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Abstract

We prove (Proposition 2.1) that if µ is a generically stable mea-
sure in an NIP theory, and µ(φ(x, b)) = 0 for all b then for some n,
µ(n)(∃y(φ(x1, y)∧ ..∧φ(xn, y))) = 0. As a consequence we show (Propo-
sition 3.2) that if G is a definable group with fsg in an NIP theory, and
X is a definable subset of G then X is generic if and only if every trans-
late of X does not fork over ∅, precisely as in stable groups, answering
positively Problem 5.5 from [3].

1 Introduction and preliminaries

This short paper is a contribution to the generalization of stability theory
and stable group theory to NIP theories, and also provides another example
where we need to resort to measures to prove statements (about definable sets
and/or types) which do not explicitly mention measures. The observations in
the current paper can and will be used in the future to sharpen existing results
around measure and NIP theories (and this is why we wanted to record the
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observations here). Included in these sharpenings will be: (i) replacing average
types by generically stable types in a characterization of strong dependence in
terms of measure and weight in [6], and (ii) showing the existence of “external
generic types” (in the sense of Newelski [5]), over any model, for fsg groups in
NIP theories, improving on Lemma 4.14 and related results from [5].

If p(x) ∈ S(A) is a stationary type in a stable theory and φ(x, b) any for-
mula, then we know that φ(x, b) ∈ p|C if and only if |=

∧
i=1,,.n φ(ai, b) for some

independent realizations a1, .., an of p (for some n depending on φ(x, y)). Hence
φ(x, b) /∈ p|C for all b implies that (and is clearly implied by) the inconsistency
of

∧
i=1,..,n φ(ai, y) for some (any) independent set a1, .., an of realizations of

p. This also holds for generically stable types in NIP theories (as well as for
generically stable types in arbitrary theories, with definition as in [7]). In [6],
an analogous result was proved for “average measures” in strongly dependent
theories. Here we prove it (Proposition 2.1) for generically stable measures in
arbitrary NIP theories, as well as giving a generalization (Remark 2.2).

The fsg condition on a definable group G is a kind of “definable compact-
ness” assumption, and in fact means precisely this in o-minimal theories and
suitable theories of valued fields (and of course stable groups are fsg). Gener-
icity of a definable subset X of G means that finitely many translates of X
cover G. Proposition 2.1 is used to show that for X a definable subset of an
fsg group G, X is generic if and only if every translate of X does not fork over
∅. This is a somewhat striking extension of stable group theory to the NIP
environment.

We work with an NIP theory T and inside some monster model C. If A is
any set of parameters, let Lx(A) denote the Boolean algebra of A-definable sets
in the variable x. A Keisler measure over A is a finitely additive probability
measure on Lx(A). Equivalently, it is a regular Borel probability measure
on the compact space Sx(A). We will denote by Mx(A) the space of Keisler
measures over A in the variable x. We might omit x when it is not needed or
when it is included in the notation of the measure itself (e.g. µx). If X is a
sort, or more generally definable set, we may also use notation such LX(A),
SX(A), MX(A), where for example SX(A) denote the complete types over A
which contain the formula defining X (or which “concentrate on X”).

Definition 1.1. A type p ∈ Sx(A) is weakly random for µx if µ(φ(x)) > 0 for
any φ(x) ∈ L(A) such that p ` φ(x). A point b is weakly random for µ over A
if tp(b/A) is weakly random for µ.

We briefly recall some definitions and properties of Keisler measures, refer-
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ring the reader to [4] for more details.
If µ ∈ Mx(C) is a global measure and M a small model, we say that µ

is M -invariant if µ(φ(x, a)4φ(x, a′)) = 0 for every formula φ(x, y) and a, a′ ∈
C having the same type over M . Such a measure admits a Borel defining
scheme over M : For every formula φ(x, y), the value µ(φ(x, b)) depends only
on tp(b/M) and for any Borel B ⊂ [0, 1], the set {p ∈ Sy(M) : µ(φ(x, b)) ∈
B for some b |= p} is a Borel subset of Sy(M).

Let µx ∈M(C) be M -invariant. If λy ∈M(C) is any measure, then we can
define the invariant extension of µx over λy, denoted µx⊗λy. It is a measure in
the two variables x, y defined in the following way. Let φ(x, y) ∈ L(C). Take a
small modelN containingM and the parameters of φ. Define µx⊗λy(φ(x, y)) =∫
f(p)dλy, the integral ranging over Sy(N) where f(p) = µx(φ(x, b)) for b ∈ C,

b |= p (this function is Borel by Borel definability). It is easy to check that this
does not depend on the choice of N .

If λy is also invariant, we can also form the product λy ⊗ µx. In general it
will not be the case that λy ⊗ µx = µx ⊗ λy.

If µx is a global M -invariant measure, we define by induction: µ
(n)
x1...xn by

µ
(1)
x1 = µx1 and µn+1

x1...xn+1
= µxn+1 ⊗ µ

(n)
x1...xn . We let µ

(ω)
x1x2... be the union and call

it the Morley sequence of µx.

Special cases of M -invariant measures include definable and finitely satis-
fiable measures. A global measure µx is definable over M if it is M -invariant
and for every formula φ(x, y) and open interval I ⊂ [0, 1] the set {p ∈ Sy(M) :
µ(φ(x, b)) ∈ I for some b |= p} is open in Sy(M). The measure µ is finitely
satisfiable in M if µ(φ(x, b)) > 0 implies that φ(x, b) is satisfied in M . Equiv-
alently, any weakly random type for µ is finitely satisfiable in M .

Lemma 1.2. Let µ ∈Mx(C) be definable over M , and p(x) ∈ Sx(C) be weakly
random for µ. Let φ(x1, .., xn) be a formula over C. Suppose that φ(x1, .., xn) ∈
p(n). Then µ(n)(φ(x1, .., xn)) > 0.

Proof. We will carry out the proof in the case where µ is definable (over M),
which is anyway the case we need. Note that p(m) is M -invariant for all m.
The proof of the lemma is by induction on n. For n = 1 it is just the def-
inition of weakly random. Assume true for n and we prove for n + 1. So
suppose φ(x1, .., xn, xn+1) ∈ p(n+1). This means that for (a1, .., an) realizing
p(n)|M , φ(a1, .., an, x) ∈ p. So as p is weakly random for µ, µ(φ(a1, .., an, x)) =
r > 0. So as µ is M -invariant, tp(a′1, .., a

′
n/M) = tp(a1, .., an/M) implies
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µ(φ(a′1, .., a
′
n, x)) = r and thus also r− ε < µ(φ(a′1, .., a

′
n, x)) for any small pos-

itive ε. By definability of µ and compactness there is a formula ψ(x1, .., xn) ∈
tp(a1, .., an/A) such that |= ψ(a′1, .., a

′
n) implies 0 < r − ε < µ(φ(a′1, .., a

′
n, x)).

By induction hypothesis, µ(n)(ψ(x1, .., xn)) > 0. So by definition of µ(n+1) we
have that µ(n+1)(φ(x1, .., xn, xn+1)) > 0 as required.

A measure µx1,...,xn is symmetric if for any permutation σ of {1, ..., n} and
any formula φ(x1, ..., xn), we have µ(φ(x1, ..., xn)) = µ(φ(xσ.1, ..., xσ.n)). A spe-
cial case of a symmetric measure is given by powers of a generically stable
measure as we recall now. The following is Theorem 3.2 of [4]:

Fact 1.3. Let µx be a global M-invariant measure. Then the following are
equivalent:

1. µx is both definable and finitely satisfiable (necessarily over M),

2. µ
(n)
x1,...,xn|M is symmetric for all n < ω,

3. for any global M-invariant Keisler measure λy, µx ⊗ λy = λy ⊗ µx,

4. µ commutes with itself: µx ⊗ µy = µy ⊗ µx.

If µx satisfies one of those properties, we say it is generically stable.

If µ ∈Mx(A) and D is a definable set such that µ(D) > 0, we can consider
the localisation of µ at D which is a Keisler measure µD over A defined by
µD(X) = µ(X ∩D)/µ(X) for any definable set X.

We will use the notation Fr(θ(x), x1, ..., xn) to mean

1

n
|{i ∈ {1, ..., n} :|= θ(xi)}|.

The following is a special case of Lemma 3.4. of [4].

Proposition 1.4. Let φ(x, y) be a formula over M and fix r ∈ (0, 1) and ε > 0.
Then there is n such that for any symmetric measure µx1,...,x2n, we have

µx1,...,x2n(∃y(|Fr(φ(x, y), x1, ...., xn)− Fr(φ(x, y), xn+1, ..., x2n)| > r)) ≤ ε.

4



2 Main result

Proposition 2.1. Let µx be a global generically stable measure. Let φ(x, y) be
any formula in L(C). Suppose that µ(φ(x, b)) = 0 for all b ∈ C. Then there is
n such that µ(n)(∃y(φ(x1, y) ∧ ... ∧ φ(xn, y))) = 0.

Moreover, n depends only on φ(x, y) and not on µ.

Proof. Let µx be a global generically stable measure and M a small model
over which φ(x, y) is defined and such that µx is M -invariant. Assume that
µ(φ(x, b)) = 0 for all b ∈ C. For any k, define

Wk = {(x1, ..., xn) : ∃y(∧i=1..kφ(xi, y))}.

This is a definable set. We want to show that µ(n)(Wn) = 0 for n big enough.
Assume for a contradiction that this is not the case.

Let n be given by Proposition 1.4 for r = 1/2 and ε = 1/2. Consider
the measure λx1,...,x2n over M defined as being equal to µ(2n) localised on the
set W2n (by our assumption, this is well defined). As the measure µ(2n)

is symmetric and the set W2n is symmetric in the 2n variables, the mea-
sure λ is symmetric. Let χ(x1, ..., x2n) be the formula “(x1, ..., x2n) ∈ W2n ∧
∀y(|Fr(φ(x, y), x1, ..., xn)−Fr(φ(x, y), xn+1, ..., x2n)| ≤ 1/2)”. By definition of
n, we have λ(∃y(|Fr(φ(x, y), x1, ...., xn)− Fr(φ(x, y), xn+1, ..., x2n)| > 1/2)) ≤
1/2. Therefore µ(2n)(χ(x1, ..., x2n)) > 0.

As µ is M -invariant, we can write

µ(2n)(χ(x1, ..., x2n)) =

∫
q∈Sx1,...,xn (M)

µ(n)(χ(q, xn+1, ..., x2n))dµ(n),

where µ(n)(χ(q, xn+1, ..., x2n)) stands for µ(n)(χ(a1, ..., an, xn+1, ..., x2n)) for
some (any) realization (a1, ..., an) of q. As µ(2n)(χ(x1, ..., x2n)) > 0, there is
q ∈ Sx1,...,xn such that
(*) µ(n)(χ(q, xn+1, ..., x2n)) > 0.
Fix some (a1, ..., an) |= q. By (*), we have (a1, ..., an) ∈ Wn. So let b ∈ C such
that |=

∧
i=1...n φ(ai, b). Again by (*), we can find some (an+1, ..., a2n) weakly

random for µ(n) over Ma1...anb and such that
(**) |= χ(a1, ..., an, an+1, ..., a2n).
In particular, for j = n + 1, ..., 2n, aj is weakly random for µ over Mb hence
|= ¬φ(aj, b). But then |Fr(φ(x, b); a1, ..., an) − Fr(φ(x, b); an+1, ..., a2n)| = 1.
This contradicts (**).
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Remark 2.2. The proof above adapts to showing the following generalization:
Let µx be a global generically stable measure, φ(x, y) a formula in L(C). Let
Σ(x) be the partial type (over the parameters in φ together with a small model
over which µ is definable) defining {b : µ(φ(x, b)) = 0}. Then for some n:
µ(n)(∃y(Σ(y) ∧ φ(x1, y) ∧ .. ∧ φ(xn, y))) = 0.

3 Generics in fsg groups

Let G be a definable group, without loss defined over ∅. We call a definable
subset X of G left (right) generic if finitely many left (right) translates of X
cover G, and a type p(x) ∈ SG(A) is left (right) generic if every formula in p
is. We originally defined ([2]) G to have “finitely satisfiable generics”, or to
be fsg, if there is some global complete type p(x) ∈ SG(C) of G every left
G-translate of which is finitely satisfiable in some fixed small model M .

The following summarizes the situation, where the reader is referred to
Proposition 4.2 of [2] for (i) and Theorem 7.7 of [3] and Theorem 4.3 of [4] for
(ii), (iii), and (iv).

Fact 3.1. Suppose G is an fsg group. Then
(i) A definable subset X of G is left generic iff it is right generic, and the
family of nongeneric definable sets is a (proper) ideal of the Boolean algebra of
definable subsets of G,
(ii) There is a left G-invariant Keisler measure µ ∈MG(C) which is generically
stable,
(iii) Moreover µ from (ii) is the unique left G-invariant global Keisler measure
on G as well as the unique right G-invariant global Keisler measure on G,
(iv) Moreover µ from (ii) is generic in the sense that for any definable set X,
µ(X) > 0 iff X is generic.

Remember that a definable set X (or rather a formula φ(x, b) defining it)
forks over a set A if φ(x, b) implies a finite disjunction of formulas ψ(x, c)
each of which divide over A, and ψ(x, c) is said to divide over A if for some A-
indiscernible sequence (ci : i < ω) with c0 = c, {φ(x, ci) : i < ω} is inconsistent.

Proposition 3.2. Suppose G is fsg and X ⊆ G a definable set. Then X is
generic if and only if for all g ∈ X, g ·X does not fork over ∅ (if and only if
for all g ∈ G, X · g does not fork over ∅).
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Proof. Left to right: It suffices to prove that any generic definable set X does
not fork over ∅, and as the set of nongenerics forms an ideal it is enough to
prove that any generic definable set does not divide over ∅. This is carried out
in (the proof of) Proposition 5.12 of [3].

Right to left: Assume that X is nongeneric. We will prove that for some g ∈ G,
g ·X divides over ∅ (so also forks over ∅).

Let µx be the generically stable G-invariant global Keisler measure given
by Fact 3.1. Let M0 be a small model such that µ does not fork over M0

(namely, as µ is generic, every generic formula does not fork over M0) and
X is definable over M0. Let φ(x, y) denote the formula defining {(x, y) ∈
G × G : y ∈ x · X}. So φ has additional (suppressed) parameters from M0.
Note that for b ∈ G, φ(x, b) defines the set b · X−1. As X is nongeneric, so
is X−1 so also b · X−1 for all b ∈ G. Hence, as µ is generic, µ(φ(x, b)) = 0
for all b. By Proposition 2.1, for some n µ(n)(∃y(φ(x1, y) ∧ .. ∧ φ(xn, y))) =
0. Let p be any weakly random type for µ (which in this case amounts to
a global generic type, which note is M0-invariant). So by Lemma 1.2 the
formula ∃y(φ(x1, y)∧ ..∧φ(xn, y))) /∈ p(n). Let (a1, .., an) realize p(n)|M0. Then
(a1, .., an) extends to an M0-indiscernible sequence (ai : i = 1, 2, ....), a Morley
sequence in p over M0, and |= ¬∃y(φ(a1, y) ∧ ... ∧ φ(an, y)). So in particular
{φ(ai, y) : i = 1, 2, ...} is inconsistent. Hence the formula φ(ai, y) divides over
M0, so also divides over ∅. But φ(a1, y) defines the set a1 ·X, so a1 ·X divides
over ∅ as required.

Recall that we called a global type p(x) of a ∅-definable group G, left f -
generic if every left G-translate of p does not fork over ∅.

We conclude the following (answering positively Problem 5.5 from [3] as
well as strengthening Lemma 4.14 of [1]):

Corollary 3.3. Suppose G is fsg and p(x) ∈ SG(C). Then the following are
equivalent:
(i) p is generic,
(ii) p is left (right) f -generic,
(iii) (Left or right) Stab(p) has bounded index in G (where left Stab(p) = {g ∈
G : g · p = p}).

Proof. The equivalence of (i) and (ii) is given by Proposition 3.2 and the def-
initions. We know from [2], Corollary 4.3, that if p is generic then Stab(p) is
precisely G00. Now suppose that p is nongeneric. Hence there is a definable
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set X ∈ p such that X is nongeneric. Let M be a small model over which
X is defined. Note that the fsg property is invariant under naming param-
eters. Hence G is fsg in Th(C,m)m∈M . By Proposition 3.2 (as well as what
is proved in “Right to left” there), for some g ∈ G, g · X divides over M .
As X is defined over M this means that there is an M -indiscernible sequence
(gα : α < κ̄) (where κ̄ is the cardinality of the monster model) and some n such
that gα1 · X ∩ ... ∩ gαn · X = ∅ whenever α1 < ... < αn. This clearly implies
that among {gα · p : α < κ̄}, there are κ̄ many types, whereby Stab(p) has
unbounded index.
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