defined over K if all algebraic-geometric data
(the Ui and the transition functions) are defined over K.

Remark 2.38 It may be more convenient to call the above data on V an
atlas on V , to define when two atlases are equivalent (compatible) and to say
that the prevariety given above is defined over K if it has a compatible atlas
which is defined over K.

Example 2.39 (i) An affine variety V ⊆ kn is a pre-variety (take the cov-
ering of V by itself),
(ii) More generally a quasi-affine variety is a pre-variety. (Write U as a
union of principal opens.)
(iii) Projective n-space over k, Pn(k) is the set of lines in kn+1 through the
origin (that is 1-dimensional vector subspaces of kn+1). We can think of pro-
jective n-space over k as the set of equivalence classes of n+1-tuples (a0, .., an)
from k such that not all ai are 0 and where (a0, .., an) is equivalent to (b0, .., bn)
if there is λ ∈ k such that bi = λai for i = 0, .., n. We write [a0 : .. : an] for
the equivalence class of (a0, .., an). For each i = 0, .., n, let Vi = {[a0 : .. :
an] : ai 6= 0}. Let Ui = kn = An and let fi be the bijection between Vi and kn

given by fi([a0 : .. : an]) = (a0/ai, .., ai−1/ai, ai+1/ai, .., an/ai). We leave it as
an exercise to show that this gives Pn the structure of a pre-variety. (One
has to check that the fi(Vi∩Vj) are open subsets of kn and that the transition
functions are isomorphisms.)

Let us now (in a rather informal manner) adapt the Zariski topology and
the notions of regular function, morphism etc. to pre-varieties. Given a pre-
variety (V, Vi, Ui, fi)i we say that a subset X of V is (Zariski) open if for each
i, fi(Vi ∩ X) is a Zariski open subset of the affine variety Ui. We leave it
to the reader to check that the Zariski topology on V is Noetherian (DCC
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on closed sets). Also any open subset of V has naturally the structure of
a pre-variety (why?) as does any closed subset subset of V . In particular
any pre-variety is a union of finitely many irreducible closed subsets, its
irreducible components.

By a regular function on the pre-variety V we mean a function f : V → k,
such that for each i, f ◦ f−1

i is a regular function on the affine variety Ui. If
V ′ is a Zariski open subset of V , then a map f : V ′ → k is regular if for each
i, f ◦ f−1

i is regular on the Zariski open subset fi(V
′ ∩ V ) of Ui, as defined

earlier. We leave it to the reader to check that this coincides with the notion
of a regular map on the pre-variety V ′.

Remark 2.40 Let V be a pre-variety. Then V equipped with its Zariski
topology, and for each Zariski open U ⊆ V , the ring (in fact k-algebra) of
regular functions on U , is a sheaf (of k-algebras). What this amounts to is
that given open U ⊆ V and a covering Uα of U by open sets, and sα regular
functions on Uα such that sα = sβ on Uα∩Uβ then there is a regular function
s on U whose restruction to each Uα is sα.

The notion of a morphism f between pre-varieties V and W is the obvious
one. Assume V is given by data (Vi, Ui, fi)i and W by data (Wj, Oj, gj). Then
f should be a map from V to W which is continuous in the Zariski topology,
and moreover, for any i, j, f |(Vi ∩ f−1(Wj)) : (Vi ∩ f−1(Wj)) → Wj, when
read in the charts Ui and Oj is a morphism from an open subset of Ui to Oj.
Note that this agrees with the notion of a morphism defined earlier between
affine or quasi-affine varieties.

If V,W are pre-varieties, then V ×W has a natural structure of a pre-
variety (with covering by Vi ×Wj’s and bijections fi × gj between Vi ×Wj

and Ui ×Oj).
The pre-variety V is said to be a variety if it is separated, namely the

diagonal {(x, x) : x ∈ V } is Zariski closed in V × V . (This is the analogue
of Hausdorfness for topological spaces.) Note that affine and quasi-affine
varieties are separated. An example of a pre-variety which is not a variety is
the affine line with a double point: both charts are A1 = k, and the transition
map identifies only the 2 copies of the line with {0} removed.

By a projective variety we mean a variety which is a Zariski closed subset
of some Pn(k) (with the induced structure of a variety). It is a fact that a
projective variety, as a subset of Pn(k) can be defined by a finite system of
homogeneous equations.
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Definition 2.41 A variety X is said to be complete if for any other variety,
the projection map π : X×Y → Y is closed, namely takes Zariski-closed sets
to Zariski-closed sets.

Note that any closed subvariety of a complete variety is complete.

Fact 2.42 Any projective variety is complete.

Lemma 2.43 If X is an irreducible complete variety then any regular func-
tion on X is constant.

Proof. Suppose f : X → k is a regular function. We may assume that f is
not identically 0. Then Z = {(x, y) ∈ X × k : f(x)y = 1} is a nonempty
Zariski closed in X × k (why?). So π(Z) is nonempty and closed in k (and
clearly irreducible). As 0 /∈ π(Z), this forces π(Z) to be a singleton.

Corollary 2.44 (i) If X is a complete variety, and Y is an irreducible closed
subvariety which is affine (that is, isomorphic to an affine variety), then Y
is a singleton.
(ii) Any morphism from an irreducible complete variety to an affine variety
is constant.

Proof. (i) Now Y is also complete. If Y were affine and infinite then some
coordiate function would give a noncontant regular map on Y , contradicting
2.43.
(ii) Similar.

Lemma 2.45 Suppose X is a complete irreducible variety, Y, Z are irre-
ducible varieties and f : X × Y → Z is a morphism such that for some
y0 ∈ Y , the map f(−, y0) : X → Z is constant. Then for all y ∈ Y , the map
f(−, y) : X → Z is constant.

Proof. Let z0 ∈ Z be the common value of f(x, y0) for x ∈ X. Let U be an
affine open neighbourhood of z0 in Z. Then V = {(x, y) ∈ X × Y : f(x, y) /∈
U} is closed in X × Y . So the projection V1 of V on Y is closed in Y . As
y0 /∈ V1, the complement of V1 in Y , O say, is open and nonempty. For any
y1 ∈ O, f(−, y1) is a morphism fromX into the affine variety U , hence by 2.44
(ii), is constant. Now pick x0, x1 ∈ X. Then {y ∈ Y : f(x0, y) = f(x1, y)}
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is clearly closed in Y and by what we just saw, contains a nonempty open
subset of Y . As Y is irreducible, this set is all of Y which is what we want.

Among the important things we want to point out that is for an arbitrary
irreducible variety X, the tangent bundle T (X) of X makes sense, and is
another variety. Suppose X is covered by affine varieties Vi. So here we mean
that the Vi are open subsets of X, each identified (by a given bijection) with a
(neccesarily irreducible affine variety). For each i, j, we have an isomorphism
fi,j say between an open subset Ui say of Vi and Uj of Vj. We have the
affine varieties T (Vi) and T (Vj) defined earlier. Let πi be the canonical
surjection from T (Vi) to Vi, and likewise for πj. Then π−1

i (Vi) and π−1
j (Vj)

are open subsets of T (Vi), T (Vj) respectively, and we leave it to the reader to
check that dfi,j is an isomorphism between these two quasi-affine varieties.
This gives us the required transition functions between open subsets of the
various T (Vi) and yields a variety T (X) together with a surjective morphism
π : T (X)→ X.

The tangent space T (V )a to V at a is just π−1(a). Note on the other
hand that this can be obtained wthout constructing the full tangent bundle.
Simply consider an affine neighbourhood V1 of a in V and define the tangent
space at a to be T (V1)a. The point a ∈ V (V irreducible) is said to be
nonsingular on V if dim(V ) = dim(TV )a. V is smooth or nonsingular if all
points on it are nonsingular.

Let us now discuss rational functions. Let V be an irreducible variety. Con-
sider regular functions from (nonempty) Zariski open subsets of V to k. As
in the affine case, call two such functions (U1, f1), (U2, f2) equivalent if f1

agrees with f2 on some nonempty Zariski open of U1 ∩ U2. We will call the
set of equivalence classes the field of rational functions k(V ) of V . Note that
if V ′ is one of the affine charts on V then k(V ) = k(V ′) (why?)

Let W be another irreducible variety. We will say that V and W are bi-
rationally isomorphic if there is an isomorphism f between nonempty Zariski
open subsets U , U ′ of V,W respectively. One of the main aims of algebraic
geometry is the classification of algebraic varieties up to birational isomor-
phism.

Fact 2.46 V and W are birationally isomorphic if k(V ) is isomorphic to
k(W ) over k (as fields).
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It is also important to see that all these objects, varieties, morphisms,.. are
definable in the algebraically closed field k. On the face of it, they live in
(k,+, ·)eq. For example if the variety is given by data (Vi, Ui, fi)i, then we
can identify V set-theoretically with the disjoint union of the affine varieties
Ui quotiented out by a definable equivalence relation. By elimination of
imaginaries this latter definable set in keq is in definable bijection with some
definable subset X of some kn. If the original variety V was defined over K,
X will be too. Likewise if W is another variety with corresponding definable
set Y then a morphism from V to W gives rise to a definable map from X
to Y . With this notation we have:

Exercise 2.47 If V has dimension m then X has Morley rank m.

On the other hand:

Fact 2.48 (i) Let X be a definable subset of kn. Let X̄ be the Zariski closure
of X. Then X contains a Zariski-open, Zariski-dense subset of X̄. Moreover
RM(X̄ \X) < RM(X).
(ii) (characteristic zero.) Let X ⊂ kn, Y ⊂ km and let f be a definable
function from X to Y . Then there is U ⊂ X such that U is Zariski-open and
Zariski-dense in X̄ and f |U is a morphism from U to Ȳ .

Proof. (i) is by quantifier-elimination in algebraically closed fields. (ii) can be
dediced from (i) and the fact that definable functions are “piecewise rational”.

In any case we will often identify a variety with the corresponding definable
set and we will simply talk about points of the variety as if they were tuples
from k. If V is a variety defined over K, and K < L < k then V (L) denotes
those points of V all of whose coordinates are in L. With this convention we
have the following, which should be seen as the analogue of 2.48 when kn is
replaced by an arbitrary algebraic variety”

Exercise 2.49 (i) Let V be a variety, and X a definable subset of V . Then
X is a Boolean combination of closed sets, X contains a Zariski-dense Zariski-
open subset of its Zariski closure X̄ in V , and RM(X̄ \ X) < RM(X) =
RM(X̄),
(ii) (char. 0.) Let W be another variety, and f : V → W a definable func-
tion. Then there is a Zariski-open Zariski-dense subset U of V such that f |U
is a morphism from U to W .
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Definition 2.50 (i) By an algebraic group we mean an variety X equipped
with a pair of morphisms mult : X × X → X, and inv : X → X and
a distinguished point id ∈ X such that (X,mult) is a group, inv is group
inversion and id is the identity element of the the group. We will say that
the algebraic group is defined over K if all this data is defined over K.
(ii) By an algebraic subgroup of an algebraic group G we mean a subgroup H
of G which is also a Zariski closed subset of G.
(iii) By a morphism of algebraic groups we mean a morphism of varieties
which is also a group homomorphism.

Remark 2.51 Any algebraic group G is smooth.

Proof. For any a, b ∈ G there is an isomorphism (of algebraic varieties) taking
a to b (left multiplication by ba−1). So as some point on G is smooth, every
point is.

Example 2.52 The general linear group over k, GL(n, k) is an algebraic
group. On the face of it the underlying set of GL(n, k) is the principal open
subset of kn

2
defined by the vanishing of the determinant. In any case, multi-

plication is given by a polynomial map and inversion by an everywhere defined
rational map. On the other hand, we can view GL(n, k) as the affine variety
{x, y) ∈ kn+1 : det(x)y = 1}, and multiplication and inversion are now given
by polynomial functions.

Definition 2.53 By a linear algebraic group, we mean a closed subgroup of
some GL(n, k).

At the opposite extreme we have abelian varieties.

Definition 2.54 An abelian variety is a complete irreducible algebraic group.

Remark 2.55 Any abelian variety is a commutative group.

Proof. Write the group operation on G multiplicatively, and let e denote
the identity. The map f : G × G → G given by f(x, y) = xyx−1y−1 is a
morphism and f(−, e) is constant. Hence by 2.45, for any y ∈ G, f(−, y) is
constant,so (by taking x = e) as constant value e. So G is commutative.
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Abelian varieties are closely related to algebraic curves: any (smooth, pro-
jective) algebraic curve C which is not birational to A1 embeds as a closed
subvariety of some abelian variety J(C) which it actually generates under
addition. Elliptic curves are precisely 1-dimensional abelian varieties.

Example 2.56 Consider the projective variety E defined by y2z = x3 +
axz2 + bz3 where the polynomial x3 + ax+ b has distinct zeroes. This can be
thought of as the affine curve defined by y2 = x3 +ax+ b (embedded in P 2 by
(x, y)→ [x, y, 1]) together with the point at infinity [0, 1, 0]. Let O denote the
point at infinity. Define a binary operation on E as follows: for P,Q ∈ E,
let L be the line through P and Q (tangent to P if P = Q), and let R be the
third point on the intersection of L with E. Let L′ be the line through O and
R. Then P ⊕ Q is the third point on the intersection of L′ with E. Then
(C,⊕) is an abelian variety of dimension 1.

Elliptic curves give among the easiest examples of definable families of
essentially mutually nonisomorphic varieties. For example, the elliptic curves
Eλ given by y2 = x(x − 1)(x − λ) as λ varies include (up to isomorphism)
all elliptic curves, and Eλ is isomorphic to Eλ′ just if j(λ) = j(λ′) where
j(λ) = (λ2 − λ+ 1)3/λ2(λ− 1)2.

Note that an algebraic group G is in particular a group definable in k. We
will see that there is a close relationship between the algebraic-geometric and
definability properties of G.

Lemma 2.57 Let G be an algebraic group, and H a definable subgroup of
G. Then H is closed in G, hence an algebraic subgroup.

Proof. Let X be the Zariski-closure of H in X. Then X is a (definable)
subgroup of G (Why??) By Exercise 2.49, RM(X \H) < RM(X), hence by
4.27 of [3], X = H ·H = H.

Lemma 2.58 (characteristic zero.) Let G and H be algebraic groups. Then
any definable homomorphism f from G to H is a morphism.

Proof. By 2.49 (ii), there is a nonempty open subset U of G such that f |U
is a morphism. Fix a ∈ G, then the translate aU of U by a is also open, and
f |aU is also a morphism. (For u ∈ a.U , f(u) = f(a).f(a−1u) and a−1u ∈ U .)
Hence f is locally rational so a morphism.
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Lemma 2.59 Let G be an algebraic group. Then the connected component
of G in the model-theoretic sense coincides with the irreducible component of
the variety G which contains the identity.

Proof. Let G0 be the model-theoretic connected component of G (smallest
definable subgroup of finite index). By the previous lemma, G0 is closed (as
are each of its finitely many translates). So all we have to see is that G0 is
irreducible. It is rather easy to see that G0 acts (by left multiplication say)
transitively and definably on its set of irreducible components. So the set of
g ∈ G0 which leave each irreducible component invariant is a definable sub-
group of G0 of finite index, hence equals G0. So there is only one irreducible
component G0 itself.

By the above lemma, the translates of G0 coincide with the connected com-
ponents of G in the Zariski topology, hence the expression “connected com-
ponent”.

A basic result connecting the definable and geometric categories is:

Proposition 2.60 Any group definable in (k,+, ·) is definably isomorphic
to an algebraic group.

Let us sketch a proof of this, in the characteristic zero case, making crucial
use of a result of Weil.

Let G be our definable group. There is no harm in assuming G to be
connected in the model-theoretic sense. Assume G ⊂ kn. Let K be an alge-
braically closed subfield of k such that G is K-definable, and we assume k to
be |K|+-saturated. G has a unique generic type p(x) over K. (p is the unique
type over K of maximal Morley rank = m say of G, and p is stationary.) Let
f : G × G → G be the group operation. Let Ḡ be the Zariski-closure of G
(also defined over K). By 2.48 there is U ⊆ G×G such that U is Zariski-open
and Zariski-dense in Ḡ × Ḡ and f : U → Ḡ is a morphism. We can choose
U to be K-definable. Now Ḡ may have several irreducible components. But
one of the irreducible components has p as its “generic type”. Call this irre-
ducible component X. Replace U by {u ∈ U : f(u) ∈ X} ∩ (X ×X). Then
with this new U we have that U ⊂ G × G is Zariski-open (and dense) in
X ×X, and f |U : U → X is a morphism. Note that p is the generic type of
X (a ∈ X is generic over K iff tp(a/K) = p.) Note also that if a, b realize p
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and are independent over K then (a, b) ∈ U , in fact (a, b) is a generic point
of (the irreducible quasi-affine variety) U over K. Summarizing we have:
an irreducible affine variety X defined over K, and a morphism f from a
Zariski-open subset U of X ×X (defined over K) to X such that
(i) if (a, b) is generic in X × X over K, and c = f(a, b) then K(a, b) =
K(a, c) = K(b, c) and
(ii) if (a, b, c) is a generic of X × X × X over K, then f(f(a, b), c) =
f(a, f(b, c)).
¿From this data, Weil’s theorem produces a connected algebraic group (H, ·)
defined over K and a birational isomorphism h between X and H, such
that for generic (a, b) ∈ X × X over K, h(f(a, b)) = h(a) · h(b). In par-
ticular h is a (definable, partial) map from G to H such that h(a) is de-
fined whenever a realizes p, and for for K-independent realizations a, b of p,
h(ab) = h(a) · h(b). For any c ∈ G, choose a, b realizing p such that c = ab.
Define h′(c) = h(a) · h(b). Then h′ is a definable isomorphism of G with H.

Among the consequences of Proposition 2.60 is a rather straightforward proof
that the quotient of an algebraic group by a normal algebraic subgroup is also
an algebraic group. Namely, suppose G is an algebraic group, and N a normal
algebraic subgroup. Them there is another algebraic groupH and a surjective
homomorphism h : G→ H of algebraic groups, whose kernel is precisely N .
For G/N is a definable group, hence by 2.60 definably isomorphic to an
algebraic group H. We obtain a definable surjective homomorphism f : G→
H whose kernel is N . By 2.58, f is a morphism.

Let us complete this section with some remarks on the structure of algebraic
groups. We will assume k has characteristic zero, for simplicity. In general
we call an algebraic linear (abelian variety), if it is isomorphic to a linear
algebraic group (abelian variety).

Fact 2.61 (i) (Chevalley) Suppose G is a connected algebraic group defined
over K < k. Then there is a unique maximal normal connected linear alge-
braic subgroup L of G (defined over K too), and G/L is an abelian variety.
(ii) Let G be a commutative connected linear algebraic group, defined over
K. Then G has unique connected algebraic subgroups N, T , also defined over
K, such that G = N · T , N ∩ T = {1}, N is a “vector group”, namely N is
isomorphic to (k,+)d for some d, and T is a “algebraic torus”, namely T is
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isomorphic to (k∗, ·)s for some s.

Definition 2.62 By a semiabelian variety we mean a connected algebraic
group G which is an extension of an abelian variety by an algebraic torus.
(That is there is T < G an algebraic torus, and G/T is an abelian variety.)

Often we write commutative algebraic groups in additive notation.

Fact 2.63 Let A be a semiabelian variety. Then A is divisible and for any
n the n-torsion subgroup of A = {x ∈ A : nx = 0} is finite. Moreover the
torsion subgroup of A is Zariski-dense in A.

In the special case where A is an abelian variety of dimension d, then for
each prime p, the group of p-torsion elements of A is (Z/pZ)2d. Assuming
k to be the field of complex numbers, then A has the structure of a real Lie
group, and as such is isomorphic to (S1)2d where S1 is the circle group.

Corollary 2.64 Semiabelian varieties satisfy the following rigidity property:
assume A to be a semi-abelian variety defined over K. Then any connected
algebraic subgroup of A is defined over acl(K).

Proof. Let B < A be a connected algebraic subgroup of the semi-abelian
variety A. Then the torsion of B is contained in the torsion of A so by 2.63,
contained in B(acl(K)). As B is also a semiabelian variety, the torsion of
B is Zariski-dense in B. So any automorphism of k fixing acl(K) pointwise
leaves B invariant. Hence B is defined over acl(K).

We have discussed stabilizers of types in the context of ω-stable groups. This
of course applies to algebraic groups too.

Exercise 2.65 Let G be an algebraic group and X an irreducible closed sub-
set of G, all defined over K. Let p(x) ∈ S(K) be the generic type of X (that
is p(x) says x ∈ X and x /∈ Y for Y any proper Zariski-closed subset of X
defined over K). Then Stab(p) coincides with the “set-theoretic” stabilizer
{g ∈ G : g ·X = X} of X in G.

Finally we consider tangent bundles of algebraic groups.
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Fact 2.66 Suppose G is a connected algebraic group, defined over K. Let
f : G × G → G denote the group operation (g, h) → gh = f(g, h). Let
T (G) be the tangent bundle of G (an irreducible algebraic variety also de-
fined over K). Define the following binary operation on T (G) : (g, u)·(h, v) =
(gh, df(g,h)(u, v)). Then
(i) (T (G), ·) is an algebraic group, defined over K, and the canonical surjec-
tion π : T (G)→ G is a homomorphism of algebraic groups.
(ii) For g ∈ G, write λg : G→ G and ρg : G→ G for left and right multipli-
cation respectively by g. Then (g, u) · (h, v) = (gh, d(λg)h(v) + d(ρh)g(u)).

3 Finite Morley rank sets and groups in dif-

ferentially closed fields

We will make use of the algebraic geometric language and results from the
previous section to shed some more light on the structure of sets of finite
Morley rank definable in differentially closed fields. As in section 1, we fix
a saturated differentially closed field U . We have both the language of rings
Lr and the language of differential rings L∂. By definable we usually mean
L∂-definable. On the other hand U is also an algebraically closed field of
characteristic zero, and so taking k from the last section to be U , we have
algebraic varieties, morphisms,.. at our disposal too.

The first aim is to give a canonical form for stationary types of finite
Morley rank (finite order).

Definition 3.1 Let X ⊆ Un be an irreducible affine algebraic variety defined
over the (small, differential) subfield K of U . By τ(X) we mean the subset
of U2n defined by:
(i) x ∈ X,
(ii) (∂P/∂xi)(x)vi + P ∂(x) = 0, for all P (x) ∈ IK(X).

Lemma 3.2 (i) τ(X) is an affine algebraic variety defined over K, and
comes equipped with a surjective morphism π (over K) to X.
(ii) Let a ∈ X. Then (a, ∂(a)) ∈ τ(X).
(iii) Let π0 : T (X) → X be the tangent bundle of X. Then for each a ∈ X,
T (X)a acts strictly transitively on τ(X)a by addition. In fact these ac-
tions fit together to give a morphism T (X) ×X τ(X) → τ(X) which sends
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((a, u), (a, v)) to (a, u+ v).
(iv) Let Y be another irreducible variety defined over K and f : X → Y
a morphism defined over K. For a ∈ X, define τ(f)a to be dfa + f∂(a).
Namely, assuming f is given by the sequence (f1, .., fm) of regular functions
on X, τ(f)a(u) = ((df1)a(u) + f∂1 (a), .., (dfm)a(u) + f∂m(a)) for (a, u) ∈ τ(X).
Then the map taking (a, u) to (f(a), τ(f)a(u)) is a morphism from X to Y
which we sometimes just call τ(f).

Proof. Clear.

By virtue of (iv) above, we can define τ(X) for any irreducible (abstract)
variety. We just piece together the τ(Vi) for open affine parts of X, and use
isomorphisms given by (iv) above to define the transition maps.

Lemma 3.3 Let V be an irreducible variety (over U), W an irreducible va-
riety of τ(V ) such that π|W : W → V is dominant (π(W ) is Zariski-dense in
V , equivalently contains a nonempty Zariski open of V ). Let U be a nonempty
Zariski open subset of V . THEN there is a ∈ V such that (a, ∂(a)) ∈ W .

The above lemma can be considered to be give an alternative system of
axiom for DCF0.

Remark 3.4 (i) By an algebraic D-variety (over the differential subfield K
of U) we mean an (irreducible) algebraic variety X defined over K together
with a morphism s : X → τ(X) (of algebraic varieties, defined over K) which
is a section of π : τ(X)→ X (that is π ◦ s is the identity on X.
(ii) Let (X, s) be an algebraic D-variety defined over s (affine if you wish).
Let (X, s)] = {a ∈ X : s(a) = (a, ∂(a))}. Then (X, s)] is a (L∂-) definable
Zariski-dense subset of X.
(iii) Let (X, s) be an algebraic D-variety defined over K. By a generic point
of (X, s)] over K we mean a ∈ (X, s)] such that a is generic in X over K in
the sense of algebraic geometry (or ACF ). Then there exists a generic point
of (X, s)] over K and moreover the type of such a point over K is unique.

Proof. (ii) Note that {s(a) : a ∈ X} is closed and irreducible and projects
onto X. Hence by the previous lemma for any open subset U of X there is
a ∈ U such that s(a) = (a, ∂(a)) which is precisely what we want.
(iii) By saturation of U and (ii) there is some generic point a of (X, s)] over
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K. Note that tpLr(a/K) = p0 is uniquely determined as X is irreducible.
Now s is a polyomial map. So p0(x) ∪ {∂(x) = s(x)} determines a unique
L∂-type over K.

Our general point will be that any definable set of finite Morley rank is
essentially of the form (X, s)] (for (X, s) some algebraic D-variety.

For a a finite tuple, we will say tp(a/K) has finite order if
tr.deg(K(a, ∂(a), ∂2(a), ..)/K) is finite, and moreover we define the order of
tp(a/K) to be this transcendence degree.

Lemma 3.5 Let K < U be algebraically closed. Let a be a finite tuple such
that tp(a/K) has finite order. Then there is some (irreducible) algebraic D-
variety (X, s) defined over K, and some generic point b of (X, s)] over K such
that a is interdefinable with b over K. Moreover dim(X) = order(tp(a/K)).

Proof. Replacing the tuple a by the tuple (a, ∂(a), .., ∂r(a)) for some r we
may assume that the tuple ∂(a) is (field-theoretically) algebraic over K(a).
Suppose a = (a1, .., an). By 1.2, for each i = 1, ., , n, ∂2(ai) ∈ K(a, ∂(a)) say,
∂2(ai) = Fi(a, ∂(a))/Gi(a, ∂(a)) where Fi, Gi are polynomials over K. Let
b be the finite tuple (a, ∂(a), (G1(a, ∂(a)))−1, .., (Gn(a, ∂(a)))−1). Then it is
not hard to see that there is a polynomial s over K such that ∂(b) = s(b).

Let X be the irreducible affine variety over K whose generic point is b.
By 3.2 (ii) (b, s(b)) ∈ τ(X). So for all c ∈ X, (c, s(c)) ∈ τ(X) (why?). Thus
(X, s) is an algebraic D-variety over K, and b is a generic point of (X, s)]

over K. Clearly b is interdefinable with a over K. Moreover dim(X) =
tr.deg(K(b)/K) = tr.deg(K(b, ∂(b), ...)/K) = tr.deg(K(a, ∂(a), ..)/K) = order(tp(a/K)).

Corollary 3.6 Let a be a finite tuple, and K < U . Then the following are
equivalent:
(i) tp(a/K) has finite order.
(ii) tp(a/K) has finite Morley rank.
(iii) tp(a/K) has finite U-rank.

Proof. Suppose a = (a1, .., an). Notice that
(a) if tp(a/K) has finite U -rank then so does tp(ai/K) for each i.
(b) tp(a/K) has finite order iff tp(ai/K) has finite order for each i = 1, .., n.

As also U(tp(a/K)) ≤ RM(tp(a/K), we see by Corollary 1.18 (ii) that
(ii) implies (iii) implies (i). So all we need to prove is that (i) implies (ii). In
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fact we will prove that RM(tp(a/K)) ≤ order(tp(a/K)). We may assume K
is algebraically closed and even saturated. By Lemma 3.5, we may assume a
is a generic point of (X, s)] over K for some algebraic D-variety defined over
K. Suppose dim(X) = m. Then ord(tp(a/K)) = m. Note that tp(a/K) is
determined (axiomatized) by “x ∈ X”∧ ∂(x) = s(x)∪ {¬(“x ∈ Y ”∧ ∂(x) =
s(x)) : Y a proper irreducible subvariety of X defined over K}. By induction
hypothesis, each of the formulas “x ∈ Y ” ∧ ∂(x) = s(x) has Morley rank
< m. Hence tp(a/K) is axiomatized by a single formula together with a
collection of negations of formulas of Morley rank < m. It follows that
RM(tp(a/K)) ≤ m.

We now aim towards understanding canonical bases of types of finite Morley
rank. Specifically we will prove:

Theorem 3.7 Suppose K < L are (small) algebraically closed (differen-
tial) subfields of U . Suppose that tp(a/K) has finite Morley rank. Let
c = Cb(tp(a/L)). Then tp(c/K, a) is internal to C. Namely there is some tu-
ple d such that d is independent from c over K∪{a} and c ∈ dcl(K∪{a, d, e})
for e some tuple from C.

Proof. We may assume, by 3.5, that a ∈ Un is the generic point over K of
(X, s)] for some (affine) algebraic D-variety (X, s) defined over K. Let Y be
the irreducible subvariety over L whose generic point over L (in the sense of
algebraic geometry) is a. Note that (Y, s|Y ) is an algebraic D-variety (why?),
hence a is a generic point of (Y, s|Y )] over L. Let q be the nonforking ex-
tension of tp(a/L) over U . Then order(q) = order(tp(a/L)) = dim(Y ) = m.
q(x) is determined by the data ∂(x) = s(x) and x ∈ Y and x /∈ Z for every
irreducible variety Z ⊂ Un of dimension < m.
Claim I. Let f be an automorphism of U fixing K-pointwise. Then f(q) = q
if f(Y ) = Y .
Proof. Note that ∂(x) = s(x) ∈ f(q) as f fixesK pointwise. Also order(f(q)) =
m. So if f(Y ) = Y , then order(f(q)) = m and x ∈ Y ∧ ∂(x) = s(x) ∈ f(q)
hence f(q) = q. On the other hand if f(q) = q then x ∈ (Y ∩ f(Y )) ∈ q(x),
hence f(Y ) ∩ Y has dimension m, so f(Y ) = Y (as Y is irreducible).

So by Claim I, Cb(tp(a/L)) is interdefinable over K with the canonical pa-
rameter for Y . We now look back at Lemma 2.22. We have for each r a
surjective linear map (i]Y )r from MAn,a/(MAn,a)

r to MY,a/(MY,a)
r, and Y
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is determined by the sequence (Ker(i]Y )r) : r = 2, 3, ..). We will leave it as
an exercise to strengthen Lemma 2.22 as follows (where An is replaced by
the variety X).
(*) Let Vr denote the vector spaceMX,a/(MX,a)

r+1 and Wr the vector space
MY,a/(MY,a)

r+1, and fr the canonical linear map from Vr to Wr. Then fr
is surjective (this uses the fact that a is a generic point of X), and Y is
determined by the sequence (Ker(fr) : r = 1, 2, ..).

Now we leave it to the reader to see how Vr+1 is naturally a definable U -vector
space, defined over K(a) (in Lr), likewise Wr+1 is definable over L(a) and the
map fr definable over L(a). In particular Ker(fr) is a definable subspace of
Vr+1, so has a canonical parameter. So from Claim I, (*), and compactness
we see:
Claim II. Cb(tp(a/L)) is interdefinable over K ∪ {a} with the canonical
parameter of Ker(fr) for large enough r.

In order to prove the Theorem 3.7 from Claim II, we will show that Vr
and Wr are naturally equipped with the structure of ∂-modules, that fr is
a ∂-module map, and thus Ker(fr) is a ∂-submodule of Vr. The theory
of ∂-modules (linear differential equations), will yield that the type of the
canonical parameter of Ker(fr) over K ∪ {a} is internal to C.

So let us first discuss ∂-modules.

Definition 3.8 Let (K, ∂) be a differential field. By a ∂-module over K
we mean a finite-dimensional K-vector space V together with an additive
homomorphism DV : V → V satisfying
DV (λv) = ∂(λ)v + λDV (v) for all λ ∈ K and v ∈ V .

Remark 3.9 Let (K, ∂) be a differential field.
(i) Let A be an n × n matrix over K, and V = Kn. Then (V, ∂ − A) is a
∂-module over K (where we think of elements of V as column vectors, with
∂ acting coordinatewise and A acting by left multiplication).
(ii) Conversely, if (V,DV ) is a ∂-module over K such that dimK(V ) = n,
then with respect to any basis of V over K, (V,DV ) becomes (Kn, ∂−A) for
some n× n-matrix A over K.

Proof. Exercise.

One of the basic results on linear differential equations is:
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Lemma 3.10 Let (K, ∂) be a differentially closed field, and (V,DV ) a ∂-
module over K.
(i) Then there is a basis e1, .., en of V over K, consisting of solutions of
DV (v) = 0. Moreover
(ii) The solution set V ∂ of DV = 0 is precisely the CK-subspace of V spanned
by e1, .., en.

Proof. (i) By Remark 3.9, we may assume that V = Kn and DV = ∂−A for
some n× n matrix over K. Consider the variety X = Kn2

= An2
which we

identify with the set of n× n matrices over K. Then τ(X) = T (X) = K2n2
.

Moreover left matrix multiplication by A defines a section of τ(X)→ X. By
Lemma 3.3 (although this is a bit of overkill), for any Zariski open subset
O of X, there is x ∈ O such that ∂(x) = Ax. In particular if we take O as
defined by det(x) 6= 0, then we find a nonsingular n × n matrix U over K
such that ∂U = AU . If u1, ..., un are the columns of U then ∂(ui) = Aui for
each i = 1, , .n, so the ui are solutions of DV = 0. Clearly {u1, ., un} is also
a basis of the K-vector space Kn. We have proved (i).
(ii) Let e1, .., en be the basis of V over K given by (i). Let v ∈ V . So
v = c1e1+...+cnen for some c1, .., cn ∈ K. ThenDV (v) = ∂(c1)e1+..+∂(cn)en.
Hence DV (v) = 0 iff ci ∈ CK for i = 1, .., n. This yields (ii).

If (V,DV ) is a ∂-module over a differential field (K, ∂), then there is a natural
notion of a ∂-submodule of V : it should be just a K-vector subspace W of
V such that DV |W : W → W . There is also a natural notion of a ∂-module
map between ∂-modules and note that the kernel of such a map will be a
∂-submodule.

Lemma 3.11 Let (K, ∂) be a differentially closed field. Give V = Kn the
trivial ∂-module structure DV = ∂. Let W be a ∂-submodule of Kn. Then
W is defined over CK.

Proof. By 3.10, W has a K-basis v1, .., vs such that ∂(vi) = 0 for i = 1, .., s,
namely that each vi ∈ (CK)n. So clearly W is defined over CK .

We now return to the proof of Theorem 3.7. We follow the notation in the
discussion following its statement. So a ∈ Un is a generic point over K of
the irreducible affine algebraic variety X (defined over K), a is also a generic
point over L of the irreducible subvariety Y of X (defined over L), and ∂(a) =
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s(a) = (s1(a), .., sn(a)) where s is a polynomial function defined over K. Also
recall the definitions of Vr+1 and Wr+1 (higher-dimensional cotangent spaces
of X,Y repectively at a). Let U [X] be the coordinate ring of X. We can
use s to equip this coordinate ring with the structure of a differential ring
(extending the derivation on U). Namely, for f(x1, .., xn) ∈ U [X], define
∂′(f) = f∂(x) +

∑
i=1,..,n(∂f/∂xi)(x)si(x). (Why is this a derivation?)

Lemma 3.12 MX,a is a differential ideal of (U [X], ∂′) as is every power of
it.

Proof. Let f ∈ U [X] be zero at a. Then ∂(f(a)) = 0. But by 1.2, the
definition above of ∂′ and the fact that ∂(a) = s(a), we see that ∂(f(a)) is
precisely (∂′(f))(a). Hence MX,a is closed under ∂′. It is easily follows that
each (MX,a)

r+1 is too.

¿From Lemma 3.12, ∂′ equips each U -vector space Vr with a ∂-module struc-
ture DVr say.

Now we can do exactly the same thing with Y in place of X to equip
each U -vector space Wr with a ∂-module structure DWr . We leave it to the
reader to prove:

Lemma 3.13 fr : Vr → Wr is a ∂-module map.

Recall that c was the canonical base of tp(a/L). By Lemma 3.10, for each
r we can choose a basis dr for Vr over U consisting of solutions of DVr = 0,
and we can clearly choose dr to be independent (in DCF0) of c over K(a).

Now fix r as in Claim II. With respect to the basis dr, (Vr, DVr) identifies
with (Un, ∂). By 3.11 and 3.13, Ker(fr) is defined over dr together with some
tuple e of constants (as well as K(a)). So the canonical parameter of Ker(fr)
is in dcl(K, a, dr, e). By Claim II, this shows that tp(c/K, a) is internal to C.
Theorem 3.7 is proved.

As C is a strongly minimal field definable in U , we obtain from Theorem 3.7,
a positive answer to Conjecture ZC3 from [3] for DCF0.

Let us explain how this yields the appropriate version of (ZC1) in our
context:
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Corollary 3.14 Let p(x) ∈ S(A) be a stationary type of U-rank 1 in U , the
saturated model of DCF0. Suppose p(x) is nonmodular. Then p is nonorthog-
onal to the strongly minimal set C, namely to the unique nonalgebraic sta-
tionary type p0(x) over ∅ containing the formula x ∈ C.

Proof. Suppose p(x) is non locally modular. By Exercise 5.7 and Theorem
3.35 of [3], there are realizations a, b of p and some B ⊃ A such that if
c = Cb(stp(a, b/B), then c /∈ acl(A, a, b). By Theorem 3.7, stp(c/A, a, b) is
internal to C. In particular, for some D ⊇ (A∪ {a, b}) independent of c over
A, a, b there is e realizing p0|D such that c and e are interalgebraic over D.
As tp(c/D) is internal to p it follows that p is nonorthogonal to p0. (Why?)

Theorem 3.7 is rather more powerful than Corollary 3.14. Here is another
consequence which cannot be formally obtained from 3.7 (as far as I know).

Corollary 3.15 Let G be a group of finite Morley rank, definable in U over
A. Let p(x) = tp(g/A) be stationary, where g ∈ G. Suppose that Stab(p) is
trivial (the identity). Then p is internal to C.

Proof. Let h ∈ G be generic in G over A ∪ {g}. By Lemma 4.19 of [3], g is
interdefinable with d = Cb(stp(h/A∪ {g.h}) over A∪ {h}. By Theorem 3.7,
stp(d/A ∪ {h}) is internal to C. Thus tp(g/A ∪ {h}) is internal to C. As g is
independent from h over A, p is internal to C.

Corollary 3.16 Let G be a connected group of finite Morley rank, definable
in U over A. Suppose that p(x) = tp(g/A) is stationary and has trivial
stabilizer. Let X be the set of realizations of p(x) and suppose that g−1 · X
generates G. Then there is an algebraic group H defined over C such that G
is definably isomorphic to H(C).

Proof. By Proposition 5.17 of [3], for some n < ω, every element of G is of
the form h1 ·h2.. ·hn for hi ∈ g−1 ·X, so of the form g−1 ·a1.... · g−1 ·an where
the ai realize p. By Corollary 3.15, p is internal to C. By Lemma 3.41 of [3],
there is small B ⊃ A (which we may suppose contains g) such that every
realization of p is in the definable closure of B together with some elements of
C. It follows that every element of G is in the definable closure of B together
with some elements of C. By compactness there is some B-definable partial
function f such that every element of G is of the form f(c) for some tuple c
from C.
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Let Y be the set of tuples c from C such that f(c) is defined and in G,
and let E be the equivalence relation on Y defined by f(c1) = f(c2). Then
both Y and E are definable in the structure (C,+, ·) (by Example 3.7 of [3]).
So we have a definable bijection f between G and Y/E. This transports
the group structure on G to a group structure on Y/E, definable in U . As
above, this group structure is definable in (C,+, ·). By Proposition 2.60 (and
elimination of imaginaries in algebraically closed fields), Y/E together with
its group structure is definably isomorphic to a (connected) algebraic group
in C. This latter group can be considered as H(C) for some algebraic group
in U which is defined over C. Putting everything together we have a definable
(in L∂) isomorphism of G with H(C).

To complete these notes we will show how Corollary 3.16 yields a rather fast
proof of the Mordell-Lang conjecture for function fields in characteristic zero.

We will first need a few more remarks/facts about definable groups in U .
Definability means as usual L∂-definability unless we say otherwise.

Lemma 3.17 Any definable subgroup of (U ,+)d is a C-vector space.

Proof. Let G be a definable subgroup of Ud. Then {c ∈ C : c · G ⊂ G} is a
(definable) subgroup of (C,+) which is infinite (as it contains Z) and thus,
by strong minimality of C must be all of C.

The next fact is due to Buium. For convenience we state it without proof
(although it is not difficult, modulo the existence of “universal” extensions
of abelian varieties).

Fact 3.18 Let A be a semiabelian variety defined over U . Then there is
some (L∂)-definable homomorphism µ from A to (Ud,+) (for some d) such
that Ker(µ) has finite Morley rank and is connected.

Corollary 3.19 Suppose A is a semiabelian variety defined over U . Let Γ
be a finitely generated subgroup of A. Then there is a connected definable
subgroup G of A such that G has finite Morley rank, and contains Γ.

Proof. Let µ be as is the fact above. Let Γ′ = µ(Γ). The Γ′ is a finitely
generated subgroup of Im(µ). By Lemma 3.17, µ(A) is a C-vector space. The
C-subspace V generated by Γ′ will then be finite-dimensional so definable and
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of finite Morley rank (why?). µ−1(V ) will then be a definable subgroup of A
of finite Morley rank. (Why?)

We will prove:

Theorem 3.20 Let k < K be a algebraically closed fields of characteristic
zero. Let A be a semiabelian variety over K (identified as usual with A(K)),
and Γ a finitely generated subgroup of A. Let X be an irreducible subvariety
of A (defined over K) such that Γ ∩ X is Zariski-dense in X. Then there
are a semiabelian variety B0 defined over k and a subvariety X0 of B0 also
defined over k, and a homomorphism f of algebraic groups from some al-
gebraic subgroup B of A onto B0, such that (after possibly translating X),
X = f−1(X0).

Corollary 3.21 Suppose k < K are algebraically closed fields, and A is
an abelin variety defined over K which has k-trace 0. (This means that no
(nonzero) abelian subvariety of A is isomorphic to an abelian variety defined
over k, and implies that no abelian subvariety of A has some (nonzero) ho-
momorphic image defined over k). Let Γ be a finitely generated subgroup of A
and X a subvariety of A (defined over K too). Then X ∩ Γ is a finite union
of translates of subgroups of A. In particular, if X is a one-dimensional ir-
reducible subvariety of A and X is NOT a translate of an algebraic subgroup
of A, then X ∩ Γ is finite.

Proof of Theorem 3.20. Let S = StabA(X) = {a ∈ A : X + a = X}. Then S
is an algebraic subgroup of A, and X is a union of translates of S. Replacing
A by A/S, X by X/S and Γ by Γ/S, we may assume that S is trivial.

We may also assume that K = U and k = C. (The theory (ACF0)P
of proper pairs of algebraically closed fields of characteristic zero, in the
language of rings with an additional predicate P for the bottom field, is
complete. But (U , C) is a saturated model of this theory whereby (K, k)
elementarily embeds in (U , C).)

So we now talk about definability in L∂. By 3.19, let G be a connected
definable subgroup of A of finite Morley rank, which contains Γ. So X ∩ G
is Zariski-dense in X. Now X ∩ G is a definable set. Let W be a definable
subset of X ∩G of least (RM, dM) such that W is Zariski-dense in X. Then
W has Morley degree 1. (why?) Assume RM(W ) = m. Assume also W is
defined over the small algebraically closed differential field K0. Let p(x) be
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the unique stationary type over K0 containing ”x ∈ W” and of Morley rank
m.
Claim I. StabG(p) is trivial.
Proof. Note that g ∈ Stab(p) iff RM((g + W ) ∩W ) = m. But by choice of
W , if RM((g +W ) ∩W ) = m then X is the Zariski closure of (g +W ) ∩W
so g +X = X, so g ∈ StabA(X).

Claim II. The set of realizations of p(x) is a Zariski-dense subset of X.
Proof. Left to the reader.

We will now apply Corollary 3.16. Let Z denote the set of realizations of
p(x). Let g ∈ Z. Let G1 be the connected definable subgroup of G generated
by Z − g. Then G1 is definably isomorphic to H(C) for some (connected)
algebraic group H defined over C. Note that H is a commutative (as H(C)
is). Let h : H(C) → G1 be the definable isomorphism. Without loss h is
defined over K0.

Claim III. h extends to a homomorphism h1 of algebraic groups from H into
A.
Proof.By our understanding of definable closure in DCF0, for any a ∈ H(C),
h(a) is in the differential field generated by K0 and a which is precisely K0(a)
as a is a tuple of constants. We can find a ∈ H(C) which is a generic point
of H over K0 in the sense of ACF (why??). So h(a) = f(a) for some K0-
rational function f . For each generic point b of H over K0 (in the sense of
ACF ) define h1(b) = f(b), and if d ∈ H is a product of generic (over K0)
elements b1, b2 define h1(d) = f(b1) ·f(b)2. Check that h1 is a homomorphism
(of algebraic groups) from H into A and that h1|H(C) is precisely h.

Claim IV. h1 is an isomorphism between H and its image, say B.
Proof. Let B = h1(H). Then B is a semiabelian subvariety of A. Also H is a
connected commutative algebraic group, defined over C. We will apply some
of the structure theorem for commutative algebraic groups (Fact 2.61). Note
that the maximal algebraic “vector subgroup” N of H must be in Ker(h1)
(as the image of a vector group under a homomorphism of algebraic groups is
also a vector group, and as B is a semi-abelian variety, B contains no vector
subgroup.) But N is defined over C, so if nonzero has nonzero points in C,
but h1|H(C) is bijective. Hence N = 0. Thus H is a semiabelian variety.
The connected component of Ker(h1) is, by Corollary 2.64, defined over C
so as above must be trivial. So Ker(h1) is finite, so contained in the torsion
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of H, so again contained in H(C). As before, Ker(h1) is trivial.

Now Z − g is Zariski-dense in X − g which is thus contained in B. Let
Y = h−1

1 (X − g) an irreducible subvariety of H. Note that h−1
1 (Z − g) is a

subset of H(C) which is Zariski-dense in Y . Hence Y is defined over C.
So putting everything together B is a semiabelian subvariety of A which

contains a translae X − g of X and there is an isomorphism between B and
a semiabelian variety H defined over C which takes X − g to a variety also
defined over C. This completes the proof of Theorem 3.20.
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