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Logic I

I Modern mathematical logic developed at the end of the 19th
and beginning of the 20th centuries with the so-called
foundational crisis or crises.

I There was a greater interest in mathematical rigour, and a
concern whether reasoning involving certain infinite quantities
was sound.

I In addition to logicians such as Cantor, Frege, Russell, major
mathematicians of the time such as Hilbert and Poincaré
participated in these developments.

I Out of all of this came the beginnings of mathematical
accounts of higher level or “metamathematical” notions such
as set, truth, proof, and algorithm (or effective procedure).



Logic II

I It is interesting that these four items are still at the base of
the main areas of mathematical logic: set theory, model
theory, proof theory, and recursion theory, respectively.

I One of the greatest recursion theorists was Alan Turing,
founder, in a sense, of the modern computer, whose
anniversary was celebrated this year.

I These areas of logic are still concerned with foundational
questions, such as the search for new axioms for sets.

I But there are also close connections that have developed
between logic and other areas. For example proof theory has
close connections to category theory, computer science, and
more recently homotopy theory (from topology).

I And set theory has close connections with combinatorics and
analysis among other things. I will discuss model theory later.



UK activity

I Set theory has a strong but relatively small representation in
the UK, with research going on at East Anglia and Bristol.

I Recursion theory is currently only pursued in Leeds.

I There is research in proof theory (in the broad sense) in
Cambridge and Leeds, but also in many Computer Science
departments throughout the UK.

I Model theory is well-represented in the UK with strong
research groups in East Anglia, Leeds, Manchester, Oxford,
and London (Queen Mary).

I Please contact me at pillay@maths.leeds.ac.uk if you would
like some more information information, in particular names of
people, references for the material below...



Model theory and definability I

I I want to say something about some trends in model theory,
which are related in various ways to my own current research.

I What is model theory? I would personally define it it to be
the “study and classification of first order theories”, but there
is a lot to handle here and it tends to emphasize the purer
aspect of the subject.

I Others might define it as the study of “definability” in
structures and classes of structures, which is maybe more
appropriate for the applied aspects of the subject, and
connects up with “truth”.

I By an (abstract) structure we mean simply a set X equipped
with a collection of relations R on X (i.e. subsets of
X,X ×X,..) and functions f from X × ..×X → X. Written
(X,R1, R2, .., f1, f2, ..)



Model theory and definability II

I This is not particularly controversial and has nothing to do
with logic per se. A group (G, ·) is a structure, as is any ring,
field, ordered set (X,<), or graph (X,R).

I Our number systems (N,+, ·, 0), (Z,+, ·, ..), (R,+, ·, 0, 1),
(C,+, ·, ..) are familiar structures.

I An area called “universal algebra” studies abstract structures
(X, f1, f2, ...), and among other things, and solutions of
systems of “equations” f1(x̄) = f2(x̄) in Xn. Trying in the
process to place results from usual algebra (groups, rings,..) in
a more abstract or general setting.

I Model theory studies, more generally, solution sets in an
abstract structure (X, .....), of “first order formulas”, and
such solution sets are what we call definable sets in the
relevant structure.



Model theory and definability III

I If (G, ·) is a group, and a ∈ G then the collection of elements
of G which commute with a is the solution set of an
“equation”, x · a = a · x.

I However Z(G), the centre of G, which is the collection of
elements of G which commute with every element of G, is
“defined by” the first order formula ∀y(x · y = y · x).

I In the structure (R,+, ·,−) the ordering x ≤ y is defined by
the first order formula ∃z(y − x = z2).

I The expression “first order” means that in addition to
equations we allow quantifiers ∀ and ∃ which range over
individuals of the structure at hand.

I Our familiar number systems already provide quite different
behaviour or features of definable sets.



Model theory and definability IV

I In the structure (N,+,×, 0), subsets of N definable by
formulas φ(x) which begin with a sequence of quantifiers
∃y1∀y2∃y3...∀yn get more complicated as n increases.

I The collection of definable subsets of N is called the
arithmetic hierarchy, and already with one existential
quantifier we can define “noncomputable” sets. (Negative
solution to Hilbert 10.)

I Whereas in the structure (R,+, ·), the hierarchy collapses, one
only needs one block of existential quantifiers to define
definable sets. Moreover the definable sets have a geometric
feature: they are the so-called semialgebraic sets.

I I.E. Finite unions of subsets of Rn of form
{x̄ : f(x̄) = 0 ∧

∧
i=1,..k gi(x̄) > 0} where f and the gi are

polynomials with coefficients from R.



O-minimality I

I It follows from the description above that the definable sets in
(R,+, ·) (i.e. semialgebraic sets) have good topological
properties (if you know what that means): such as, any
definable subset of Rn has finitely many connected
components.

I Equivalently (for nontrivial reasons),
(*) every definable subset of R is a finite union of intervals
and points.

I In the early to mid 80’s, we took (*) as a definition of an
o-minimal structure on R.

I Namely, let (R,+, ·, f1, f2, ..) be a structure. We call the
structure o-minimal if (*) holds (for sets definable in the sense
of the structure (R,+, ·, f1, f2, ..)).



O-minimality II

I This has been called “tame topology” by van den Dries. For
example weird examples such as space filling curves can not
be definable in an o-minimal structure.

I A big industry in o-minimality has developed over the years,
including o-minimal economics. Theorems concerning analysis
and topology are proved under a general assumption of
o-minimality.

I Moreover structures such as (R,+, ·, exp), where exp is the
real exponential function, were proved to be o-minimal. (One
of the big all time theorems in model theory, proved by
Wilkie).

I Recently there have been surprising applications of
o-minimality to diophantine geometry, which will finish my
talk.



Diophantine Geometry I

I We will talk about the field C of complex numbers, the
“spaces” Cn and subsets V of Cn which are solution sets of
finite systems of polynomial equations P (x1, .., xn) = 0
(where P has complex coefficients).

I This is already maybe a bit abstract. But nevertheless such
point sets V are called algebraic varieties, and the business of
algebraic geometry is to try to describe and classify them.

I Note that such an algebraic variety is a definable set in the
structure (C,+, ·).

I If the polynomials have coefficients from Z or Q, or even if
not, it is natural to consider points of V whose coordinates
are in Q (or in some number field).



Diophantine Geometry II

I We call such points rational points of V , and diophantine
geometry is about the structure and number of rational points
on algebraic varieties (which is a fancy way of saying number
and structure of solutions in Qn of systems of polynomial
equations over Q).

I A key theme is trying to describe those varieties which have
many rational points. (If V is an algebraic curve defined by a
single polynomial equation P (x1, x2) = 0 then “many” means
just “infinitely many”.) Mordell conjecture. Faltings.

I We will consider a variant of this problem, which is
thematically: if V has many special points then V is special
(where of course the definitions of special are crucial).



Diophantine Geometry III

I “Special case”: Let C∗ be C \ 0 (which is a group under
complex multiplication). A torsion point on C∗ is a point x
such that xm = 1 for some m (which in particular lies on the
unit circle).

I (C∗)n (Cartesian product) is also a group, and a torsion point
of (C∗)n is just an n-tuple (x1, .., xn) of torsion points of C∗.

I In this context a “special point” in (C∗)n is a torsion point,
and a special subvariety V of (C∗)n is one defined by a finite
system of equations of the form xk11 x

k2
2 ...x

kn
n = 1 (i.e. V is a

subgroup of (C∗)n).

I So in this set-up: Theorem. If V has many special points then
V is special.



Diophantine Geometry IV

I The Theorem is well-known, but it was noticed (Zannier) that
results (Pila-Wilkie) in o-minimality could be used to give a
new proof, and since then new results in the thematic context
have been obtained by o-minimal methods.

I Let me mention finally how o-minimality and definability are
related to the Theorem above.

I First a theorem of Pila-Wilkie that if (R,+, ·, f1, f2, ..) is an
o-minimal structure, and X ⊆ Rn is definable, then almost all,
in an asymptotic sense, rational points in X are contained in
positive-dimensional semialgebraic subsets of X.

I Secondly the fact that (R,+, ·, f, g) is an o-minimal structure,
where f, g are the restriction of sin, cos respectively to any
bounded interval.



Diophantine Geometry V

I And moreover that (identifying Cn with R2n in the usual way)
the map f(x1, .., xn) =
(cos(2πx1), sin(2πx1), ..., cos(2πxn), sin(2πxn)) has the
property that the torsion points of (C∗)n are in the image of f
on [0, 1]n ∩Qn.

I A third ingredient is a result on transcendence or algebraic
independence properties of the exponentials of rational
functions, due to Ax. But it goes a bit beyond the scope of
this talk, so I will leave it at that.

I Thanks.


