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1 Introduction and preliminaries

The aim of this course and these notes is to present an exposition of the
basics of stability theory, stable group theory, and geometric stability theory.
I will assume knowledge of my Autumn 2002 model theory lecture notes [1].
In fact the current notes are a natural continuation of the earlier ones.

The model theory lecture notes ended with a proof of Morley’s Theorem.
Stability theory developed historically (in the work of Shelah) as a chunk of
machinery intended to help generalize Morley’s theorem to a computation
of the possible “spectra” of complete first order theories. Here the spectrum
of T is the function I(T,−), where I(T, κ) is the number of models of T
of cardinality κ. This project (at least for countable theories) was essen-
tially completed by Shelah around 1980. In the meantime other perspectives
developed, in which stability theory is seen rather as a way of classifying
definable sets in a structure and describing the interaction between definable
sets. Eventually this theory was seen as having a “geometric meaning”. This
means, on the one hand, that various structural results have a geometric
flavour. On the other hand, it refers to the empirically discovered fact, that
in numerous examples, the model-theoretic notions have “actually existing”
mathematical meaning. This will be the perspective of these notes.

We have a choice of the level of abstraction at which to operate. The
theory of forking can be developed smoothly for the class of simple theories.
There have been recent developments, such as rosy theories which subsume
stable theories, most simple theories, and 0-minimal theories. ω-stable (or
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totally transcendental) theories, on the other hand, have a somewhat more
concrete flavour and many natural examples fit in here. An important aspect
of general stability is that it is essentially a formula-by-formula theory. So
we plan to find a kind of balance between the general stable context and the
ω-stable context

For the remainder of this introductory section we will discuss definability and
imaginaries. Apart from these being important issues in their own right, this
will give us a chance to give examples of the kinds of arguments (including
compactness) that we will be using.

Our conventions will be as follows: T will be a complete theory in a
language L. T could be many-sorted, but as in the model theory notes
we will usually work in the 1-sorted context. Note that there is no harm
in asssuming T to have quantifier elimination. Fix some “big” cardinal κ̄.
By 4.11 of [1], T has a κ̄-saturated, strongly κ̄-homogeneous model. Let
us fix such a model which we call M̄ . We know that any model of T of
cardinality < κ̄ is isomorphic to an elementary substructure of M̄ . So by a
model we mean (unless we say otherwise) an elementary substructure of M̄
of cardinality < κ̄. M,N, ... will denote models. A,B, ... will usualy denote
small (that is, of cardinality < κ̄) subsets of M̄ . a, b, ... will usually denote
finite tuples of elements of M̄ , but sometimes also small tuples. (Sometimes
we will need to distinguish between elements of M̄ and tuples of elements.
In that case we write a, b, .. for elements, and ā, b̄, .. for tuples.) κ, λ, .. will
usually denote cardinals < κ̄. By a definable set we mean some subset X of
M̄n which is definable in M̄ . Aut(M̄) denotes the group of automorphisms
of M̄ and AutA(M̄) those automorphisms which fix A pointwise. Note that
Aut(M̄) acts on everything associated with M̄ : tuples, definable sets,...
For an LM̄ -sentence σ, we just write |= σ in place of M̄ |= σ.

We will be using compactness inside M̄ in a rather specific kind of manner.
Let us suppose that Σ(y) is a set of LA-formulas, and y a finite (or even small)
tuple of variables, and that φ(y) is also an LA-formula. We will write
Σ(y) |= φ(y) to mean that the implication is valid in M̄ , that is, for any b
from M̄ such that |= Σ(b, a), also |= φ(b). Then we have:

Fact 1.1 (with above notation.) If Σ(y) |= φ(y) then there is some some
finite Σ′(y) ⊆ Σ(y) such that ∧Σ′(y) |= φ(y).
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Here is an application to a useful “Galois-theoretic” interpretation of
“definability over A”.

Lemma 1.2 Let X be a definable set, and A ⊂ M̄ . Then X is A-definable
(or defined over A) if and only if f(X) = X (as a set) for all f ∈ AutA(M̄).

Proof. Left to right is immediate. (Suppose φ(x, a) defines X where a is from
A. Then for any b ∈ M̄n, |= φ(b, a) iff |= φ(f(b), f(a)) iff |= φ(f(b), a)) (as
f(a) = a).)
Right-to-left: Let φ(x, b) define X (where b is some finite tuple from M̄). Let
p(y) = tp(b/A).
Claim I. p(y) |= ∀x(φ(x, y)↔ φ(x, b)).
Proof. Let b′ realize p(y) in M̄ . So tp(b′/A) = tp(b/A) so there is f ∈ AutA(M̄
such that f(b) = b′. By our assumptions f(X) = X. On the other hand
clearly f(X) = φ(x, b′)(M̄).

By Fact 1.1, there is some ψ(y) ∈ p(y) such that
(*) |= ∀y(ψ(y)→ ∀x(φ(x, y)↔ φ(x, b))).
Let σ(x) be the formula ∃y(ψ(y) ∧ φ(x, y)). Note that σ(x) ∈ LA.
Claim II. σ(x) defines X.
Proof. If c ∈ X, then |= φ(c, b), so as ψ(y) ∈ tp(b/A), |= σ(c). On the other
hand if |= σ(c), let b′ be such that |= ψ(b′) ∧ φ(c, b′). Then by (*) |= φ(c, b),
so c ∈ X.

By Claim II, X is A-definable.

Remark 1.3 Consider the algebraic-geometric context, where T = ACFp.
Write M̄ = K̄. Let V ⊆ K̄n be an algebraic variety. Let k be a subfield of K̄.
V is said to be defined over k in the Weil-algebraic-geometric sense if the ideal
I ⊂ K̄[x1, .., xn] of polynomials vanishing on V is generated by polynomials
with coefficients from k. THEN V is defined over k in the model-theoretic
sense if and only if V is defined over kp

−∞
in the Weil-algebraic-geometric

sense. In particular when p = 0 the two notions coincide.

Here is a slight generalization of Lemma 1.2. First:

Definition 1.4 Let X ⊆ M̄n be definable. We say that X is definable almost
over A, if there is an A-definable equivalence relation E on M̄n, such that E
has only finitely many classes, and X is a union of E-classes.
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Lemma 1.5 X is definable almost over A if and only if {f(X) : f ∈
AutA(M̄)} is finite.

Proof. Again left to right is immediate. (Why?)
Right-to-left: Again let φ(x, b) define X, and p(y) = tp(b/A). By our as-
sumption there are b = b0, .., bk realizing p(y) such that for any f ∈ AutA(M̄),
f(X) = φ(x, bi)(M̄) for some i = 0, .., k. Again by saturation of M̄ we have:
p(y) |= ∨i=0,..,k∀x(φ(x, y) ↔ φ(x, bi)). By compactness (i.e. Fact 1.1) there
is ψ(y) ∈ p(y) such that
|= ∀y(ψ(y)→ (∨i=0,..,k∀x(φ(x, y)↔ φ(x, bi))).
Now define E(x1, x2) by the formula:
(*) ∀y(ψ(y)→ (φ(x1, y)↔ φ(x2, y))).
Clearly E is an A-definable equivalence relation. By (*), E has finitely many
classes. We leave it to you to check that X is a union of E-classes.

Exercise 1.6 Show that X is definable almost over A iff {f(X) : f ∈
AutA(M̄)} has cardinality < κ̄.

We will often identify formulas of LM̄ with the sets they define, so we
may say φ(x) is over A, almost over A,..

Note that if the definable set X is simply {a} for some a ∈ M̄ then
1.2 becomes: a ∈ dcl(A) iff a is fixed by all A-automorphisms of M̄ , and
1.6 becomes a ∈ acl(A) iff a has < κ̄ many images under A-automorphisms
of M̄ . (In the latter case, if {a} is a finite union of E-classes, where E is
A-definable and has finitely many classes, then let χ(x) say that {x} is an
E-class, so |= χ(a) and χ(x) has only finitely many solutions.)

The machinery of T eq will actually allow us to consider definable sets as
elements in their own right, whereby the general and special cases in the
paragraph above will be identical. T eq will be important for many other
reasons. In any case in the remainder of this section we will develop T eq.

The nature and status of “quotient” objects is rather important in many
parts of mathematics, especially those with a geometric flavour. For example,
it is often important to know, given a manifold M and closed equivalence
relation E on M , whether M/E has again (naturally) the structure of a
manifold.

From our point of view we have M̄ , elements and tuples from M̄ and
definable sets of tuples, and complete types,... Suppose that E is a ∅-definable
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equivalence relation on M̄ . To what extent can we also talk about definable
subsets of M̄/E, types of elements or tuples of M̄/E over other sets, etc.
Namely to what extent can we include E-classes, as elements (rather than
definable sets) in our whole theory. There are two approaches. The first
is somewhat informal: Define a definable subset of M̄/E to be a set X of
E-classes such that ∪X ⊂ M̄ is a definable subset of M̄ . Namely, a definable
set of E-classes is something coming from an E-invariant definable subset of
M̄ . Define tp((b/E)/A) to be the set of A-definable subsets of M̄/E which
contain b/E. Then show that all our tools, such as compactness hold for the
generalized definable sets, types, etc... In fact this informal approach is how
we deal with hyperimaginaries.

The more formal approach is to contruct a new complete many-sorted
structure M̄ eq (whose theory is a first order many sorted theory T eq) in
which all these quotient objects are by definition elements.

Let us first define a many-sorted language Leq (which actually depends on
T as well as L, in spite of the notation). For each L-formula φ(x1, .., xn, y1, .., yn)
such that T says that φ defines an equivalence relation on n-tuples, let Sφ
be a sort symbol. (Thinking semantically we sometimes write SE in place
of Sφ). So among the sorts is S=. Let us also introduce, for each such
φ(x1, .., xn, y1, .., yn) a new function symbol fφ whose domain sort is n-tuples
of sort S= and whose range sort is Sφ. Finally for every m-place relation
symbol R of L, R will still exist in Leq but as a relation on m-tuples of sort
S=. Likewise for old function symbols of L. Note that any L-sentence σ can
be identified with an Leq-sentence: just take all variables to be of sort S=.
(Note that by definition of the many-sorted logic, if x is a variable of a given
sort S then ∀x(...) is interpreted as “for all x of sort S”.)
We define T eq to be the Leq-theory axiomatized by:
(i) T ,
(ii) for each φ as above, the sentence ∀x1, .., xn, y1, .., yn (of sort S=)
(φ(x1, .., xn, y1, .., yn)↔ fφ(x1, .., xn) = fφ(y1, .., yn)).
(iii) for each φ as above, the sentence expressing that fφ is surjective (as a
map from (S=)n to Sφ).
Finally for M a model of T , M eq will denote the Leq-structure, such that
S=(M eq) is the universe of M , Sφ(M eq) = Mn/E (where E is the equiva-
lence relation on Mn defined by φ), fφ(M eq)(a1, ., an) = (a1, .., an)/E (for
a1, .., an ∈Mn), and such that the old relation and function symbols of L are
interpreted on S=(M eq) as they were in the L-structure M .
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We may often notationally identify S=(M eq) with M , where hopefully there
is no confusion. So we have our original L-structure, living, equipped with all
its original L-structure as a sort in M eq. The first question a model-theorist
asks in this kind of situation is whether M gets any more “induced structure”
this way. We will point out below, among other things, that M does NOT
get any “new structure”.

Lemma 1.7 (i) The models of T eq are precisely the structures M eq for M a
model of T .
(ii) If M,N are models of T then any isomorphism between M and N extends
to a (unique) isomorphism between M eq and N eq.
(iii) T eq is a complete theory.
(iv) If M,N are models of T , ā is a tuple (maybe infinite) from M and b̄ a
tuple from N , and tpM(ā) = tpN(ā) then tpMeq(ā) = tpNeq(b̄).

Proof. (i) and (ii) are obvious. For (iii) to make life a bit easy let us assume
GCH so there are arbitrarily large cardinals in which any given theory has
a saturated model. Let M eq, N eq be saturated models of T eq of cardinality
some λ ≥ |T |. So the same is true of M,N . So as T is complete M and N
are isomorphic. Hence by (ii), M eq and N eq are isomorphic, so elementarily
equivalent.
(iv) Same proof as (iii).

Fix n. Let us consider two Stone spaces. First W1 = Sn(T ), the space of
complete n-types of T . Secondly W2 = S(S=)n(T eq), the space of complete
types of n-tuples from sort S= in models of T eq. (Sorry for the double meaning
of “S” here.) We have a natural ”restriction” map π : W2 → W1 which is
continuous. On the other hand by Lemma 1.7 (iv) and a saturation argument,
π is a a bijection. Thus:

Lemma 1.8 π is a homeomorphism.

We conclude:

Proposition 1.9 Let φ(x1, .., xk) be an Leq-formula, where xi is of sort SEi
say. Then there is an L-formula ψ(ȳ1, .., ȳk) such that
T eq |= ∀ȳ1..ȳk(ψ(ȳ1, .., ȳk)↔ φ(fE1(ȳ1), .., fEk(ȳk)).
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Proof. Let n be the length of the tuple ȳ = (ȳ1, .., ȳk). By the previous
lemma {p(ȳ) ∈ Sn(T ) : φ(fE1(ȳ1), .., fEk(ȳk)) ∈ π−1(p)} is clopen, which is
enough.

Corollary 1.10 (i) If M |= T is an elementary substructure of N then M eq

is an elementary substructure of N eq.
(ii) M̄ eq is also κ̄-saturated and κ̄-strongly homogeneous.

The proof is left as an exercise.

Any definable set in M̄ “correponds” to an element of M̄ eq: Suppose X ⊂ M̄n

is defined by φ(x, b). Let E(y1, y2) be the L-formula ∀x(φ(x, y1)↔ φ(x, y2)).
Then b/E is a element of sort SE in M̄ eq. Let us note a couple of things:
Firstly, for any automorphism σ of M̄ (or equivalently of M̄ eq), σ(X) = X
iff σ(b/E) = (b/E).
Secondly, X can be defined over b/E in the structure M̄ eq. This can either
be seen using Lemma 1.2 in the many sorted structure M̄ eq, or directly by
considering the formula ∃y(fE(y) = b/E ∧ φ(x, y)).
Thirdly, let ψ(x, (b/E)) be the Leq-formula with parameter b/E which defines
X. Then b/E is the unique element z of sort SE such that ψ(x, z) defines X.

Sometimes we say that the imaginary b/E above “codes” the definable
set X. In fact for an arbitrary ∅-definable equivalence relation E ′ say (on
n-tuples from M̄ say) and c ∈ M̄n, c/E ′ “codes” the set defined by E ′(x, c).
So we can also think of M̄ eq as adjoining codes for all definable sets in M̄ .
Actually the code for X is not unique, as it depends on the shape of the
formula used to define X. But it is unique up to interdefinability.

Let us look back at Lemmas 1.2 and 1.5 in this light. Let X be a definable
set in M̄ , let e ∈ M̄ eq be a code for X. Then X is definable over A in M̄ iff
e ∈ dcl(A) in M̄ eq. Likewise, X is definable almost over A in M̄ iff e ∈ acl(A)
in M̄ eq. Let us make this precise:

Lemma 1.11 Let X ⊆ M̄n be definable, and let A ⊂ M̄ . Then X is defin-
able almost over A if and only if X is acleq(A)-definable in M̄ eq.

Proof. Let e be the code for X. So X is definable over e in M̄ eq. So
if X is almost over A, then e ∈ acl(A) and X is acleq(A)-definable in
M̄ eq. Conversely, suppose X is acleq(A)-definable. As e is a code of X,
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e ∈ dcleq(acleq(A)) = acleq(A). So e has finitely many images under A-
automorphisms of M̄ eq, as does therefore X too. So by 1.5, X is almost over
A.

Definition 1.12 Let a, b be n-tuples from M̄ . a and b are said to have the
same strong type over A (we write stp(a/A) = stp(b/A)) if whenever E is an
A-definable equivalence relation on M̄n with only finitely many classes then
E(a, b).

Note that stp(a/A) = stp(b/A) implies tp(a/A) = tp(b/A). With the
above notation:

Lemma 1.13 The following are equivalent:
(i) stp(a/A) = stp(b/A),
(ii) a and b satisfy the same formulas which are almost over A.
(iii) tp(a/acleq(A)) = tp(b/acleq(A)) (in M̄ eq).

Proof. (i) and (ii) are trivially equivalent. The equivalence of (ii) and (iii)
follows immediately from Lemma 1.11.

Now it may happen that we can already find codes for definable sets in M̄
itself. When this happens we say that T admits elimination of imaginaries.

Definition 1.14 T has elimination of imaginaries if for any definable X ⊆
M̄n, and “code” e ∈ M̄ eq for X, there is some finite tuple c from M̄ such
that e ∈ dcl(c) and c ∈ dcl(e) (in M̄ eq). (Alternatively, without mentioning
M̄ eq we simply require c to exist in M̄ such that an automorphism σ of M̄
fixes X setwise iff it fixes the tuple c.)

Exercise 1.15 The following are equivalent:
(i) T has elimination of imaginaries.
(ii) If M |= T and e ∈ M eq then there is a finite tuple c from M such that
dcl(c) = dcl(e) in the sense of M eq.
(iii) Let M |= T , φ(x, y) ∈ L and b in M . Then there is a formula ψ(y) ∈
tp(b), and a partial ∅-definble function f with range contained in some Mk

such that f is defined on ψ(M) and for all b1, b2 satisfying ψ(y), f(b1) = f(b2)
iff φ(x, b1)(M) = φ(x, b2)(M).
(iv) Let again M |= T and φ(x, y) ∈ L where y is an n-tuple. Then Mn can
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be partitioned into finitely many ∅-definable sets Y1∪ ..∪Yr say and there are
∅-definable functions fi : Yi → Mki for i = 1, .., r such that for each i and
b1, b2 ∈ Yi, fi(b1) = fi(b2) iff φ(x, b1)(M) = φ(x, b2)(M).
(v) For any definable set X in a model M of T there is an L-formula φ(x, y)
and b such that b is the unique tuple from M such that φ(x, b)(M) = X.

Example 1.16 Let T be the theory of an equivalence relation with exactly 2
classes both infinite. Then T does not eliminate imaginaries.

In the above we defined T eq for T 1-sorted, but exactly the same thing can
be done for T many-sorted. Similarly, the notion of eliminating imaginaries
makes sense for T many-sorted.

Lemma 1.17 T eq eliminates imaginaries.

Proof. Let E ′ be a ∅-definable (in Leq) equivalence relation on some sort SE
say in a model M eq of T eq. By Proposition 1.9, there is an L-formula ψ(y1, y2)
(where yi are of appropriate length) such that for any a1, a2, M |= ψ(a1, a2)
iff M eq |= E ′(fE(a1), fE(a2)). So clearly ψ defines an equivalence relation,
and we have a ∅-definable bijection between the sorts SE/E

′ and Sψ.

Note that it follows, for example, that in M̄ eq, stp(a/A) = stp(a/A) iff
tp(a/acl(A)) = tp(b/acl(A)), where a, b are tuple from any sorts and A is
a set of elements from arbitrary sorts.

Often we will work in T eq.

Many “algebraic” theories/structures such as algebraically closed fields, real
closed fields, differentially closed fields, eliminate imaginaries. But some very
basic theories such as the theory of an infinite set with no structure do not:
the point being only that finite sets (which are definable) need not be coded.

Definition 1.18 T has weak (geometric) elimination of imaginaries if for
some model M of T and e ∈ M eq there is a finite tuple c from M such that
e ∈ dcl(c) (e ∈ acl(c)) and c ∈ acl(e) (in M eq).

Exercise 1.19 Show that the theory of an infinite set (in the language with
only equality) has weak elimination of imaginaries, but does not have (full)
elimination of imaginaries.
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Hint. Unravelling things, we have to show that for any definable set X in
a model, there is a finite tuple c such that c is fixed by any automorphism
fixing the set X, and that X has only finitely many images under the group
of automorphisms fixing c. Use quantifier-elimination.

2 Stability, totally transcendental theories, and

forking

T is as in section 1, one-sorted for convenience. We work in the big model
M̄ . At some point we will pass to T eq. In [1] we defined stability in terms
of counting types. We will take a different approach here but will soon show
the various definitions to be equivalent.

We will use the “ω-stable” theories defined in [1] as providing somewhat
more concrete examples/applications of the machinery developed here. ω-
stability was defined only for countable theories. As we are no longer assum-
ing T to be countable, the appropriate notion is that of a totally trascendental
(or t.t) theory. Remember that we defined the Morley rank of an arbitrary
formula (with parameters) and this still makes sense for uncountable T . If
φ(x) is a formula (with parameters, where x is an n-tuple of variables), and
X = φ(M̄) the subset of M̄n defined by φ we will use RM(X) and RM(φ)
interchangeably.

Definition 2.1 T is t.t if for every definable set X, RM(X) < ∞. (Here
X is a definable subset of M̄n for some n.)

Exercise 2.2 (i) If RM(x = x) <∞ (x a single variable), then T is t.t.
(ii) If T is t.t then T eq is t.t.. Namely for every definable subset X of a finite
product of sorts, RM(X) <∞ (computed in M̄ eq).

Recall also that RM(tp(c/A)) is by definition min{RM(φ(x)) : φ(x) ∈
tp(c/A))}, and if this is ordinal valued and witnessed by φ(x) then dM(tp(c/A)) =
dM(φ(x)).

We will be defining a notion of “independence”: for c, d finite tuples
and A a set of parameters, we will make sense out of the expression “c is
independent from d over A” (at least for T stable). In the case where T is
t.t, this will reduce to “RM(tp(c/A, d)) = RM(tp(c/A))”. In the even more
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special case where T is the theory of algebraically closed fields and A = k is
a subfield it will reduce to “tr.deg.(k(c, d)/k(d)) = tr.deg.(k(c)/k)”, that is
the fields k(c) and k(d) are algebraically disjoint over k. In fact in this last
example we will see that RM(tp(c/k)) = tr.deg.(k(c)/k).

The independence notion will come from Shelah’s theory of forking. This
is also valid for simple theories, but in the stable case there are some special
features such as (i) a theory of multiplicity (like Morley degree) and (ii) the
theory operates and can be developed on a formula-by-formula basis.

Definition 2.3 Let δ(x, y) be a formula, possibly with parameters). We say
that δ(x, y) is stable if there do not exist ai, bi for i < ω such that for all
i, j < ω, |= δ(ai, bj) iff i < j.

Remark 2.4 (i) The stability of δ(x, y) depends on the choice of a division
of the tuple of variables in δ into two subtuples.
(ii) If δ(x, (y, z)) is stable then so is δ(x, y, c) for any tuple c of parameters.
(iii) If δ1(x, y), δ2(x, z) are stable, then so are ¬δ(x, y), (δ1 ∨ δ2)(x, (y, z)),
(δ1 ∧ δ2)(x, (y, z)), and δ∗1(y, x) = δ(x, y).
(iv) Suppose δ(x, y) is stable. Then there is some N < ω such that there do
not exist ai, bi for i ≤ N such that |= δ(ai, bj) iff i < j.
(v) Suppose that δ(x, y) is unstable. Let φ((x1, y1), (x2, y2)) be the formula
δ(x1, y2). Then there are (ci : i < ω) such that |= φ(ci, cj) iff i < j.

Proof. (ii) is obvious. (iii) is a exercise, and (iv) follows from compactness.
(v) Let ai, bi for i < ω witness the instability of δ. Put ci = (ai, bi).

The following begins to tie up stable formulas with the number of types.

Lemma 2.5 (i) Suppose that some L-formula δ(x, y) is unstable. Then for
any λ ≥ |T |, there is a model M of T such that there are > λ many complete
types (in variable x) over M . In fact we can find such a set P of types which
are distinguished by formulas of the form δ(x, b) for b ∈M
(ii) If T is t.t. then every L-formula is stable.

Proof. Let µ be the least cardinal such that 2µ > λ. So mu ≤ λ. Let µ2 be
the set of functions from µ to 2, and order it by: f < g if there is α < µ such
that f |α = g|α and f(α) = 0 and g(α) = 1. By compactness there are af , bf
for f ∈µ 2 such that |= δ(af , bg) iff f < g. Let X ⊂µ 2 the set of eventually
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constant functions. Then |X| ≤ λ, and for each f1 6= f2 ∈µ 2 there is g ∈ X
such that |= ¬(δ(af1 , bg) ↔ δ(af2 , bg)). Let M be a model of cardinality λ
containing {bg : g ∈ X}, and we see that the set {tp(af/M) : f ∈µ 2} satisfies
our requirements.
(ii) If T is t.t. then as in the proof of 5.19 of [1] there are at most λ many
complete types over any model of cardinality λ ≥ |T |, so we can use (i).

The next lemma is crucial:

Lemma 2.6 Let δ(x, y) be stable. Let M be a model, and a ∈ M̄ a tuple
of length l(x). Then there is a finite set {aji}i,j<N of tuples contained in M
such that
(*) for any b ∈M , |= δ(a, b) iff |= ∨j(∧iδ(aji , b)).
Moreover
(i) N is determined only by δ (not by the choice of a or M),
(ii) if ψ(x, c) is any formula over M satisfied by a we can choose the aji to
satisfy ψ(x, c), and
(iii) if M is λ-saturated and C is a subset of M of cardinality < λ, we may
choose the aji to realize tp(a/C).

Proof. The proof will be in two steps:
First let N1 be as given by 2.4 (iv).
Claim. For any formula ψ(x) ∈ tp(a/M) there are a1, .., an ∈M (all satisying
ψ(x)) for some n ≤ N1 such that for any b ∈M , if M |= ∧i=1,..,nδ(ai, b) then
|= δ(a, b).
Proof. We start to build a1, a2, ... in M satisfying ψ(x) and b1, b2, .. in M such
that |= ¬δ(a, bi), and such that |= δ(ai, bj) iff i ≤ j. Suppose we have already
found such a1, .., an, b1, .., bn. Then the formula ψ(x)∧∧i=1,..,n¬δ(x, bi) is over
M , and true of a, so realized in M by an+1 say. Now either (a1, .., an+1) sat-
isfies the claim, and we stop, or there is b ∈M such that |= ∧i=1,..,n+1δ(ai, b)
but |= ¬δ(a, b). Let bn+1 ∈ M be such a b. So the construction continues.
So we have to stop for some n ≤ N1.

We now pass to Step 2. Let χ((x1.., xN1), y) be the formula δ(x1, y) ∧ ... ∧
δ(xN1 , y). By Remark 2.4, χ is stable (with the given division of its variables).
Let N2 be as given by 2.4 for ¬χ. Let x̄ denote (x1, .., xN1). We construct
ā1, ā2, .. in M satisfying the claim above, and b1, b2, ... in M such that
(i) |= χ(āi, bj) iff i > j,
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(ii) |= δ(a, bi) for all i.
Suppose we already have constructed āi, bi for i = 1, .., n. By the claim there
is ān+1 in M such that |= χ(ān+1, bi) for i = 1, .., n, and such that for any
b ∈M , if |= χ(ān+1, b) then |= δ(a, b). So if ∨i=1,.,n+1χ(āi, y) does not satisfy
the requirements of the lemma then there is bn+1 ∈M such that |= δ(a, bn+1)
but |= ¬χ(āi, bn+1) for i = 1, .., n + 1. So the construction continues. It
follows that we must stop at some n ≤ N2. This proves the existence of the
{aji}. (i), (ii) and (iii) follow fron the construction and the claim.

Exercise 2.7 Let δ(x, y) ∈ L and let M be a model such that there is no
infinite ordered set (I,<) and ai, bi in M for i ∈ I such that |= δ(ai, bj)
iff i < j. Prove that for any a ∈ M̄ there are a1, .., an ∈ M such that for
any b ∈ M whether or not δ(a, b) holds depends only on which δ(ai, b) hold.
Namely there is a formula ψ(y) equivalent to some Boolean combination of
the δ(ai, y) such that for any b ∈M , |= δ(a, b) iff M |= ψ(b).

Hint. Assume not. Then construct ai, bi, ci in M for i < ω such that
(1) for each i, |= δ(a, bi)↔ ¬δ(a, ci).
(2) for each i ≥ j, |= δ(ai, bj)↔ δ(a, bj) and |= δ(ai, cj)↔ δ(a, cj), and
(3) for each i < j, |= δ(ai, bj)↔ δ(ai, cj).
By thinning out the sequence and applying Ramsey’s theorem get a contra-
diction to our assumptions.

Definition 2.8 (i) Let δ(x, y) ∈ L. By a complete δ-type over a model M ,
we mean a maximal consistent set of formulas of the form δ(x, b) or ¬δ(x, b)
where b ∈M . Sδ(M) denotes the set of such types when there is no ambiguity.
(ii) The complete δ-type p(x) ∈ Sδ(M) is said to be definable if there is an
LM -formula ψδ(y) such that ψδ(M) = {b ∈ M : δ(x, b) ∈ p(x)}. Note that
ψδ(y) is unique up to equivalence. If A ⊆ M we say that p(x) ∈ Sδ(M) is
definable over A if ψδ(y) is over A (that is equivalent to an LA-formula) and
definable almost over A, if ψδ(y) is almost over A.
(iii) The complete type p(x) ∈ S(M) is definable if for every δ(x, y) ∈ L, p|δ
is definable, and definable (almost) over A if each p|δ is.
(iv) Suppose p(x) ∈ S(M) is definable, and for each δ(x, y) ∈ L let ψδ be as
in (ii). We call the map δ → ψδ a defining scheme for p(x).

Corollary 2.9 Let δ(x, y) ∈ L. The following are equivalent:
(i) δ is stable,
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(ii) Every complete δ-type over a model is definable,
(iii) For each λ ≥ |T |, and model M of cardinality λ, |Sδ(M)| ≤ λ.

Proof. (i) implies (ii) is given by 2.6. (But note that we showed there that
the defining formula can be chosen to be of a very special form.)
(ii) implies (iii): Given M |= T , any p(x) ∈ Sδ(M) is clearly determined by
a “defining formula” ψ(y) for p (as in the definition). But there are at most
|M |+ |T |-many such formulas.
(iii) implies (i): By Lemma 2.5 (i).

Corollary 2.10 The following are equivalent:
(i) every formula δ(x, y) (any variables x, y) is stable,
(ii) every complete type over a model is definable,
(iii) For any λ ≥ |T | and M |= T of cardinality λ, the set of complete types
over M has cardinality at most λ|T |,
(iv) There is some λ ≥ |T | such that for every model M of cardinality λ,
S(M) has cardinality λ.
(v) every formula δ(x, y) with x a single variable (or a single variable from
some sort) is stable.

Proof. This is almost immediate from Corollary 2.9. For (ii) implies (iii),
note that the number of possible defining schema for types over M is |M ||T |.

Definition 2.11 We will say that T is stable if it satisfies the equivalent
conditions of Corollary 2.10.

Exercise 2.12 If T is stable, then so is T eq.

We will now specialize somewhat to t.t theories and return to the general
theory later.

First some notation: let p(x) ∈ S(M) be a definable type, and let d
denote the corresponding defining schema, that is d(δ(x, y)) = ψδ(y) as in
2.8 (iv). Let N be a model containing M . By d(N) we mean {δ(x, b): for
δ(x, y) ∈ L and b ∈ N such that |= d(δ)(b)}.,

Exercise 2.13 With this notation, d(N) is a complete type over N , extend-
ing p(x).
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Lemma 2.14 Let θ(x) ∈ LA be a formula such that RM(θ(x)) = α <∞ and
dM(θ(x)) = 1. Let δ(x, y) ∈ L be stable. Then {b ∈ M̄ : RM(θ(x)∧δ(x, b)) =
α} is definable, over A.

Proof. We may assume A to be finite. Let M be an ω-saturated model
containing A. Let p(x) ∈ S(M) be such that θ(x) ∈ p(x) and RM(p(x)) = α.
(Why does such p exist?) By 2.10, p(x)|δ is definable, by a formula ψ(y) ∈ LM
say. But clearly for b ∈ M , δ(x, b) ∈ p(x) iff RM(θ(x) ∧ δ(x, b)) = α. Thus
for b ∈ M , M |= ψ(b) iff RM(θ(x) ∧ δ(x, b)) = α. As M is ω-saturated,
the equivalence is valid for all b ∈ M̄ . (Why?) Also ψ(x) is equivalent to a
formula over A, by Lemma 1.2.

Corollary 2.15 Let θ(x) be a formula of Morley rank α < ∞ and Morley
degree d possibly greater than 1. Let δ(x, y) ∈ L be stable. Then {b ∈ M̄ :
(RM, dM)(θ(x) ∧ δ(x, b)) = (α, d) is definable over A.

Proof. Let θ1(x), .., θd(x) be formulas of Morley rank α and Morley degree
1 whose disjuction is equivalent to θ(x). Then (RM, dM)(θ(x) ∧ δ(x, b)) =
(α, d) if and only if RM(θi(x) ∧ δ(x, b)) = α for i = 1, .., d. So we can use
lemma 2.14 (and Lemma 1.2).

Proposition 2.16 Suppose T is t.t, and p(x) ∈ S(M) (M a model). Then
p has Morley degree 1.

Proof. Suppose not. So let θ(x) ∈ p(x) be such that (RM, dM)(p(x)) =
(RM, dM)(θ(x)) = (α, d) with d > 1. For each δ(x, y) ∈ L let ψδ(y) be the
formula over M given by Corollary 2.15. Then one can see that actually the
schema d(δ) = ψδ(y) defines p(x). Let θ′(x, d) be a formula over M̄ which
implies θ(x), and has Morley rank α and Morley degree 1. Let N be a model
containing M and d. Let q(x) = d(N), which is by 2.13 a complete type
over N extending p(x). Now both θ(x) ∧ θ′(x, d) and θ(x) ∧ ¬θ′(x, d) have
(RM, dM) < (α, d), so |= ¬ψθ′(d) and |= ¬ψ¬θ(d), a contradiction (why?).

Exercise 2.17 Let T be t.t and p(x) ∈ S(M). Then there is a finite subset
A of M such that p(x) is definable over A.

Corollary 2.18 Let T be t.t., let M < N be models, p(x) ∈ S(M) and
p(x) ⊆ q(x) ∈ S(N). Then q(x) is definable over M if and only if RM(q(x)) =
RM(p(x)).
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Proof. Suppose q is definable over M , with defining schema d. So clearly
d(M) = p(x). Let p(x) have Morley rank α and degree 1 (by 2.16), and let
this be witnessed by θ(x) ∈ p(x). So for δ(x, y) ∈ L, d(δ)(y) is equivalent
to the formula “RM(θ(x) ∧ δ(x, y) = α” which is given by 2.14 (in M so
also in M̄). As q = d(N) too we see that for each formula δ(x, b) ∈ q(x),
RM(θ(x) ∧ δ(x, b)) = α, hence RM(q) = α.
Conversely, suppose RM(p) = RM(q) = α. Let (by 2.16) θ(x) ∈ p(x)
have Morley rank α and Morley degree 1. For each δ(x, y) let ψδ(y) be
“RM(θ(x)∧ δ(x, y)) = α”. Then clearly (ψδ)δ is a defining schema (over M)
for q.

Exercise 2.19 Assume that p(x) ∈ S(A) and RM(p) = α < ∞. Then for
any B ⊇ A there is q(x) ∈ S(B) such that p(x) ⊆ q(x) and RM(q) = α.

Hint. By Exercise 5.18 of [1], p(x) ∪ {¬θ(x) : θ(x) ∈ LB, RM(θ(x)) < α} is
consistent.

Lemma 2.20 Suppose T is t.t.
(i) Suppose A ⊆ M , p(x) ∈ S(A) and p(x) ⊆ q(x) ∈ S(M) with RM(p) =
RM(q) = α. Then q is definable almost over A.
(ii) Suppose p(x) ∈ S(A) and A ⊆M . Then there is some q(x) ∈ S(M) with
p(x) ⊆ q(x) such that q is definable almost over A.

Proof. (i) We may assume that M is (|T | + |A|)+-saturated and strongly
homogeneous. Note that if f is an A-automorphism of M , then f(q) is an
extension of p(x) of Morley rank α hence there are only finitely many possi-
bilities for f(q). (Why?) In particular, for each δ(x, y) ∈ L, the δ-definition,
ψδ(y) say, of q has only finitely many images under A-automorphisms of M ,
hence is almost over A.
(ii) Suppose p(x) has Morley rank α. By Exercise 2.19, p(x) has an extension
in S(M) of RM α. Now use part (i).

Lemma 2.21 Let T be stable. Let p(x), q(y) be complete types over M which
are definable over A. Let δ(x, y) ∈ L, and write it also as ε(y, x). Let ψ(y)
be the δ(x, y)-definition of p(x), and χ(x) the ε(y, x)-definition of q(y). (So
ψ(y), χ(x) can be assumed to be LA-formulas.) Then ψ(y) ∈ q(y)|A if and
only if χ(x) ∈ p(x)|A.
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Proof. We may assume M to be saturated enough. Suppose for a con-
tradiction that ψ(y) ∈ q(y) but ¬χ(x) ∈ p(x). Construct ai, bi in M for
i < ω such that a1 realizes p(x)|A, b1 realizes q(y)|(A, a1), and in general
an+1 realizes p(x)|(A, b1, .., bn) and bn+1 realizes q(y)|(A, a1, .., an+1). Note
that |= ¬χ(ai) ∧ ψ(bi) for all i, so clearly |= δ(ai, bj) iff i > j, contradicting
stability of δ(x, y).

We will now use T eq.

Corollary 2.22 Assume T to be t.t.. Let p1(x), p2(x) ∈ S(M) be both de-
finable over A ⊂M . Suppose that p1|acleq(A) = p2|acleq(A). Then p1 = p2.

Proof. Let δ(x, y) ∈ L and b ∈ M . We want to show that δ(x, b) ∈ p1(x)
iff δ(x, b) ∈ p2(x). Namely that |= ψ1(b) iff |= ψ2(b) where ψi(y) ∈ LA is
the δ-definition of pi(x). By 2.20 (ii) tp(b/A) has an extension q(y) ∈ S(M)
which is definable almost over A. In particular if χ(x) is the ε(y, x)-definition
of q(y) (where ε(y, x) = δ(x, y)) then χ(x) is over acleq(A). By Lemma 2.21
(which is also valid in M̄ eq), χ(x) ∈ pi|acleq(A) iff ψi(y) ∈ q(y), for i = 1, 2.
So by our assumptions, |= ψ1(b)↔ ψ2(b).

Here is a restatement:

Corollary 2.23 Assume T to be t.t. Let A = acleq(A) and p(x) ∈ S(A).
Then for any model M containing A there is a unique extension q(x) ∈ S(M)
of p(x) such that q(x) is definable over A.

Note in particular that, in the context of 2.23, for any B containing A there
is a unique extension q(x) ∈ S(B) of p(x) such that some extension of q(x) to
a model is definable over A. So (again in the context of 2.23) we will denote
this extension by p(x)|B (hopefully without ambiguity). Moreover there is a
defining schema d over A such that for any B ⊇ A, d(B) = p|B.

Definition 2.24 (T stable).
(i) Let p(x) ∈ S(A), A ⊆ B and p(x) ⊆ q(x). We say that q(x) is a
nonforking extension of p(x) (or q(x) does not fork over A) if q(x) has some
extension q′(x) to a complete type over a model, such that q′(x) is definable
almost over A. (Here x is a finite tuple of variables.)
(ii) Suppose A ⊆ B, and a a finite tuple. We will say that a is independent
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from B over A if tp(a/B) does not fork over A.
(iii) If a is a possibly infinite tuple, we say that a is independent from B over
A if a′ is independent from B over A for all finite subtuples a′ of a,
(iv) If a and b are arbitrary tuples, we will say that a is independent from b
over A, if a is independent from A ∪ b over A in the sense of (iii).

Exercise 2.25 The notion of nonforking in (i) above is invariant under
adding names (constants) for elements of A.

Proposition 2.26 Suppose T to be t.t.. Let p(x) ∈ S(A), A ⊆ B and
p(x) ⊆ q(x) ∈ S(B). Then q(x) is a nonforking extension of p(x) if and only
if RM(p) = RM(q).

Proof. The definitions, as well as Exercise 2.19 allow us to assume that B is
a model M . The right to left direction is given by Lemma 2.20 (i).
Left to right: Let RM(p(x)) = α. Let p1(x) = q|acleq(A). The first ob-
servation is that RM(p(x)) = RM(p1(x)). This is because, for any formula
ψ(x) ∈ p1, some disjunction of finitely may A-conjugates of ψ is over A, hence
in p(x). Now, by 2.19 and 2.20 (i), there is an extension q1(x) ∈ S(M) of p1(x)
which is definable over acleq(A), and such that RM(q1) = RM(p1) = RM(p).
By 2.23, q1 = q.

Remark 2.27 Let us make explicit something observed in the proof above
(for T t.t): for any a,A, a is independent from acleq(A) over A.

Exercise 2.28 Let p(x) ∈ S(A). Let p1(x), p2(x) ∈ S(acleq(A)) be exten-
sions of p(x). Show that there is an elementary f : acleq(A)→ acleq(A) such
that f |A = id and f(p1(x)) = p2(x).

Proposition 2.29 (Assume T to be t.t.) Let a, b denote finite tuples, and x
a finite tuple of variables.
(i) (transitivity) Suppose that A ⊆ B ⊆ C. Then a is independent from C
over A iff a is independent from C over B and from B over A.
(ii) (symmetry) a is independent from b over A iff b is independent from a
over A.
(iii) for any a and A there is a finite A0 ⊆ A such that a is independent from
A over A0,
(iv) For any type p(x) ∈ S(A) the number of nonforking extensions of p(x)
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over some (any) model is precisely the Morley degree of p.
(v) (existence) For any p(x) ∈ S(A) and B ⊃ A, p(x) has a nonforking
extension q(x) ∈ S(B).
(vi) (finite character) Suppose that A ⊆ B and p(x) ∈ S(B) forks over A.
Then there is a finite tuple b from B such that p(A)|(A ∪ b) forks over A.

Proof. (i) is immediate from 2.26.
(ii) We may assume A = acleq(A) (by 2.27). Let p(x) = tp(a/A) and
q(y) = tp(b/A). By Exercise 2.25 we may assume that the elements of A
are named by constants. Let d1 be the defining schema corresponding to p
given after 2.23, and d2 the one for q. So a is independent from b over A iff a
realizes d1(A ∪ b) and b is independent from a over A if b realizes d2(A ∪ a).
Now suppose b to be independent of A over a. Let δ(x, y) ∈ L, and suppose
δ(x, b) ∈ d1(A, b). We want to show that |= δ(a, b). Now |= d1(δ)(b). By
2.21, |= d2(ε)(a), where ε(y, x) = δ(x, y). Thus, ε(y, a) ∈ d2(A, a), whereby
|= ε(b, a), namely |= δ(a, b).
(iii) Choose a formula φ(x) ∈ tp(a/A) with Morley rank α = RM(p). So
φ(x) has parameters from a finite subset A0 of A. Then φ(x) ∈ p|A0, so
RM(p|A0) = α. Now use 2.26.
(iv) Let p(x) ∈ S(A), and suppose (RM, dM)(p) = (α, d). Let M ⊇ A be
any model, and let M ′ > M be suitably saturated. It is easy to show that
p(x) has precisely d extensions p1, .., pd to complete types over M ′ of Morley
rank α (and degree 1). For each i = 1, .., d, pi|M has Morley rank α and
degree 1 (by 2.16).
(v) By 2.20 (ii), or by 2.19 and 2.26.
(vi) If p(x) forks over A then by Proposition 2.6, RM(p) < RM(p|A). Sup-
pose RM(p) = α. Choose a formula in p of Morley rank α and let b be the
tuple of parameters in that formula.

Remark 2.30 In the light of Definition 2.24, (i), (ii), and (vi) of 2.29 are
also valid for a, b possibly infinite tuples. In fact (v) (existence) is also true
for complete types of infinite tuples.

Proof. Let us just consider existence. Fix an infinite tuple a = (a1, a2, ...)
say, and a set A. Let M be a model containing A. Let pn(x1, .., xn) =
tp(a1, .., an/acl

eq(A)). Let qn(x1, .., xn) ∈ S(M) be the unique nonforking
extension of pn to M (by 2.23). Note that qn(x1, .., xn) ⊂ qn+1(x1, .., xn+1)
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for all n. (Why?) Let q(x1, x2, .....) be the union, a complete type over
M . If b = (b1, b2, ...) ralizes q, then b is independent from M over A and
tp(b/A) = tp(a/A).

Corollary 2.31 (T t.t.) Assume A ⊆ C. Then tp(a, b/C) does not fork
over A if and only if tp(b/C) does not fork over A and tp(a/Cb) does not
fork over Ab.

Proof. Enumerate C as c. Assume that (a, b) is independent from c over
A. By Remark 2.30 (symmetry), c is independent from (a,b) over A. By
transitivity, c is independent from b over A and clearly c is independent from
a over A ∪ b. Apply symmetry again to conclude that b is independent from
c over A and a is independent from cb over Ab. The converse goes the same
way.

Definition 2.32 (T t.t.). Let p(x) ∈ S(A). We say that p(x) is stationary
if it has exactly one nonforking extension over any B ⊇ A.

Of course this definition makes sense for an arbitrary theory, but for T
t.t., stationarity of p(x) ∈ S(A), is equivalent, by 2.29 (iv) to p having Morley
degree 1. Moreover, any complete type over an eq-algebraically closed set is
stationary (by 2.23).

Proposition 2.33 (Conjugacy of nonforking extensions, finite equivalence
relation theorem.) Assume T to be t.t.
(i) Let p(x) ∈ S(A). Let M ⊇ A be (|T | + |A|)+-saturated and strongly
homogeneous. Let p1(x), p2(x) ∈ S(M) be nonforking extensions of p(x).
Then there is an A-automorphism f of M such that f(p1) = p2.
(ii) Let θ(x) be a formula over A of Morley rank α and Morley degree d. Then
there is a formula θ′(x) over A, which implies θ(x) and such that RM(θ(x)∧
¬θ′(x)) < α, and there is an A-definable equivalence relation E(x1, x2) on
θ′(M̄) with precisely d classes, each of Morley rank α.

Proof. (i) First note that if q(x) ∈ S(M) is a nonforking extension of
p(x) then q(x) is determined by q|acleq(A) (by 2.23). So now, suppose
q1(x), q2(x) ∈ S(M) are nonforking extensions of p(x). By Exercise 2.28,
let f be an elementary permutation of acleq(A) which fixes A pointwise and
takes q1|acleq(A) to q2|acleq(A). f then extends to an automorphism f ′ of
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M , and f ′(q1) = q2.
(ii) We begin with
Claim. We can find pairwise inconsistent formulas θ1(x), .., θd(x) over acleq(A),
each of which implies θ(x) and each of which has Morley rank α and Morley
degree 1.
Proof. Let ψ1(x), .., ψd(x) be pairwise inconsistent formulas of Morley rank
α and degree 1 over some model M ⊇ A, each of which implies θ(x). Let
qi(x) ∈ S(M) contain ψi(x) and have Morley rank α. By 2.26, qi(x) does
not fork over A (θ(x) ∈ qi(x), so RM(qi|A) = α). Let pi(x) = qi(x)|acleq(A).
Then pi(x) is stationary, (so of Morley degree 1) and i 6= j implies pi(x) 6=
pj(x). So we may find formulas θi(x) in pi(x) of Morley rank α and degree
1. We may assume that the θi(x) are pairwise inconsistent.

Let Θi be the (finite) set of images of θi(x) under A-automorphisms (θi(x) is
almost over A). Let Θ be ∪iΘi. So Θ is a finite set of formulas, and moreover
Θ is A-invariant (in the obvious sense). Let E(x1, x2) be: ∧{χ(x1)↔ χ(x2) :
χ(x) ∈ Θ}. Then E is definable, A-invariant and so A-definable. Moreover
E has finitely many classes. Let us restrict E to θ(M̄). As each formula in
Θ has Morley rank α and degree 1, it is clear that each E-class either has
Morley rank α and degree 1 or Morley rank < α. Let X be the union of the
classes of Morley rank α. So X is definable and A-invariant, so A-definable,
by θ′(x) say. Then θ′(x) and E satisfy the required conditions.

We will discuss a few more issues in the context of t.t theories (such as
canonical bases, Morley sequences, dividing, existence of saturated models),
and then discuss how the whole theory generalizes to the stable case.

Definition 2.34 (T stable.) Let p(x) be a “global” type, that is a complete
type over M̄ . Let c be a small tuple from M̄ eq. We say that c is a canonical
base of p if for any automorphism f of M̄ , f(p) = p iff f(c) = c.

Usually canonical bases are thought of as sets. Here we think of them as
(possibly infinite) tuples, although this also causes some clumsy notation. In
the case of algebraically closed fields, say, any stationary type is the “generic”
type of some irreducible variety, and the canonical base of the type identifies
with the smallest field of definition of the variety. Canonical bases play a
crucial role in both general stability theory and geometric stability theory. In
the t.t case canonical bases will exist as single elements (in M̄ eq), and given a

21



stationary type p, if c is the canonical base of the global nonforking extenion
of p, RM(tp(c)) will measure the “size” of the set of the set of conjugates
of p (images of p under automorphisms of M̄). Algebraically closed fields
are an interesting example. Consider the family of algebraic curves over C
given by y = anx

n + an−1x
n−1 + .. + a0 (as the ai vary). This is clearly an

“n + 1-dimensional family” of curves. This corresponds to the fact that for
“generic independent” a0, .., an, the tuple (a0, ..., an) is a canonical base for
the “generic type” of the curve, and RM(tp(a0, .., an)/∅)) = n+ 1.

Proposition 2.35 (T stable) Any global type p(x) has a canonical base,
which is unique up to interdefinability. Namely if c1, c2 are canonical bases
of p then c1 ⊆ dcl(c2) and c2 ⊆ dcl(c1). In particular, p has a unique
definably closed canonical base (in M̄ eq), up to enumeration, which we refer
to as Cb(p).

Proof. For each δ(x, y) ∈ L, let ψδ(y) ∈ LM̄ be a δ-definition for p̄ (by 2.10),
let cδ be a code in M̄ eq for ψδ(y), and let c = (cδ)δ. It is clear that c works.

If d is another canonical base for p, then by definition, an automorphism
of M̄ fixes c iff it fixes d. Hence c and d are interdefinable.

Definition 2.36 (T t.t.) Let p(x) ∈ S(A) be stationary. We define Cb(p)
to be Cb(p(x)) where p(x) is the unique global nonforking extension of p.

Remark 2.37 (T t.t.) So by the proof of 2.35, if p(x) ∈ S(A) is stationary,
then Cb(p) is the eq-definable closure of the set of codes of δ-definitions of p
(the global nonforking extension of p) as δ(x, y) ranges over L.

Let me reiterate a remark made earlier: Any complete type p(x) over a
set A has a unique extension to a complete type over dcleq(A). In particular
it makes sense to talk about the restrition of p(x) to C for C ⊆ dcleq(A).

Lemma 2.38 (Assume T to be t.t.)
(i) Let p(x) ∈ S(A) be stationary. Then Cb(p) is the smallest eq-definably
closed subset A0 of dcleq(A) such that p(x) does not fork over A0 and p|A0

is stationary.
(ii) Given a finite tuple a and A ⊆ B, tp(a/B) does not fork over A if
Cb(stp(a/B)) is contained in acleq(A).
(iii) If p(x) ∈ S(A) is stationary, then Cb(p) is the eq-definable closure of a
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single element (of M̄ eq).
(iv) (normalization) Let φ(x) be a formula of Morley rank α and degree 1.
Then there is another formula ψ(x) of Morley rank α and degree 1, such that
(RM, dM)(φ(x) ∧ ψ(x)) = (α, 1) and for any conjugate ψ′(x) of ψ(x) under
Aut(M̄), either |= ∀x(ψ(x)↔ ψ′(x)), or RM(ψ(x) ∧ ψ′(x)) < α.

Proof. (i) Let c be Cb(p). Note that any A-automorphism of M̄ fixes p
(the global nonforking extension of p) so fixes c pointwise, whereby c ⊆
dcleq(A). Suppose that A0 ⊆ dcleq(A), and p does not fork over A0 and p|A0

is stationary. Then clearly the global nonforking extension of p|A0 is the
same as the global nonforking extension of p. Therefore by the first part
of the proof applied to p|A0 we see that c ⊆ dcleq(A0). Finally we need
to show that p(x) does not fork over c and p(x)|c is stationary. In fact by
definition (Definition 2.24 (i)) p(x) does not fork over c. To show that p(x)|c
is stationary, we show that p is its unique global nonforking extension. Let
q be another global nonforking extension of p|c. By 2.33 (i) there is a c-
automorphism of M̄ taking p to q. But p is fixed by all c-automorphisms of
M̄ . So q = p.
(ii) Remember that stp(a/B) denotes tp(a/acleq(B), a stationary type. Let
c = Cb(stp(a/B)). Let p be the global nonforking extension of stp(a/B).
Suppose that c ∈ acleq(A) where A ⊆ B. Then clearly p is definable almost
over A, so does not fork over A. By transitivity p|B does not fork overA.
That, is tp(a/B) does not fork over A.

Conversely assume tp(a/B) does not fork over A. So tp(a/acleq(B)) does
not fork over A. So p does not fork over A and hence is definable almost over
A. Thus c ⊆ acleq(A). (We are using transitivity, as well as the definition of
nonforking here.)
(iii) This will be something special about t.t. theories. Let p(x) ∈ S(A) be
stationary, and c = Cb(p). So we know that p0(x) = p|c is stationary (by
(i)). By 2.29 (iv), p0 has Morley degree 1. Let φ(x, c0) be a formula over c
which is in p0 and has Morley rank α = RM(p0) and Morley degree 1. In
fact there is no harm in allowing c0 to be a “code” for φ(x, c0). Let p(x) be
the global nonforking extension of p0. So RM(p) = α and φ(x, c0) ∈ p. Let
f be an automorphism of M̄ which fixes c0. Then f(p) has Morley rank α
and contains φ(x, c0). Hence f(p) = p. Hence (by definition), f(c) = c. So
all elements of c are fixed by all c0-automorphisms of M̄ . So c ⊆ dcleq(c0) as
required.
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(iv) Let p(x) ∈ S(A) be a type of Morley rank α which contains φ(x). So by
2.29(iv) p is stationary. By the proof of (iii) above there is a formula ψ(x)
over c of Morley rank α and degree 1 such that if c0 is a code for ψ(x), then
c = dcleq(c0). Note that as φ(x) ∧ ψ(x) ∈ p(x), (RM, dM)(φ(x) ∧ ψ(x)) =
(α, 1) (hence, in passing, the symmetric difference of φ and ψ has Morley
rank < α). Let p be the global nonforking extension of p(x). Note that for
any automorphism f of M̄ , f(p) = p iff RM(ψ(x)∧ f(ψ)(x)) = α. But also
f(p) = p if f(c0) = c0 (as Cb(p) = dcleq(c0)). So putting it together we see
that for any automorphism f of M̄ , RM(ψ(x) ∧ f(ψ(x)) = α, iff f(ψ(x)) is
equivalent to ψ(x).

Exercise 2.39 (i) Suppose that (bi : i < ω) is an A-indiscernible sequence
(of finite tuples of the same length). Then for all i, j < ω, stp(bi/A) =
stp(bj/A).
(ii) (T stable.) Suppose that (bi : i < ω) is an A-indiscernible sequence of
tules (of some fixed finite length). Then {bi : i < ω} is totally indiscernible
over A, namely for any n and n-element subsets {i1, .., in}, {j1, .., jn} of ω,
tp(bi1 , .., bin/A) = tp(bj1 , .., bjn/A).

Definition 2.40 (T t.t.) Let p(x) ∈ S(A) be stationary. By a Morley se-
quence (of length ω) of p(x) we mean a sequence (bi : i < ω) such that each
bi realizes the (unique) nnonforking extension of p(x) over A ∪ {b0, .., bi−1}
(or in previous notation bi realises p|(A ∪ {b0, .., bi−1}).

Exercise 2.41 (T t.t.) Let (bi : i < ω) be a Morley sequence of the stationary
type p(x) ∈ S(A). Then (bi : i < ω} is A-indiscernible. Moreover if (ci : i <
ω) is another Morley sequence of p(x), then tp((bi)i<ω/A) = tp((ci)i<ω/A).

Proposition 2.42 (T t.t) Let p(x) ∈ S(A) be stationary. Let (bi : i < ω)
be a Morley sequence of p(x). Then Cb(p(x)) ⊆ dcleq(bi : i < ω) (in fact
Cb(p(x)) ⊆ dcleq(b0, .., bn) for some n < ω).

Proof. Let p be the global nonforking extension of p(x). By inspecting the
proof of Lemma 2.6, we see that for any δ(x, y) ∈ L, the δ-definition of
p(x) is over (ai : i < ω) for some Morley sequence (ai)i of p(x). But this
δ-definition is also over A. Hence by the second part of Exercise 2.41, it is
over any Morley sequence (bi : i < ω) of p(x). This shows that c = Cb(p) is
in the definable closure of any Morley sequence of p(x). As (by 2.38 (iii)) c is
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contained in dcl(c0) for a single imaginary c0 ∈ c, we obtain the parenthetical
remark too.

Definition 2.43 (T t.t.) Let {bi : i ∈ I} be a set of tuples, and A a set
of parameters. We will say that {bi : i ∈ I} is independent over A or A-
independent, if for each i ∈ I, bi is independent from A ∪ {bj : j ∈ I, j 6= i}
over A.

Exercise 2.44 (T t.t) Suppose that (bi : i < ω) is a sequence such that bi is
independent from (b0, .., bi−1) over A for each i < ω. Show that {bi : i < ω}
is A-independent. (Forking calculus.) So note in particular that any Morley
sequence of a stationary type p(x) ∈ S(A) will be A-independent.

Lemma 2.45 (T t.t). Suppose that A is a set of parameters, {bi : i ∈ I}
is an A-independent set of tuples, c is a finite tuple, and for each i ∈ I,
tp(c/Abi) forks over A. Then I is finite.

Proof. Suppose not. Without loss I = ω.
Claim. For each i, tp(bi+1/A ∪ {b0, .., bi} ∪ {c}) forks over A ∪ {b0, .., bi}.
If not then by our assumptions, together with transitivity, tp(bi+1/A∪{b0, .., bi}∪
{c}) does not fork over A, hence by transitivity again tp(bi+1/A ∪ {c}) does
not fork over A, so by symmetry, tp(c/A ∪ {bi}) does not fork over A, con-
tradicting the hypotheses.

By the claim and symmetry, tp(c/A ∪ {b0, .., bi+1}) forks over A ∪ {b0, .., bi})
for all i < ω. By Proposition 2.26, we have RM(tp(c/A)) > RM(tp(c/A ∪
{b0})) > ... > RM(tp(c/A∪{b0, .., bi})) > RM(tp(c/A∪{b0, .., bi, bi+1})) > ...
which gives a strictly descending infinite sequence of ordinals, a contradiction.

Definition 2.46 (i) Let φ(x, b) be a formula with parameter b. φ(x, b) is said
to divide over A if there is an infinite A-indiscernible sequence (bi : i < ω)
of realizations of tp(b/A) such that {φ(x, bi) : i < ω} is inconsistent (namely
not realized in M̄).
(ii) A complete type p(x) ∈ S(B) is said to divide over A ⊆ B, if some
formula φ(x) ∈ p(x) divides over A.

Example 2.47 (a) Suppose φ(x, b) is consistent and almost over A. Then
φ(x, b) does not divide ove A.
(b) Suppose that b /∈ acl(A). Then the formula x = b divides over A.
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Proof. (a) Let (bi : i < ω) be A-indiscernible with tp(b/A) = tp(bi/A) for
some (all) i. The formulas φ(x, bi) are images of φ(x, b) under automorphisms
which fix A pointwise. So, as φ(x, b) is almost over A there must be i < j
such that |= ∀x(φ(x, bi) ↔ φ(x, bj)). So by indiscernibility, all φ(x, bi) are
equivalent. So clearly {φ(x, bi) : i < ω} is consistent (as φ(x, b) is consistent).
(b) As b /∈ acl(A) there are realizations bi of tp(b/A) for i < ω such that i 6= j
implies bi 6= bj. By Proposition 5.11 of [1], we may assume that (bi : i < ω)
is A-indiscernible. But then x = bi ∧ x = bj is inconsistent for i 6= j. This
shows that x = b divides over A.

Remark 2.48 Shelah’s original definition of forking was as follows:
(i) The formula φ(x, b) forks over A if there are formulas φ1(x, b1), ..., φn(x, bn)
such that |= ∀x(φ(x, b)→ ∨iφi(x, bi)) and each φi(x, bi) divides over A.
(ii) p(x) ∈ S(B) forks over A ⊆ B if there is a formula φ(x, b) ∈ p(x) which
forks over A.

The next proposition shows that our definition of forking agrees with
Shelah’s original one (for t.t theories).

Lemma 2.49 (T t.t) Let p(x) ∈ S(B) and A ⊆ B. Then
(i) p(x) forks over A (in the sense of Definition 2.24) if and only if p(x)
divides over A.
(ii) p(x) forks over A (in the sense of Definition 2.24) if and only if p(x)
forks over A in Shelah’s sense (in Remark 2.48)

Proof. (i) Suppose that p(x) forks over A. By 2.29 (vi) there is finite b ∈ B
such that p(x)|Ab forks over A. Write p(x)|Ab = q(x, b). Let r(y) = stp(b/A).
Let (bi : i < ω) be a Morley sequence of r(y).
Claim. {q(x, bi) : i < ω} is inconsistent.
Proof. If not, there is c realizing it. By automorphism tp(c/Abi) forks over
A for all i. Now (bi : i < ω) is A-independent (why?), so Lemma 2.45 gives
a contradiction.

By the claim and compactness there is a formula φ(x, b) ∈ q(x, b) such that
{φ(x, bi) : i < ω} is inconsistent. By 2.41, (bi : i < ω) is A-indiscernible. So
φ(x, b) divides over A. (Note that phi(x, b) may contain hidden parameters
from A, say a. Write φ(x, b) as φ′(x, b, a). So φ(x, b, a) ∈ p(x), (bi, a) : i < ω)
is an A-indiscernible sequence of realizations of tp(ba/A), and {φ′(x, bi, a) :
i < ω} is inconsistent, hence φ′(x, b, a) divides over A.)
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Conversely, suppose that p(x) does not fork over A. Let φ(x, b) ∈ p(x), and
let (bi : i < ω) be an A-indiscernible sequence of realizations of tp(b/A). We
may assume that b = b0. Let a realize p(x), let p′(x) be tp(a/acleq(B)), and
let p(x) be the unique global nonforking extension of p′. Then p does not
fork over A (by transitivity) hence is definable over acleq(A). In particular
there is a formula ψ(y) over acleq(A) such that for any b′ ∈ M̄ , φ(x, b′) ∈ p iff
|= ψ(b′). By Exercise 2.39 (i), tp(bi/acl

eq(A)) = tp(b/acleq(A)) for all i < ω.
As φ(x, b) ∈ p(x), we have |= ψ(b), and thus |= ψ(bi) for all i < ω, and so
φ(x, bi) ∈ p(x) for all i. So {φ(x, bi) : i < ω} is consistent. So φ(x, b) does
not divide over A.

(ii) Note that if φ(x) divides over A then φ(x) forks over A in the sense of
Shelah, so LHS → RHS follows from (i).
Conversely, suppose p(x) ∈ S(B) and p(x) forks over A ⊆ B in the sense of
Shelah. So there are finitely many formulas φi(x) for i = 1, .., n say, such
that p(x) |= ∨iφi(x), and each φi(x) divides over A. Let C ⊇ B contain the
parameters from the φi. So clearly any extension of p(x) to a complete type
over C contains one of the φi hence divides over A. On the other hand p(x)
has, by 2.29, a nonforking extension (in sense of 2.24) extension q(x) ∈ S(X).
By what we just said, q(x) divides over A. By part (i), q(x) forks over A in
the sense of 2.24. By 2.29 (transitivity), p(x) forks over A (in sense of 2.24).

Here is another characterization of forking in t.t. theories. The proof makes
use of 2.40 although it could be given without it.

Lemma 2.50 (T t.t) Let p(x) ∈ S(B) and A ⊆ B. The following are
equivalent:
(i) p(x) does not fork over A,
(ii) for any formula φ(x) ∈ p(x) and model M ⊇ A, there is c ∈M such that
|= φ(c).

Proof. Let us remark first that the model M in (ii) need not contain B.
(i) implies (ii). Assume p(x) does not fork over A. Let φ(x, b) ∈ p(x) (where
we exhibit the parameters) and let M be a model containing A. Let p′(x) ∈
S(M ∪ B) be a nonforking extension of p(x). Then by transitivity, p′(x)
does not fork over M . Let a realizes p′(x). By transitivity and symmetry,
tp(b/M, a) does not fork over M . We then know that tp(b/M, a) is precisely
d(M ∪ a) where d is a defining schema for tp(b/M). Let ψ(x) = d(φ(x, y)).
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So |= ψ(a), hence ψ(x) is consistent, hence realized in M by a′ say (as ψ(x)
is over M). Thus |= φ(a′, b).
Conversely, assume (ii). We will show that p(x) does not divide over A. Let
φ(x, b) ∈ p(x). Let (bi : i < ω) be an A-indiscernible sequence of realizations
of tp(b/A), where we may assume that b0 = b. Let M ⊇ A be a model
such that (bi : i < ω) is also M -indiscernible. (We leave it as an exercise
to be added to assignment 3, that such M can be found.) By assumption
there is c ∈ M such that |= φ(c, b0). But then |= φ(c, bi) for all i, hence
{φ(x, bi) : i < ω} is consistent.

Finally let us return to the question of the existence of saturated models
of t.t theories. We proved in Lemma 5.20 of [1] that if T is countable and
ω-stable, then for any infinite regular cardinal, T has a saturated model of
cardinality λ. The proof goes over to the t.t. case: T has a saturated model
of cardinality λ for every regular λ ≥ |T |. We can now deal with the general
case. First:

Remark 2.51 Suppose T is t.t. Then for every λ ≥ |T |, T is λ-stable, that
is, for every model M of T of cardinality λ, there are only λ-many complete
n-types over M for all M .

Proof. A complete type p(x) over a model M is determined by the choice of
a formula φ(x) ∈ p such that RM(p(x)) = RM(φ(x)) and dM(φ(x)) = 1.

Proposition 2.52 Suppose T is t.t. Then for every λ ≥ |T |, T has a satu-
rated model of cardinality λ.

Proof. By Remark 2.51, we can build a continuous elementary chain (Mα :
α < λ) of models of T of cardinality λ, such that all complete (finitary) types
over Mα are realized in Mα+1. Let M be the union of the chain. So M is of
cardinality λ. We claim that M is λ-saturated. Let A ⊂M have cardinality
< λ, and p(x) ∈ S(A). We must show that p is realized in M . By adding a
finite set of parameters to A we may assume that p(x) is stationary (why?).
Let A0 be a finite subset of A such that p(x) does not fork over A0 and p|A0

is stationary. (For example, let φ(x) ∈ p(x) have least Morley rank, and
Morley degree 1 and let A0 be the parameters from φ.) Then A0 is contained
in Mα for some α < λ. Let p0 = p|A0. By choice of the Mβ we can find
cβ+1 ∈ Mβ+1 for α ≤ β < λ, such that cβ+1 realizes the unique nonforking
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extension of p0(x) over Mβ. Then (cβ)β is a Morley sequence in p0(x) (of
length λ) in particular, is A0-independent. By 2.45, for each finite tuple b
from A all but finitely many cβ’s are independent from b over A0. By the
finite character of forking, and the fact that A has cardinality < λ there is
some cβ which is independent from M ′ over A0. But then tp(cβ/A) is the
unique nonforking extension of p0 over A which is p(x). So p(x) is realized
in M .

In the next section we will discuss structures/definable sets of finite Morley
rank, especially of rank 1, and there will be many examples. So we conclude
this section with some infinite Morley rank examples.

Example 2.53 Let Ei for i < ω be binary relation symbols. Let Ln = {Ei :
i ≤ n}. Let Tn be the Ln-theory with axioms:
- for i ≤ n, Ei is an equivalence relation with infinitely many classes,
- E0 is equality,
- if i < n then every Ei+1-class is a union of infinitely many Ei-classes.
Let Tω = ∪nTn in language Lω = ∪nLn.
Then in Tn, (RM, dM)(x = x) = (n+ 1, 1), and in Tω, (RM, dM)(x = x) =
(ω, 1).

Explanation The proof of this is left to you. First show that each Tn is
complete with quantifier-elimination. Show that a formula Ei(x, a) has Mor-
ley rank i and degree 1. How can you describe forking for 1-types in these
theories?

Before the next example, recall that we proved in 3.6 of [1] that ACFp is
complete with QE in the language of rings (for p a prime or zero). It follows
from QE that any definable subset of an algebraically closed field is finite or
cofinite, hence x = x has Morley rank 1 and degree 1. In particular ACFp is
ω-stable (why??).

Example 2.54 DCF0 was introduced in Example 3.17 of [1], where we said
(without proof) that DCF0 is complete with quantifier-elimination. We use
this to sketch a proof that DCF0 is ω-stable, hence t.t..

Let (K,+,−, ·, 0, 1, ∂) be a countable model of DCF0 and let K ′ be a satu-
rated elementary extension. We consider complete 1-types over K realized in
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K ′ and show there are only countably many of them. Let L be the language
of differential rings and Lr the language of rings. (K,+,−, ·, 0, 1) will be
an algebraically closed field of characteristic 0. Fix p(x) ∈ S1(K), and let
a ∈ K ′ realize it.
We have two cases:
Case 1. (a, ∂(a), ∂2(a), ....) is algebraically independent over K. (Namely
for any polynomial P (x0, ...., xn) ∈ K[x0, .., xn], P (a, ∂(a), .., ∂n(a)) 6= 0. By
QE, p(x) is uniquely determined. That is, there is at most one p(x) ∈ S1(K)
such that Case 1 holds.

Case 2. Otherwise. Let n be least such that (a, ∂(a), .., ∂n(a)) is algebraically
dependent over K. So n depends only on p(x) and we call n the order of p.
Claim. p(x) is determined by n = ord(p) together with tpLr(a, ∂(a), .., ∂n(a)/K).
Let P (x) be the minimal polynomial over ∂n(a) over K(a, ∂(a), .., ∂n−1(a)).
Then applying ∂ to P (∂n(a)) = 0, and using minimality of P (X), one finds
a K-rational function s(x0, .., xn) such that ∂n+1(a) = s(a, ∂(a), .., ∂n(a)).
Continuing, one finds K-rational functions si(x0, .., xn) such that ∂n+i(a) =
si(a, ∂(a), .., ∂n(a)).
The conclusion is that if b ∈ K ′, ord(tp(b/K)) = n and tpLr(b, ∂(b), .., ∂n(b)/K) =
tpLr(a, ∂(a), .., ∂n(b)/K) then for all i ≥ 1, ∂n+i(b) = si(b, ..., ∂

n(b)). It fol-
lows that for all m, tpLr(b, ∂(b), .., ∂m(b)/K) = tpLr(a, ∂(a), .., ∂m(a)/K), and
so by QE, tp(b/K) = tp(b/K) = p(x), proving the claim.

By the claim together with ω-stability of ACF0, there are only countably
many 1-types over K of finite order. Together with Case 1 giving a unique
1-type we see that there are only countably many complete 1-types over K.
This proves ω-stability of DCF0.

Let us point out a few additional things about 1-types in DCF0 without
proof:
- RM(x = x) = ω,
- k1 ⊂ k2 ⊂ K are differential subfields of K, and p(x) is a complete 1-type
over k2, then p(x) does not fork over k1 iff ord(p(x)) = ord(p(x)|k1).

3 Strongly minimal sets and “geometry”

Let T be a (complete) theory in a language L, and φ(x̄) an L-formula. We
say that φ(x̄) is strongly minimal if RM(φ) = 1 and dM(φ) = 1. If X is
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an A-definable set in some structure M we say that X is strongly minimal,
if the formula φ defining X is a strongly minimal formula in the theory
Th(M,a)a∈A.

Remark 3.1 Let M̄ be an ω-saturated structure, and X ⊆ M̄n a set which
is A-definable in M̄ , where A is a finite set of parameters from M . Then X
is strongly minimal if X is infinite, and for every definable (with parameters)
subset Y of M̄n, X ∩ Y is finite or X \ Y is finite.

By a strongly minimal theory we mean a (complete) 1-sorted theory T in
which the formula “x = x” is strongly minimal.

Strongly minimal formulas and sets are important for t.t theories of finite
Morley rank. Any structure of finite Morley rank can be more or less built
out of strongly minimal sets. For groups of finite Morley rank this can
be made more precise: if G is a group of finite Morley rank, then there are
normal definable subgroups {1} < N1 < .. < Nk = G such that each quotient
Ni/Ni−1 is “almost strongly minimal”.

Studying strongly minimal sets amounts to the same thing as studying strongly
minimal theories. Let us first elaborate on this, as it gives us an opportunity
to discuss “induced structure” and “stable embeddedness”. First:

Remark 3.2 Let T be t.t. Then any complete type over any set A is de-
finable: for each φ(x, y) ∈ L there is ψ(y) ∈ LA such that for b ∈ A,
φ(x, b) ∈ p(x) iff |= ψ(b).

Proof. Let θ(x) ∈ p(x) have least (RM, dM), say (α, d). So for any δ(x, y) ∈
L and b ∈ A, δ(x, b) ∈ p(x) iff (RM, dM)(θ(x) ∧ δ(x, b)) = (α, d). Now use
Corollary 2.15.

Definition 3.3 Let M be an L-structure, possibly many-sorted. Let S be a
sort of L, and X a definable subset of S(M), defined with parameters A from
M . Then by the “induced structure over A on X” we mean the following:
The 1-sorted language L′ consists of an n-place relation symbol RY for each
A-definable subset Y of S(M)n. Make X into an L′-structure with universe
X by interpreting each RY as Y ∩Xn.

Lemma 3.4 Assume T to be t.t. Let M be a model of T (maybe saturated).
Let X be an A-definable set in M . Let X be the L′-structure on X given by
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the definition above. Then
(i) Th(X ) has quantifier-elimination in L′.
(ii) The subsets of Xn definable (with parameters) in X are the same as those
definable (with parameters) in M .

Proof. (i) is obvious.
(ii). By (i) any subset of Xn definable with parameters in X is definable
(with the same parameters) in M . Conversely, let Y ⊂ X say be definable
by the formula φ(x, b) in M where b may be outside X. By Remark 3.2,
tp(b/X) is definable (over X). So there is a formula ψ(x, c) with parameters
c from X, such that for a ∈ X, M |= φ(a, b) iff M |= ψ(a, c). Let Z be the
set in M defined by ψ(x, z). Then Y is defined in X be the formula RZ(x, c).

Remark 3.5 Note that, in Lemma 3.4, if M is 1-sorted and X is M itself,
then the structure X is essentially just the Morleyization of M .

Let us consider some examples. The first has been mentioned before:

Example 3.6 The theory of algebraically closed fields of some fixed charac-
teristic is strongly minimal.

Proof. ACFp has quantifier-elimination in the language of rings. So if K
is an algebraically closed field, every definable (with parameters) subset of
K is a Boolean combination of sets defined by things of the form P (x) = 0
where P ∈ K[x] is a polynomial over K in single indeterminate x. The set of
solutions of P (x) = 0 is either finite or everything. So any definable subset
of K is finite or cofinite.

Example 3.7 The formula ∂(x) = 0 is strongly minimal in DCF0. More-
over the induced structure on the corresponding strongly minimal set in a
model of DCF0 is just that of an algebraically closed field.

Proof. Because of 3.4(ii) and 3.6 it is enough to show the second part. Let
K be a differentially closed field. The solution set of ∂(x) = 0 in K is usu-
ally called the constants of K and sometimes dentoted CK . I will be using
the fact that CK is algebraically closed. (Proof: A derivation on a field F
extends uniquely to a derivation on the algebraic closure of F . Thus every
existentially closed differential field K is algebraically closed. By the unique-
ness assertion above the algebraic closure in K of CK must also consist of
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constants.) As CK is defined without parameters, we take A as in 3.3 to be ∅.
Let X now be a ∅-definable subset of Kn, and consider X ∩Cn

K , and we want
to show that this latter set is ∅-definable in (CK ,+, ·, 0, 1). By quantifier-
elimination in DCF0 we may assume that X is given by P (x̄, ∂x̄, ...) = 0,
where P is a polynomial over Z. As ∂ is 0 on CK , X ∩ Cn

K is defined by
P (x̄, 0̄, 0̄, ..) = 0.

(The point we are making here is that the subsets of Cn
K which are ∅-

definable in the structure (K,+, ·,−, 0, 1, ∂) are the same as those which
are ∅-definable in the structure (CK ,+, ·,−, 0, 1). The theory of the latter
structure is strongly minimal, by 3.6. By 3.4 (ii), and t.t.-ness of DCF0, CK
is a strongly minimal set in K.)

Example 3.8 Let F be a division ring. Let V be an infinite-dimensional
vector space over F . Consider V as a structure in the language contain-
ing +,−, 0, as well as unary functions µf for f ∈ F (representing scalar
multiplication by elements of F ). Then Th(V ) is strongly minimal.

Proof. A back-and-forth argument shows that Th(V ) has quantifier-elimination
in the given language. So, up to Boolean combination, a formula φ(x, a1, .., an)
is of the form µx +

∑
i=1,..,n µiai = λx +

∑
i=1,..,n λiai which is equivalent to

x = b for some b ∈ V . Good.
(Note that every definable subset of V n is, up to Boolean combination,

of the
∑
i=1,..,n µixi = b.)

Let us now fix a t.t. theory T , a saturated model M̄ of T and a strongly
minimal set D ∅-definable in M̄ . The reader can assume D to be precisely
M̄ if he or she so wishes. We will study definability and independence in D.
x will denote a variable of the sort of which D is a subset. Here is a special
case of Lemma 2.14, which has an easier proof.

Remark 3.9 Let φ(x, y) be an L-formula. Then there is an L-formula ψ(y)
such that for all b ∈ M̄ , |= ψ(b) iff φ(x, b) ∧D(x) is finite.

Proof. If not, then for arbitrarily large n there is b ∈ M̄ such that both
φ(x, b)∧D(x) and ¬φ(x, b)∧D(x) have at least n solutions. By compactness
there is b such that both φ(x, b) ∧ D(x) and φ(x, b) ∧ D(x) have infinitely
many solutions, contradicting strong minimality of D.
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Insofar as definable subsets of D itself are concerned, the infinite ones have
Morley rank 1 and the finite ones have Morley rank 0. Let us take an informal
look at definable subsets of D × D. Let X ⊆ D × D be definable. Let π
be the projection on the first coordinate. For a ∈ D, let Xa be the “fibre”
{b : (a, b) ∈ X}. Let Y = {a ∈ D : Xa 6= ∅}, Y1 = {a ∈ Y : Xa is finite} and
Y2 = {a ∈ Y : Xa is infinite}. Y is clearly definable, and Y1, Y2 are definable
by Remark 3.9. Let Xi = π−1(Yi)∩X for i = 1, 2. So X is the disjoint union
of X1 and X2.

If Y1 is finite, then so is X1. If Y1 is infinite (so cofinite), then X1 is
intuitively something “1-dimensional”. If Y2 is finite and nonemmpty, then
again X2 is something “1-dimensional”. If Y2 is infinite (so cofinite) then in-
tuitively X2 is “2-dimensional”. As we shall see these dimensions correspond
exactly to Morley rank.

We will need the following which is related to Exercise 2.2 (ii).

Exercise 3.10 Suppose that a, b are finite tuples and b ∈ acl(A, a). Then
RM(tp(a/A)) ≥ RM(tp(b/A)) and RM(tp(a/A)) = RM(tp(a, b/A)).

Let p0 be the unique complete type over ∅ which contains D(x) and
has Morley rank 1 (and degree 1). Note that p0(x) is “axiomatized” by
{D(x)} ∪ “x /∈ acl(∅)”. Also p0 is stationary.

Remark 3.11 Let a ∈ D and A ⊆ M̄ . The following are equivalent:
(i) a /∈ acl(A),
(ii) a realizes p0|A.

Proof. The nonforking extensions of p0 are by 2.26 the extensions of p0 of
Morley rank 1. But the types of Morley rank 0 are precisely the algebraic
types.

Corollary 3.12 Let a, b ∈ D and A a set of parameters. Suppose b ∈
acl(A, a) \ acl(A). Then a ∈ acl(A, b) \ acl(A).

Proof. This follows from forking symmetry for t.t theories, bearing in mind
3.11.

Of course Corollary 3.12 can be proved directly and easily, without recourse
to forking symmetry in t.t. theories.
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Let us make a quick definition, which makes sense in any structure: Let
{bi : i ∈ I} be a set of finite tuples in a structure M̄ , and A a set of
parameters. We call {bi : i ∈ I} algebraically independent over A if for each
i, bi /∈ acl(A ∪ {bj : j ∈ I, j 6= i}).

Back in our situation:

Corollary 3.13 Let {bi : i < ω} ⊆ D. Assume that bi /∈ acl(A∪{bj : j < i})
for all i < ω. Then
(i) {bi : i < ω} is an A-independent set of realizations of p0/A, and
(ii) {bi : i < ω} is algebraically independent over A

Proof. (i) is a direct application of 3.11 and 2.44. (ii) follows from (i) and
3.11.

The next result will show that Morley rank equals “dimension” inside strongly
minimal sets.

Proposition 3.14 Let ā = (a1, .., am) be an m-tuple of elements of D.
Assume that (a1, .., an) is algebraically independent over A, and that ā ⊆
acl(A ∪ {a1, .., an}). Then RM(tp(ā/A)) = n.

Proof. We prove this by induction on n. For n = 1, RM(tp(a1/A)) = 1 by
3.11, and then RM(tp(ā)) = 1 by 3.10. Now assume true for n′ < n, and we
prove it for n. By 3.10 it is enough to prove that RM(tp(a1, .., an/A)) = n.
Now by induction hypothesis RM(tp(a1, .., an/A ∪ {a1})) = n − 1 and by
2.47(b) and symmetry, tp(a1, .., an/A ∪ {a1}) forks over A. So by 2.26,
RM(tp(a1, .., an/A)) ≥ n. Suppose for a contradiction thatRM(tp(a1, .., an/A)) >
n. So RM(Dn) > n. It follows that there are at least two complete types
q1(x1, .., xn) and q2(x1, .., xn) over some set B, which contain “x̄ ∈ Dn”, and
both have Morley rank n. Let c̄ realise q1 and d̄ realize q2. By the induction
hypothesis, each of the sets {c1, .., cn}, and {d1, .., dn} is algebraically inde-
pendent over A. By 3.11, each of c̄, d̄ is an B-independent set of realizations
of p0|B and is thus a Morley sequence in p0|B. By 2.41, tp(c̄/B) = tp(d̄/B),
a contradiction. This proves that RM(tp(a1, .., an/A)) = n, completing the
proof of the proposition.

Definition 3.15 Let A ⊂ M̄ and B ⊆ D. By a basis of B over A we mean
a maximal subset B0 of B such that B0 is algebraically independent over A.
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Remark 3.16 Let B0 be a basis of B over A. Then B ⊆ acl(A ∪B0).

Proof. If not let b ∈ B such that b /∈ acl(A∪B0). By Corollary 3.13, B0∪{b}
is algebraically independent over A, contradicting maximality of B0.

Lemma 3.17 (With the notation of Definition 3.15.) Let B0 and B1 be two
bases of B over A. Then B0 and B1 have the same cardinality.

Proof. Suppose first that one of the bases is infinite. Without loss of general-
ity |B0| < |B1| = κ and κ is infinite. For each element b ∈ B1 there is a finite
tuple cb from B0 such that b ∈ acl(A∪ cb). It follows that there is some finite
tuple c from B0 and and infinite subset B′0 of B0 such that b ∈ acl(A∪ c) for
all b ∈ B′0. So tp(b/A ∪ c) forks over A for all b ∈ B′0 and (by 3.13), B′0 is
A-independent. This contradicts Lemma 2.45.

Now assume that both B0 and B1 are finite. Let (b1
0, .., b

n
0 ) be an enumer-

ation of B0 and (b1
1, .., b

m
1 ) an enumeration of B1. Let c be the concatenation

of these two tuples. Then By 3.14 and 3.16, n = RM(tp(c/A)) = m.

Remark 3.18 (With notation as above.) By dim(B/A) we mean the cardi-
nality of a basis for B over A. If B is finite and b is an enumeration of B,
we write dim(b/A). So note, by 3.14 and 3.17, if b is a finite tuple from D
then dim(b/A) = RM(tp(b/A)).

Lemma 3.19 Let b, c be finite tuples from D. Then dim(bc/A) = dim(b/A∪
c)+dim(c/A). Hence by Remark 3.18 and 3.14, RM(tp(bc/A)) = RM(tp(b/cA))+
RM(tp(c/A)).

Proof. If b0 is a basis for b over A ∪ c and c0 a basis for c over A, then b0c0

is a basis for bc over A.

Exercise 3.20 Morley rank is “definable” in strongly minimal sets. That
is, for any formula φ(x1, .., xn, y) (where y is some tuple of variables and φ
implies that each xi is in D), and for any m, there is an L-formula ψ(y),
such that for all tuples b in M̄ (of length that of y), RM(φ(x1, .., xn, b)) = m
iff |= ψ(b).

36



Definition 3.21 (i) By Deq we mean {c ∈ M̄ eq : for some finite tuple d
from D, c ∈ dcl(d)}.
(ii) For A ⊂ M̄ , Deq

A = {c ∈ M̄ eq : for some finite tuple d from D, c ∈
dcl(A ∪ d)}.
(iii) Daeq and Daeq are defined as in (i) and (ii) but with acl(−) replacing
dcl(−).
(iv) Let X be a definable set in M̄ eq, defined over A say. We say that X is
almost strongly mininimal (with respect to D) if for some B ⊃ A, X ⊂ Deq

B .

Remark 3.22 Let c be a finite tuple from D and A any set of parameters
from M̄ . Then Cb(stp(c/A)) ∈ Deq.

Proof. By Proposition 2.42.

Lemma 3.23 Let c ∈ Daeq. Then there is some set A of parameters and
some finite tuple d from D such that c is independent from A over ∅, and
c is interalgebraic with d over A. Hence RM(tp(c/∅)) = RM(tp(c/A)) =
RM(tp(d/A)).

Proof. Let d̄ = (d1, .., dn) be some tuple from D such that c ∈ acl(d1, .., dn).
Relabelling, if necessary, let d̄′ = (d1, .., dr) be a maximal subtuple of d̄ which
is independent from c over ∅. It follows that for i = 1, .., n, di ∈ acl(c, d̄′)
(why?). Take A to be d̄′, and d to be d̄.

Corollary 3.24 . Let A be any set, and let b, c ∈ Daeq (or even Daeq
A ). Then

RM(tp(bc/A)) = RM(tp(b/cA)) +RM(tp(c/A)).

Proof. Let us add names for elements of A to the language. We have to show
that RM(tp(bc/∅)) = RM(tp(b/c)) + RM(tp(c/∅)). By the lemma above,
let B be independent from b such that b is interalgebraic with some finite
tuple from D over B. Likewise, let C be independent from c such that c
is interalgebraic over C with a finite tuple from D. We may choose B,C
such that (b, c) is independent from B ∪ C over ∅. (First let B′ realise a
nonforking extension of tp(B/b) over (b, c). Then let C ′ realize a nonfork-
ing extension of tp(C/c) over B′ ∪ {b, c}. Replace B,C by B′, C ′.) Let
E = B ∪C. So Let d1 be a finite tuple from D interalgebraic with b over E,
and d2 a finite tuple from D interalgebraic with c over E. Then by Exercise
3.10, RM(tp(b, c/E)) = RM(tp(d1, d2/E)), RM(tp(c/E)) = RM(tp(d2/E))
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and RM(tp(b/cE)) = RM(tp(d1/d2E)). On the other hand, as (b, c) is
independent from E over ∅ (and thus also b is independent from cE over
c), RM(tp(b, c/E)) = RM(tp(b/c)), RM(tp(b/cE)) = RM(tp(b/c)) and
RM(tp(c/E)) = RM(tp(c/∅)). Together with 3.19, this yields the required
result.

The material above, especially 3.17, can be developed at a greater level of
generality, that of pregeometries and geometries. I will say a little about
this now. Let S be a set and cl a closure operator on S, namely a map
from the power set P (S) of S to itself. The pair (S, cl(−)) is said to be a
(combinatorial) pregeometry if the following hold (where X,Y denote subsets
of S and a, b elements of S):
(i) X ⊆ cl(X),
(ii) X ⊆ Y implies cl(X) ⊆ cl(Y ).
(iii) cl(cl(X)) = cl(X),
(iv) If a ∈ cl(X ∪ {b}) \ cl(X) then b ∈ cl(X ∪ {a}).
(v) If a ∈ cl(X) then a ∈ cl(X ′) for some finite subset X ′ of X.

In a pregeometry we obtain a notion of independence: X ⊂ S is independent
if for each x ∈ X, x /∈ cl(X \ {x}). Any subset X of S contains a maximal
independent subset X0, which we call a basis of X. All bases of X have the
same cardinality, which we call dim(X).

If A is a subset of S, then the localization of S at A is the pregeometry which
has the same underlying set S, but a new closure operation clA(−) where
clA(X) = cl(A ∪X). We write dim(X/A) for dim(X) in the localization of
S at A. Note that
(vi) dim(X ∪ Y ) = dim(X/Y ) + dim(Y ).

There are various rather important properties which a pregeometry (S, cl)
may or may not have:
(a) Triviality: cl(X) = ∪x∈Xcl({x}), for all X.
(b) Modularity: dim(X)+dim(Y )−dim(X∩Y ) = dim(X∪Y ) for all closed
X and Y .
(c) Local modularity: The localization of (S, cl) at some singleton of S is
modular.
(d) Local finiteness: for finite X, cl(X) is finite.
(e) Homogeneity: for any closed X ⊆ S and a, b ∈ S \ X, there is an
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automorphism of S (that is a permutation of S preserving cl(−)) which fixes
X pointwise and takes a to b.

Exercise 3.25 (i) The pregeometry (S, cl) is modular iff and only if property
(b) above holds for all closed X,Y ⊆ S such that dim(X) = 2.
(ii) (S, cl) is modular iff for all closed X,Y ⊆ S,
dim(X/Y ) = dim(X/X ∩ Y ).

Hint. For the second part use property (vi) above.

Let us now return to the strongly minimal subset ∅-definable subset D of the
saturated model M̄ of the t.t theory T .

Lemma 3.26 Let cl(−) be algebraic closure restricted to D. Then (D, cl) is
a homogeneous pregeometry.

Proof. (i), (ii), (iii) and (v) in the definition of a pregeometry are clear. (iv)
is by 3.12. For homogeneity, we will assume that D = M̄ (although it is
true in general). Let X be an algebraically closed subset of D (even of big
cardinality), and let a, b ∈ D \ X. Extend each of a, b to bases A,B of D
over X. Then A and B have the same cardinality, by 3.17. Enumerate A as
(ai : i < κ) and B as (bi : i < κ) where a = a0 and b = b0. Then these two
sequences have the same type over X. The elementary map which fixes X
pointwise and takes (ai : i < κ) to (bi : i < κ) extends (by taking algebraic
closures) to an automorphism of the structure D.

Remark 3.27 (D, acl) is modular if and only for for any tuples a, b ⊂ D, a
is independent from b over acl(a) ∩ acl(b) ∩D (in the sense of nonforking).

Proof. Suppose (D, acl) is modular. It is enough to prove the RHS for a, b
finite tuples from D. By 3.25 (ii), dim(a/b) = dim(a/acl(a)∩acl(b)∩D). So
by 3.18, RM(tp(a/b)) = RM(tp(a/acl(b)∩D)) = RM(tp(a/acl(a)∩ acl(b)∩
D)), which is enough.

Conversely, in the same way the right hand side implies that dim(a/b) =
dim(a/acl(a)∩acl(b)∩D)) for all tuples from D, and we can use 3.25 again.

Example 3.28 (i) Let M̄ = D = an infinite set in the empty language.
Then (D, acl(−)) is a trivial pregeometry.
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(ii) Let M̄ = D = an (infinite-dimensional) division vector space over a
division ring (as in Example 3.8). Then (D, acl) is modular.
(iii) Let M̄ = D = an algebraically closed field in the language of rings. Then
(D, acl) is not locally modular.

Proof. Exercise.

Definition 3.29 Let T be t.t, M̄ a saturated model and X a ∅-invariant
subset of M̄ eq. We say that X is 1-based if for any finite tuple a of elements
of X and any A ⊂ M̄ eq such that tp(a/A) is stationary, the canonical base
of tp(a/A) is contained in acleq(a).

Exercise 3.30 X is 1-based iff for any tuple a from X, and any A ⊂ M̄ eq,
a is independent from A over acleq(a) ∩ acleq(A).

Hint. Use 2.38 (ii).

From Remark 3.27 and Exercise 3.30, we see some kind of formal similarity
between the notions of modularity and 1-basedness.

Lemma 3.31 (i) Suppose X is 1-based. Then so is Xaeq.
(ii) 1-basedness of X is invariant under naming parameters.

Proof. We will use the fact (exercise) that if a, b, are tuples and a is inde-
pendent from b over C then acl(a) ∩ acl(b) ⊆ acl(C).
(i) Let d be a finite tuple from X and let c ∈ acl(d) and consider a station-
ary type tp(c/A) where without loss, A is eq-algebraically closed. We may
assume that d is independent from A over c. Hence by the fact mentioned
above
(*) acl(d) ∩ A ⊆ acl(c).
By 1-basedness of X, d is independent from A over acl(d)∩A. As c ∈ acl(d),
c is independent from A over acl(d) ∩A and thus over acl(c) ∩A by (*). So
Cb(tp(c/A)) ⊆ acl(c) by 2.38.
(ii) If X is 1-based, it clearly remains 1-based after naming parameters. Con-
versely, suppose X is 1-based in Th(M̄, a)a∈A. Let c ∈ X and B some set
such that tp(c/B) is stationary. We may assume that (c, B) is independent
from A over ∅ in M̄ . In particular, tp(c/BA) does not fork over B. So
c0 = Cb(tp(c/B)) = Cb(tp(c/BA)). Using our assumptions c0 ∈ acl(cA)∩B.
But B is independent from cA over c, hence (by the fact above) c0 ∈ acl(c).
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Lemma 3.32 Suppose D is modular. Then D is 1-based.

Proof. Assume modularity of D. Let a be a finite tuple from D and A some
set from M̄ , such that tp(a/A) is stationary. Let c = Cb(tp(a/A)). We know
(2.42) that c ∈ Deq, so there is some C ⊆ D such that c ∈ dcl(C). We may
choose C so that C is independent from a over c and so therefore that a is
independent from C over c. We may assume that C is algebraically closed
(in D). Note that c = Cb(tp(a/C)) too. By 3.27, a is independent from C
over acl(a) ∩ C. By 2.38, c ∈ acleq(acl(a)) = acleq(a).

Definition 3.33 D is said to be linear, if whenever a, b ∈ D, A ⊂ M̄ ,
RM(tp(a, b/A)) = 1, and c = Cb(stp(a, b/A)), THEN RM(tp(c/∅)) ≤ 1.

A remark: If a, b ∈ D and RM(tp(a, b/A)) = 1, then dim(a, b/A)) = 1
and we can consider (a, b) as a “generic point” of a “plane curve” X ⊂ D×D,
which is defined over c. The rank of tp(c) measure the “dimension” of the
family (Xc′)c′ .

Lemma 3.34 D is linear if and only if for any a, b ∈ D, and any set A,
Cb(stp(a, b/A)) ∈ acl(a, b).

Proof. Suppose first thatD is linear. Let c = Cb(stp(a, b/A)). IfRM(tp(a, b/A)) =
2 then (a, b) is independent from A over ∅, so c ∈ acl(∅). If RM(tp(a, b)) = 0,
then c = (a, b). So we may assume thatRM(tp(a, b/A)) = 1. IfRM(tp(a, b/∅)) =
1 then again c ∈ acl(∅). So we may assume that RM(tp(a, b/∅)) = 2. So
(a, b) forks with c over ∅, whereby c /∈ acl(∅), so by linearity, RM(tp(c)) = 1.
Note that RM(tp(a, b/c)) = 1. By 3.24, RM(tp(a, b/c)) + RM(tp(c)) =
RM(tp(c/a, b)) + RM(tp(a, b)). So 1 + 1 = RM(tp(c/a, b)) + 2, whereby
c ∈ acl(a, b) as required.

The converse follows by a similar computation.

Theorem 3.35 The following are equivalent:
(i) There is some set A such that D is modular in Th(M̄, a)a∈A.
(ii) D is 1-based,
(iii) D is linear,
(iv) D is locally modular.
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Proof. (i) implies (ii): By 3.32, D is 1-based after adding names for elements
of A. By 3.31, D is 1-based.
(ii) implies (iii): By 3.34.
(iii) implies (iv). Let a0 ∈ D \ acl(∅). We will show that the localization of
D at {a0} is modular. This means precisely that D is modular after adding
a constant for a0 to the language. By Exercise 3.25(i) it is enough to show
that
if a1, a2 ∈ D are such that {a0, a1, a2} is algebraically independent over ∅, and
A ⊂ D is algebraically closed and is such that a0 ∈ A and dim(a1, a2/A) = 1,
and ai /∈ A for i = 1, 2 then acl(a0, a1, a2) ∩ A \ acl(a0) is nonempty.

Let c = Cb(stp(a1, a2/A)). So c ∈ acleq(A). By linearity and 3.34, c ∈
acl(a1, a2). Note that dim(a1, a2/c) = 1, and ai /∈ acl(c) for i = 1, 2. So
a2 ∈ acl(c, a1). As a0 /∈ acl(a1, a2), a0 /∈ acl(c). Hence a0 realizes p0|c.
But a1 also realizes p0|c. Hence tp(a0, c) = tp(a1, c). Let a′2 be such that
tp(a0, a

′
2, c) = tp(a1, a2, c). Then a′2 ∈ acl(c, a0). Thus a′2 ∈ A \ acl(a0). Also

a′2 ∈ acl(a0, a1, a2). This completes the proof of (iii) implies (iv).

(iv) implies (i) is immediate.

Let us show that algebraically closed fields are NOT locally modular. Fix
an algebraically closed field (K,+,−, ·, 0, 1) which we assume to be of un-
countable cardinality κ say (hence κ-saturated). We know K to be strongly
minimal. Let a, b ∈ K. Let C be the {(x, y) ∈ K × K : y = ax + b}.
Then C is also strongly minimal (as it is in definable bijection with K). Let
c /∈ acl(a, b). Let d = ac + b. Then tp(c, d/{a, b)}) has Morley rank 1 and
degree 1. In fact (c, d) is a “generic” point of C.
CLAIM. (a, b) is (namely is interdefinable with) Cb(tp((c, d)/{a, b})).
Proof of CLAIM. Let p(x, y) be the global nonforking extension of tp((c, d)/{a, b}).
We have to show (see Definition 2.34) that for any automorphism f of K,
f(a, b) = (a, b) if and only if f(p) = p. Clearly left to right is true.
Now suppose that f(a, b) = (a′, b′) 6= (a, b). Write C as C(a,b). Then
C(a′,b′)∩C(a,b) is either empty, or is a singleton. As p has Morley rank 1, and
“(x, y) ∈ C(a,b)” ∈ p it follows that (x, y) 6 inC(a′,b′) ∈ p. Hence f(p) 6= p.

So choosing a, b algebraically independent, we see thatRM(tp(Cb(tp(c, d/{a, b})))) =
2, so K is not linear, hence not locally modular.
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Let us briefly discuss orthogonality and related notions. We are working in
the saturated model M̄ of the t.t. theory T .

Definition 3.36 (i) Let p(x) ∈ S(A) and q(y) ∈ S(B) be stationary types.
p is said to be nonorthogonal to q if there is C ⊇ A ∪ B, and there are
realizations a of p|C and b of q|C such that tp(a/C, b) forks over C.
(ii) Let D1 be a strongly minimal set defined over A, and D2 a strongly
minimal set defined over B. Let p(x) ∈ S(A) be the “generic type” of D1

(namely p(x) = {x ∈ D1}∪ “x /∈ acl(A)”, and likewise for q(y). We say that
D1 is nonorthogonal to D2 if p(x) is nonorthogonal to q(y).

Example 3.37 Let T be theory of disjoint infinite unary predicates P and
Q. Then P and Q are strongly minimal and orthogonal.

Lemma 3.38 Let D1, D2 be strongly minimal sets. Then D1 is nonorthogo-
nal to D2 if and only if there is some definable R ⊂ D1 ×D2, such that the
projections of R on D1 and D2 are infinite, and for every x there are at most
finitely many y such that R(x, y) and dually.

Proof. If D1 and D2 are nonorthogonal, then there is some C over which both
are defined, and a ∈ D1 \acl(C) and b ∈ D2 \acl(C) such that a forks with b
over C (why?). This implies that a ∈ acl(b, C) and b ∈ acl(C, a). Let φ(x, y)
be a formula over C such that |= φ(a, b), and such that |= ∀x∃≤kyφ(x, y) and
|= ∀y∃≤lyφ(x, y) for some k, l. Then φ(x, y) defines the required relation R.

Conversely, suppose such R exists. Let D1, D2, R be defined over C. By
the assumptions on R there is (a, b) ∈ R such that a ∈ D1 \ acl(C), and
b ∈ D2. Then b ∈ acl(C, a) and a ∈ acl(C, b). Hence tp(a/C, b) forks over C.

Corollary 3.39 Nonorthogonality between strongly minimal sets is an equiv-
alence relation.

What became known as Zilber’s conjecture was:
(ZC1) Suppose D is strongly minimal and non locally modular. Then there
is a strongly minimal algebraically closed field D2 definable in M̄ such that
D1 is nonorthogonal to D2.

Zilber’s conjecture has been very influential. A counterexample was found
by Hrushovski in the late 1980’s, and the techniques used to construct it
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gave rise to a whole subarea of model theory, “Hrushovski constructions”.
Nevertheless the conjecture is true in many “natural” situations, and often
has quite profound mathematical meaning and implications.

An equivalent formulation of Zilber’s conjecture is:
(ZC2) Let X be a definable set of finite Morley rank. Suppose that X is not
1-based. Then there is a strongly minimal algebraically closed field definable
in Xeq.

Recent work has led to a somewhat stronger version of the Zilber conjec-
ture which more or less states that any violation of 1-basedness “lives in” a
definable field in some sense. The notion of internality is important here.

Definition 3.40 Let p(x) ∈ S(A) be stationary and X some B-definable
set, or even some B-invariant set. We say that p(x) is (almost) internal to
X if there is C ⊇ A ∪ B and a realizing p(x)|C and some finite tuple c of
elements of X such that a ∈ dcl(C, c) (a ∈ acl(C, c)).

The strong version of Zilber conjecture then says:
(ZC3) Suppose tp(a) has finite Morley rank, tp(a/A) is stationary and c =
Cb(tp(a/A)). Then there is some definable set X which is a finite union
of strongly minimal algebraically closed fields, such that stp(c/a) is almost
internal to X.

There is a weaker version of (ZC3) which does not mention fields and may
be true.
(NMC) Suppose tp(a) has finite Morley rank, tp(a/A) is stationary and c =
Cb(tp(a/A)). Then there is some definable set X which is a finite union
of non locally modular strongly minimal sets, such that stp(c/a) is almost
internal to X.

Let us finish by discussing internality a bit more.

Lemma 3.41 Suppose p(x) ∈ S(A) is stationary and internal to the A-
invariant set X. Then there is a set B ⊃ A, such that for every realization
a of p there is some tuple c from X such that a ∈ dcl(B, c). So p(M̄) ⊆ Xeq

B .

Proof. Let B ⊃ A and a realize p|B and c ⊂ X be such that a ∈ dcl(Bc).
We may assume tp(a, c/B) = q(x, y) is stationary. Let (ai, ci)i<ω be a Morley
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sequence in tp(a, c/B). Let q′(x, y) be the nonforking extension of q(x, y)
over B ∪ {(ai, ci)}i, and let (a′, c′) realize q′. By 2.42, q′ does not fork over
(ai, ci)i and the restriction of q′ to this set is stationary. It follows (why?)
that a′ ∈ dcl(A ∪ (ai, ci)i ∪ c′). Thus there is n and finite d ⊂ X such that
a′ ∈ dcl(A∪ (a1, .., an)∪ d). Note that a′ is independent from (a1, .., an) over
A (why?) Now let a′′ be any realization of p(x). Let (a′′1, .., a

′′
n) be such that

tp(a′′, a′′1, .., a
′′
n/A) = tp(a′, a1, .., an/A) and (a′′1, .., a

′′
n) is independent from

(a1, .., an) over A ∪ a′. In particular
(a) there is d′ ⊂ X such that a′′ ∈ dcl(a′′1, .., a′′n, d′, A), and
(b) each a′′i is independent from (a1, .., an) over A, so has the same type over
A∪{a1, .., an} as a′, whereby there is di ⊂ X such that a′′i ∈ dcl(A, a1, .., an, di).
By (a) and (b), a′′ ∈ dcl(A, a1, .., an, d

′, d1, .., dn).

Note that it follows from 3.41 and compactness that under the same assump-
tions, there is an A-definable set Y in p(x), of maximal Morley rank, and a
B-definable function from some B-definable subset of Xn onto Y .

Internality can give rise to definable groups if additional parameters are really
needed to see it. This idea again originates with Zilber. Here is a rather
striking case, which for now we state without proof.

Lemma 3.42 Suppose that tp(a/A) is stationary and internal to the A-
invariant set X. Suppose also that a is independent from c over A for all
c ⊂ X (that is, a is independent from X over A). THEN there is an A-
definable group G and an A-definable transitive action of G on p(M̄).

4 ω-stable groups

In this section M̄ remains a saturated model of the t.t theory T and we will
study definable groups in M̄ , sometimes specializing to definable groups of
finite Morley rank.

We will also work in M̄ eq without mentioning it.
By a definable group (in M̄) we mean a definable set G equipped with a

definable group operation ·. If both the set G and the group operation · are
defined over A, we say that the group (G, ·) is defined over A. Note then that
both the identity of the group as well as group inversion are also A-definable.
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We often just write G rather than (G, ·) for the group. A special case is when
the universe of M̄ is equipped with a ∅-definable group operation.

In any case when we think of a definable group as a structure in its own
right, it is not just the group structure but all the structure on G induced
from M̄ , in the sense of Definition 3.3.

This is in accordance with the idea of an algebraic group, which is our
basic example. An algebraic group (over a given algebraically closed field K)
is an algebraic variety G over K together with a morphism G×G→ G over
K which is a group operation. Any algebraic group is a definable group in
(K,+, ·), and conversely it can be shown that any group definable in (K,+, .·)
is definably isomorphic to an algebraic group. There are two extremes of al-
gebraic groups; abelian varieties (whose underlying variety is a Zariski closed
subset of some projective space over K) and linear algebraic groups, which
are algebraic subgroups of some GL(n,K), the group of invertible n × n
matrices over K.

We may sometimes also consider type-definable groups, namely where the
underlying set of the group is defined by a partial type.

We will be using throughout the fact that the Morley rank and degree of
a definable set are invariant under definable bijection.

Lemma 4.1 Let (G, ·) be a definable group, and H a definable subgroup of
G. Then either RM(H) < RM(G), or dM(H) < dM(G).

Proof. The left cosets a ·H of H in G partition G, and are are all in definable
bijection with H so have the same Morley rank and degree as H. So if the
index of H in G is infinite, then RM(H) < RM(G), and if the index is finite,
n say, then RM(H) = RM(G) and dM(G) = n(dM(H)).

Corollary 4.2 A definable group G has the DCC on definable subgroups.
(There is no infinite descending chain of definable subgroups.) In particular,
G has a smallest definable subgroup of finite index in G, which we call the
connected component of G and write as G0. G0 is normal in G and is A-
definable if G is A-definable. Moreover RM(G0) = RM(G).

Proof. The DCC is immediate from Lemma 4.1. It follows that G0 exists
and is the intersection of all definable subgroups of finite index in G. By this
property, G0 is invariant under A-automorphism of G hence A-definable. As
any conjugate of a finite index subgroup also has finite index, G0 is normal.

46



We will tend to assume that our ambient definable group G is ∅-definable in
M̄ .

Definition 4.3 Assume that RM(G) = α.
(i) A definable subset X of G is said to be generic if RM(X) = α.
(ii) Let p(x) ∈ S(A) be a complete type over a set A such that p(x) |= “x ∈
G”. p(x) is said to be a generic type of G (over A) if RM(p(x)) = α.
(iii) Let A be any subset of M̄ (usually a subset of G), and a ∈ G. We say
that a is a generic element of G over A if tp(a/A) is a generic type of G.

Let us now fix the ∅-definable group G with Morley rank α and Morley
degree d. Note that there exist generic types of G over any set A. Note that
also that if p(x) is a complete type over A of an element of G and q(x) is a
nonforking extension of p then p is generic iff q is generic. Also note that as
inversion is an ∅-definable bijection between G and itself, tp(a/A) is generic
iff tp(a−1/A) is generic. Finally note that a definable subset X of G is generic
if and only if it is contained in some generic type of G.

Let us begin with a characterization of generic types, with can be taken
as the definition in the stable (or even simple) case.

Lemma 4.4 Let a ∈ G and A ⊂ M̄ . The following are equivalent:
(i) tp(a/A) is generic,
(ii) if b ∈ G and a is independent from b over A then b · a is independent
from b over A,
(iii) If b ∈ G, and a is independent from b over A then a · b is independent
from b over A.

Proof. Assume (i). We will prove (ii) and (iii). Let b ∈ G be such that a is in-
dependent from b over A. So RM(tp(a/A, b)) = α. So RM(tp(b·a/A, b)) = α.
So (as α = RM(G)), RM(tp(b · a/A)) = α, hence b · a is independent from b
over A. So we proved (ii). (iii) follows similarly.
Now assume (ii). Choose b ∈ G generic over A∪{a}. Note that b is indepen-
dent from a over A. So by (i) → (iii), tp(b · a/A) is generic. Note that a is
independent from b over A. By (ii), b ·a is independent from b over A. Hence
tp(b · a/A, b) is generic, hence tp(a/A, b) is generic. As a is independent from
b over A, tp(a/A) is generic. So we have (i). In a similar fashion (iii) implies
(i).
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By 2.33 (ii) there are d disjoint acl(∅)-definable subsets of G, each of Morley
rank α, and Morley degree 1. So we obtain d distinct stationary generic types
p1(x), .., pd(x) of G, over acl(∅). Note that any stationary generic type of G
is a nonforking extension of one of the pi. We aim towards showing that d is
precisely the index of G0 in G. Let S = {p1, .., pd}. Let us start by defining
an action of G on S.

Lemma 4.5 Let g ∈ G. Let a realize pi with a independent from g over ∅.
Then tp(g · a/acl(∅)) = pj for some j. Moreover j depends only on g and i
(not on the choice of a). So we write g · pi = pj.

Proof. Note that RM(tp(a/g)) = α, hence RM(tp(g · a/g) = α, hence
RM(tp(g · a/acl(∅)) = α, so must be pj for some j ∈ {1, .., d}.

As pi is stationary, it has a unique nonforking extension over acl(∅)∪{g},
hence tp((g, a)/acl(∅)) is uniquely determined by g and pi, and therefore also
tp(g · a/acl(∅).

Exercise 4.6 The map from G×S to S defined by (g, pi)→ g ·pi is a group
action.

Lemma 4.7 (i) G acts transitively on S.
(ii) for any i, j, {g ∈ G : g · pi = pj} is definable (over acl(∅)).

Proof. Let pi, pj ∈ S. Let a, b realizes pi, pj respectively such that a is
independent from b over ∅. In particular b is independent from a over ∅ so
independent from a−1 over ∅. By 4.4 and the genericity of tp(b), b · a−1 is
independent from a over ∅. Put g = b · a−1, and we see that g.a = b, hence
g · pi = pj.
(ii) Let φi(x) be a formula over acl(∅) of Morley rank α and Morley degree
1 which implies “x ∈ G”, and is contained in pi(x). Let pi(x) be the global
nonforking extension of pi.

Now fix i and j. Note that pj is definable (over acl(∅)), hence {g ∈ G :
φi(g

−1.x) ∈ pj}, is definable, by a formula ψi,j(y) over acl(∅).
Claim. Let g ∈ G. Then |= ψi,j(g) iff g · pi = pj.
Proof of claim. Suppose first that |= ψi,j(g). So we can find b realizing
pj|(acl(∅)∪{g}) such that |= φi(g

−1 · b). Let a = g−1 · b. By 4.4, tp(a/acl(∅))
is generic (and independent from g over ∅). As |= φi(a), tp(a/acl(∅)) = pi.
So g · a = b, so g · pi = pj.
The converse is similar.
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Proposition 4.8 The index of G0 in G is precisely d, the Morley degree of
G. Hence G0 and each of its translates has Morley degree 1, and the generic
types p1, .., pd of G correspond to the cosets of G0 in G.

Proof. Let r be the index of G0 in G. As G0 and each of its cosets in G have
Morley rank α,
(*) r ≤ d.

Now consider the action of G on S described above. Let Gi = Fix(pi) =
{g ∈ G : g ·pi = pi}. By transitivity of the action (4.7 (i)), each Gi has index
d in G. By 4.7 (ii), each Gi is definable, so contains G0, and hence by (*),
equals G0.

We worked above with a left action of G on S. Identical results hold for the
corresponding right action.

Lemma 4.9 Let X be a definable subset of G. Then X is generic if and
only if finitely many left translates of X cover G if and only if finitely many
right translates cover G.

Proof. Suppose first that finitely many left (or right) translates of X cover
G. As each such translate has the same Morley rank as X, it follows that
RM(X) = α hence X is generic.

Now for the converse. Suppose X to be generic. To prove that finitely
many left translates of X cover G, we may clearly replace X by a translate
of a definable subset of X. Note that some generic definable subset of X is
contained in a single coset of G0 in G. So after translating, we may assume
that X is contained in G0. It is clearly enough to show that finitely many
translates of X cover G0. Assume X is A-definable. Let p0 be the unique
generic type of G over A containing “x ∈ G0”. (So p0 is stationary.) Note
that “x ∈ X” ∈ p0. (Why?) Let {ai : i < ω} be a Morley sequence in p0.
Let g ∈ G0. By 2.45, there is ai which is independent from g over A. Then
tp(a−1

i ·g/A) is generic, and a−1
i ·g ∈ G0, hence tp(a−1

i ·g/A) = p0 so contains
“x ∈ X”. So a−1

i · g ∈ X, so g ∈ ai ·X.
We have shown that every g ∈ G0 is contained in ai ·X for some i < ω. By
compactness, finitely many of the ai ·X cover G0.

Remark 4.10 In the same way as we defined generic types, connected com-
ponents,... of G, we can do the same thing for any subgroup of G which is
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definable in M̄ . If H is such, we call H connected if H = H0. So if H is
connected then H has a unique generic type (over any set of parameters over
which H is defined).

Definition 4.11 Let H be a definable subgroup of G and X a left translate of
H in G (namely a left coset c ·H of H in G). Assume that both H and X are
defined over A. By a generic type of X over A we mean some p(x) ∈ S(A)
such that p(x) |= “x ∈ X” and RM(p) = RM(X)(= RM(H)). Likewise,
a ∈ X is said to be generic in X over A if tp(a/A) is a generic type of X.
(Nte that if H is connected then X has a unique generic type over A.)

Lemma 4.12 Let H, X, A be as in Definition 4.11, and let a ∈ X. Then
a is generic in X over A if there is b ∈ X such that a is independent from b
over A and b−1 · a is generic in H over A ∪ {b}.

Proof. Suppose RM(X) = RM(H) = β. First suppose a to be generic in
X over A. Let b be any element of X such that a is indepependent from b
over A. So RM(tp(a/A ∪ {b})) = β. So RM(tp(b−1 · a/A ∪ {b})) = β. But
b−1 · a ∈ H, so is generic in H over A ∪ {b}).
The converse is similar.

Let us now discuss stabilizers which were already implicit in the material
above.

Definition 4.13 Let p(x) = tp(a/A) be stationary, where a ∈ G. By the
left stabilizer of p(x) we mean {g ∈ G : for some a′ realizing p(x)|(A ∪ {g}),
tp(g · a′/A) = p(x)}. We write Stab(p(x)) for this left stabilizer.

Remark 4.14 Suppose p(x) = tp(a/A) is stationary, with a ∈ G.
(i) Let g ∈ G and a′ realize p(x)|(A ∪ {g}). Then tp(g · a/A) = p(x) if and
only if tp(g · a/A ∪ {g}) = p(x)|(A ∪ {g}).
(ii) Let φ(x) be a formula in p(x) of Morley rank β equal to RM(p) and of
Morley degree 1. Then g ∈ Stab(p) iff g · (φ(G)) ∩ φ(G) has Morley rank β.
(iii) The left stabilizer of p(x) is equal to the right stabilizer of p−1(x) =
tp(a−1/A).

Proof. (i) Right to left is clear. Suppose now that tp(g · a′/A) = p(x).
Clearly RM(tp(g · a′/A∪{g})) = RM(tp(a′/A∪{g})) = RM(p(x)). So g · a′
is independent from g over A.
(ii) and (iii) are left to the reader.
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Lemma 4.15 Let p(x) ∈ S(A) be stationary and contain “x ∈ G”. Then
(i) Stab(p) is an A-definable subgroup of G.
(ii) if p′(x) ∈ S(B) is a nonforking extension of p(x), then Stab(p′) =
Stab(p),
(iii) RM(Stab(p)) ≤ RM(p).

Proof. (i) Let φ(x) ∈ p(x) have Morley rank β = RM(p) and Morley degree
1. Let g ∈ G. As in the proof of 4.7(ii), we see that g ∈ Stab(p) iff φ(g−1 · x)
is contained in the global nonforking extension of p(x), and that this is an A-
definable condition on g. By Remark 4.14(i), g ∈ Stab(p) iff g−1 ∈ Stab(p).
So to see that Stab(p) is a subgroup it suffices to see that it is closed under
multiplication. Suppose g, h ∈ Stab(p). Let a realize p independent of h · g
over A. We may assume a is independent from {g, h} over A. So g ·a realises
p(x). As in the proof of 4.7(i), g · a is independent from h over A. Hence
h · (g · a) realizes p.
(ii) By the proof of (i), Stab(p) depends only on the global nonforking ex-
tension p of p.
(iii) Let g ∈ Stab(p). Let a realize p(x)|(A ∪ {g}). Then RM(tp(g/A)) =
RM(tp(g/A∪{a})) = RM(tp(g · a/A∪{a})). But the latter is ≤ RM(p(x))
as tp(g · a/A)) = p(x).

Lemma 4.16 Let a ∈ G and p = tp(a/A) be stationary Let H = Stab(p).
The following are equivalent:
(i) RM(H) = RM(p).
(ii) The right coset H · a is acl(A)-definable.
(iii) H is connected, X = H · a is A-definable, and p(x) is the generic type
of X over A.

Proof. First we know by the previous lemma that H is A-definable. Let
X = H · a, and let β = RM(H) = RM(X).
(i) implies (ii). Let g ∈ H be generic over A∪{a}. So RM(tp(g/A∪{a})) =
RM(tp(g · a/A ∪ {a})) = β. But as H = Stab(p), tp(g · a/A) = p and so has
Morley rank β. It follows that
(*) g · a is independent from a over A.
But (as g · a ∈ H · a), H is definable over A∪ {a} as well as over A∪ {g · a}.
Thus by (*) H is definable over acl(A). (Why?)
(ii) implies (i). Assuming (ii) we see that the formula “x ∈ X” is in
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tp(a/acl(A)), and thus RM(X) ≥ RM(tp(a/acl(A)) = RM(p). By the
previous lemma we get equality.
(ii) implies (iii). Assume X to be acl(A)-definable. To show that X is
A–definable we must show that X is invariant under A-elementary per-
mutations of acl(A). Let f be such. As p(x) = tp(a/A) is stationary,
tp(a/acl(A)) = tp(f(a)/acl(A)). But a ∈ X, and so a ∈ f(X). But f(X) is
clearly also a right translate of H, so must equal X.
Clearly p(x) is a generic type of X (we know by (ii) implies (i) that RM(p) =
RM(X)). So all that is left is to show that H is connected. Suppose not, and
we will contradict the stationarity of p(x). Then H0 is a proper subgroup
of H, also defined over A. So we can find h1, h2 ∈ H generic over A, with
h1 ∈ H0, and h2 /∈ H0, and moreover with hi independent from a over A
for i = 1, 2. Then h1 · a and h2 · a both realize p(x) (as H = Stab(p)), and
moreover a rank computation shows that hi · a is independent from a over A
for i = 1, 2. So tp(h1 ·a/A∪{a}) = tp(h2 ·a/A∪{a}) = p|(A∪{a}). But the
formula “xa−1 ∈ H0” is in the first type but not the second, a contradiction.
So H is connected as claimed, and the proof is complete.

The theory above, of generics, stabilizers,.. in groups definable in a model
of a t.t theory extends easily to definable homogeneous spaces. By an A-
definable homogeneous space we mean an A-definable group G together with
an A-definable transitive action on an A-definable set X. Note that after
naming a point a ∈ X, the action of G on X becomes isomorphic to the
action of G on G/H where H is Fix(a).

Let us now bring canonical bases into the picture.

Lemma 4.17 Let X be an A-definable left translate of a connected definable
subgroup H of G. Let p(x) ∈ S(A) be the generic type of X. Let u be a
canonical parameter for X. Then u is interdefinable with Cb(p).

Proof. Left to the reader.

Before the next lemma we will introduce a bit more notation. Suppose p(x) ∈
S(A) is a stationary type of an element in G and let H = Stab(p). Let
p(x) ∈ S(M̄) be the global nonforking extension of p. Let a′ realize p in
some elementary extension of M̄ . For d ∈ G, let d · p = tp(d · a′/M̄). Note
that
(*) H = {d ∈ G : d · p = p}.
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Lemma 4.18 Let p(x) ∈ S(A) be a stationary type implying “x ∈ G”. Let
H be the left stabilizer of p(x). Let d ∈ G and a realize p(x)|(A∪{d}). Then
tp(d ·a/A∪{d}) is stationary, and the left coset d ·H is (as an imaginary) in-
terdefinable with Cb(tp(d ·a/A∪{d})) over A. (Likewise with right stabilizers
and cosets in place of left ones.)

Proof. First as tp(a/A ∪ {d}) is stationary and a and d · a are interdefinable
over A ∪ {d}, also tp(d · a/A ∪ {d}) is stationary.

Note that the global nonforking extension of tp(d · a/A∪{d}) is precisely
d · p where p is the global nonforking extension of p. By the definition
of canonical bases, we must show that for any A-automorphism f of M̄ ,
f(d·H) = d·H iff f(d·p) = d·p). But as f fixes A pointwise and p is definable
over A, f(p) = p. Thus, for f ∈ AutA(M̄), f(d · p) = f(d) · fp = f(d) · p.
Hence f(d · p) = d · p iff f(d) · p = d · p iff (d−1 · f(d)) · p = p iff (by (*)
above) d−1 · f(d) ∈ H iff d ·H = f(d) ·H (using the fact that f(H) = H as
H is A-definable).

Lemma 4.19 Let a ∈ G be such that tp(a/A) is stationary. Let H =
Stab(p). Let c ∈ G be generic over A ∪ {a}. Then H · a (as an imaginary)
is interdefinable with Cb(stp(c/A ∪ {a · c})) over A ∪ {c}

Proof. To make notation easier we assume A = ∅. By genericity of tp(c), a
is independent from a · c (over ∅). So a−1 is independent from a · c. Now by
4.14(iii), H is the right stabilizer of p−1. Hence by Lemma 4.18, H · (a · c) is
interdefinable with Cb(tp(a−1 · (a · c)/a · c)). As H is ∅-definable, H · (a · c)
is clearly interdefinable with H · a over c. Hence we get the conclusion of the
lemma.

We can now obtain some consequences for 1-based groups.

Proposition 4.20 Suppose G is 1-based (and ∅-definable). Then
(i) Any stationary type tp(a/A) (a ∈ G) is the generic type of some right
(left) translate of a connected definable subgroup of G.
(ii) Any connected definable subgroup H of G is definable over acl(∅).
(iii) G0 is commutative.

Proof. (i) Let H = Stab(p) which is A-definable. Let c be generic in
G over A ∪ {a}. By 4.19, H · a (as an imaginary) is interdefinable with
e = Cb(tp(c/A∪{a ·c}) over A∪{c}. By 1-basedness of G, e ∈ acl(c). Hence
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the imaginary H · a is in acl(c). So (as c is independent from a over A, so
independent from H · a over A), H · a ∈ acl(A). That is H · a is, as a set,
acl(A)-definable. Now apply Lemma 4.16
(ii) Let H be connected and definable over A say. Let a be generic in H over
A. Let g ∈ G be generic over A∪{a}. So a is generic in H over A∪{g}. Note
that X = g ·H is defined over A∪{g}, and tp(a/A∪{g}) and tp(g ·a/A∪{g})
have the same Morley rank (= RM(H) = β say) and that g · a ∈ X. Hence
g · a is generic in X over A ∪ {g}, and note q(x) = tp(g · a/A ∪ {g}) is sta-
tionary.
By Lemma 4.17, (the canonical parameter of) X is interdefinable with Cb(q).
By 1-basedness of G, Cb(q) ∈ acl(g · a). So X is defined over acl(g · a). It
then follows that H is defined over acl(g · a). By generic choice of g, g · a
is independent from A over ∅, hence (as H is A-definable) H is defined over
acl(∅).
(iii) It is enough to assume that G is connected and prove that G is com-
mutative. Note that the group G × G is also 1-based. For g ∈ G, let
Hg = {(a, ag) : a ∈ G}. Then each Hg is a connected definable subgroup of
G × G. By (ii), each Hg is acl(∅)-definable. It follows easily that there are
only finitely many groups among the Hg. However the set of groups Hg is in
bijection with G/Z(G) (via Hg = Hh iff g−1 · h ∈ Z(G)). Hence Z(G) has
finite index in G. As G is connected this means that Z(G) = G and so G is
commutative.

Corollary 4.21 The following are equivalent (where remember that G is a
∅-definable group in the saturated model M̄ of the t.t theory T ):
(i) G is 1-based.
(iii) For every n < ω, every definable subset of Gn = G×G× ..×G is a finite
Boolean combination of left (right) translate of acl(∅)-definable subgroups of
Gn.

Proof. (i) implies (ii): Note that as G is 1-based, so is the group Gn. We
first prove:
Claim. Let p and q be complete types over M̄ containing x ∈ Gn and
containing the same right cosets of acl(∅)-definable subgroups of Gn. Then
p = q.
Proof of claim. By 4.20 there are connected acl(∅)-definable subgroups
H1, H2 of Gn and right translates X1, X2 of H1, H2 respectively, such that p
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is THE generic type of X1 over M̄ , and q is THE generic type of X2 over
M̄ . By the assumptions of the claim, x ∈ X1 ∧ x ∈ X2 is in both p and q.
But RM(p) = RM(X1) = RM(H1) and RM(q) = RM(X2) = RM(H2).
It follows that RM(X1 ∩ X2) = RM(X1) = RM(X2) = α, say. So p has
Morley rank α and contains “x ∈ X2”. That is p is also the generic type
over M̄ of X2, whence p = q. The claim is proved.

We can now deduce (ii) from the claim together with a standard compactness
argument as in the proof of 2.25 from [1].

Remark 4.22 (ii) in Corollary 4.21 can be replaced by: for any n, any
∅-definable subset of Gn is a finite Boolean combination of translates of de-
finable subgroups.

Exercise 4.23 Let M = (M, ·, .....) be an arbitrary saturated structure (not
necessarily t.t), where · is a group operation on M . Suppose that every de-
finable subset of M is a Boolean combination of translates of acl(∅) definable
subgroups of M . Then Th(M) is stable.

We will complete this section with a few scattered but important facts about
groups in t.t. theories. The first is a result of Poizat regarding type-definable
subgroups of ω-stable groups(which was subsequently generalized in a far
reaching way by Hrushovski). T remains a complete t.t theory and M̄ a
saturated model of T . First:

Definition 4.24 Let Σ(x) be a partial type, namely a possibly infinite but
small set of formulas with fee variable x. Assume Σ is closed under finite
conjunctions. Then (RM, dM)(Σ) = min{RM(φ(x)), dM(φ(x))) : φ(x) ∈
Σ(x)}.

Exercise 4.25 Suppose that Σ(x) is a partial type over A and that (RM, dM)(Σ) =
(α, d). Then over acleq(A) there are preciselt d complete types which contain
Σ(x) and have Morley rank α.

Let G be our ∅-definable group. We will say that a subgroup H of G
is type-definable if it is defined by (i.e. is the solution set) of a partial type
Σ(x).
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Proposition 4.26 Any type-definable subgroup of G is definable, namely
defined by a single formula.

Proof. Let H be a subgroup of G defined by the partial type Σ(x). With-
out loss of generality Σ is closed under finite conjunctions and consists of
formulas without parameters. (Just add names for parameters in Σ.) Let
(RM, dM)(Σ) = (α, d). By Exercise 4.25, let p1, .., pd be the complete types
over acleq(∅) which contain Σ and have Morley rank α. (So the pi can be con-
sidered as the “generic types” ofH.) For g ∈ G, let g·pi = tp(g·a/acleq(∅)) for
some (any) a realizing the nonforking extension of pi over {g} ∪ acleq(∅). As
remarked earlier, this is well-defined, by stationarity of pi. Let H1 = {g ∈ G :
for each i = 1, .., d, g · pi = pj for some j = 1, ., d}. (So H1 is the “stabilizer”
of {p1, .., pd}.) As in the proof of Lemma 4.7, H1 is definable (over acleq(∅)),
and it is rather easy to see that H1 is a subgroup of G.
Claim. H1 = H.
Proof. First let g ∈ H1. Let a realize p1 with a independent of g. Then g · a
realizes pj for some j. But both pi and pj contain Σ(x), hence a and g · a are
in H. Thus g ∈ H.
Conversely, let g ∈ H. Let a realize some pi, independent from g over ∅.
Then RM(tp(a/g)) = α and also RM(tp(g · a/g)) = α (why?). Hence by
the choice of α, RM(tp(g · a/∅)) = α, and so tp(g · a/acleq(∅)) = pj for some
j = 1, .., d. Thus g ∈ H1.
The claim is proved. As H1 is definable, the proposition is also proved.

A somewhat stronger result than Proposition 4.26 is true. By a type-definable
group (in a saturated model) we mean a pair (G, ·) such that · is a group
operation on G, G is a type-definable set, and the graph of · is also type-
definable. It is not hard to see that there is sone definable function f whose
restriction to G×G is precisely the group operation. In any case, the result
is that if T is t.t, then any such type-definable group is definable. We will
leave this as an exercise.

Finally we point out how the “generic” elements of a definable group G
control G.

Lemma 4.27 For any a ∈ G, there are b, c ∈ G, each generic in G over a
such that a = b · c.
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Proof. Let α = RM(G). Let p ∈ S(acleq(∅)) be a generic type of G. Let b
realize the nonforking extension of p over a. Then RM(tp(b−1/a)) = α, so
RM(tp(b−1 · a/a) = α. Putting c = b−1 · a, we see that c is generic over a
and a = b · c.

Corollary 4.28 Suppose that X is a ∅-invariant set, and that some generic
type of G is X-internal: namely there is a generic type p(x) ∈ S(acleq(∅))
of G, a small set A ⊇ acleq(∅) of parameters, a realization a of p(x)|A and
some tuple c from X such that a ∈ dcl(A, c). THEN there is a small set B of
parameters such that G ⊆ dcl(B∪X) (namely G ⊂ Xeq

B ). Likewise replacing
internal by almost internal and dcl by acl.

Proof. Let e1, .., ed be representatives of cosets of G0 in G. Let B = A ∪
{e1, .., ed}. Let a ∈ G. Let b, c ∈ G be given by Lemma 4.27. Without loss
of generality, (b, c) is independent from {a} ∪ B over {a}. There are ei and
ej such that b′ = b · ei realizes p(x)|B and c′ = c · ej realizes p(x)|B. By
assumptions each of b′, c′ is in the definable closure of A together with some
tuple from X. It follows that a = b ·c is in the definable closure of B together
with a tuple from X.

5 Theories and groups of finite Morley rank

The aim of this section is to give some kind of coherent picture of the “cat-
egory” of definable sets in a (many-sorted saturated) structure in which all
definable sets have finite Morley rank.

For now T remains a complete t.t. theory and M̄ a saturated model of T .
There is no harm in working in M̄ eq.

Definition 5.1 We define the U-rank on complete types. p(x), q(x), .. denote
complete types over subsets of M̄ .
(i) “U(p) ≥ 0” for all p.
(ii) “U(p) ≥ α+1” if p(x) has a forking extension q(x) such that “U(q) ≥ α”.
(iii) For limit δ, “U(p) ≥ δ” if “U(p) ≥ α for all α < δ”.
(iv) U(p) = α if α is the least ordinal such that “U(p) ≥ α”. (v) U(p) =∞
if “U(p) ≥ α” for all ordinals α.

Lemma 5.2 For any complete type p(x), U(p) ≤ RM(p).
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Proof. We prove by induction on α that U(p) ≥ α implies RM(p) ≥ α for
all cmplete types). The only thing to prove is the induction step: Suppose
U(p) ≥ α+1, so p has a forking extension q(x) with U(q) ≥ α. By Proposition
2.26, RM(q) < RM(p), and by induction hypothesis, RM(q) ≥ α+1. Hence
RM(p) ≥ α.

So in our context (T t.t.) every complete type has ordinal-valued U -rank.
Note that if p(x) ⊆ q(x) then U(p) ≥ U(q) (from the definitions). Note also
that if if p ∈ S(A) and f is an automorphism of M̄ then U(p) = U(f(p)).
Also it is rather easy to see that U(p) =) iff p is algebraic (has only finitely
many realizations).

We will need the following “forking” exercise.

Exercise 5.3 Suppose that A ⊆ B and A ⊆ C. Let p(x) ∈ S(A), q(x) ∈
S(B) and r(x) ∈ S(C) be such that q(x) is a nonforking extension of p(x)
and r(x) is an extension of p(x). Then there is an A-automorphism f of M̄
and a complete type q′(x) ∈ S(B ∪ f(C)) such that q(x) ⊆ q′(x) and q′(x) is
a nonforking extension of f(r) ∈ S(f(C)).

Lemma 5.4 For any complete types p(x) ⊂ q(x), U(p) = U(q) if and only
if q is a nonforking extension of p.

Proof. Left to right is immediate from the definition. Now suppose that
p(x) ∈ S(A), A ⊆ B and q(x) ∈ S(B) is a nonforking extension of p(x).
Suppose that U(p) = α. We want to prove that U(q) = α, that is,
(*) for any β < α, q has a forking extension with U -rank ≥ β.
Now p(x) has a forking extension r(x) ∈ S(C) such that U(r) ≥ β. By the
exercise above, we may assume that r(x) has a nonforking extension q′(x) ∈
S(B ∪ C) which extends q(x). Note that U(r) = β′ for some β ≤ β′ < α
So by induction hypothesis, U(q′) = β′. On the other hand, clearly q′ is a
forking extension of q (why?). We have proved (*), and hence the lemma.

Here is a nice additivity property for types of finite U -rank, which is proved
using Corollary 2.31.

Exercise 5.5 Suppose that U(tp(b/A) and U(tp(a/A ∪ {b}) are both finite.
Then U(tp(a, b/A)) = U(tp(a/A ∪ {b})) + U(tp(tp(b/A)).
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Complete types of U -rank 1 will be important for us.

Remark 5.6 Let p(x) ∈ S(A) be a stationary type. The following are equiv-
alent:
(i) U(p) = 1,
(ii) For any B ⊇ A, p(x) has a unique nonalgebraic extension q(x) ∈ S(B).
(iii) p is nonalgebraic, and for any formula φ(x) (maybe with parameters),
the set of realizations of p(x)∪{φ(x)} is either finite, or is cofinite in the set
of realizations of p(X).

Types satisfying the equivalent conditions of Remark 5.6 are called min-
imal types. For example, if (RM(p), dM(p)) = (1, 1) then p is minimal. But
there are examples of minimal types with Morley rank > 1: Let the language
L consist just of unary predicates Pi for i ∈ ω. Let T say that the Pi are
infinite and pairwise disjoint. T has quantifier-elimination (by a back-and-
forth argument) from which we can also conclude that each Pi is strongly
minimal, and the universe (x = x) has Morley rank 2 and Morley degree 1.
Let p(x) ∈ S(∅) be the “generic type” of x = x, namely p(x) is the unique
1-type over ∅ with Morley rank 2. p(x) is (axiomatized by) {¬Pi(x) : i < ω}.
p is stationary (as it has Morley degree 1). We claim that p is minimal:
Let B be any set of parameters, and q(x) ∈ S(B) a nonalgebraic exten-
sion of p(x). By quantifier-elimination we see that q(x) is axiomatized by
p(x) ∪ {x 6= b : b ∈ B}. So q(x) is the unique nonalgebraic extension of p(x)
over B.

Exercise 5.7 Let p(x) ∈ S(A) be a minimal type. Let X be the set of
realizations of p(x) in M̄ . Then X together with algebraic closure over A,
is a homogeneous pregeometry in the sense of section 3. Moreover, if a is a
finite sequence of elements of X, then dim(a) = U(tp(a/A)). All the results
of section 3 on strongly minimal sets and their pregeometries are valid for X
(with U-rank replacing Morley rank).

On the other hand we have:

Lemma 5.8 Suppose that p ∈ S(A) is minimal, and that the corresponding
pregeometry is nontrivial. Then p(x) has Morley rank 1 (so is the “generic
type” of a strongly minimal set over A).
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Proof. It is enough to find some nonforking extension of p(x) which has
Morley rank 1 (by 2.26). Thus, by the definition of nontriviality, we may find
realizations a, b, c of p(x) which are pairwise independent over A but such
that each of a, b, c is in the algebraic closure of A together with the other
two. Let φ(x, y, z) be a formula over A witnessing this (that is |= φ(a, b, c)
and |= ∀x, y∃≤kz(φ(x, y, z)) etc.) We may also assume that φ(x, b, c) isolates
tp(a/A, b, c).

Now suppose that RM(p) = α and let θ(x) ∈ p(x) be chosen of Mor-
ley rank α and Morley degree 1. (So for any B ⊇ A, the nonforking
extension of p over B is the unique type over B which contains θ and
has Morley rank α. By definability of the stationary type p(x), we may
find a formula ψ(x) over A, such that for any a′, ψ(a′) iff for b′ realizing
p(x)|(A, a′), ∃z(φ(a′, b′, z)∧ θ(x)). Note that |= ψ(a), hence ψ(x) ∈ p(x) and
θ(x) ∧ ψ(x) ∈ p(x). Let ψ′(x) = θ(x) ∧ ψ(x). Then ψ′(x) has Morley rank α
and Morley degree 1.
Claim. For any B ⊇ A, there is a unique complete nonalgebraic type over B
which contains ψ′(x) (so has to be the unique nonforking extension of p(x)
over B).
Proof of claim. Let B ⊇ A. Let a′ realize ψ′(x) with a′ /∈ acl(B). Let b′

realize p(x)|(B, a′). By choice of ψ′, there is c′ such that |= φ(a′, b′, c′, )∧θ(c′).
Now by choice of φ, b′ ∈ acl(A, a′, c′), henceRM(tp(b′/B, a′)) ≤ RM(tp(c′/B, a′)) ≤
RM(tp(c′/B) ≤ α (as |= θ(c′). On the other hand, RM(tp(b′/B, a′)) = α.
Hence we conclude that:
(*) RM(tp(c′/B) = α, and so c′ realizes p(x)|B.
Now if c′ ∈ acl(B, b′) then (by choice of φ), a′ ∈ acl(B, b′), but a′ is inde-
pendent from b′ over B, so a′ ∈ acl(B), a contradiction. So c′ /∈ acl(B, b′),
so by (*) realizes p(x)|(B, b′). Forking calculus implies newline (**) (b′, c′) is
independent from B over A, and also
(***) tp(b′, c′/A) = tp(b, c/A).
As |= φ(a′, b′, c′), the choice of φ together with (***) implies that tp(a′/A) =
p(x). Also by (**) and the fact that a′ ∈ acl(A, b′, c′) we see that a′ is
independent from B over A. Hence a′ realizes p(x)|B. The claim is proved.

It follows from the claim that ψ′(x) is strongly minimal. (If ψ′(x) were the
disjoint union of two infinite definable sets, then we obtain two nonalgebraic
complete types containing ψ′(x) over some set of parameters.)
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Types of U -rank 1 play an important role in that they “coordinatize” defin-
able sets of finite Morley rank, in a sense we will now make precise.

Proposition 5.9 Let p(x) ∈ S(A) be nonalgebraic and of finite U-rank.
Then p(x) is nonorthogonal to some stationary type p0 of U-rank 1 (in the
sense of Definition 3.36). (Moreover if RM(p) < ω then RM(p0) < ω.)

Proof. Suppose U(p) = n and we may suppose that n > 1. By definition
of U -rank, there is B ⊃ A and an extension q(x) ∈ S(B) of p(x) such that
U(q) = n − 1. We may assume that B = acleq(B) and so q is stationary.
Let c ∈ M̄ eq be the canonical base of q (or rather an element such that
Cb(q) ⊆ dcleq(c) as in Lemma 2.38). By 2.42, c is in the definable closure of
a finite sequence of realizations of p. By 5.5, U(tp(c/A)) is finite (and clearly
nonzero). Let a realize q and note that U(tp(a/A, c)) = n− 1.

Now, we can again find some set D of parameters containing A such that
U(tp(c/D)) = 1. Without loss D is independent from a over A∪{c} (why?).
Claim. a is independent from D over A.
Proof of Claim. By choice of D and forking calculus, tp(a/Dc) does not fork
over Ac, and so has U -rank n − 1. But U(a/D) ≥ U(a/Dc), so if a forked
with D over A, we would have to have that U(a/D) = n−1, and so tp(a/Dc)
is a nonforking extension of tp(a/D). But c is the canonical base of the latter
type, so by 2.38 (ii), we would deduce that c ∈ acl(D), a contradiction to
U(tp(c/D)) = 1. The claim is proved.

Note that a forks with c over D. (Otherwise, by transitivity of nonforking and
the claim, it would follow that a is independent from Ac over A.) Thus (by
the claim), tp(a/A) = p is nonorthogonal to tp(c/D), proving the proposition.
Note that c ∈ acl(D, a) so RM(tp(c/D)) ≤ RM(tp(a/D)).

Remark 5.10 A similar kind of argument, together with a suitable general-
ization of 5.5 to the infinite U-rank case, yields that any stationary type is
nonorthogonal to a type whose U-rank is of the form ωα for some ordinal α.

Definition 5.11 Let p(x) ∈ S(A) be stationary. Then p is said to be semi-
minimal if there are B ⊇ A, a realising p|B and c1, .., cn each of whose type
over B is minimal, such that a ∈ dcl(B, c1, .., cn).

Proposition 5.12 Suppose that a /∈ acl(A), and U(tp(a/A)) < ω. Then
there is d ∈ dcl(a,A) \ acl(A) such that stp(d/A) is semi-minimal. (Again
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if RM(tp(a/A)) < ω then stp(d/A) is semi-minimal with respect to minimal
types of finite Morley rank.)

Proof. By 5.9 there are B ⊇ A, such that a is independent from B over A, and
c such that tp(c/B) is minimal, and a forks with c over B (so c ∈ acl(B, a)).
We may assume that B = A ∪ {b} for some element b ∈ M̄ eq (why?). Let
d = Cb(stp(b, c/A, a)). By 2.42, there is a Morley sequence (bi, ci)i<ω such
that d ∈ dcl(b0, c0, .., bn, cn) for some n. Let B′ = acl(A∪{b0, .., bn}. Forking
calculus yields that a is independent from B′ over A. Thus, as d ∈ acl(A, a),
d is independent from B′ over A. For each i, tp(ci/A, bi) is minimal, and
either tp(ci/B

′) is the unique nnforking extension of the latter type, or ci ∈
B′. Thus, d is contained in the definable closure of B′ together with some
realizations of minimal types over B′. That is, tp(d/A) is semi-minimal. Now
we only know that d ∈ acl(A, a). Let d′ be the imaginary {d1, .., dm} where
the dj are the conjugates of d over A, a. Then d′ ∈ dcl(A, a) and we leave it
to the reader to check that tp(d′/A) is still semi-minimal.

Let us see what 5.12 means at the level of definable sets. Suppose that X is
a definable set of finite Morley rank and of Morley degree 1, definable over A
say. Let a realize the “generic type” of X over A. So there is an A-definable
function f such that f is defined on a and stp(f(a)/A) is semi-minimal. In
fact, as tp(a/A) is stationary, so is tp(f(a)/A). So f(a) realizes the generic
type of some A-definable set Z of finite Morley rank and Morley degree 1.
By semiminimality and compactness, after refining Z, there are B ⊃ A, B-
definable sets Y1, .., Yk each of finite Morley rank and Morley degree 1, whose
generic types are minimal, and such that Z ⊂ (Y1 × Y2 × ..Yk)eqB . Again by
compactness, after throwing away from X an A-definable set of small Morley
rank, f(X) ⊆ Z. So putting it altogether, there is an A-definable function f
from X onto an A-definable set Z which lives inside a product of definable
sets whose generic types are minimal.

For b ∈ Z over A, we have the fibre f−1(b), defined over A, b. We have
an A, b-definable equivalence relation on f−1(b) whose classes have Morley
degree 1 and we can again apply 5.9 to these classes. By compactness the
resulting maps are uniformly definable (as b varies in Z).

The process must eventually stop. So we have a “fibration” of X by
definable sets contained in products of definable sets with minimal generic
types. If it so happens that all minimal types are nontrivial, then by 5.8,
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the definable sets whose generic types are minimal are precisely the strongly
minimal sets.

Let us now pass to the “fine” structure of groups of finite Morley rank.
Assumption. T is a complete t.t. theory, M̄ is saturated model of T , and G
is a group definable in M̄ with RM(G) < ω.

We want to explain how G is built up from almost strongly minimal(or
semi-minimal) groups, and then discuss the “socle” (greatest connected semi-
minimal subgroup) of G.

There are two approaches, from below, using the so-called Zilber inde-
composability theore, or from above, using 5.12. We will discuss both.

Definition 5.13 Let X be a type-definable subset of G (that is X is the set
of realizations of some partial type Σ(x)). We say that X is indecomposable
if for each definable subgroup H of G, either X is contained in a single left
coset a ·H, or infinitely many left cosets of H meet X.

Note that if X is indecomposable, then so is a ·X for any a ∈ G. In any
case here are some examples:

Lemma 5.14 Suppose that X is the set of realizations of a complete sta-
tionary type p(x) ∈ S(A) (where G is defined over A, and p(x) |= “x ∈ G”).
Then X is indecomposable.

Proof. We may assume that A = ∅. Let RM(p) = m. Suppose by way of
contradiction, that H is a definable subgroup of G and |X/H| is finite with
cardinality > 1. It follows that there is a unique coset, say a · H such that
RM(X ∩ a ·H) = m. (Let B be such that H and each coset of H meeting
X are defined over B. Then the nonforking extension of p(x) over B must
contain exactly one of the “x ∈ ai ·H” where a1 ·H, .., ar ·H are the cosets
meeting X.) Now, using the DCC on definable subgroups of G, let K < H
be the (unique) smallest definable subgroup of G such that for some coset
b ·K of K in G, RM(X ∩ b ·K) = m. Note that b ·K ⊆ a ·H.
Claim. b ·K is ∅-definable (and so K is too).
Proof of Claim. Let f be an automorphism of M̄ . Then f(b·K) = f(b)·f(K)
and RM(X∩f(b)·f(K)) = m. It follows that RM(X∩b·K∩f(b)·f(K)) = m
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(why?). Hence by choice of K, and stationarity of p, f(b ·K) = b ·K. This
proves the claim.

But p is the set of realizations of a complete type over ∅, so by the claim
p(x) |= x ∈ b · K, hence X is contained in b · K and so also in a · H,
contradiction. The proof of the lemma is complete.

Note that we actually proved above that if p(x) is a stationary type, and
p(x) |= x ∈ G and some nonforking extension of p contains x ∈ a · H for
some definable subgroup H of G, then all realizations of p are contained in
a ·H.

Lemma 5.15 Suppose that G is connected. Then for any a ∈ G, the conju-
gacy class aG is indecomposable.

Proof. Suppose again for a contradiction that H is a definable subgroup of G
and aG/H has cardinality finite and > 1. For each g ∈ G, conjugation by g
is a (group) automorphism of G which leaves aG invariant setwise, and takes
H to the definable subgroup Hg. Hence the same is true for aG/Hg for all
g ∈ G. By the DCC on definable groups, the intersection of all conjugates
Hg of H is a finite subintersection, so if K is this intersection, then K is
normal in G and again aG/K is finite of cardinality > 1.

So we see that working in the group G/K, the conjugacy class (a/K)G/K

is finite and of cardinality > 1. But this conjugacy class is in definable
bijection with ((G/K)/(CG/K(a/K))), the centralizer of a/K in G/K. Thus
this centralizer has finite index > 1 in G/K. But G/K is connected (as G
is), and we have a contradiction.

The following is proved using the DCC on definable groups.

Exercise 5.16 Any definable subset X of G can be partitioned into a finite
number of definable indecomposable sets.

Proposition 5.17 Suppose that {Xi : i ∈ I} is a set of indecomposable
type-definable subsets of G such that the identity element e ∈ G is in each
Xi. Then the (abstract) subgroup of G generated by the X ′is is definable and
connected. Moreover H = Xi1 · .. ·Xin for some i1, .., in ∈ I.
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Proof. Again we may assume G to be defined over ∅. For i1, .., in ∈ I, let
Xi1 · ... ·Xin = {a1 · ... ·an : aj ∈ Xij}, a type-definable subset of G. As G has
finite Morley rank, we can find such Y = Xi1 · ... ·Xin (for some ii, .., in ∈ I)
such that RM(Y ) = m is maximized. Suppose Y is type-definable over
A = acl(A), and let p(x) ∈ S(A) be (stationary) and of Morley rank m such
that p(x) |= “x ∈ Y ”. Let H be the (left) stabilizer of p(x).
Claim. Xj ⊆ H for all j ∈ I.
Proof of claim. If not, then by indecomposability of Xi, and as e ∈ Xj,
it follows that Xj/H is infinite. Let b1, b2, .... be elements in Xj such that
br · H 6= bs · H for r 6= s. Let B ⊇ A be algebraically closed such that
Xi is defined over B and each of b1, b2, ... is in B. Let p′(x) ∈ S(B) be
the nonforking extension of p(x) over B, realized by c say. Then for each
r < ω, tp(br · c/B) has Morley rank m. But for each r 6= s, b−1

s · br /∈ H,
hence tp(b−1

s · br · c/B) 6= tp(c/B), hence tp(br · c/B) 6= tp(bs · c/B). But
maximal choice of RM(Y ), RM(Xj · Y ) = m. As each br · c ∈ Xj · Y , we
see that Xj · Y contains infinitely many distinct types of Morley rank m, a
contradiction. This proves the claim.

By the claim,
(*) H contains the subgroup of G generated by all the Xi.
In particular Y ⊆ H, and so RM(p) ≤ RM(H). By 4.15 and 4.16, H is
connected, and p(x) is the generic type of a translate of H. But by (*),
p(x) |= “x ∈ H”. Hence p(x) is the generic type of H. By Lemma 4.27,
every element of H is a product of two realizations of p and thus H ⊆ Y · Y .
Together with (*) this proves the proposition.

I will now give a series of consequences of Proposition 5.17. Remember that
G is a group of finite Morley rank definable in the model M̄ of the t.t theory
T .

Corollary 5.18 Suppose that G is infinite, noncommutative and has no in-
finite definable normal proper subgroups. Then
(i) G has no infinite normal proper subgroup,
(ii) Z(G) is finite and G/Z(G) is simple as an abstract group.

Proof. (i) Clearly G is connected. By our assumptions, Z(G) (the cen-
tre of G) is finite. Suppose H is an infinite normal subgroup of G. Let
a ∈ H \ Z(G). Then aG is infinite (otherwise C(a) has finite index in G
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so C(a) = G so a ∈ Z(G), contradiction). By 5.15, aG is indecomposable.
So aG · b−1 is indecomposable and contains e, for all b ∈ aG. By 5.17, the
subgroup of G generated by all the sets aG · b−1 for b ∈ aG, is definable. Let
H1 be this subgroup. Then it is normal, infinite, and is clearly contained in
H. By our assumptions, H1 = G, hence H = G.
(ii) We already know that Z(G) is finite (and normal).
Claim I. G/Z(G) is noncommutative and connected.
Proof. Clearly G/Z(G) is connected (for otherwise the preimage in G of a
proper definable subgroup of finite index of G/Z(G) would contradict con-
nectedness of G. If G/Z(G) were commutative, then G′ (the subgroup of G
generated by all commutators a · b · a−1 · b−1) would be contained in Z(G).
But G′ is generated by all aG · a−1 for a ∈ G, and by 5.15 and 5.17, G′ is
definable, normal (and infinite). So G′ = G, contradiction.
Claim II. G/Z(G) has no finite normal subgroups.
Proof. The preimage in G of a finite normal subgroup of G/Z(G) would be
a finite normal subgroup H of G, containing Z(G). Note that G acts defin-
ably on H by conjugation. Hence G/CG(H) acts faithfully on H, whereby
G/CG(H) is finite. So G = CG(H) and H = Z(G).

Note that G/Z(G) has no proper definable infinite normal subgroups. Hence
by Claims I, II, and part (i), we see that G/Z(G) has no proper nontrivial
normal subgroup. This completes the proof of 5.18.

We now want to “decompose” G into almost strongly minimal groups.

Corollary 5.19 Suppose that G is infinite and has no proper infinite normal
definable subgroups. Then G is almost strongly minimal (there is strongly
minimal X ⊂ G and some finite set of parameters B over which G and X
are defined, such that G ⊆ Xeq

B ).

Proof. As RM(G) < ∞, there is some strongly minimal set X ⊂ G. Let
A be such that G and X are A-definable. Let p(x) ∈ S(A) be stationary of
Morley rank 1 containing X. Let a realize p and let Y = a−1 · p(M̄). For
each b ∈ G, let Yb = b · Y · b−1. Then by 5.14 each Yb is type-definable,
indecomposable, and contains e. Let H be the subgroup of G generated by
all the Yb’s. H is clearly normal, and infinite. By part (i) (or 5.17 and the
hypotheses), H = G. By 5.17, G = Yb1 · ... · Ybn for some b1, .., bn ∈ G. Then
clearly, for B = A ∪ {a, b1, .., bn}, G ⊆ dcl(X ∪B).

66



Now fix G, connected and of finite Morley rank. Then there is greatest n
such that there exist {e} = H0 < H1 < .. < Hn = G, where each Hi is a
normal definable connected subgroup of G (and Hi is a proper subgroup of
Hi+1). In fact by Lemma 4.1, RM(Hi) < RM(Hi+1), so n ≤ RM(G). Note
that for each i

For future purposes we denote n by n(G).

Corollary 5.20 With G, n and the Hi as above, each Hi+1/Hi is almost
strongly minimal.

Proof. This is almost given by Corollary 5.19. As there, let X be a strongly
minimal subset of Hi+1/Hi, p(x) ∈ S(A) its “generic type” and Y some
translate of p(M̄ by a−1 for a realizing p. Now consider the subgroup H/Hi

of G/Hi generated by all Y b for b ∈ G/Hi. So by 5.17, H/Hi is definable,
infinite, normal (in G/Hi), connected, and contained in Hi+1/Hi. By choice
of the Hi, we see that H = Hi+1.

Exercise 5.21 (G a definable group of finite Morley rank.) There are sta-
tionary types p1, .., pn of Morley rank 1 (maybe in M̄ eq) such that
(i) each stationary tp(a/A) wth a ∈ G is nonorthogonal to one of the p1, .., pn,
(ii) for any stationary type p of U-rank 1, if p is nonorthogonal to tp(a/A)
for some a ∈ G, then p is nonorthogonal to one of p1, .., pn (and hence
RM(p) = 1 too).

Example 5.22 (i) Let T be strongly minimal (e.g. T = Th(ACFp). Then
any group definable in M̄ is almost strongly minimal.
(ii) Let T = Th(Z

(ω)
4 ,+). Let G denote this group. Them G is not almost

strongly minimal. However both 2G and G/2G) are strongly minimal.

We want to say a little more about the Hi+1/Hi’s.

Lemma 5.23 Let G be connnected. Let H be a minimal infinite normal
definable subgroup of G. Then either H is commutative, or H is noncommu-
tative with no proper infinite normal subgroup.

Proof. Note that H is connected. We proceed by induction on RM(G). We
may assume that H 6= G (using also 5.18). Let us also assume that H is
noncommutative. So Z(H) is finite (otherwise the connected component of
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Z(H) is a proper infinite normal subgroup of H, normal in G). As in the
proof of 5.18, H/Z(H) is centreless. So (quotienting G by the finite normal
subgroup Z(H)) we may assume that H is centreless.

It is enough (by 5.18) to show that H has no infinite proper normal
definable subgroups. Suppose for a contradiction that N is such. So N is
connected. By 5.17 the subgroup of G generated by {N g : g ∈ G} is definable
and connected. This group is clearly infinite, normal in G and contained in
H. So it must equal H. Thus (by 5.17 again) H = N1 ·N2.. ·Nk for distinct
conjugates Ni of N (and note each Ni is normal in H. Now each Ni ∩ Nj

is normal in H, so finite, so central in H, so trivial. Thus H is a direct
product N1 × .. × Nk. If N were commutative, then each Ni would be too,
so H would be commutative, cntradiction. Thus each Ni (a minimal normal
definable infinite subgroup of H) is noncommutative. We can apply induction
(RM(H) < RM(G)) to conclude that each Ni has no proper infinite normal
subgroup. Note that Z(Ni) < Z(H) = {e}, so each Ni is also centreless.
Thus H is a direct product of finitely many noncommutative (abstractly)
simple definable groups, N1, .., Nk. An elementary grou-theoretic fact implies
that any simple nontrivial normal subgroup of H is among the Ni. Thus G
acts (by conjugation) on the finite set {N1, .., Nk}. As G is connected, the
action is trivial. That is each Ni is normal in G, as is N . Contradiction. The
lemma is proved.

Corollary 5.24 In the context of 5.20, each Hi+1/Hi is either commutative,
or noncommutative with no infinite normal subgroup (so by 5.18 abstractly
simple modulo its finite centre).

Proof. Hi+1/Hi is clearly a minimal infinite normal subgroup of G/Hi so we
can use 5.23.

Corollary 5.18 raises the question: ifG is connected and infinite, does it follow
that G has no abstract proper subgroup of finite index. This is not true in
general: the additive group of an algebraically closed field of characteristic
p > 0 is connected, but (as it is an infinite dimensional vector space over Fp)
it has proper subgroups of finite index. This is essntially the only obstacle.

Corollary 5.25 Suppose that for every connected commutative group G of
finite Morley rank (definable in M̄), G has no proper subgroup of finite index.
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Then the same is true for every connected definable group of finite Morley
rank.

Proof. Let n = n(G) and let Hn−1 be as in the discussion before 5.20.
Suppose for a contradiction that H is a proper subgroup of finite index in G.
So H∩Hn−1 has finite index in Hn−1. By induction (RM(Hn−1) < RM(G)),
G contains Hn−1 whereby H/Hn−1 is a proper subgroup of finite index in
G/Hn−1. Note that any proper subgroup of finite index contains a proper
normal subgroup of finite index. So we have a contradiction to 5.24, using
our assumptions.

In particular if all commutative connected definable groups of finite Morley
are divisible, then any connected definable group of finite Morley rank is
abstractly connected.

Finally we discuss the socle argument. G remains a group of finite Morley
rank definable in M̄ |= T .

Definition 5.26 The socle of G, s(G) is the subgroup of G generated by all
the connected definable almost strongly minimal subgroups of G.

Remark 5.27 s(G) is connected, definable and normal in G and definable
over the same set of parameters as G.

Proof. If H is a connected definable subgroup of G, then clearly H is inde-
composable and contains the identity. If also H is almost strongly minimal,
then every conjugate Hg of H is almost strongly minimal (as well as being
connected). Hence s(G) is normal. By 5.17 it is definable and connected,
and equals K1 · .. ·Kn for some almost strongly minimal definable connected
subgroups K1, .., Kn of G.

Lemma 5.28 s(G) is the unique maximal connected definable subgroup H
of G such that there are strongly minimal sets Y1, .., Yd in M̄ eq with H ⊆
acl(Y1, .., Yd, B) for some small set B of parameters.

Proof. Suppose for a contradiction that H is a connected definable subgroup
of G properly containing S = s(G) such that H is contained in the algebraic
closure of a finite number Y1, .., Yd of strongly minimal sets (plus a small
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set of parameters). Let B be the set of parameters (over which we may
assume that G,S,H and the Yi are defined). Let a ∈ H with tp(a/B)
generic. Then a/S /∈ acl(B). Let bi ∈ Yi for i = 1, .., d,such that a ∈
acl(B, b1, .., bd). We may assume that for each i bi /∈ acl(B ∪ {bj : j 6= i}).
Note that a/S ∈ acl(B, b1, .., bd) too. After including in B some of the bi’s,
we may assume that each of a, a/S is interalgebraic with (b1, .., br) over B
and that a/S /∈ acl(B). (We still have that (b1, .., br) is A-independent, but
tp(a/B) need no longer be generic in H.) In particular, both a/S and a
are interalgebraic with br over B, b1, .., br−1. So both stp((a/S)/B, b1, .., br−1)
and q(x) = stp(a/B, b1, .., br−1) are stationary of Morley rank 1. In particular
the set of realizations X of q(x) intersects infinitely many cosets of S in G.
The same is true for a−1 · X. By 5.17 the latter set generates a connected
definable almost strongly minimal subgroup of G which is not contained in
S, contradiction.

We will restrict our attention to commutative groups below, although every-
thing works in the noncommutative case too. Assume G to be defined over
∅.

Proposition 5.29 Let G be connected and commutative (and of finite Mor-
ley rank). Let S = s(G). Let p(x) = tp(a/A) be stationary, with a ∈ G.
Assume also
(i) every connected definable subgroup of S is defined over some c such that
c is independent from d over A for all d ∈ G/S.
(ii) Stab(p) is finite.
Then all realizations of p(x) are contained in a single translate of S.

Before proving the proposition, let is discuss the hypotheses and conclusion.
Hypothesis (i) is a “rigidity” condition. It will be satisfied in the following
special situations: (a) every definable connected subgroup of G is defined
over acl(∅), (b) S is “fully orthogonal” to G/S (whenever p(x) and q(y) are
complete stationary types extending x ∈ S, y ∈ G/S respectively, then p
is orthogonal to q). (a) will be true of algebraic tori (finite products of the
multiplicative group) as well as abelian varieties, in the case where M̄ is
an algebraically closed field, although in this case every definable connected
group is equal to its socle. A more interesting example is where G as a
structure in its own right is a compact complex Lie group equipped with
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predicates for analytic subvarieties of Gn for all n. (Such a structure is not
saturated but we can work with a saturated elementary extension).

Hypothesis (ii) is equivalent to Stab(p) ∩ S is finite. For suppose the
latter holds and Stab(p) is infinite. Then the connected component of Stab(p)
contains an almost strongly minimal subgroup (why?), which is not contained
in S, a contradiction.

The conclusion of the Proposition could possibly be better expressed in
terms of definable sets. For X ⊆ G a definable set of Morley rank m and
Morley degree 1, define Stab(X) to be {g ∈ G : RM(X ∩ g · X) = m}.
Then Stab(X) is the same as Stab(p) where p is the unique stationary type
of Morley rank m extending “x ∈ X”. Then the conclusion can be stated
as: if Stab(X) is finite, then, up to translation, and a definable set of Morley
rank < m, X is contained in S.

Together with the truth of the “Zilber conjecture” in the many sorted
structure of compact complex manifolds (which will be discused later), the
Proposition yields the following result of Ueno: if X is an irredicible analytic
subvariety of a compact complex Lie group A, and Stab(X) is finite, then
X is biholomorphic with a complex algebraic variety. (However there are
simpler proofs, even of a model-theoretic nature.)

Proof of Proposition 5.29. The proof is a little bit involved. The general
strategy is to assume the conclusion is false, and then produce a connected
definable nontrivial subgroup of G which is contained in the algebraic closure
of finitely many strongly minimal sets (in M̄) and is NOT contained in S,
contradicting 5.28.

We may assume that A = ∅. Let π : G→ G/S be the canonical surjective
homomorphism. Let X be the set of realizations of p. Fix a ∈ X and let b =
π(a). Note that tp(b/∅) is also stationary, so if it is algebraic then b ∈ dcl(∅),
and we see that all realizations of p are contained in the single translate
π−1(b) of S. So we may assume that b /∈ acl(∅). Let Xb = X ∩ π−1(b). Note
that Xb is precisely the set of realizations of tp(a/b) (why?). Let Gb = π−1(b).
So Gb is a translate of S. In particular S acts on Gb by addition.

Now let Z be a subset of Gb which is definable with parameters from
S ∪ {b} and is of of least (RM, dM) subject to this condition.
Claim I. Z is of the form H + c for some c ∈ Z and some definable subgroup
H of S.
Proof of Claim I. Note that if s ∈ S, then either s + Z = Z or s + Z is
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disjoint from Z. (If both (s+ Z) ∩ Z and the symmetric difference of s+ Z
and Z were nonempty then one would have strictly smaller (RM, dM) than
Z, a contradiction, as both are definable over S ∪ {b}.) Thus H = {s ∈ S :
s + Z = Z} is a definable subgroup of S, and Z = H + c for some (any)
c ∈ Z.

Note that the sets s+Z for s ∈ S cover Gb and each is a coset (translate) of
H.
Claim II. Any translate s + Z of Z by s ∈ S is either contained in Xb or is
disjoint from Xb. Thus Xb is invariant under translation by H.
Proof. Suppose that s+Z meets Xb. Now Xb is an intersection of b-definable
sets {Yi}i say, so as s + Z is defined over S ∪ {b} and has the same Morley
rank and degree as Z, s + Z must be contained in every Yi (otherwise we
again contradict choice of Z). So s+ Z is contained in Xb.

Now let H0 be the connected component of H (a connected definable sub-
group of S). By Claim II, Xb is invariant under translation by H0.
Claim III. H0 is contained in Stab(p).
Proof. By assumption, H0 is defined over some parameter t such that t is
independent from b over ∅. Fix d ∈ H0. We will show that d ∈ Stab(p). We
may assume that d is independent from b over t, hence {t, d} is independent
from b over ∅. Let a ∈ Xb be independent from {t, d} over b. Then by forking
calculus we see that a is independent from d over ∅ (and a realizes p). As
Xb is invariant under translation by H0, d + a ∈ Xb so realizes p too. This
proves that H0 ⊆ Stab(p).

From Claim III and assumption (ii), H0 is trivial hence H is finite, so Z
is finite. Z is defined by a formula φ(x, b, e) for some e from S. We may
assume that for all b′, e′, φ(x, b′, e′) defines a finite (maybe empty) set. As
tp(b) is nonalgebraic, there is an infinite definable subset Y of G/S such
that for all b′ ∈ Y , there is e′ from S such that φ(x, b′, e′) defines a (finite)
nonempty subset of the fibre Gb′ . As Y is infinite, it contains a strongly
minimal definable subset Y ′ say. Let W be the the union of all sets defined by
φ(x, b′, e′) for b′ ∈ Y ′ and e′ in S. Thus W is a definable subset of G contained
in the algebraic closure of S and Y ′. As S itself is contained in the definable
closure of a finite set of strongly minimal sets (plus some parameters), W
is contained in the algebraic closure of finitely many strongly minimal sets.
Note that W meets infinitely many cosets of S in G. By Exercise 5.15, there
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is some indecomposable definable subset W ′ of W which meets infinitely
many cosets of S in G. After translating W ′ we obtain an indecomposable
definable subset W ′′ of G which contains the indentity and meets infinitely
many cosets of S. Let K be the subgroup of G generated by W ′′. By 5.17,
K is definable, connected, not contained in S. The (definable connected)
subgroup of G generated by S and K is then contained in the algebraic
closure of finitely many strongly minimal sets, and properly contains S. This
contradicts Lemma 5.28. Proposition 5.29 is proved.

It is an open question whether Proposition 5.29 is true without the “rigidity”
assumption (i).
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