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Abstract

We prove that the generic type of a non-cyclic torsion-free hyperbolic group G is
foreign to any interpretable abelian group, hence also to any interpretable field. This
result depends, among other things, on the definable simplicity of a non-cyclic torsion-free
hyperbolic group, and we take the opportunity to give a proof of the latter using Sela’s
description of imaginaries in torsion-free hyperbolic groups. We also use the description
of imaginaries to prove that if F is a free group of rank > 2 then no orbit of a finite tuple
from F under Aut(F) is definable.

1 Introduction

This paper concerns the first order theories of torsion-free hyperbolic groups. There is an
increasing model theoretic interest in the subject motivated by the positive solution to Tarski’s
problem (i.e. is the theory of non abelian free groups complete?) by Sela and Kharlampovich-
Myasnikov. Subsequently Sela proved the stability of all non-cyclic torsion-free hyperbolic
groups [Selb]. These are in fact remarkable examples of “new stable groups", given by nature.

If we fix a torsion-free hyperbolic group G, then understanding the category of defin-
able/interpretable sets in models of Th(G), informed by stability-theoretic tools and notions,
is a challenge. Sela’s work on imaginaries in torsion-free hyperbolic groups [Sela] is part of
this endeavour and will be used in the current paper.

Our paper contributes to the following conjecture:

Conjecture 1: Let G be a torsion-free hyperbolic group. Then no infinite field is interpretable
in (any model of) Th(G).

In general, also the nature and complexity of interpretable groups in a theory is important
and we make another conjecture which will only indirectly be touched on in the current paper:

Conjecture 2: Let G be a torsion-free hyperbolic group. Any group interpretable in a model
M of Th(G) is definably isomorphic to a definable subgroup ofM× . . .×M.
∗Research supported by SFB 878
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Note that this is basically the situation in 1-based groups (see [EPP90]).
Let G be a non-cyclic torsion-free hyperbolic group. Then the first order theory of G

is connected and hence has a unique generic type, which we call pG0 (see section 2). In the
special case of non abelian free groups a considerable amount of information has been obtained
around the complexity of pFn

0 (by all the authors). For example pFn
0 has infinite weight ([Pil09],

[Skl11a]), and witnesses the fact that the free group is n-ample for all n ([Skl12]). As a matter
of fact, in [OHT12] it was proved that the theory of any (non-cyclic) torsion-free hyperbolic
group is n-ample for all n. The ampleness result is consistent with the existence of an infinite
interpretable field which interacts with pG0 . Corollary 2 rules this out. Thus, the results of the
current paper provide a partial solution to Conjecture 1, yielding additional information on
pG0 : no interpretable abelian group (hence also interpretable field) can interact with pG0 . See
Section 5 for the stability-theoretic definitions.

Theorem 1: Let G be a non-cyclic torsion-free hyperbolic group. Then pG0 is foreign to any
infinite interpretable abelian group.

Corollary 2: Let G be a non-cyclic torsion-free hyperbolic group. Then pG0 is foreign to any
infinite interpretable field or skew field.

We will need to know that non-cyclic torsion-free hyperbolic groups are definably simple
(no definable proper nontrivial normal subgroup). The stronger result that the only proper
definable subgroups of torsion-free hyperbolic groups are cyclic, has been stated in several
places, such as [KM11]. We take the opportunity here to give an independent proof in Section
3, using Sela’s description of imaginaries [Sela] as a “black box”:

Theorem 3: The only definable proper subgroups of a torsion-free hyperbolic group are cyclic.

In the same section we also prove:

Theorem 4: Let F be a free group of rank at least 3. Then no orbit of a finite (nontrivial)
tuple under Aut(F) is definable.

Let us stress that by definable we mean definable possibly with parameters.
The paper is organised as follows. In the following section we give some model theoretic

background around torsion-free hyperbolic groups. We give special emphasis to the notion
of imaginaries and we give a precise account of elimination of imaginaries in model theoretic
terminology as this is crucial for questions regarding interpretability.

In Section 3, we give certain non-definability results. In particular we use Sela’s elimination
of imaginaries result to prove Theorem 3 and Theorem 4.

In Section 4 we prove a result that forbids abelian interpretable groups in non abelian free
groups to “gain” an element in higher rank free groups. This result is an elaboration on material
in Chapter 8 of the third author’s Ph.D. thesis [Skl11b], but now we have to consider not only
real tuples but imaginaries. We also prove an analogous result for torsion-free hyperbolic
groups.

Finally in Section 5, we bring everything together to prove Theorem 1.

2 Some model theory of torsion-free hyperbolic groups

We start our discussion with the free group case. Our notation is fairly standard. By Fn we
denote the free group on n generators and we usually denote a basis of Fn by e1, ..., en. By
Tfg we denote the common theory of non abelian free groups. We also note that the natural
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embedding of Fn in Fm for 2 ≤ n < m is elementary (as proved by Sela and Kharlampovich-
Myasnikov).

In [Poi83] Poizat proved that Fω is connected (thus Tfg is connected). Moreover the
following theorem has been proved by the second named author in [Pil08].

Theorem 2.1: Let Fω := 〈e1, . . . , en, . . .〉. Then (ei)i<ω is a Morley sequence in pFn
0 . In

particular tp(en+1/Fn) is generic.

Now, let G be a torsion-free hyperbolic group. Sela assigns to such a group its elementary
core EC(G), which is an elementary subgroup of G provided G is not elementarily equivalent to
a free group (for a definition and further properties see [Sel09]). Note that if G is elementarily
equivalent to a free group, EC(G) is the trivial group. The elementary core of EC(G) ∗ Z
is again EC(G), so the latter is an elementary subgroup of the former. This observation led
Ould Houcine to the following result [OH11]

Theorem 2.2: Let G be a torsion-free hyperbolic group not elementarily equivalent to a free
group. Then G is connected. Moreover if H := EC(G) ∗ 〈e〉, then tpH(e/EC(G)) is generic.

In [OHT12] the following useful result was proved.

Proposition 2.3: Let G be a torsion-free hyperbolic group not elementarily equivalent to a
free group. Suppose K is a free factor of a free group F. Then EC(G) ∗K is an elementary
subgroup of G ∗ F. In particular since EC(EC(G)) = EC(G) we have an elementary chain

EC(G) ≺ EC(G) ∗ Z ≺ . . . ≺ EC(G) ∗ Fn ≺ . . . .

2.1 Imaginaries in torsion-free hyperbolic groups

We first give a quick overview of the model theoretic notion of imaginaries as well as various
notions of elimination of imaginaries. We then specialize to torsion-free hyperbolic groups and
give Sela’s result.

Recall thatMeq is constructed fromM by adding a new sort for each ∅-definable equiva-
lence relation, E(x̄, ȳ), together with a class function fE : Mn →ME , where ME (the domain
of the new sort corresponding to E) is the set of all E-equivalence classes. The elements in
these new sorts are called imaginaries. Note that any automorphism of M has a canonical
extension toMeq.

We say that M eliminates imaginaries if it has a saturated elementary extension M in
which for any element e of Meq, there is a finite tuple b̄ ∈ M such that e ∈ dcleq(b̄) and
b̄ ∈ dcleq(e).

We say that M weakly eliminates imaginaries if it has a saturated elementary extension
M in which for any element e of Meq, there is a finite tuple b̄ ∈ M such that e ∈ dcleq(b̄) and
b̄ ∈ acleq(e).

We now specialize to torsion-free hyperbolic groups.

Definition 2.4: Let G be a torsion-free hyperbolic group. The following equivalence relations
in G are called basic.

(i) E1(a, b) if and only if there is g ∈ G such that ag = b. (conjugation)

(ii)m E2m((a1, b1), (a2, b2)) if and only if b1, b2 6= 1 and CG(b1) = CG(b2) = 〈b〉 and a−11 a2 ∈
〈bm〉. (m-left-coset)
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(iii)m E3m((a1, b1), (a2, b2)) if and only if b1, b2 6= 1 and CG(b1) = CG(b2) = 〈b〉 and a1a−12 ∈
〈bm〉. (m-right-coset)

(iv)m,n E4m,n((a1, b1, c1), (a2, b2, c2)) if and only if a1, a2, c1, c2 6= 1 and CG(a1) = CG(a2) = 〈a〉
and CG(c1) = CG(c2) = 〈c〉 and there is γ ∈ 〈am〉 and ε ∈ 〈cn〉 such that γb1ε = b2.
(m,n-double-coset)

The following is Theorem 4.4 in [Sela]:

Theorem 2.5: Let G be a torsion-free hyperbolic group. Let E(x̄, ȳ) be a ∅-definable equiva-
lence relation in G, with |x̄| = m. Then there exist k, l < ω and a ∅-definable relation

RE ⊆ Gm ×Gk × S1(G)× . . .× Sl(G)

such that:

(i) each Si(G) is one of the basic sorts;

(ii) there is some s ∈ N such that for each ā ∈ Gm, |RE(ā, Geq)| ≤ s;

(iii) ∀z̄(RE(ā, z̄)↔ RE(b̄, z̄)) if and only if E(ā, b̄).

Let G be a group elementarily equivalent to a torsion-free hyperbolic group, by Gwe we
denote the expansion of G by the above basic sorts, i.e. Gwe = (G,S1(G), {S2m(G)}m<ω,
{S3m(G)}m<ω, {S4m,n(G)}m,n<ω). The above theorem implies

Corollary 2.6: Let G be a torsion-free hyperbolic group. Then Gwe weakly eliminates imagi-
naries.

Proof. We work in a saturated extension G of G. Let e be an element of Geq. Then there is
a ∅-definable equivalence relation E(x̄, ȳ) in G such that e = [ā]E for some element ā ∈ G.
By Theorem 2.5, E is assigned a relation RE such that RE(ā, z̄) has finitely many solu-
tions in Gwe. Suppose (ā1ā2 . . . āk) is the concatenation of those solutions. We claim that
e ∈ dcleq(ā1ā2 . . . āk) and ā1ā2 . . . āk ∈ acleq(e). The formula ∃ȳ(fE(ȳ) = x ∧ RE(ȳ, ā1) ∧
. . . ∧ RE(ȳ, āk) ∧ ∀w̄(RE(ȳ, w̄) →

∨k
i=1 w̄ = āi)) defines e in Geq. Now consider the formula

∃ȳ(RE(ȳ, x̄1)∧ . . .∧RE(ȳ, x̄k)∧fE(ȳ) = e), the solution set of this formula is {ā1, ā2, . . . , āk}k,
which is finite.

3 Some (non) definability results

We first prove that the only definable proper subgroups of a torsion-free hyperbolic group are
cyclic. This implies, in the case where G is non-cyclic, that Th(G) is definably simple.

LetG be a non-cyclic torsion-free hyperbolic group andH := G∗〈e〉. If a is an element inG,
we denote by fa the automorphism of H which is the identity on G and satisfies fa(e) = a−1ea.

Lemma 3.1: Let β ∈ Hwe \ Gwe and a ∈ G. Then β has infinite orbit under 〈f ia|i < ω〉
unless:

1. β = [b]E1 with b = b1e
i1b2 . . . bne

in and bi ∈ C(a) \ {1} for all i ≤ n; or

2. β = [(b, c, d)]E4m,n
and b ∈ γ1C(a)γ−11 , d ∈ γ2C(a)γ−12 for some γ1, γ2 ∈ G.
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Proof. Assume that β has finitely many images under 〈f ia|i < ω〉. We take cases according to
the list of basic sorts.

Let β = [b]E1 and b1ei1b2 . . . bnein be the normal form of b with respect to G ∗ 〈e〉. Then
the normal form of f ia(b) is aib1a−iei1aib2a−i . . . aibna−iein and the result follows.

Let β = [(c, b)]E for E = E2m or E = E3m or β = [(b, c, d)]E4m,n
with b ∈ H \ G.

Suppose b1ei1b2 . . . bneinbn+1 is the normal form of b with respect to G ∗ 〈e〉. Then since H
is torsion-free hyperbolic we have f ia(b) = b for infinitely many i’s, but f ia(b) has normal form
b1a
−iei1aib2 . . . a

ibna
−ieinaibn+1, so this is not possible.

Let β = [(c, b)]E for E = E2m or E = E3m, by the above argument we may assume
that b ∈ G, so c ∈ H \ G. Then for infinitely many i’s and εi ∈ G, we have εif ia(c) = c
(or f ia(c)δi = c), a contradiction since the normal form of f ia(c) with respect to G ∗ 〈e〉 is
c1a
−iei1aic2a

−i . . . aicna
−ieinai cn+1.

Finally, suppose β = [(b, c, d)]E4m,n
: we may assume that b, d ∈ G. Let c1ei1c2 . . . cnein

cn+1 be the normal form of c with respect to G∗ 〈e〉. Then we have for infinitely many i’s that
εif

i
a(c)δi = c, but this is only possible if εi ∈ C(c1ac

−1
1 ) and δi ∈ C(cn+1ac

−1
n+1), and the result

is proved.

This immediately yields the following:

Corollary 3.2: Let a, c ∈ G with C(a) 6= C(c). Then for any element β ∈ Hwe \ Gwe, β
has infinite orbit under 〈f ia, f ic|i < ω〉. In particular, if G is a non-trivial free product and
β ∈ Hwe, then Aut(H).β is infinite.

We note that the particular case of Corollary 3.2 fails in F2: the conjugacy class of [e1, e2]
has exactly two images under Aut(F2) (see [LS77, Proposition 5.1,p.44]).

Theorem 3.3: Let G be a torsion-free hyperbolic group. Then any definable proper subgroup
of G is cyclic.

Proof. We may assume that G is not cyclic. Suppose the result is not true. We first consider
the case where G is elementarily equivalent to a free group. Then there is a definable (over
F2) non abelian subgroup of F2, which we denote by A. Let EA be the (definable over F2)
equivalence relation defined by conjugation restricted to elements in A, i.e. E(b, c) if and only
if there is a ∈ A such that a−1ba = c. Let RA be the relation given by Theorem 2.5. Let
RA(e3,Feq3 ) = {b̄1, . . . , b̄k}. We claim that there is i ≤ k such that b̄i is in Feq3 \F

eq
2 . Otherwise,

since F2 is an elementary subgroup of F3, we find some c ∈ F2 with RA(c,Feq3 ) = {b̄1, . . . , b̄k},
so c and e3 are equivalent. But this is a contradiction since e3 cannot be a conjugate of an
element in F2. So, without loss of generality, b̄1 ∈ Feq3 \ F

eq
2 . Now consider the automorphisms

that fix F2 and send e3 to a−1e3a for some a ∈ A: every such automorphism fixes RA, and
clearly EA(e3, a

−1e3a). Since A is not abelian however, we can find a, c ∈ A such that [a, c] 6= 1:
by Corollary 3.2, b̄1 has infinitely many images under the iterates of fa and fc, a contradiction.

Finally, suppose G is not elementarily equivalent to a free group. Is not hard to see that
the above argument is still valid if we replace F2 with the elementary core of G and use the
fact that EC(G) is an elementary subgroup of EC(G) ∗ Z.

The following corollary follows immediately from the fact that the normalizer of a cyclic
subgroup in a torsion-free hyperbolic group coincides with its (cyclic) centralizer:
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Corollary 3.4: Let G be a non-cyclic torsion-free hyperbolic group. Then Th(G) is definably
simple.

We give another application of the weak elimination of imaginaries extending a result of
Kharlampovich-Myasnikov (see [KM11, Corollary 2]) that proved that the set of primitive
elements of Fn is not definable if n > 2.

In [LPS11, Theorem 4.8] it was proved that no (non-trivial) type in S(Tfg) is isolated,
equivalently since free groups are homogeneous structures no finite tuple has ∅-definable orbit
under Aut(Fn). An easy application of the weak elimination of imaginaries allows us, in free
groups of rank at least 3, to strengthen this result by showing that no orbit is definable even
with parameters. Intuitively the reason is that every such orbit is Aut(Fn)-invariant but every
non trivial canonical parameter can be “moved” by an automorphism of Fn, thus the orbit
can only be definable over ∅, contradicting the above mentioned theorem. Note that it is well
known that the orbit of any tuple in F2 (under Aut(F2)) is definable in F2 by a result of Nielsen
[Nie17].

Proposition 3.5: Let v̄ be a non trivial tuple of elements in a non abelian free group F of
rank at least 3. Then Aut(F).v̄ is not definable.

Proof. Suppose it is, and let e = [ā]E be the canonical parameter for the definable set X :=
Aut(F).v̄, in Feq. By Theorem 2.5, |RE(ā,Feq)| is finite and by Theorem 4.8 in [LPS11], it
contains a non trivial tuple, thus by Lemma 3.2 there is an automorphism such that f(e) 6= e,
but then f(X) 6= X, a contradiction.

4 Abelian interpretable groups in torsion-free hyperbolic groups

We show that if a formula φ over Feqn “gains” an element in Feqn+1, i.e. φ(Feqn ) 6= φ(Feqn+1), then
it cannot be given definably the structure of an abelian group. In the case of a torsion-free
hyperbolic group not elementarily equivalent to a free group, we prove an analogous result for
the elementary core.

Lemma 4.1: Let G := F0 ∗X0 ∗X1 be a free product of groups and let h be an automorphism
of G fixing F0 pointwise and acting on X0 ∗X1 as an automorphism of prime order p whose
fixed point set is exactly X0.

Suppose that h fixes the conjugacy class of a cyclically reduced element a ∈ G \ (F0 ∗X0 ∪
X0 ∗X1), of the form

a = a1x1a2x2 · · · amxm with ai ∈ F0 \ {1} and xi ∈ X0 ∗X1 \ {1} for i = 1, . . .m.

Then there is a permutation σ ∈ 〈(1.....m)〉 ≤ Sym({1, . . .m}) such that:

(i) ai = aσ(i) and h(xi) = xσ(i);

(ii) p divides the order o(σ) of σ.

Proof. Since h is the identity on F0 and leaves X0 ∗X1 invariant and because a is cyclically
reduced and conjugate to h(a), we see that

h(a) = a1h(x1)a2h(x2) . . . amh(xm)
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differs from a by a cyclic shift only. This implies (i).
Now (ii) follows from (i): we see that ho(σ) fixes each of the xi. The elements of X0 ∗X1

fixed by h (and thus by any element generating 〈h〉) are exactly those of X0. Thus ho(σ) must
be the identity so o(h) = p divides o(σ).

We will need the following small lemma:

Lemma 4.2: Let M be a finite cyclic group, let s, t ∈ M and let d > 1. Then there are k, l
with sk = tl and such that d does not divide both k and l.

Proof. Write o(s) = ef , and o(t) = eg where f, g are coprime. Then sf and tg have order e,
hence generate the same subgroup of M . So each can be written as a power of the other and
the conclusion follows.

Lemma 4.3: Let G := Uf ∗W ∗Ug be a free product of groups. Let f and g be automorphisms
of G of prime order p such that f is the identity on W and on Uf and acts without nontrivial
fixed point on Ug, and g is the identity on W and on Ug and acts without nontrivial fixed point
on Uf . If a is an element of G whose conjugacy class is fixed both by f and by g, then a lies
in W ∗ Uf or in W ∗ Ug.

Proof. Suppose that a /∈ (W ∗Uf )∪(W ∗Ug). We may choose a = a1x1a2x2 · · · amxm cyclically
reduced with ai ∈ Uf ∗W,xi ∈ Ug, and ai 6= 1 6= xi for i = 1, . . .m. By Lemma 4.1 applied to f
and the decomposition G = (Uf ∗W )∗1∗Ug on the one hand, and to g and the decomposition
G = Ug ∗W ∗Uf on the other hand we find σ, τ ∈ 〈(1 . . .m)〉 such that for i = 1, . . .m we have

ai = aσ(i) and f(xi) = xσ(i)

g(ai) = aτ(i) and xi = xτ(i).

By Lemma 4.2 we can choose k, l with σk = τ l such that p does not divide both k and l.
For i = 1, . . .m we now have

fk(xi) = xσk(i) = xτ l(i) = xi,

gl(ai) = aτ l(i) = aσk(i) = ai.

Thus fk is the identity (and so p divides k) and gl fixes each ai. Since p does not divide l, we
conclude that ai ∈W for i = 1, . . .m showing that a ∈W ∗Ug. This contradiction proves the
lemma.

Lemma 4.4: Let H := G ∗ C be a torsion-free hyperbolic group. Let f be an automorphism
of H of prime order p > 2 that fixes G and acts on C without non-trivial fixed point.

Suppose β ∈ Hwe \ Gwe is not a conjugacy class, i.e. β is not in S1(H). Then |{β, f(β),
f2(β), . . . , fp−1(β)}| = p.

Proof. We first note that no non-trivial power of f fixes an element in H \G. This also implies
that f i(d) 6= d−1 for all d ∈ H \ G, otherwise we would have f2i(d) = d. We now take cases
according to the list of basic sorts.

We will only treat the case where β = [(b1, b2, b3)]E4k,l
. Suppose for the sake of contra-

diction that (f i(b1), f
i(b2), f

i(b3)) ∼E4k,l
(f j(b1), f

j(b2), f
j(b3)) for i 6≡ j mod p. So we have

[f i(b1), f
j(b1)] = 1 and [f i(b3), f

j(b3)] = 1. Since H is a torsion-free hyperbolic group we have
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f i−j(b1) = b1 or f i−j(b1) = b−11 . But since f i−j cannot invert or fix an element in H \ G, it
follows that b1 ∈ G and similarly b3 ∈ G. Now since β ∈ Hwe \Gwe, we must have b2 ∈ H \G.
But then γf i(b2)ε = f j(b2) for some γ, ε ∈ G, and an easy calculation shows that this is not
possible.

We will apply Lemma 4.4 to the groupH := G∗Fp where G is torsion-free hyperbolic, p > 2
is a prime and f is the automorphism of H that fixes G and cyclically permutes (e1, . . . , ep).

Proposition 4.5: Let X be a definable set in Feqn . Suppose X(Feqn+1) 6= X(Feqn ). Then X
cannot be given definably the structure of an abelian group.

Proof. Suppose otherwise and let (X,�) be an abelian group. Suppose X is a subset of sort SE
(for some ∅-definable equivalence relation E). By Theorem 2.5 we can assign to E a definable
equivalence relation RE such that RE(ā, ȳ) cannot have more than s solutions (for any ā) and
each solution is a tuple containing l-many elements in imaginary sorts.

Let p be a prime greater than max{s, 2}. Let Ai := 〈en+ip+1, . . . , en+(i+1)p〉 for i ≤ l · s
and fi be the automorphism of Fn ∗Ai which is the identity on Fn and cyclically permutes the
given basis of Ai.

Now let β0 ∈ X(Feqn+1) \ X(Feqn ) and βi be the image of β0 under the automorphism of
Fω := 〈e1, e2, . . . , en, . . .〉 which exchanges en+1 with en+ip+1 and fixes all other elements of
the basis.

For each 0 ≤ i ≤ s · l we consider the following product of elements of X(Feqω ).

βi � fi(βi)� . . .� fp−1i (βi) = γi

Is not hard to see that γi is an element of (Fn ∗ Ai)eq \ Feqn . Since (X,�) is abelian we have
fi(γi) = γi.

Finally we consider the product

γ0 � γ1 � . . .� γl·s = ε

Let G := Fn ∗A0 ∗A1 ∗ . . . ∗Als and Gj := Fn ∗Bj , where Bj is a free product with strictly
less than l · s+ 1 distinct free factors from the list {A0, . . . , Al·s}. Then is not hard to see that
ε is an element in Geq \

⋃
j G

eq
j . Note that since all the γi are fixed by each fj (or rather by

the obvious extension of fj to Fω), we have ε is fixed by each fj .
Let ε = [ē]E , and suppose that RE(ē, Geq) contains an element (in a tuple) which is not a

conjugacy class and lives in Geq \ Feqn . Then by Lemma 4.4 this element has p distinct images
by the powers of some fi, a contradiction. Thus, we may assume that all elements in the
tuples of the solution set RE(ē, Geq) that live in Geq \Feqn are conjugacy classes. By repeatedly
applying Lemma 4.3, we see that each conjugacy class is an element in (Fn ∗ Ai)eq for some
0 ≤ i ≤ l · s, but since there are less than l · s conjugacy classes this contradicts the fact that
ε is an element in Geq \

⋃
j G

eq
j .

Proposition 4.6: Let G be a torsion-free hyperbolic group not elementarily equivalent to a
free group. Let X be a set definable in EC(G)eq such that X(EC(G)eq) 6= X((EC(G) ∗Z)eq).
Then X cannot be given definably the structure of an abelian group.

Proof. The proof is identical to the proof of Proposition 4.5 replacing Fn by EC(G) and using
Proposition 2.3.

8



5 The generic type is foreign to any interpretable abelian group

In this section we bring everything together in order to prove Theorem 1. Before we start we
give a brief account of the stability theoretic tools we use. For a more thorough exposition
the reader is referred to [Pil96]. Let us fix a complete stable theory T , countable if you wish,
and a very saturated model M of T . M,N , .. denote small elementary submodels, and A,B, ..
small subsets. We repeat a definition and fact from Chapter 7 of [Pil96]. See Definition 7.4.1
and 7.4.7 there (originally due to Hrushovski).

Definition 5.1: Let p(x) ∈ S(A) be a stationary type and Σ(y) a partial type over some small
set B of parameters.
(i) We say that p is foreign to Σ if for any model M containing A ∪ B, any realization a of
p|M (the nonforking extension of p overM) and any realization b of Σ, a is independent from
b overM.
(ii) We say that p is internal to Σ if for someM containing A∪B, and some realization a of
p|M there is a tuple c of realizations of Σ such that a ∈ dcl(M, c).

Fact 5.2: Suppose G is a connected definable group, defined over a set A, and let p(x) ∈ S(A)
be the generic type of G. Suppose that Σ(y) is a partial type over some small set B of parameters
and that p is not foreign to Σ. Then there is a normal A ∪B-definable subgroup N of G such
that the generic type (over A ∪B) of G/N is internal to Σ.

We now specialize to torsion-free hyperbolic groups. Let G be a non-cyclic torsion-free
hyperbolic group and M |= Th(G). We write pG0 |M for the unique nonforking extension of
pG0 overM.

Theorem 5.3: The generic type of a non-cyclic torsion-free hyperbolic group is foreign to any
interpretable abelian group.

Proof. Suppose pG0 is not foreign to some interpretable abelian group A. By Fact 5.2 and
Corollary 3.4, there is a modelM of Th(G) (over which A is defined), and a realization b of
pG0 |M and a tuple (c1, .., cn) of elements of A, such that b ∈ dcl(M, c1, .., cn). We may assume
that M is an elementary extension of the model F2 (respectively EC(G) in the case where
G 6|= Tfg). Suppose b = f(c1, .., cn,m) where f(−) is a partial ∅-definable function, and m is a
tuple fromM. We may assume A is defined over m too, by formula ψ(y,m) (where of course y
is a variable from the appropriate imaginary sort). Then the formula θ(x,m): “ψ(y,m) defines
an abelian group" ∧ (∃y1, .., yn((∧iψ(yi,m)) ∧ x = f(y1, .., yn,m)) is in pG0 |M. As pG0 |M is
definable over ∅, we can find m′ ∈ F2 (respectively EC(G)) such that θ(x,m′) ∈ pG0 |F2

(respectively pG0 |EC(G)), so is satisfied by e in F3 := F2 ∗ 〈e〉 (respectively EC(G) ∗ 〈e〉). The
formula ψ(y,m′) then defines an abelian group, B say, and there are elements d1, .., dn ∈ B
such that e = f(d1, ..., dn,m

′). As F2 ∗ 〈e〉 (respectively EC(G) ∗ 〈e〉) is a model containing F2

(respectively EC(G)) and e we can find such d1, .., dn ∈ B(Feq3 ) (respectively (EC(G) ∗ Z)eq).
Hence e and (d1, .., dn) are interdefinable over F2 (respectively EC(G)). So, for some i ≤ n we
have di ∈ B(Feq3 ) \ Feq2 (respectively B((EC(G) ∗ Z)eq) \EC(G)eq), contradicting Proposition
4.5 (respectively Proposition 4.6).
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