
Lecture notes on strongly minimal sets (and
fields) with a generic automorphism

Anand Pillay

October 5, 2005

1 Introduction

These lecture notes develop the theory of strongly minimal sets with a generic
automorphism. They are strongly influenced by, and in some sense an expo-
sition of the papers [1] and [2] which look at the case of algebraically closed
fields with an automorphism. The deepest parts of these latter papers are
concerned with dichotomy theorems (a type of SU -rank 1 is locally modular
or nonorthogonal to a fixed field) and have diophantine-geometric implica-
tions. These theorems can be formulated in the general context, but we don’t
know how to prove them. On the other hand a large amount of the general
model theory of fields with an automorphism is valid in the strongly minimal
context, and this is the point of view we take (influenced by [3] from which
some of what we do here comes). We will try to get to the second paper [2]
which proves the dichotomy theorem in all characteristics by appealing to a
non first order version of the Zariski geometry theorem [5]. We also exhibit
the basic model of strongly minimal sets with a generic automorphism as
coming directly from the theory of existentially closed structures.

2 Existentially closed models and model com-

panions

Definition 2.1 Let K be a class of structures in a language L. M ∈ K
is existentially closed (e.c) in K if whenever M ⊆ N , then any existential
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sentence over M true in N is true in M ; equivalently, any quantifier free
formula over M which has a solution in N has a solution in M . If T is a
(first order) theory, then by an e.c. model of T we mean a structure which
is e.c. in the class of models of T .

Fact 2.2 If T is ∀∃ axiomatizable, then for any any M ∈ K there is N ⊇M
in K such that N is e.c. for K and N is at most M + L.

Remark 2.3 Suppose T is ∀∃ axiomatizable. Then M is an e.c. model of
T iff M is an e.c. model of T∀.

Proof. Any model of T∀ is a substructure of a model of T .

We now fix T to be a ∀∃ theory in L.

Lemma 2.4 Let M be an e.c. model of T and let a be a finite tuple from
M . Then etpM(a) ( = the set of existential formulas of L true of a in M) is
maximal among existential types realised in models of T .

Proof. Suppose N |= T and b is a tuple in N whose existential type contains
etpM(a). Add constants for elements of M and N identifying only a and b
with constants c. Consider Σ = T ∪ D(M) ∪ D(N) in this language. Let
φ(c,m) ∈ D(M) and ψ(c, n) ∈ D(N). So ∃y(φ(x, y) is true of a in M so true
of b ∈ N , whereby N |= φ(b, n′) for some n′ ∈ N . So N |= φ(b, n′) ∧ ψ(b, n).
This shows that Σ is consistent. Thus we have embeddings f, g of M,N
respectively into a model N ′ of T which we may assume to be e.c., with
f(a) = g(b). Then etpM(a) = etpN ′(f(a)) (as M is e.c.). On the other hand
etpN(b) ⊆ etpN ′(g(b)). So we get equality throughout.

Definition 2.5 (i) We say that T has a model companion if the class of e.c.
models of T is an elementary class (the set of models of a theory Te.c.), in
which case we call Te.c. the model companion of T .
(ii) A theory T ′ is said to be model-complete if any pair M ⊆ N of models of
T is an elementary pair. This is well-known to be equivalent to saying that
any formula φ(x) is equivalent (mod T’) to a universal (extistential) formula.

Lemma 2.6 If T has a model companion,then Te.c. is model-complete. (Con-
versely, suppose T ′ is a model-complete theory such that (T ′)∀ = T∀. Then
T ′ is the model companion of T .)
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Proof. First we show that any existential formula is equivalent modulo Te.c.
to a universal formula: Let φ(x) be an existential formula. Let P be the
set of existential types realised in e.c. models of T which do not contain
φ. By Lemma 2.4 and compactness, each p ∈ P contains a formula ψp(x)
say, inconsistent with φ(x) (modulo T ). Let Ψ(x) the the set of negations
of these ψp (p ∈ P ). It is then clear that the statement ∀x(φ(x) ↔ ∧

Ψ(x))
holds in all e.c. models of T , namely in all models of Te.c.. By compactness
T |= φ(x) ↔ χ(x) where χ is some finite conjunction of members of Ψ(x). χ
is a universal formula.
An inductive argument (consider formulas in prenex form) shows that every
formula is equivalent (mod Te.c.) to a universal (and existential) formula, so
Te.c is model-complete.
Now let T ′ satisfy the second sentence in the lemma. Let M be an e.c.
model of T . So M has an extension to a model N of T ′. T ′ being model-
complete is inductive so ∀∃ axiomatizable, so M is a model of T ′. On the
other hand, suppose M is a model of T ′. Let N be a model of T containing
M , let a ∈ M and suppose N |= φ(a) for some existential formula φ(x).
Let N ⊆ N ′ |= T ′. Then M is an elementary substructure of N ′, but also
N ′ |= φ(a). So M |= φ(a). By Remark 2.3, this is enough.

Definition 2.7 Let M be a substructure a model of T (namely a model of
T∀. We call M an amalgamation base (for T ) if whenever f : M → N1,
g : M → N2 are embeddings into models of T , then there are embeddings h, k
of N1, N2 respectively into a model N ′ of T such that h.f = k.g.

Remark 2.8 The above definition would be equivalent if we required only
that N1, N2, N

′ be models of T∀.

Lemma 2.9 Let M be an amalgamation base for T . Suppose T has a model
companion. Let f, g be embeddings of M in models N1, N2 of Te.c. Let m
enumerate M . Then f(m) and g(m) have the same type in N1, N2 respec-
tively.

Proof. As M is an amalgamation base we can find embeddings h, k of N1, N2

into a model N ′ of Te.c. with h.f = k.g. Let m1=f(m), m2 = g(m) and m′

= h(m1) (= k(m2). So, as Te.c is model-complete, tpN1(m1) = tpN ′(m′) =
tpN2(m2).
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Corollary 2.10 Suppose every model of T∀ is an amalgamation base, and T
has a model companion. Then Te.c. has quantifier-elimination. (In fact this
is an if and only if.)

Remark 2.11 Any e.c. model of T is an amalgamation base.

Proof. Like the proof of Lemma 2.4.

Definition 2.12 A model M of T∀ is said to be a strong amalgamation base
if Definition 1 holds with the additional requirement that h(N1) ∩ k(N2) =
h.f(M).

Lemma 2.13 Assume that T has a model companion. Let M |= T∀ be a
strong amalgamation base for T . Assume that M ⊆ N where N is e.c. Then
M is algebraically closed in N in the model-theoretic sense. (aclN(M) = M .)

Proof. From the definition, we can find an e.c. model N ′ of T containing
M and Ni for i < ω where each (M,Ni) is isomorphic (via fi say which
is identity on M) to (M,N), and the Ni are pairwise disjoint over M . We
may assume that N0 = N , and note that N0 is an elementary substructure
of N ′. Moreover by Lemma 2.9, each Ni has the same type over M in the
structure N ′. in particular, for each b ∈ N \ M , tpN(b/M) has infinitely
many realisations in N ′, so is nonalgebraic.

3 ACFA and strongly minimal theories with

a generic automorphism

ACF is the (incomplete) theory of algebraically closed fields in the language
of rings. It’s completions are given by fixing the characteristic. It is conve-
nient to define L− to be the language of rings, and L to be L− together with
a unary function symbol σ. We will, whenever possible, be working with a
(possibly) incomplete theory T with QE (in place of ACF ) and in this case
we again let L− denote the language of T and L this language augmented
by σ. So unless we say otherwise T denotes a theory with QE. (Allowing T
to be incomplete is not really a big deal, and we can equally well work with
complete T and some completion of ACF .)
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Fact 3.1 ACF has QE, is strongly minimal has the definable multiplity prop-
erty (DMP) and has elimination of imaginaries.

We give some explanations. QE is classical. An incomplete theory is
called strongly minimal, if all models of T are infinite, and each definable
(with parameters) subset of each model of T is finite or cofinite (so this is
equivalent to each completion of T being strongly minimal). If M is a (sat-
urated) model of a strongly minimal theory, then any definable set X ⊆Mn

has a well-defined Morley rank and degree (natural numbers). The Morley
rank of X is defined inductively by RM(X) ≥ 0 if X is nonempty, and
RM(X) ≥ k + 1 if there is a pairwise disjoint family (Xi)i∈ω of definable
sets, each a subset of X, and each of Morley rank ≥ k. If RM(X) = k, then
there is some maximal d such that X can be partitioned into d definable sets
each of Morley rank k, and this d is called the Morley degree or multiplicity
of X. RM(tp(a/A)) is the min. of the Morley rank for formulas in tp(a/A),
and similarly for Morley degree. We will say a is independent from B over
A, (B ⊇ A), if RM(tp(a/A)) = RM(tp(a/B)). If a = (a1, .., an), this is
equivalent to saying that dim(a1, .., an/A) = dim(a1, .., an/B) (explain). In-
dependence is symmetric, transitive, with the extension property (explain).
Moreover mlt(tp(a/A)) = 1 just if tp(a/A) is “stationary”, namely whenever
B ⊃ A and a1, a2 realise tp(a/A) such that each is independent from B over
A, then tp(a1/B) = tp(a2/B). If φ(x, a) has Morley rank k, and B contains
a then a generic solution of φ(x, a) over B is by definition some c satisfying
φ(x, a) such that RM(tp(c/B)) = k. If in addition φ(x, a) has multiplic-
ity 1 then such a type is unique. Any infinite algebraically closed subset
of a model of (strongly minimal) T will be an elementary submodel (why?)
and any type over such a set will be stationary (Finite Equivalence Relation
Theorem, but in the strongly minimal case it should be easier.)

Fact 3.2 (Strongly minimal T .) Let M be a model of T , and a, b tuples, and
A ⊂M . Then RM(tp(a, b/A) = RM(tp(a/Ab) +RM(tp(b/A).

The following is well-known:

Exercise 3.3 Suppose T is strongly minimal. Then for every formula φ(x, y)
and k there is ψ(y) such that for any model M of T , and b in M , RM(φ(x, b)) =
k iff M |= ψ(b). Moreover there a bound on the multiplities of such φ(x, b).
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The DMP is concerned with defining multiplicities too. We will give a
rather restricted definition:

Definition 3.4 (Strongly minimal) T has the DMP, if whenever M |= T ,
and tp(b/A) is stationary with RM = k and (multiplicity 1) then there is a
formula φ(x, a) in tp(b/A) such for any a′ in a model M ′ of T , if φ(x, a′) is
consistent then it has RM = k and multiplicity 1.

Lemma 3.5 (Strongly minimal) T has the DMP iff the definition above holds
for the case k = 1.

Proof. We will assume to make life easy that in every model of T acl(∅)
is infinite (so every algebraically closed set is an elementary substructure).
We prove the DMP by induction on k. It is trivial for k = 0 and true by
hypothesis for k = 1. Let k > 1, and let tp(c/A) be stationary of Morley
rank k. There is no harm in letting A be algebraically closed. c is a finite
tuple not contained in A so there is an element, say c0 of c not in A. By Fact
3.2 above, RM(tp(c/Ac0) = k − 1. Let c′ be a finite tuple containing c0 and
contained in acl(A, c0) such that tp(c/Ac′) is stationary (so of multiplicity 1).
Note that tp(c′/A) is stationary of RM 1. By induction hypothesis, we can
find suitable formulas φ(x, c′, a) ∈ tp(c/Ac′) and ψ(y, a) ∈ tp(c′/A). Then
check that the formula ∃y(φ(x, y, a) ∧ ψ(y, a)) works for tp(c/A). ????

Let’s now prove that ACF has the DMP. Let K be an algebraically closed
field, k a (say algebraically closed) subfield and b̄ = (b, b1, .., bn) inK such that
RM(b̄/k) = 1, that is b̄ is a generic point of an absolutely irreducible curve de-
fined over k. We assume b /∈ k and the bi ∈ acl(k, b). By the primitive element
theorem, there is a single element c such that dcl(k, b, b1, .., bn) = dcl(k, b, c).
We may thus consider tp(bc/k) in place of tp(b̄/k). As k is algebraically
closed there is an absolutely irreducible polynomial f(X, Y ) ∈ k[X, Y ] such
that f(b, c) = 0. The absolute irreducibility of f can be expressed in a first
order way in terms of the coefficients (one need only consider polynomial
factors of f of a bounded degree). So we have the required formula.

Example 3.6 There is a strongly minimal theory without the DMP.

Proof. Let V be a vector space over Q, and let a ∈ V , and let D = V ×{0, 1}
equipped with the projection π : D → V and the function f : D → D
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defined as f(v, i) = (v + a, i). We get a strongly minimal structure. For any
v ∈ V ,{(x, y) ∈ D × D : π(y) = π(x) + v} is a set of Morley rank 1 which
has multiplicity 1 iff v is not equal to an integral multiple of a.

What about elimination of imaginaries: A complete theory T is said to have
elimination of imaginaries, if (in a saturated model M of T say) for any L(T )-
definable equivalence relation E on n-tuples, and a ∈Mn, there is some finite
tuple c from M which is “interdefinable” with a/E. What this amounts to is
that there should be an L(T ) formula φ(x) true of a, and some L(T ) formula
ψ(y) (y a tuple of variables), and another formula χ(x, y) ∈ L(T ), such that
T proves that χ defines a bijection between φ/E and ψ. If T has at least
two (?) constant symbols, then one can show that T has EI iff for any 0-
definable E on n-space, there is a formula χ(x, y) inducing a 1-1 mapping
from Mn/E into Mk for some k. We are here defining an incomplete theory
to have EI if every completion does, but I suppose this gives some uniformity
across the completions. EI for ACF is due to Poizat and also has a proof in
[7] coming from a weaker result valid in all strongly minimal theories with
acl(∅) infinite.

Definition 3.7 ACFσ is ACF ∪ {σ is an automorphism}. This is a ∀∃
axiomatizable theory in L. (Similarly if T is a theory with QE in L− then Tσ
= T ∪ {σ is an automorphism}, also ∀∃.)

Lemma 3.8 A model (M,σ) of Tσ is existentially closed (for Tσ) if and
only if, whenever N is an elementary extension of M , ψ(x, y) is an L−-
formula over M , and N |= ψ(b, c) for some tuples b, c from N such that
tp(c/M) = σ(tp(b/M)), then M |= ψ(a, σ(a)) for some tuple a from M .

Proof. Left to right direction: Assume (M,σ) is am e.c. model of Tσ. We
may assume ψ is quantifier-free. Also, by replacing N by an elementary
extension, we may assume the σ′(b) = c for some automorpgism σ′ of N
extending σ. So we easily find suitable a ∈M .
Right to left: Let us assume that (M,σ) satisfies the right hand condition.
Let φ(x) be a quantifier-free formula of L with parameters from M which is
satisfied by a tuple c say in some (N, σ′) |= Tσ extending (M,σ). Note that
N is an elementary extension of M . We may assume that φ(x) has the form
χ(x, σ(x), .., σk(x)) where χ is a quantifier-free L−-formula with parameters
from M . Let ψ(x0, .., xk−1, y0, y1, .., yk−1) be the following L−-formula over
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M : χ(x0, x1, .., xk−1, yk−1) ∧ x1 = y0 ∧ x2 = y1 ∧ ... ∧ xk−1 = yk−2. Let
c′ = (c, σ′(c), .., σ′k−1(c)). Then note that (c′, σ′(c′)) satisfies ψ in N . By
hypothesis there is a tuple a′ from M such that (a′, σ(a′)) satisfies ψ in M .
If a′ is of the form (a0, .., ak−1) then it is clear that a0 satisfies the original
formula φ(x) in (M,σ).

Proposition 3.9 (T strongly minimal with DMP). Tσ has a model compan-
ion, which we call TA.

Proof. Consider the following conditions on a model (M,σ) of Tσ: Let
φ1(x), φ2(x), ψ(x, y) be L−-formulas over M such that
(i) φ1, φ2 have Morley rank m and multiplicity 1, and ψ has Morley rank
m+ r and multiplicity 1, and M |= ψ(x, y) → φ1(x) ∧ φ2(y).
(ii) for any b satisying φ1(x), ψ(b, y) has RM r, and for any c satisfying φ2(y),
ψ(x, c) has RM r.
(iii) σ(φ1(x) = φ2(x) up to a formula of Morley rank < m.
Then there is a ∈M such that M |= ψ(a, σ(a)).
Owing to T having the DMP, these conditions are expressed by a set of
sentences of L. (One has to quantify over the parameters in the formu-
las.) We will show that (M,σ) satisfies these conditions just if it satis-
fies the right hand side of Lemma 3.8. Suppose first that (M,σ) satisfies
these conditions. Let N be an elementary extension of M and suppose
N |= ψ(b, c) where tp(c/M) = σ(tp(b/M)). Let RM(tp(b/M)) = m and
RM(tp(b, c/M)) = m + r. So RM(tp(b/Mc)) = RM(tp(c/Mb)) = r. We
may find (strengthening ψ) formulas φ1(x) ∈ tp(b/M) and φ2(y) ∈ tp(c/M)
such that (i), (ii), (iii) above hold. So we find suitable a ∈M as required.
Conversely suppose M satisfies the RHS of Lemma 3.8. Let φi and ψ satisfy
(i), (ii) and (iii) above. Let (b, c) be a generic solution of ψ(x, y) over M in
some elementary extension N of M . So RM(tp(b, c/M)) = m + r. But (by
(i) and (ii)), RM(tp(b/M) ≤ m, RM(tp(c/M)) ≤ m and RM(tp(b/Mc)) ≤ r
and RM(tp(c/Mb)) ≤ r. By Fact 3.2, we have equality throughout. By (iii)
above, tp(c/M) = σ(tp(b/M)). So by the RHS of 3.8, we find a ∈ M with
M |= ψ(a, σ(a)).
Thus by Lemma 3.8, the first order conditions above axiomatize the class of
e.c. models of Tσ, so Tσ has a model companion.

Corollary 3.10 ACFσ has a model companion (ACFA).
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Remark 3.11 In the case T = ACF the axioms (conditions in the proof
above) for ACFA are usually expressed as: whenever V is an irreducible
variety over K, W is an irreducible subvariety of V ×σ(V ) over K projecting
generically onto V and σ(V ) and U is a nonempty Zariski open subset of W
defined over K, then there is a ∈ L such that (a, σ(a)) ∈ U .

Problem 3.12 (T strongly minimal.) Is it the case that Tσ has a model
companion if and only if T has the DMP?

From now on T will be assumed to be a strongly minimal theory with the
DMP such that any algebraically closed subset of a model of T is infinite, or
equivalently is an elementary substructure (e.g. ACF ).

Fact 3.13 Any model of Tσ is a strong amalgamation base for Tσ.

Proof. Let the model (M,σ) of Tσ have extensions (M1, σ1) and (M2, σ2),
both models of Tσ. We may assume that M1 and M2 are independent over
M inside a larger model N of T . Then M1 ∩M2 = M (why?). Moreover by
stationarity of types over models, σ1 ∪ σ2 is an elementary map so we may
assume it extends to an automorphism of N .

Corollary 3.14 (i) For any model (M,σ) of Tσ, TA∪D((M,σ) is complete.
(Namely qftp((M,σ) determines its complete type in any model of TA).
(ii) The completions of TA are classified by the isomorphism types of (acl−)(∅), σ).
(iii) Let (M,σ) be model of TA and let A be a substructure which is closed
under σ and σ−1 and is algebraically closed for L−. Then A is algebraically
closed in (M,σ).

Proof. By Lemmas 2.9, 2.13, and Fact 3.13.

Remark 3.15 So if (M,σ) is a model of TA and A is a subset, then the
algebraically closure of A is obtained by first closing under σ and its inverse,
and then taking the algebraic closure in the sense of L−.

Definition 3.16 Let Σ be the collection of L-formulas of the form
∃y(θ(x, σ(x), .., σn(x), y, σ(y), .., σm(y))) where θ is an L−-formula, and, in
TA, θ implies that (y, σ(y), .., σm(y)) is L−-algebraic over (x, σ(x), .., σn(x)).
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Lemma 3.17 (Weak quantifier elimination, or strong model-completeness.)
In TA any formula φ(x) is equivalent to a finite disjunction of formulas in
Σ. (In the case of ACFA we can strengthen the condition on Σ by requiring
that y be a single variable.)

Proof. It is enough (why?) to prove that if a, b are tuples in models (M1, σ1)
and (M2, σ2) respectively of TA and Σ− tp(a) ⊆ Σ− tp(b) (in the respective
models) then a and b have the same type (in the respective models). First,
as a and b have the same quantifier-free types, there is an L− elementary
map f taking (σi1(a) : i ∈ Z) to (σi2(b) : i ∈ Z). A Konig’s Lemma argument,
together with our hypothesis shows that f extends to an L-isomorphism f ′

from acl(a) into acl(b). f ′ has to be surjective (why?). So we have an L-
isomorphism between acl(a) and acl(b) taking a to b. By Corollary 3.14 (i),
a and b have the same types (in their respective models).
The ACFA version follows from the primitive element theorem.

Lemma 3.18 Suppose (M,σ) is a model of TA. Then so is (M,σk) for any
k ≥ 1.

Proof. We only have to prove that (M,σk) is also existentially closed.
For this, all we need to show is that if (N, τ) is an extension of (M,σk)
then there is an elementary extension N ′ of N and an extension σ′ of σ
to N ′ such that (σ′)k agrees with τ on N . Let p(x) = tp−(N/M). For
i = 2, .., k − 1 let Ni realise σi(p(x)), such that {N,N1, N2, .., Nk−1} is
M -independent (in sense of T ). Then σ(tp−((N,N1, N2, .., Nk−1/M))) =
tp−((N1, N2, .., Nk−1, τ(N))/M), so σ extends to an automorphism σ′ of a
larger modelN ′ of T such that σ′(N,N1, N2, .., Nk−1) = (N1, N2, .., Nk−1, τ(N)).
It follows that (σ′)k agrees with τ on N .

Definition 3.19 Let (M,σ) be a model of TA. Then by a fixed set, we mean
any subset of M of the form {a ∈M : f(a) = σk(a), where f is a ∅-definable
(in L−) automorphism of M and k > 0. In the case where f = id and k = 1
we call it the fixed set.

Remark 3.20 In the ACFA case, the only possibilities for f are the identity
in characteristic 0 and powers (possibly negative) of the Frobenius in positive
characteristic. In any case we talk about fixed fields in place of fixed sets.

10



We want to develop properties of fixed sets in the general strongly minimal
set context. As Galois groups play a role we need an additional assumption
on T , a little weaker than elimination of imaginaries. We should remark
that our assumption that acl(∅) is infinite in all models of T implies that
T has weak elimination of imaginaries: for any e ∈ M eq there is some real
tuple c such that c ∈ acl(e) and e ∈ dcl(c). There is another property
worth mentioning, geometric elimination of imaginaries: any imaginary e is
interalgebraic with some real tuple.

Definition 3.21 The (strongly minimal) structure M has elimination of Ga-
lois imaginaries (EGI), if whenever e ∈ M eq and e ∈ acl(c) for some real
tuple c from M , then there is a real tuple e′ such that dcl(e, c) = dcl(e′, c). T
is said to have the property if all its models (completions) do.

Remark 3.22 Infinite sets (with no structure) and vector spaces are exam-
ples of strongly minimal sets which have elimination of Galois imaginaries
but not elimination of imaginaries.

Lemma 3.23 (M has EGI.) Let M |= T and A ⊂ M a definably closed
subset. Let G = Aut(acl(A)/A) (the group of elementary permutations of
acl(A) fixing A), considered as a profinite group. Then there is the usual
Galois correspondence between closed subgroups of G and definably closed
subsets of acl(A) containing A. We also call G the (absolute) Galois group
of A, Gal(A).

Proof. Exercise.

Definition 3.24 A substructure A of M is PAC if it is definably closed in
M and every formula φ(x) over A which has multiplicity 1 has a solution in
A.

Remark 3.25 A pseudofinite field is by definition an infinite model of the
theory of finite fields. Ax proved that F is a pseudofinite field iff it is per-
fect, PAC (in its field-theoretic algebraic closure) and Gal(F ) is the profinite
completion of Z (equivalently Gal(F ) has a unique open subgroup of index n
for all n).
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Proposition 3.26 Let (M,σ) be a model of TA. Let A be any fixed set.
Then A is PAC (in M). If T has EGI then Gal(A) is procyclic (has at most
one open subgroup of index n for each n). If moreover T has EI then Gal(A)
is the profinite completion of Z. In particular in the ACFA case any fixed
field is pseudofinite.

Proof. Assume A is defined as the fixed set of f.σk. By Lemma 3.18, we
may assume k = 1. It is clear first that A is definably closed (in M). Let
φ(x) be a multiplicity 1 L− formula over A. Let c be a generic solution of
φ(x) in some elementary extension N of M , and p(x) = tp−(c/M). Note
that f.σ(p) = p and so clearly we can extend σ to an automorphism σ′ of N
such that f.σ′(c) = c. Now use existential closure of (M,σ) to find d in M
satisfying φ(x) such that f.σ(d) = d. So d ∈ A.
Now we look at the Galois group business. Let G be the Galois group of A.
We first show that G has at most one open subgroup of index n for each n.
It is enough to show that < f.σ > is dense in G. By Lemma 3.2, the closure
of < f.σ > in G is the set of elements of G fixing the fixed set of < f.σ >.
As the latter is precisely A, we are finished.
Finally we show, assuming that T has EI, that Gal(A) has at least one open
subgroup of index n for each n. Let N be an elementary extension of M
containing algebraically independent (over M) elements (1-tuples) c1, .., cn,
and let σ′ be an automorphism of N extending σ such that f.σ′(ci) = ci+1

for i = 1, .., n − 1 and f.σ′(cn) = c1. As (M,σ) is e.c., we find distinct such
elements d1, .., dn in M (with f.σ in place of f.σ′). Let e be the imaginary
element {d1, .., dn}. Clearly e is fixed by σ. By EI, e ∈ dcl(A) and thus
d1, .., dn ∈ acl(A) and moreover B = dcl(A, d1, .., dn) is a finite Galois ex-
tension of A. By the second paragraph Aut(B/A) is generated by f.σ. As
(f.σ)n is the identity on B (and n is smallest such), Aut(B/A) has cardinality
exactly n and we finish.

Corollary 3.27 ACFA is unstable.

Proof. A basic result in stable group theory says that if F is an infinite field
definable in a model of a stable theory, then neither the additive nor multi-
plicative groups of F have any definable subgroups of finite index. However,
if F is a pseudofinite field, then for n 6= char(F ), the nth powers form a
(definable) subgroup of F ∗ of index n.
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Exercise 3.28 Show that if F is a pseudofinite field of characteristic 6= n,
and R is the set of nth powers of the multiplicative group of F , then the ad-
ditive translates of R form an independent family of sets (any finite Boolean
combination is consistent). Thus ACFA has the independence property.

Remark 3.29 We will study in a later section the general question of when
TA is unstable. This will be related to the geometry of algebraic closure in
models of T . (We should remark that as TA will be “simple”, it will be
unstable iff it has the independence property.) For example we’ll see that if
T is “not locally modular” then TA is unstable. In particular, using a result
from [8], it follows that if T has EI then TA is unstable. It would be nice to
see a direct proof of this last result.

4 Independence theorem, simplicity and con-

sequences.

The assumptions on the strongly minimal theory T remain in place. Let
us fix (M̄, σ) a very saturated model of TA in which we will work. acl(−)
denotes algebraic closure in this structure (called aclσ(−) by Zoe). (acl−(−)
denotes algebraic closure in the L− -structure M̄ .) A,B,C... denote small
subsets of M̄

Definition 4.1 Let A ⊆ B, A ⊆ C. We will say that B is independent
from C over A if acl(B) is independent from acl(C) over acl(A) in the sense
of the strongly minimal structure M̄ (equivalently {σi(b) : i ∈ Z, b ∈ B} is
independent from {σi(c) : i ∈ Z, c ∈ C} over {σi(a) : i ∈ Z, a ∈ A} in the
sense of M). If b is a finite tuple we say that b is independent from C over
A (A ⊆ C again) if A ∪ {b} is.

As a matter of notation, for A a set, we let clσ(A) denote {σi(a) : i ∈
Z, a ∈ A}. Note that acl(A) is precisely acl−(clσ(A)).

Lemma 4.2 Let A ⊆ C ⊆ D, and let b be a finite tuple.
(i) b is independent from acl(A) over A.
(ii) There is a countable subset A0 of A such that b is independent from A
over A0.
(iii) b is independent from C over A iff C (or equivalently every finite tuple
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from C) is independent from A ∪ {b} over A.
(iv) b is independent from D over A iff b is independent from D over C and
b is independent from C over A.
(v) there is b′ such that tp(b′/A) = tp(b/A) and b′ is independent from C over
A.
(vi) if b ∈ acl(C) and b is independent from C over A then b ∈ acl(A).

Proof. (i) - (iv) follow from the definition and the analogous properties for
independence in the strongly minimal structure M̄ .
(v) needs a couple of words. We may assume that A and C are algebraically
closed, and we may replace b by acl(A ∪ {b}) (although it is now a tuple
of infinite length). By the corresponding property for strongly minimal sets
we may find b′ in M̄ , such that tp−(b′/A) = tp−(b/A) and b′ is independent
from C over A in the sense of M . Let τ be the image of σ under the L−-
elementary map taking b to b′. By the stationarity of types over models in
strongly minimal sets, τ and σ are compatible, in that they have a common
extension to an automorphism σ′ of acl−(C, b′). By 3.14, Tσ ∪ D((C, σ)) is
complete, whereby (by saturation) there is an embedding of (acl−(C, b′), σ′)
into (M̄, σ) over (C, σ). Let b′′ be the image of b. Thus qftp(b′′/A) =
qftp(b/A) (under the canonical map taking the tuple b to the tuple b′′). By
3.14 again tp(b′′/A) = tp(b/A) and note that b′′ is independent from C over
A.

Proposition 4.3 (Independence Theorem over algebraically closed sets.) Let
A,B,C be algebraically closed, with A ⊆ B, A ⊆ C and B independent fom
C over A. Let d1, d2 be such that tp(d1/A) = tp(d2/A), d1 is independent
from B over A and d2 is independent from C over A. Then there is d such
that tp(d/B) = tp(d1/B), tp(d/C) = tp(d2/C) and d is independent from
B ∪ C over A.

Proof. We may assume, by Lemma 4.2 (v) that d1 is independent from B∪C
over B (and thus over A). Let D1 = acl(A, d1). Note that acl−(B,D1) =
acl(B,D1) and similarly for C in place of B.
Claim. Let e ∈ M̄ eq. Then e ∈ dcl−(acl−(B,C), acl−(B,D1)) ∩ acl−(C,D1)
iff e ∈ dcl−(C,D1).
Proof of Claim. Right to left is clear. Left to right: Suppose e = f(g, h)
where g ∈ acl−(B,C), h ∈ acl−(B,D1), e ∈ acl−(C,D1), and f is an L−-
definable function (over ∅). So there are tuples b ∈ B, c ∈ C and d′ ∈

14



D1 and L−-formulas (over A), and L− formulas (over A) φi(xi, yi, zi) for
i = 1, 2, each implying that zi is L−-algebraic over A, xi, yi such that |=
φ1(b, c, g) ∧ φ2(b, d

′, h). Note that acl−(C,D1) is L−-independent from B
over A. Thus (as A is an elementary substructure of M̄ , tp−(e, c, d′/B) is
finitely satisfisfiable in A (why?). Thus we can find a tuple a ∈ A, such that
|= ∃g′, h′(e = f(g′, h′) ∧ φ1(a, c, g

′) ∧ φ2(a, d
′, h)).

Thus e ∈ dcl−(C,D1), proving the claim.

It follows from the claim that
(*) Aut−(acl−(C,D1)/(C ∪D1)) =
Aut−(acl−(C,D1)/acl

−(B,C) ∪ acl−(B,D1)) (exercise).
Let D2 = acl(A, d2). As tp(d2/A) = tp(d1/A) there is an A-elementary map
f taking D2 to D1 (and taking d2 to d1). Note that (as C is independent
from each of D2, D1 over A), f is also C-elementary. f extends to an L−-
elementary map (over C) f ′ taking acl(C,D2) to acl(C,D1) and let τ be
the image of σ under f ′. (So τ agrees with σ on dcl−(C,D1).) By (*),
the restriction of σ to acl(B,C) ∪ acl(B,D1) together with τ on acl(C,D1)
extends to an L− automorphism σ′ on acl−(B,C,D1). As (acl(B,C), σ) is
an amalgamation base, we may find D in M̄ and an isomorphism g be-
tween (acl−(B,C,D1), σ

′) and (acl−(B,C,D), σ), which is the identity on
acl−(B,C). If d is the image of d1 under g then clearly tp(d/B) = tp(d1/B)
and tp(d/C) = tp(d2/C). The independence of d from B, c over A is also
clear.

Recall that (working in a saturated model N of some theory), a type
p(x, b) is said to divide over a set A if for some A-indiscernible sequence
(bi : i < ω) of realizations of tp(b/A),

⋃
i p(x, bi) is inconsistent. Th(N) is

said to be (super)simple if any complete type tp(a/B) (a a finite tuple) does
not divide over some subset A of B of cardinality at most |T | (< ω). Any
stable theory is simple. We leave as an exercise to check that independence
agrees with nondividing in strongly minimal sets.

Lemma 4.4 TA is simple. Moreover for any a,A ⊆ B, a is independent
from B over A iff tp(a/B) does not divide over A. Moreover the indepen-
dence relation extends to variable and parameter sets in (M̄, σ)eq (namely the
properties listed in Lemma 4.2 hold).

15



Proof. In [6] it is proved that a relation of independence satisfying (ii), (iii),
(iv), (v) of Lemma 4.2, plus the Independence Theorem over elementary sub-
structures must be nondividing. (Alternatively a modification of the proof of
Proposition 4.3 shows directly that independence as defined in TA coincides
with nondividing.)

Lemma 4.5 TA is supersimple.

Proof. It is enough to show that any 1-type does not divide over a finite
set. So let a be a single element in (M̄, σ), and let B be an algebraically
closed subset. If {σi(a) : i ∈ Z} is L−-algebraically independent over B
then clearly a is independent from B over ∅. Otherwise let n be minimal
such that (a, σ(a), .., σn(a)) is L−-algebraically dependent over B. This is
witnessed by some finite tuple b from B. Then it is clear that (σi(a) : i ∈ Z)
is L− independent from B over (σi(b) : i ∈ Z).

Exercise 4.6 Show that over any countable set A there are only count-
ably many quantifier-free types. (Again it is enough to do this for 1-types.)
Namely TA is quantifier-free ω-stable.

Lemma 4.7 For any tuple a and algebraically closed B ⊂ M̄ there is a
unique smallest algebraically closed subset A of B such that a is independent
from B over A.

Proof. This follows from our definition of independence and the fact (exer-
cise) that the same thing holds in the structure M̄ .

Proposition 4.8 TA has weak elimination of imaginaries.

Proof. Our proof will first yield geometric elimination of imaginaries, us-
ing rather weak hypotheses (the existence of a rudimentary independence
relation extending to imaginaries) and then get weak elimination using the
Independence Theorem. Let e be an imaginary element, and let a be a finite
tuple such that e = a/E for some ∅-definable equivalence relation. We write
e = f(a) for f a ∅-definable function. Let p(x) = tp(a/e). Let b realize p(x)
such that b is independent from a over e, and let c realise p(x) such that c
is independent from B = acl(a, b) over e. By Lemma 4.7, let A ⊆ B be the
smallest algebraically closed subset of M̄ such that c is independent from B
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over A. However clearly c is independent from B over acl(a) ∩ M̄ and also
over acl(b) ∩ M̄ . Thus A ⊆ acl(a) ∩ acl(b). By 4.2 (iv)(for imaginaries),
A ⊆ acl(e). On the other hand, by symmetry e is independent from c over
A. As e ∈ acleq(c), by 4.2 (vi) (for imaginaries), e ∈ acleq(A). Thus we find
some finite tuple a′ from A such that e is interalgebraic with a′. We have
shown geometric elimination of imaginaries. To show weak elimination, it
is enough to show that e ∈ dcleq(A). So suppose e1, e2 have the same type
as e over A. Let q(x, e) = tp(c/Ae), and q0(x) = tp(c/A). Let ci realise
q(x, ei) be such that c2 is independent from c1 over Ae2 and thus over A (as
e2 ∈ acleq(A)). By the Independence Theorem over algebraically closed sets,
we can easily find c3 realising q(x, e1) ∪ q(x, e2). So e1 = f(c3) = e2.

Corollary 4.9 If T has elimination of imaginaries (for example T = ACF ),
then so does TA.

Proof. Let e be an imaginary element. By the previous proposition, there
is a real tuple a such that a ∈ dcl(e) and e ∈ acl(a). Let a1, .., an be the e-
conjugates of a. As T has elimination of imaginaries, the finite set {a1, .., an}
is interdefinable with some real tuple b. Clearly b is interdefinable with e.

The next proposition contains quite a bit of interesting theory.

Proposition 4.10 Let A be a fixed set of the form Fix(f.σ) (so f is an
L−-definable over ∅ automorphism of M̄). Let A∗ be A considered as an L−-
structure.
(i) If T has Galois elimination of imaginaries then any subset of An definable
(in (M̄, σ)) with parameters in acl(A) is definable in the structure A∗.
(ii) If T has EI then any subset of An definable (with any parameters) in
(M̄, σ) is definable in A∗.

Proof. (i) Let X ⊆ An be definable in (M̄, σ) over parameter d ∈ acl(A), by
a formula φ(x, d). Replacing σ(x) by f−1(x), and d by some tuple of iterates
of σ applied to d and using 3.17, φ(x, d) can be assumed to be a finite dis-
junction of formulas ∃y(θ(x, y, σ(y), .., σk(y), d)) where θ(x, y0, ., yk, d) is an
L−-formula (with parameter d) which implies that each yi ∈ acl−(x, d). We
will assume for simplicity that φ(x, d) is a single such formula.
Note by 3.26 that there is a countable set {bi : i ∈ I} of finite tuples in
acl−(A), each such tuple is permuted by σ and such that whenever c ∈
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acl−(A) then c ∈ dcl−(A, bi) for some i. It follows by compactness (satura-
tion) that we can find some finite tuple b ∈ acl−(A) (permuted by σ) and
some L−-definable function h such that whenever a ∈ A and θ(a, c0, .., ck, d)
holds then each ci is of the form h(b, e) for some e ∈ A. Moreover we can
also assume that d = b. Thus for a ∈ A, |= ∃y0, .., yk(θ(a, y0, .., yk, d) iff there
exist e0, .., ek ∈ A such that
|= θ(a, h(d, e0), .., h(d, ek), d).
Thus (for a ∈ A),|= ∃y(θ(a, y, σ(y), .., σk(y), d) iff there exists e0 ∈ A such
that
|= θ(a, h(d, e0), h(σ(d), f−1(e0)), .., h(σ

k(d), f−k(e0)), d).
By the (trivial) definability of tp−(d/A) the latter is equivalent to a (qf) L−

formula χ(a, e0) over A. Thus for a ∈ A, |= φ(a, d) iff A∗ |= ∃z(χ(a, z)). We
have completed the proof.
(ii) Let X ⊂ An be definable in (M̄, σ). Let e be a canonical parameter for
X. By Corollary 4.9, e may be assumed to be a tuple from M̄ . Note that
f.σ is an automorphism of (M̄, σ). As X is fixed setwise by f.σ, e must be
fixed (as a tuple) by f.σ, so e ∈ A. Now use part (i).

Recall that in a simple theory, the SU -rank (on complete types) is the foun-
dation rank for forking: SU(p) ≥ α + 1 if p has a forking extension q of
SU -rank ≥ α. Moreover a theory is supersimple if and only if SU(−) is
ordinal-valued on complete types in finitely many variables. Also in a simple
theory we have (for a a finite tuple), SU(tp(a/A)) = SU(tp(a/B)) iff tp(a/B)
does not fork over A. The SU -rank of a type is 0 iff the type is algebraic,
i.e. has only finitely many realizations. We will say a few words about the
SU -rank in TA. By U−(−) we mean U -rank in T (defined likewise in terms
of forking in T ), and the reader should be aware that the U−-rank of a com-
plete type in a model of T is the same as the Morley rank, or “dimension”.
We will be considering U−-rank of possibly infinite tuples. You should realise
that for a a possibly infinite tuple in a model of T , U−(tp−(a/A)) is ordinal
valued iff it is finite iff a is contained in the algebraic closure (in T ) of A
together with a finite subtuple of a.

Let us first repeat our definition of dependence in TA. A, B .. will usually
denote algebraically closed subsets of (M̄, σ).

Remark 4.11 Let A ⊆ B be algebraically closed. Let a be a finite tuple.
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Then a is dependent with B over A (tp(a/B) forks over A, SU(tp(a/B)) <
SU(tp(a/A))) iff for some n,
U−(tp−(a, σ(a), .., σn(a))/B)) < U−(tp−((a, σ(a), .., σn(a))/A)).

Corollary 4.12 Suppose U−(tp−(clσ(a)/B)) = n. Then SU(tp(a/B) ≤ n.

Lemma 4.13 Suppose that a is an element. Let n be such that {a, σ(a), .., σn(a)}
is L−-algebraically dependent over B, and suppose that n is minimal such.
Then U−(tp−(clσ(a)/B)) = n.

Proof. Exercise.

Corollary 4.14 Let a be a single element. Then SU(tp(a/A)) ≤ ω.

Proof. If tp(a/B) forks over B (A ⊆ B) then clσ(a) must be L−-algebraically
dependent over C, whereby the hypothesis of the previous lemma holds for
some n. But then SU(tp(a/B)) ≤ n by 4.12. So every forking extension of
tp(a/A) has finite SU -rank, whereby SU(tp(a/A)) ≤ ω.

We will see that various geometric properties of dependence (nontriviality,
nonmodularity,..) in T will have model-theoretic consequences (concerning
SU -rank, instability,...) for TA. Here we point out the interpretation of
triviality/nontriviality. Recall that T is said to be trivial, if whenever A is a
subset of M̄ and {ai : i ∈ I} ⊂ M̄ is pairwise L−-algebraically indepependent
over A then it is L−-algebraically independent over A.

Lemma 4.15 Suppose T is trivial. Then every complete 1-type has SU-rank
at most 1.

Proof. Consider tp(a/A). Suppose a forks with B over A. So for some n,
{a, σ(a), .., σn(a)} is L−-algebraically independent overA, but L−-algebraically
dependent over B. By triviality this can only happen if some σi(a) (and thus
all σi(a)) are in acl−(B) = B. Namely SU(tp(a/B)) = 0.

Lemma 4.16 Suppose that T is nontrivial. Then there is a complete 1-type
in TA of SU-rank ω (and so there are 1-types of all finite SU-ranks).
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Proof.. Working over a suitable subset A of M̄ we may, by nontriviality, find
elements b, c, d which are (in M̄), pairwise independent but dependent over
A. Namely each of b, c, d /∈ acl−(A), U−(tp(b, c, d/A)) = 2 and each of b, c, d
is in acl− of A and the other two. We may assume A is algebraically closed
in (M̄, σ). Let q(x, y, z) = tp−((b, c, d)/A). Now let a be “transformally
generic” over A, namely clσ(a) is L−-algebraically independent over A.
Claim 1. Let e be such that tp−((a, σ(a), e)/A) = q. Then {a} ∪ {σi(e) : i ∈
Z} is L−-algebraically independent over A. In particular a /∈ acl(A, e).
Proof. Fix n < ω and let X = {a} ∪ {σi(e) : −n ≤ i ≤ n}, a set of 2n + 2
elements. Note that tp((σj(a), σj+1(a), σj(e))/A) = σ(q). It follows from the
choice of q that acl−(X,A) = acl−(Y,A) where Y = {σ−n(a), ..., σ−1(a), a, σ(a), ..σn+1(a)}.
But U−(tp−(Y/A)) = |Y | = 2n + 2, so the same is true for U−(tp−(X/A)),
implying that X is also L−-algebraically independent over A. This proves
Claim 1.

Now, let us define inductively bi for i < ω, by b0 = a, and bi+1 realises
q(bi, σ(bi), z) over A. By induction, and Claim 1, we obtain.
Claim 2. For each i, bi is transformally generic over A, and bi /∈ acl(A, bi+1).
Note that for j > i, bj ∈ acl(A, bi). Now let us fix n ≥ 0.
Claim 3. tp(a/acl(A, bn)) forks over A ∪ {bn+1}.
Proof. As remarked above, bn ∈ acl(A, a) but by Claim 2, bn /∈ acl(A, bn+1).
Thus tp(bn/A, a, bn+1) forks over A, bn+1. Now use symmetry.
By Claim 3, we see that for any n, and any i < n, tp(a/A, bi, .., bn) forks over
(A, bi+1, .., bn), whereby SU(tp(a/A, bn) ≥ n. Thus SU(tp(a/A)) = ω (using
also Corollary 4.14).

Corollary 4.17 (Any completion of) ACFA has SU-rank ω.

5 Stationarity, stability and modularity

Here we obtain some rather deeper (but not difficult) results relating the
model theory of TA to the geometry of T . We are still working in a saturated
model (M̄, σ) of TA.

Definition 5.1 tp(a/A) is stationary, if it has a unique nonforking extension
over any B ⊇ A. Namely whenever B ⊇ A and a1, a2 are realisations of
tp(a/A), each independent from B over A, then tp(a1/B) = tp(a2/B).
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Remark 5.2 The following are equivalent:
(i) TA is stable,
(ii) TA is superstable
(iii) TA does not have the independence property,
(iv) every complete type over an algebraically closed set is stationary.

Proof. (This is well-known by the general theory of simplicity, but we give
a proof nevertheless.) (i) implies (ii) is because we know by 4.5, that every
1-type does not fork over some finite set. (ii) implies (iii) is well-known.
(iii) implies (iv): Suppose that A is algebraically closed, p(x) is a complete
type over A and p has two distinct nonforking extensions q1(x), q2(x) over
some B ⊇ A. Let φ(x, b) ∈ q1, ¬φ(x, b) ∈ q2. Let {Bi : i ∈ ω} be an A-
independent set of realizations of tp(B/A). Let bi be the copy of b in Bi and
qij(x) the copy of qj(x) over Bi for j = 1, 2. By the Independence Theorem,
for each I ⊆ ω we can find some element aI which realises qi1(x) if i ∈ I and
qi2(x) for i /∈ I. In particular |= φ(aI , bi) iff i ∈ I, yielding the independence
property.
(iv) implies (i). Using (iv) and the fact that every complete type does not
fork over a countable (in fact finite) set, we conclude that over any model
N of TA there are at most |N |ω complete types (in finitely many variables),
which means that T is stable.

There is a very clear criterion for a type to be stationary.

Lemma 5.3 Let A be algebraically closed. Let b be a tuple and let B =
acl(A, b). Then tp(b/A) is stationary if and only if, whenever C ⊇ A is
algebraicaly closed and independent of B over A, them σ|(dcl−(C,B)) has
a unique extension to an automorphism of acl−(C,B) up to conjugacy in
Aut−(acl−(C,B)/dcl−(C,B)).

Proof. First we note that tp(b/A) is stationary iff tp(b′/A) is stationary, where
b′ enumerates B = acl(A, b) (exercise). So we may assume that b enumerates
B. The lemma now follows once we remember that tp(b1/C) = tp(b2/C) iff
there is an isomorphism between (acl(C, b1), σ) and (acl(C, b2), σ) which fixes
C pointwise and takes b1 to b2.

Corollary 5.4 TA is stable (every completion of TA is stable) iff whenever
A ⊆ B,C are algebraically closed sets in a model M of T such that B is
independent from C over A, then dcl−(B,C) = acl−(B,C).
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Proof. Suppose that the right hand side holds. Then by Lemma 5.3, ev-
ery type over an algebraically closed set in (M̄, σ) is stationary, so TA is
stable by Remark 5.2. Conversely, suppose the right-hand side fails, wit-
nessed by A,B,C in some model M of T . Assume that (M̄, σ) is our sat-
urated model of TA and that Th−(M̄) = Th(M) and that σ fixes acl−(∅)
pointwise. So we may assume that A,B,C are contained in Fix(σ) (why?).
So dcl−(B,C) is contained in Fix(σ). As acl−(B,C) properly contains
dcl−(B,C), the identity (σ) on dcl−(B,C) can be extended to a nontriv-
ial L−-elementary permutation of acl−(B,C), clearly not conjugate to the
identity in Aut−(acl−(B,C)/dcl−(B,C)). So by Lemma 5.3, tp(B/A) is not
stationary, hence by Remark 5.2, (M̄, σ) is not stable.
(This proof can be modified to show that any completion on TA extending
Th−(M) is unstable.)

Remark 5.5 The proof above shows that if (some completion of) TA is
unstable, then this is witnessed inside Fix(σ).

Example 5.6 If T is trivial (such as the theory of an infinite set) then the
RHS of Corollary holds so TA is stable. By 4.3, TA has U-rank 1 (but not
Morley rank 1).

Example 5.7 If T is the theory of a vector space over a field F (in the
F -module language), then definable closure and algebraic closure coincide in
models of T so again the RHS holds and TA is stable.

Example 5.8 Let T be the theory of a “trivial 2-cover” of a vector space over
F . Namely T = Th(D) where D is equipped with an equivalence relation
E each class of which has size 2, and such that D/E is equipped with the
structure of an F -vector space. Write a/E as π(a). Let V0 ⊆ V1, V2 be
subspaces of V with V1, V2 linearly independent over V0. Let A,B,C be the
preimages under π of V0, V1, V2 respectively. Let vi ∈ Vi \ V0, and let v =
v1 + v2. Then π−1(v) ∈ acl(B,C) \ dcl(B,C). Hence TA is unstable.

Definition 5.9 T (or rather a fixed completion Th(M) of T ) is modular (or
of modular type, or 1-based) if whenever A,B are algebraically closed subsets
of M (where M is assumed saturated) then A is independent from B over
A ∩B (in sense of T of course).
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Remark 5.10 For an arbitrary stable theory T , the definition of T being
1-based is the same except we work in T eq. As we know that our (strongly
minimal) T has weak elimination of imaginaries the definitions agree. (The
notion “locally modular” concerns arbitrary strongly minimal theories (or
sets) and means that we have modularity (in the home sort) after adding a
generic constant.) There is a similar notion of 1-basedness for a simple theory
T . For our simple theory TA, as we have weak elimination of imaginaries
(and “elimination of hyperimaginaries”) it just amounts to A and B being
independent over A ∩B for any algebraically closed sets A and B.

Fact 5.11 Suppose T is non modular. Then there are (in a saturated model
of T ), sets D1, D2 and tuples a1, a2 such that
(i) Di are (L−)-algebraically closed and D1 is independent from D2 over ∅.
(ii) a1 is independent from a2 over ∅.
(iii) a1, a2 ∈ acl−(D1, D2), and
(iv) tp−(a1, a2/D1, D2) = tp−(a2, a1/D1, D2).

Explanation. This is a rather nontrivial fact, coming out of a result of Buech-
ler (part of the proof of which was supplied by Hrushovski) that a “pseudo-
linear” strongly minimal set is modular. This is Proposition 3.2, Chapter 5,
in [9], and the relevant application is Corollary 3.5, Chapter 5, in the same
book. I have given (and will repeat) an informal (and rather inaccurate)
description of “canonical bases” in strongly minimal sets: let p(x) be a type
over an algebraically closed set, then Cb(p) is the smallest algebraically closed
subset A0 of A such that p does not fork over A0. Assuming x is a finite tuple,
A0 will be the algebraic closure of a finite tuple c say and by the dimension
or U -rank of A0 we mean U(tp(c/∅)). The result of Buechler’s alluded to
above is that if T is nonmodular, then for any k < ω there is some type p(x)
such that U(p) = 1 and U(Cb(p)) ≥ k. So assuming T nonmodular we can
find (after naming parameters) such p with U(Cb(p)) = 3. We now assume
that p = p(x, d), and D = acl(d) = Cb(p), with U(p) = 1, U(tp(d)) = 3.
Let a1, a2 be independent (over D) realisations of p(x, d). U -rank compu-
tations show that a1 is independent from a2 over ∅. Also tp(a1, a2/D) =
tp(a2, a1/D) (by stationarity of p(x, d)). Also U(tp(D/a1, a2)) = 1. Now let
D′ realise tp(D/acl(a1, a2)) independently from D over a1, a2. Then some
computations show that D is independent from D′ over ∅, and moreover
tp(a1, a2/D,D

′) = tp(a2, a1/D,D
′). As D was the canonical base of p(x, d)

it follows that ai ∈ acl(D,D′) for i = 1, 2.
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Corollary 5.12 Suppose that T is nonmodular. Then TA is unstable.

Proof. The above fact gives us acl−-sets D1, D2 independent over A =
acl−(∅), and a1 ∈ acl−(D1, D2) \ dcl−(D1, D2). Apply Corollary 5.4 to con-
clude that TA is unstable.

Corollary 5.13 If T has EI, then TA is unstable.

Proof. In [8] it is proved that a strongly minimal theory with EI is nonmod-
ular. (There should be a more direct proof of this Corollary, using the fixed
set directly, but I could not find it.)

6 Modular types in TA and the dichotomy

theorem for ACFA0.

In this section we will give a suitable local version of the main result (T
nonmodular implies TA unstable) of the last section. We are concerned
with types p of SU rank 1 in TA. We would like to prove that if p is
stationary then p is modular, but we only obtain a rather weaker version:
p(x) “strongly stationary” implies p modular. We then sketch a proof of the
Zilber dichotomy for characteristic 0 models of ACFA: any SU rank 1 type
is nonorthogonal to the fixed field or is (stable and) modular. Maybe it is
worthwhile defining (non)orthogonality at this point:

Definition 6.1 Let p(x) ∈ S(A), q(y) ∈ S(B) be types (with A, b alge-
braically closed say). We say that p is orthogonal to q if whenever C ⊇ A∪B
and a, b realise p, q respectively sch that a isindependent from C over A and
b is independent from C over B, then a is independent from b over C.

We will be analysing in more detail the condition in Lemma 5.3 for a type to
be stationary. This will entail saying a few more words about Galois theory
in M̄ . We will assume in this section that T has EGI (although this could
be replaced by working in T eq without much trouble). So for now we are just
working in the saturated model M̄ of T .
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Remark 6.2 Let A = dcl−(A) ⊂ M̄ , and let σ0 be an elementary permu-
tation of A. Let σ be a fixed extension of σ0 to acl−(A). The following are
equivalent:
(1) There is a proper finite extension A ⊆ B ⊆ acl−(A) which is σ-invariant
(i.e. fixed setwise by σ).
(2) There is a proper finite extension A ⊆ B ⊆ acl−(A), and some extension
τ of σ0 to acl−(A) such that B is τ -invariant.
(3) As in (1) but with “finite Galois” in place of “finite”.
(4) As in (2) but with “finite Galois” in place of “finite”.

Proof. (2) implies (4): Let B = dcl(A, b). Let φ(x, a) isolate tp−(b/A),
and let b = b1, b2, .., bn be the solutions of φ(x, a) (all in acl−(A)). Note
that C = dcl(A, b1, .., bn) is a finite Galois extension of A, so it suffices to
show that C is τ -invariant. Note that τ(b) is a solution of φ(x, σ0(a)), so
as τ(B) = B, b and τ(b) are interdefinable over A. Thus every solution of
φ(x, a) is interdefinable over A with a solution of φ(x, σ0(a)), and vice versa.
It folllows that for each i, τ(bi) (a solution of φ(x, σ0(a))) is contained in
C. So τ(C) ⊆ C. The same argument shows that C is contained in the the
definable closure of A together with the solutions of φ(x, σ0(a)), so τ(C) = C.
(4) implies (3): Let τ and B be as given by (3). Note that f.τ = σ for some
f ∈ Gal(A). As B is assumed to be a Galois extension of A, f(B) = B, and
so σ(B) = B.
(3) implies (1) and (1) implies (2) are immediate.

We aim to show:

Proposition 6.3 Suppose A = dcl−(A) and σ0 is an elementary permuta-
tion of A. Let σ be an extension of σ0 to an elementary permutation of
acl−(A). Suppose also that there is no finite (Galois) extension A ⊆ B ⊆
acl−(A) which is σ-invariant. Then all extensions of σ0 to acl−(A) are con-
jugate under Gal(A) (to σ).

Proof. The proof will go through a few claims. First, we give a necessary
and sufficient condition for all extensions of σ0 to acl−(A) to be conjugate
(in Gal(A)).
Note that the extensions of σ0 to acl−(A) are precisely things of the form
σ.τ) as τ ranges over Gal(A). Claim 1. All extensions of σ0 to acl−(A) are
conjugate under Gal(A) iff the map µ : Gal(A) → Gal(A) defined by µ(τ)
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= σ−.τ−1.σ.τ =def [σ, τ ] is onto.
Proof. Assume LHS. Let ρ ∈ Gal(A). So σ.ρ = τ−.σ.τ for some τ ∈ Gal(A),
whereby [σ.τ ] = ρ. The converse is likewise.

Note that µ is surjective iff for every finite Galois extension A ⊆ B ⊆ acl−(A),
the induced map µB : Gal(A) → Aut−(B/A) is surjective. For such B, the
value of [σ, τ ]|B depends only on τ |B and τ−|σ(B). Thus µ is surjective iff
for each finite Galois extension B of A, settimg C = dcl−(B, σ(B), the map
from Aut−(C/A) to Aut−(B/A): τ → [σ|C, τ ]|B is surjective. So, bearing in
mind Claim 1 we have:
Claim 2. All extensions of σ0 to acl−(A) are conjugate in Gal(A) iff for each
finite Galois extensionB ofA, the map τ → [σ|C, τ ]|B fromAut−(dcl−(B, σ(B))
to Aut−(B/A) is surjective.

We now “prove” the proposition. We show the RHS of Claim 2 is true by
induction on the cardinality of Aut−(B/A). We use EGI and 3.23. If the
cardinality is 1 there is nothing to do. Now given B. Let B′ = B∩σ(B). Our
assumptions imply that B′ is a finite Galois extension of A properly contained
in B. Thus EGI (and 3.23) imply that the cardinality of Aut−(B1/A) is
strictly less than the cardinality of Aut−(B/A). The induction assumption
tells us that the relevant map from Aut−(dcl−(B1, σ(B1))/A) to Aut−(B1/A))
is surjective. We leave it as an exercise, using the Galois coorespondence,
to deduce that the map from Aut−(dcl−(B, σ(B))/A) to Aut−(B/A)) is also
surjective.

We now return to our model (M̄, σ) of TA.

Definition 6.4 Let p(x) = tp(b/A) where A = acl(A). Let B = acl(A, b).
We say that p(x) is strongly stationary iff whenever C = acl(A) is inde-
pendent from B over A, then dcl−(B,C) has no finite σ-invariant (Galois)
extensions.

Note:

Lemma 6.5 If p(x) is strongly stationary then p(x) is stationary.

Proof. By Lemma 5.3 and Proposition 6.1.

In fact, strong stationarity has a more intuitive characterization which we
state now. As a matter of notation, if p(x) = tp(b/A), then for any k ≥ 1,
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p[k] denotes the type of b over A in the structure (M̄, σk) (which remember
is also a model of TA).

Lemma 6.6 p(x) is strongly stationary iff p[k] is stationary for all k.

The left to right direction is left to the reader. (There are a few subtleties.)
Right to left: Assume that p(x) = tp(b/A) (A = acl(A) is not strongly
stationary. Let B = acl−(Ab), let C ⊇ A be algebraically closed and in-
dependent from B over A, and let E be a proper finite Galois extension of
dcl−(B,C) = D which is σ-invariant. Note that, for any k, in (M̄, σk) we
still have that A,B,C are algebraically closed and C independent from B
over A. Let G = Aut−(E/D). Let k = |G|! (so k > 1). Note that σ|E acts
on G by conjugation. Thus σk|E acts trivially on G, namely commutes with
every element of G. It follows that σk|D has at least 2 extensions to E up
to conjugacy by an element of G. Thus σk|D has at least 2 extensions to
acl−(D) up to conjugacy by an element of Gal(D). By Lemma 5.3, p[k] is
not stationary.

Corollary 6.7 (i) Let A ⊆ B be algebraically closed. Suppose b is inde-
pendent from B over A. Then tp(b/A) is strongly stationary iff tp(b/B) is
strongly stationary.
(ii) Let tp(b/A) be strongly stationary and let c ∈ acl(A, b) then tp(c/A) is
strongly stationary.
(iii) Let p(x) = tp(b/A) be strongly stationary. Let b1, .., bn be an A-independent
tuple of realizattions of p. Then tp(b1, .., bn/A) is strongly stationary.

Proof. Note first that by the independence theorem, if b is indepedent from
B over A, then tp(b/A) is stationary iff tp(b/B) is stationary. Also by the
independence theorem if c ∈ acl(Ab) and tp(b/A) is stationary then so is
tp(c/A). Now use these observations together with the lemma above.

Definition 6.8 Let A = acl(A).
(i) p(x) = tp(a/A) is stable if there is no formula φ(x, y) over A and tuples
ai, bi for i < ω such that each ai is a tuple of realizations of p and |= φ(ai, bj)
iff i < j. Equivalently, for any set B ⊇ A, p has at most |B|ω extensions to
complete types over B.
(ii) p(x) = tp(a/A) is modular if whenever b is a tuple of realizations of p(x),
and C is any algebraically closed set containing A, then b is independent from
C over acl(A, b) ∩ C.
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Remark 6.9 (i) The equivalence in (i) above is routine and left to the
reader.
(ii) If p(x) is stationary of SU-rank 1, then p(x) is stable with U(p) = 1.
Namely p is a “minimal type”. If in addition p(x) is modular, then Fact
5.11 holds for p, namely a1, a2 are tuples of realizations of p, and also Di =
acl(Adi) where di is a tuple of realizations of p, all working in TA as opposed
to in T .
(iii) If p(x) = tp(a/A) is strongly stationary of SU-rank 1, then so is tp(b/A)
whenever b is contained in the algebraic closure of A together with a tuple of
realizatyions of p.

Proposition 6.10 Suppose p(x) = tp(a/A) has SU-rank 1 and is strongly
stationary. Then p(x) is modular.

Proof. Note that by the remark above, p(x) is stationary of U -rank 1.
By replacing a by a suitable tuple (a, σ(a), .., σk(a)) we may assume that
acl−(A, a) = acl−(A, σ(a)). Assume for sake of contradiction that p(x) is not
modular. Let a1, a2, D1, D2 be as given by the remark above (as in Fact 5.11).
Let E = dcl−(D1, D2). Now let c1, .., cn be set of realizations of tp−(a1/E)
which are L−-interalgebraic with a1 over A. Let e be the imaginary element
{c1, .., cn}. Note that e is L−-interalgebraic with σ(e) over A. Moreover note
that if tp(e/E) = tp(e′/E) and e is L−-interalgebraic with e′ over A, then
e = e′. It follows that dcl−(E, e) = dcl−(E, σ(e)). Now by EGI of T , e is
L−interdefinable over E with a real tuple e1. It follows that dcl(E, e1) is a
finite σ-invariant extension of E. By 6.1, Remark 6.8, and the assumption
that p is strongly stationary, e1 ∈ dcl−(E). Thus e ∈ dcl−(E). As a1 and a2

have the same type over E, it follows that a1 is interalgebraic with a2 over
A, a contradiction.

We now consider what is in a sense the “opposite” situation to strong sta-
tionarity.

Definition 6.11 (A = acl(A)). tp(b/A) is bounded if
(i) σ(b) ∈ acl−(A, b) (or equivalently acl−(A, b) = acl(A, b)), and
(ii) for some k < ω, mult−(σi(b)/A, b) (= number of solutions of tp−(σi(b)/A, b))
is at most k, for all i ∈ Z.

So for example the type of any element in any fixed set is bounded.
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Definition 6.12 We will say that tp(b/A) has finite order iff there is a finite
bound to the U−-ranks of types tp−(c/A) for c ∈ acl(A, b), (equivalently to
types tp−(b, sigma(b), .., σk(b)/A), k ∈ ω). In this case, the order of tp(b/A)
is the maximum of those U−-ranks.

Lemma 6.13 Assume T has EI. Let A = acl(A). Suppose tp(b/A) is
bounded and of order 1. Then there is a finite tuple c such that dcl−(A, c) =
dcl−(A, σ(c)) and acl−(A, e) = acl−(A, b) (= acl(A, b)).

Proof. Choose r > 0 such that mult−(b/σ(b), .., σr(b), A) is least possible.
Replacing b by (b, σ(b), .., σr(b)) we have that tp−(b/σ(b), A) |= tp−(b/A ∪
{σi(b) : i > 0}). Note that tp(b/A) is still bounded (why?). In par-
ticular for each n > 0, tp−(b/σ(b), A) |= tp−(b/σ(b), σn(b), A), and thus
tp−(σn(b)/σ(b), A) |= tp−(σn(b)/b, σ(b), A). The same is true after apply-
ing any (possibly negative) power of σ. Now (by boundedness of tp(b/A)),
let k < 0 be such that mult−(b/σk(b), A) is maximum possible. Thus, for
all i ≤ k, tp−(b/σk(b), A) and tp−(b/σi(b), A) have the same (finite) set
of solutions, b1, .., bn say. Let e = {b1, .., bn}, which we assume to be a
real tuple by EI for T . So e ∈ B =

⋂{dcl−(A, σi(b)) : i ≤ k}. Note
that acl−(A, e) = acl−(A, b) (why?). So in particular σk(b) ∈ acl−(B).
Let c be a finite tuple from B such that tp−(σk(b)/A, c) |= tp−(σk(b)/B).
Then, as B ⊆ dcl−(A, σk(b)), one sees that B = dcl−(A, c). Note that
σ(B) ⊆ B. Thus, σ(c) ∈ dcl−(A, c)). Finally, we want to see that also
c ∈ dcl−(A, σ(c)): Note that tp(c/A) is bounded (as is anything in acl(A, b)).
If c /∈ dcl−(A, σ(c)) then {σi(B) : i < ω} is a strictly descending sequence of
definably closed (in L−) subsets of B containing A. The Galois theory implies
that mult−(c/σi(c), A) is unbounded as i gets larger, a contradiction.

For the next result we need it seems necessary to pass to ACFA where we
can make use of some of the theory of curves/Riemann surfaces.

Proposition 6.14 Work in ACFA0. Suppose E is an elementary substruc-
ture of (M̄, σ), and p(x) = tp(b/E) is bounded and of order 1. Then there is
c such that acl−(A, b) = acl−(A, c) and σ(c) = c.

This says that any bounded type of order 1 is nonorthogonal to some
type of an element in the fixed field.
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I will sketch a proof of Proposition 6.14. All we have to know is that if C
is a smooth, complete, algebraic curve over an algebraically closed field K,
and α is a point on C(K), then for some natural number m > 0 the “divisor”
m.α on C is “very ample”. Very ample means that if f0, .., fn is a basis for
the (finite-dimensional) K-vector space L(m.α) of rational functions f on C
such that (i) the only pole (if any) of f is α, and (ii) if α is a pole of f then it
is a pole of order at most m, then the map from C to Pn which takes a ∈ C
to [f0(a) : .... : fn(a)] is an isomorphism of C with a closed subvariety of Pn.

We now proceed with the proof of 6.14. By Lemma 6.13 we may assume that
dcl−(E, b) = dcl−(A, σ(b)). b is a generic point over (the algebraically closed
field) E of a smooth, complete algebraic curve X over E. Then σ(b) = f(b)
where f is an isomorphism (defined over E) between X and Y = σ(X). As E
is an elementary substructure of (M̄, σ), there is a point d ∈ X(E) such that
f(d) = σ(d). By the remarks above md is a very ample divisor on X for some
m > 0. Let f0, .., fn be an E-basis for L(md). Let φ be the corresponding
embedding of X into Pn, defined over E. Then σ(φ).f is another embedding
of X into Pn, corresponding to the basis σ(f0).f, .., σ(fn).f of L(m.d). This
second basis is thus the imasge of the first basis under an element A ∈
PGL(n), defined over E. Thus A.φ = σ(φ).f on X. As (E, σ) is a model
of ACFA there are B,C ∈ PGL(n,E) such that B = C.A and C = σ(B)
(why?) (i.e. B = σ(B).A). Now ψ = B.φ is another embedding of X into
Pn defined over E.
We claim that ψ(b) is fixed by σ: σ(ψ(b)) = σ(B.φ(b)) = σ(B).σ(φ)(σ(b)) =
σ(B).σ(φ).f(b) = σ(B).A.φ(b) = B.φ(b) = ψ(b). So putting c = ψ(b) we
clearly have that dcl−(E, c) = dcl−(E, b) and σ(c) = c.

Remark 6.15 In the case ACFAp the same proof shows that c can be found
in some fixed field.

The next result completes the dichotomy theorem for types of order 1 for
ACFA0.

Proposition 6.16 (Work in ACFA0.) Let E = acl(E). Suppose that
tp(a/E) has order 1 and is unbounded. Then tp(a/E) is strongly station-
ary.
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The proof will depend also on some facts about algebraic curves. I will give
the background as briefly as possible. We work with algebraic geometry in
characteristic 0. Fix an algebraically closed field E. By a function field of
transcendence degree 1 over E we mean a field L > E of transcenfdence
degree 1 over E and finitely generated over E. L is then the function field
of a smooth projective curve C defined over E. (If L = E(a) then a is a
generic point of C over E.) Now suppose that L′ is a finite extension of L.
L′ = E(b) is the function field of a smooth projective curve C ′ defined over
E and the “map” b → a extends to a surjective finite-to-one morphism π
from C ′ to C also defined over E. Assuming L′ to be an extension of L of
degree n. π is almost everywhere n to 1, namely for all but finitely many
x ∈ E, π−1(x) has cardinality n (and for all points x, π−1(x) has cardinality
at most n). The ramification divisor of π is the set of points x ∈ C such that
π−1(x) has cardinality strictly less than n. This is a finite subset of C(E).
A point y ∈ C ′ will be said to ramify over C (with respect to π) if π(y) is in
the ramification divisor of π.

Now suppose that E < F are algebraically closed fields, C is a (smooth
projective) curve defined over E, C ′ a curve defined over F , and π : C ′ → C
a surjective morphism defined over F . We will say that π : C ′ → C descends
to E if there is a curve C ′′ defined over E, and an isomorphism f : C ′′ → C ′

defined over F such that the surjective morphism π.f : C ′′ → C is defined
over E.

Fact 6.17 With above notation, let F (C) < F (C ′) be ther inclusion of func-
tion fields induced by π : C ′ → C. Then π descends to E iff F (C ′) <
F.acl(E(C)).

The main tool we will use is the following result, originating, I think, with
Riemann. (Namely the Riemann surface case is due to Riemann).

Fact 6.18 Suppose that E < F are algebraically closed fields, C, C ′ are
smooth projective curves defined over E,F respectively, and π : C ′ → C is a
surjective morphism defined over F . Suppose that the ramification divisor of
π is contained in E(C). Then π descends to E.

We also use:
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Fact 6.19 (i) Let E be algebraically closed. Supppose C0, C1, C2, C3 are
smooth projective curves over E with generic points a, b, c, (b, c) respectively
where E(a) < E(b) and E(a) < E(c). Let π1 : C1 → C0, π2 : C2 → C0,
π3 : C3 → C2 and π4 : C3 → C0 be the corresponding morphisms. Suppose
a′ ∈ C0 is not in the ramification divisor of π1. Let (b′, c′) ∈ π−1

4 (a′). Then
c′ is not in the ramification divisor of π3

(ii) Let C2 → C1 → C0 be surjective morphisms of curves over E. Let a ∈ C0

and b some preimage of a in C1. Then a is not in the ramification divisor of
C2 → C0 iff a is not in the ramification divisor of C1 → C) and b is not in
the ramification divisor of C2 → C1.

We now proceed with the proof of 6.16. Assume the hypotheses of 6.16.
We may assume that a is a single element and so is the generic point of
P1. Suppose by way of contradiction that tp(a/E) is not strongly tationary.
So there is some algebraicaly closed F , independent from a over E such
that acl(E(a)).F has a finite (Galois) σ-invariant extension L. Write K =
acl(E(a)).F . Let L1 = F (b) be a finite Galois extension of F (a) such that
K.L1 = L. So L1 is not contained in K. Let C be the (smooth projective)
curve over E corresponding to E(a)) (which we can take to be P1 as remarked
above), let V be the curve over F corresponding to L1 and let π : V → C
be the corresponding morphism. By Fact 6.18 the ramification divisor of π
is not contained in C(E). Let S be those points of the ramification divisor
of π which are not E-rational. So S is a finite nonempty subset of C(F ).
Note that tp(a/F ) is unbounded, so also tp(b/F ) is unbounded. (We may
assume b is a generic point of V over F .) So we may choose k such that N =
mult−(σk(b)/F (b)) > |π−1(S)|. Let W be the curve over F whose generic
point is (b, σk(b)), so the function field of W over F is L2 = (L1, σ

k(L1).
Now let us fix an element d ∈ π−1(S). Let ρ : W → V be induced by
(b, σk(b)) → b. Let a′ = π(d)
Claim 1. d is not in the ramification divisor of ρ.
Proof. As L2 < K.L1, there is some c ∈ acl(E(a)) such that L2 < F (c).L1.
c is the generic point of a curve C ′ over E and the corresponding morphism
from C ′ to C is defined over E. (b, c) is the generic point of a curve C ′′

defined over F . Consider now the extensions of F : F (a), F (c), F (b) = L1

and F (c, b)(> F (b, σk(b))). Let a′ ∈ S with π(d) = a′. So a′ is a generic
point of C over E, thus is not in the ramification divisor of C ′ → C. By Fact
6.19, d is not in the ramification divisor of C ′′ → V . Thus d is not in the
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ramification divisor of W → V .

Now let C1, C2 be the curves (defined over E) with generic points (over F )
σk(a), (a, σk(a)) respectively. As the corresponding morphisms are defined
over E, and a′ is a generic point of C over E, we have
Claim 2. a′ is not in the ramification divisor of C2 → C.

By claim 1, ρ−1(d) = {e1, .., eN} ⊂ W has cardinalityN . We have a canonical
morphism W → C1, factoring through C2. Let f1, .., fn be the images of the
ei under this morphism
Claim 3. Each fi is generic in C1 over E and hence is not in the ramification
divisor of C2 → C1.
Proof. fi is interalgebraic with a′ over E.

Claim 4. Each fi is in the ramification divisor of W → C1.
Proof. Suppose not. Then as W → C1 factors through h : W → C2, h(ei) is
not in the ramification divisor of h. The image of h(ei under C2 → C is a′,
hence (why?) a′ is not in the ramification divisor of W → C. So a′ is not in
the ramification divisor of π : V → C, a contradiction.

Claim 5. Each fi is in the ramification divisor of σk(π) : σk(V ) → C1.
Proof. As in the proof of Claim 1 (using 6.19), each element of (σk(π))−1(fi)
is not in the ramification divisor of W → σk(V ). Now use claim 4.

By Claims 5 and 3, each fi is in σk(S). Let gi be the image of ei under
W → σk(V ). (so fi = σk(π)(gi). As the ei’s al have the same image (d)
under ρ, the gi must be all different. So the preimage of σk(S) under σk(π)
has cardinality N > |π−1(S)| a contradiction.

So we have:

Corollary 6.20 (ACFA0) Let p(x) ∈ S(E) be of order 1 (so of SU-rank
1). Then p(x) is either modular and of U-rank !, or p is nonorthogonal to
some type of an element in Fix(σ).

Finally in this section we want to extend the above Corollary to all types of
SU -rank 1 (for ACFA0). I will just describe the ingredients. There should be
some transparent model-theoretic-geometric intuition behind what is going
on, but I did not find it.
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Lemma 6.21 Suppose E is algebraically closed and p(x) = tp(a/E) has
finite order > 1. Suppose also p(x) is not strongly stationary. Then for some
k > 0, SUk(p[k]) > 1.

Sketch proof. Let F be algebraically closed and independent from a over
E, such that F.acl(E(a)) has a proper finite σ-invariant (Galois) exten-
sion L. Show that we can assume F to have finite transcendence degree
over E, so of the form acl(E(b)) where acl−(E, b) = acl−(E, σ(b)) and
mult−(σ(b)/E, b) = mult−(σk(b)/E, b, .., σk−1(b)) for all k, and similarly for
mult−(b/E, σ(b)). Also we may assume that E[b] is integrally closed in E(b)
and that the affine variety V over E of which b is the generic point is nonsin-
gular. Let E ′ = acl(E(a)) and let L1 be a finite σ-invariant Galois extension
of E ′(b). Let α ∈ L1 be such that L1 = E ′(b, α) and E ′[b, α] is the integral
closure of E ′[b] in L1. Then (b, α) is the generic point over E ′ of a normal
variety W and we have a canonical finite surjective morphism π : W → V .
Then, as in 6.17, π does not descend to E and thus (using a higher dimen-
sional version of 6.18), the ramification divisor of π (a codimension 1 subset
of V ) is not defined over E, so has a component U not defined over E. U cor-
responds to a discrete rank 1 valuation v on E ′(b). Arguments as in the proof
of 6.16 show that we can find such U and a valuation w on E ′(σi(b) : i ∈ Z)
extending v such that σk(w) = w for some k > 0.
We have:
(i) w is 0 on E ′.
(ii) w is 0 on E(σi(b) : i ∈ Z) (as v, being not defined over E is 0 on E(b),
so on acl(E(b))).
Let E ′′ be the residue class field of w, and φ the corresponding map into E ′′

(union “infinity”). As w is invariant under σk, φ(σk) is an automorphism τ
of E ′′. By (i) and (ii) above, the restriction of φ to (E(σi(b) : i ∈ Z), σk) and
to (E ′, σk) are isomorphisms (with difference subfields of (E ′′, τ)). (E ′′, τ)
embeds in a saturated model N of ACFA. We may assume φ(E) = E. We
have
(iii) tp(φ(a)/E) in N equals tpk(a/E), and
(iv) qftpk(b/E) = qftp(φ(b)/E).
Now, φ(E ′(b)) is the function field of U over E ′, so tr.deg(φ(E ′(b)/φ(E ′)) =
tr.deg(E(b)/E)− 1 (= tr.deg(φ(E(b))/φ(E))).
So (*) tr.deg(φ(E(b)).φ(E(a))/E) = tr.deg((φ(E(a))/φ(E))+tr.deg(φ(E(b))/φ(E))−
1.
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Thus (*) tr.deg(φ(E(a))/φ(E(b)) = tr.deg(φ(E(a))/φ(E))− 1.
As φ was an isomorphism between (E ′, σk) and its image in (E ′′, τ), we
see from (*) that in (M̄, σk) there is algebraically closed K > E such that
tr.deg(E(a)/K) = tr.deg(E(a)/E) − 1. So, as tr.deg(E(a)/E) > 1 by hy-
pothesis, this shows that SUk(a/E) > 1, completing the proof sketch.

Theorem 6.22 (ACFA0) Let SU(tp(a/E)) = 1. Then either tp(a/E) is
strongly stationary, (of U-rank 1) and modular, or tp(a/E) is nonorthogonal
to the type of some element in the fixed field (in which case tp(a/E) has order
1).

Proof. We may assume E to be a saturated model. We prove the theorem by
induction on (the finite) order of tp(a/E)). If the order is 1 we are finished by
6.16. Suppose order is r > 1. If tp(a/E) is strongly stationary, it is modular
of U -rank 1 by 6.10. So suppose not and we will get a contradiction. By
the previous lemma, SUk(a/E) > 1 for some k. Standard “coordinatization”
methods show that p[k] (= type of a over E in (M̄, σk) is nonorthogonal to a
type of SU -rank 1. So there is E ′ > E indepemdent from a over E, and c such
that SUk(tp(c/E

′) = 1 and c ∈ acl(E ′(a)). Note that the order of tpk(c/E
′) is

< r. So we can apply the induction hypothesis. As a ∈ acl−(E ′(c, σ(c), ...) it
easily follows that tpk(c/E

′) is not strongly stationary. Thus it is nonorthog-
onal to fic(σk). We may assume e′ is a model and it is then not difficult to
find d such that σk(d) = d and in (M̄, σk), c is interalgebraic with d over E ′.
So d 6 inE ′ and d ∈ acl(E ′, a). So {d, σ(d), .., σk−1(d)} is in acl(E ′(a)) and by
elimination of imaginaries there is e ∈ Fix(σ), e /∈ E ′ with e ∈ acl(E, a). As
SU(tp(a/E ′)) = 1 it follows that tp(a/E) has order 1, a contadiction.

7 Limit structures - preliminaries

We start looking at the material in paper 2. A method is described for prov-
ing the dichotomy theorem for ACFA in all characteristics. There are a few
ingredients: the construction, from a type p of SU -rank 1 of a “limit struc-
tures”. This will not be a first order structure but a qf -universal structures
which lives in some strange way in our model (M̄, σ), and has a canonical
structure of Zariski geometry. The Zariski geometry theorem is claimed to
apply in this situation. Nonmodulairity of p implies an infinite field is defin-
able in the limit structure. One has then to show rthat this field is connected
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in some way to a fixed field back in (M̄, σ) which is nonorthogonal to p.
The construction of the limit structure is somewhat ring-theoretic. I will try
to do this construction in the TA context, and so isolate its model-theoretic
content.
In this section we cover the “preliminaries” section of [2] in the general TA
situation. So T is strongly minimal with QE, let’s say countable and com-
plete, and TA is as before. (M̄, σ) is a big saturated model of TA. We first
give a proof of Exercise 4.6.

Lemma 7.1 TA is qf -ω-stable. That is over any countable subset of (M̄, σ)
there are only countably many complete quantifier-free n-types, for all n < ω.

Proof. It is enough to prove this for n = 1. Fix countable A, say alge-
braically closed. Consider qftp(b/A). Note that qftp(b/A) is given by the
(quantifier-free) L−-type of the infinite tuple (b, σ(b), ...σn(b), ....) over A.If b
is “transformally generic” over A, namely {σi(b) : i < ω} is L−-algebraically
independent over A, then this data determines qftp(b/A). Similarly if b ∈ A
there is nothing to do. So we assume b has finite order > 0 over A. So for
some n ≥ 0, σn+1(b) ∈ acl−(A, b, .., σn(b)). We may choose n large enough
so that mult−(σn+1(b)/A, b, .., σn(b)) is smallest possible. Let q(x0, .., xn+1)
= tp−(b, σ(b), .., σn+1(b)/A). We claim that q determines qftp(b/A). So sup-
pose that tp−(c, σ(c), .., σn+1(c)/A) = q. We want to see that for all m > n,
tp−(c, σ(c), ..., σm(c)/A) = tp−(b, ..., σm(c)/A). Assume it is true for m and
prove it for m + 1. Note that tp−(σm−n(b), .., σm(b), σm+1(b)/A) = σm−n(q)
= tp−(σm−n(c), .., σm+1(c)/A). Our assumptions mean that

tp−(σm+1(b)/A, σm−n(b), .., σm(b)) has a unique extension overA, b, .., σm(b).
The same is thus true with c in place of b and we are finished.

Remark 7.2 (i) The same proof shows that if b is an arbitrary finite tuple,
then qftp(b/A) is determined by the following data: tp−(b, ...., σn+1(b)/A)
where n is chosen so that first the Morley rank, and secondly the Morley
degree of tp−(σn+1(b)/A, b, .., σn(b)) is minimized.
(ii) For A any σ-closed subset, and b a tuple, the right limit degree of b over A
(rld(b/A)), is defined to be min{mult−(tp−(σn(b)/A, b, ..., σn−1(b)) : n < ω}
if this exists. Note that that rld(b/A) is an invariant of clσ(A, b). One can
also define left limit degree. If b ∈ acl−(A), then rld(b/A) = lld(b/A) =
ld(b/A).
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(iii) With notation as in (ii). Assume c ∈ clσ(A, b), and let C = clσ(A, c).
Show that ld(b/A) = ld(b/C).ld(c/A).
(iv) Let A be σ-closed. Let B = clσ(A, b) where b ∈ acl−(A). Then B is of
the form dcl−(A, b′) for some finite tuple b′ if and only if ld(b/A) = 1.

In these preliminaries we study extensions of σ from a σ-closed set A to its
algebraic closure, and then define the eventual S-rank.

Definition 7.3 Suppose A is σ-closed, and a ∈ acl−(A). Then a is said to
be benign over A, if for any n, tp−(a/A)∪ tp−(σ(a)/A)∪ ...∪ tp−(σn(a)/A) |=
tp−(a, σ(a), .., σn(a)/A).

Exercise 7.4 If a is benign over A then all extensions of σ|A to clσ(A, a)
are isomorphic over A.

Proof. Let τ be an extension of σ to clσ(A, a). Define f to be the identity
on A, and f(σi(a)) = τ i(a) for i ∈ Z.

Lemma 7.5 (Assume T has EGI.) Suppose A ⊆ B ⊆ C are σ-closed sets
with both B and C Galois (not necessarily finite) extensions of A. Let C0 be
the union of all σ-closed subsets of C which contain B and are of the form
dcl−(B, c) for some finite tuple c from C. Then
(i) C0 is a Galois extension of A.
(ii) Suppose also that C = clσ(B, c) for some finite tuple c. Then C0 =
dcl−(B, c′) for some finite tuple c′, and there is a sequence C0 ⊆ C1 ⊆ ...Cm =
C of σ-closed sets, each Galois over A such that Ci is benign over Ci−1 for
each i ≥ 1.

Proof. (i) Suppose dcl−(B, c) is σ-closed. Let c = c1, c2, .., cn be the solutions
to tp−(c/B) (all in C, by hypothesis). By the proof of 6.2 ((2) implies (4)),
dcl−(B, c1, .., cn) is σ-closed, hence is contained in C0.
(ii) First we leave it as an exercise to show that C0 = clσ(B, c

′) for some
finite tuple c′. But then by definition of C0 by expanding c′ we have C0 =
dcl−(B, c′).
For the rest , we may assume that C 6= C0. Thus (using Remark 7.2, (iii)
and (iv)),
(*) for each finite b ∈ C \ C0, ld(b/C0) > 1.
We construct C1. Let D be such that C0 ⊂ D ⊆ C, D is σ-closed and Galois
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over A, and ld(D/C0) = N is least possible (it has to be > 1 by (*)). Now let
C1 be largest such that D ⊆ C1 ⊆ C, D is σ-closed, and ld(C1/D) = 1. As in
(i), C1 is Galois over A. Moreover by Remark 7.2 (iii), ld(C1/C0) = N , and
the same is true for any σ-closed D′ contained in C1 and properly containing
C0 which is Galois over A.
Claim. C1 is benign over C0.
Choose α such that C1 = clσ(C0, α), mult−(σ(α)/C0, α) = N , dcl−(C0, α) is
Galois over A, andmult−(α/C0) is least possible. Consider E = dcl−(C0, α)∩
dcl−(C0, σ(α)). If E = C0 then it follows that C1 is benign over C0. (In fact
it just follows that tp−(α/C0) ∪ tp−(σ(α)/C0) |= tp−(α, σ(α)/C0) which is a
bit weaker than what is required, but a similar argument will deal with this
case too, I think.) So assume E properly contains C0. Note that E is Galois
over A, as is its σ-closure. Let E = dcl−(C0, β). Then mult−(σ(α)/E) = N
(why?, model theory plus EGI). On the other hand, by the choice of D and
C1, mult

−(σ(β)/E) = N . As σ(β) ∈ dcl−(C0, σ(α)) it follows (Galois the-
ory?) that σ(α) ∈ dcl−(C0, β, σ(β)), whereby C1 is also equal to clσ(C0, β).
But clearly, mult−(β/C0) < mult−(α/C0), so we contradict minimal choice
of the latter. This proves the claim (modulo the parenthetical remark above).

Now we can continue, as in the construction above to find C0 ⊂ C1 ⊂ C2....
inside C, each Ci+1 being σ-closed, and Galois over A and benign over Ci.
We have to reach C after a finite number of steps. (Why?)

Here is a preliminary application.

Lemma 7.6 (Assume T has EGI.) Let A be σ-closed. Let B be a finite
Galois extension of A and let C be the σ-closed set generated by B. Then for
any τ ∈ Gal(B/A) there is k < ω and an extension τ ′ of τ to C such that τ ′

commutes with σk.

Proof. Let A ⊆ C0 ⊂ C1 ⊂ ... ⊂ Cn = C be as given by the previous lemma.
Namely these are all σ-closed Galois extensions of A, C0 is a finite Galois
extension of A, and Ci+1 is benign over Ci. By enlarging B we may assume
that B contains C0.
Let Gal(C0/A) have cardinality m. σ acts by conjugation on Gal(C0/A), so
σm commutes with τ |C0. Now we want to extend τ |C0 to τ1 ∈ Gal(C1/A)
in such a way that τ1 and τ are compatible (in the obvious sense, namely
there union is elementary) and such that some power of σ commutes with τ1.
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(Note that τ1 will be compatible with τ just if the restriction of τ1 to C1 ∩B
agrees with τ .) We can find B1, finite Galois over A such that B ∩C1 ⊆ B1,
C1 = clσ(B1), and such that

⋃
tp−(σj(B1)/C0) : j ∈ Z |= tp−((σj(B1)j/C0)

(namely witnessing benignness of C1 over C0).
Let D1 = dcl−(B1, σ(B1), ..σ

m(B1)), a finite Galois extension of C0, contain-
ing B∩C1. Let τ ′ be an extension of τ |(B∩C1) to (an automorphism of) D1.
We will extend τ ′ to τ1 ∈ Gal(C1/A): on σjm(D1), τ1 will be σjm.τ ′.σ−jm.
Note that, as σjm|C0 commutes with τ |C0, τ1 agrees with τ on C0. More-
over, the assumption on B1 (witnessing benignness of C1 over C0) shows that
τ ′ ∈ Gal(C1/A).
A similar argument allows us to construct inducively τi ∈ Gal(Ci/A) com-
patible with τ and commuting with a suitable power of σ, for i = 2, ..,m.

In section 6, given p(x) = tp(b/A) we defined p[k] to be the type of b over
A in the reduct (M̄, σk). Similarly if q = qftp(b/A), we let q[k] denote the
quantifier-free type of b over A in (M̄, σk), and note this depends just on q
(rather than b). With above notation, SU(p)[k] (funny notation) denotes the
SU -rank of p[m] in the structure (M̄, σk) (rather than the SU -rank of the
partial type p[k] in (M̄, σ). We will also define orderk(b/A) to be the U -rank
in M̄ of tp−((σjk(b))j∈Z/A) (so the “transcendence degree” of A(σjk(a) : j ∈
Z) over A).

Exercise 7.7 (ACFA0) (i) Let a be a generic solution over E of σ2(a) = a,
and let p(x) = tp(a/E). Then SU(p) = 2 and SU(p)[2] = 1.
(ii) Let a be a generic solution over E of σ2(x) = x2, and p(x) = tp(a/E).
Then SU(p) = 1 and SU(p)[2] = 1.
(iii) Let a be as in (i) and let b = σ(a). Let q(x, y) = tp(a, b/E). Then
SU(q) = 1 and SU(q)[2] = 2.

Proposition 7.8 (T has EGI.) Let A be σ-closed, and let a be an element
in acl−(A). Then there is k such that whenever tp−(b/A) = tp−(a/A) then
qftp(a/A)[k] = qftp(b/A)[k].

Proof. Let B the finite Galois extension of A generated by a, and let C be
clσ(B). Let τ ∈ Gal(B/A) such that τ(a) = b. By Lemma 7.6, τ has an
extension to τ ′ ∈ Gal(C/A) which commutes with σk for some k. It follows
that a and b have the same quantifier-free type over A in (C, σk) (and so in
(M̄, σk).
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Proposition 7.9 (T has EGI.) Let A be σ-closed. Let B be a finite Galois
extension of A and let C = clσ(B). Then there is k such that whenever σ1, σ2

are extensions of σ in Gal(C/A) then (C, (σ1)
k) and (C, (σ2)

k are isomorphic
over A.

Proof. Let C0 be as in the proof of Lemma 7.6. So
(i) C0 is a finite Galois extension of A which is σ-closed, and is maximal such
among subsets of C, and
(ii) C0 has no finite proper (Galois) σ-closed extensions inside C.
By (i), C0 is σi closed for i = 1, 2. Let τi be the restriction of σi to C0.
So τi is an elementary permutation of C0 agreeing with σ on A. We leave
it to the reader (using finiteness of Gal(C0/A)) to prove that for some k,
(τ1)

k = (τ2)
k. Then, using (ii) and copying the proof of 6.3, one sees that

(C, (σ1)
k) is isomorphic to (C, (σ2)

k) over A. Or one can do this directly
using the Ci.

Here is a more useful version of the above proposition. In fact it seems that
the next two propositions are all that matters. Maybe even the benignness
business is not needed.

Proposition 7.10 (T has EGI.) Let A be σ closed. Let f be an isomor-
phism of A with some A′ ⊆ (M̄, σ). Let C be a Galois extension of A which
is finitely generated as a difference set. Then for some k, f extends to an
isomorphism of (C, σk) with (C ′, σk) for some C ′ ⊂ M̄ .

Proof. Let C0 ⊂ C1 ⊂ ... ⊂ Cm = C be as before. C0 is a difference set
which is a finite Galois extension of A. f extends to an L− isomomorphism
f ′ betweeen C0 and some C ′

0. As Gal(C0/A) is finite, f ′ commutes with
σk for some k. Thus f ′ is an isomorphism between (C0, σ

k) and (C ′
0, σ

k).
We want to extend to C1. As C1 is benign over C0, it is σk generated by
some b ∈ acl−(C0) such that the types tp−(σjk(b)/C0) are weakly orthogonal.
The same is thus true of the images of these types under f ′. f ′ then clearly
extends to an isomorphism f ′′ between (C1, σ

k) and some (C ′
1, σ

k). Continue.
(Is there an easier proof using the proof of 6.3?)

Proposition 7.11 (T has EGI.) Suppose f is an isomorphism between
(A, σ) and (A′, σ) where A and A′ are σ-closed. Let B = clσ(A, b) for some
finite tuple b. Then for some k, f extends to an isomorphism between (B, σk)
and (B′, σk) for some A′ ⊂ B′(⊂ M̄).

40



Proof. Let b′ be the infinite tuple (σj(b))j. Then tp−((b′/acl−(A)) is defin-
able over some C = clσ(A,α) for some finite tuple α ∈ acl−(A). (Exercise.)
Moreover we may assume that C is Galois over A. By the previous proposi-
tion, f extends to an isomorphism f ′ between (C, σk) and (C ′, σk) for some
A′ ⊆ C ′ ⊆ M̄ . Let B0 = dcl−(C, b′). Note B0 is closed under σ hence under
σk. Let B′

0 be a substructure of a model of T which contains C ′ and τ an
elementary permutation of B′

0 extending σk|C ′, and f ′′ an extension of f ′

to an isomorphism between (B0, σ
k) and (B′

0, τ). tp−(B′
0/C

′) clearly has a
unique extension to an L− type over acl−(C ′) (= acl−(A′)). It follows that
τ and σk|acl−(A′) have a common extension τ ′ to a substructure B′′ of a
model of T where B′ = dcl−(acl−(A′), B′

0). The properties of TA imply that
we can assume that B′ ⊂ M̄ and that τ ′ is precisely σk|B′′. In particular the
restriction of f ′′ to B works.

We assume now that T has EGI. We now want to define the ”eventual
SU -rank”. We need a few remarks first.

Lemma 7.12 Let A be σ-closed. Suppose that k ≥ 1 and order(b/A) =
orderk(b/A) < ω. Then SU(b/A) ≤ SU(b/A)[k].

Proof. Note first that for any σ-closed B ⊃ A, order(b/B) = orderk(b/B)
(why?). Now suppose SU(b/A) = n. So there are σ-closed sets A = A0 ⊂
A1 ⊂ A2 ⊂ ...An such that order(b/Ai+1) < order(b/Ai) for i = 0, .., n − 1.
By the previous remark the same is then true with orderk replacing order.
Hence, SU(b/A)[k] ≥ n.

Lemma 7.13 Let A be σ-closed. Suppose ord(b/A) is finite. Then limn≥1SU(b/A)[n!]
exists.

Proof. Note first that if 1 ≤ k ≤ l and k divides l then orderk(b/A) ≥
orderl(b/A). Fix k such that orderk(b/A) = r is least possible. So by the
previous lemma (applied to reducts (M̄, σm!) for m ≥ k, we see that for each
k ≤ m ≤ n, SU(b/A)[m!] ≤ SU(b/A)[n!] ≤ r. So the limit exists.

Corollary 7.14 Suppose k ≥ 1, A is σk closed and orderk(b/A) is finite
Then limn≥kSU(b/A)[n!] exists.

Proof. Apply the previous lemma to (M̄, σk) (essentially).

This the following definition makes sense.
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Definition 7.15 Suppose that A is σk closed and orderk(b/A) is finite for
some k ≥ 1. Then we define the eventual SU-rank of b over A, evSU(b/A)
to be limn≥kSU(b/A)[n!].

Remark 7.16 (i) Let b be a generic solution of σ2(x) = x over σ-closed A.
Then SU(b/A)[m] = 2 if m is odd and = 1 if m is even. So limn≥1SU(b/A)[n]
does not exist, but evSU(b/A) = 1.
(ii) Suppose tp(b/A)[m] = tp(c/A)[m] for some m. Then evSU(b/A) =
evSU(c/A).
(iii) evSU(b/A) = evSU(b/acl−(A).
(iv) Let A be sigma-closed, SU(a/A) < ω and SU(b/A) < ω. Let B =⋂{acl−(clσn(A, b)) : n ≥ 1}. Then evSU(a, b/A) = evSU(a/B)+evSU(b/A).
(Exercise using additivity of SU-rank.)

Here is the rather surprising conclusion of the results of this section.

Proposition 7.17 Suppose A is σ-closed and order(b/A) is finite. Then
evSU(b/A) depends only on qftp(A, b). Namely, suppose f is an isomor-
phism of clσ(A, b) with clσ(A

′, b′) which takes A onto A′ and b to b′. Then
evSU(b/A) = evSU(b′/A′).

Proof. Suppose that evSU(b/A) ≥ n+ 1. Let m be such that evSU(b/A) =
SU(b/A)[m] and for any r > m such that m divides r, orderm(b/A) =
orderr(b/A). Working now in (M̄, σm) let c be such that SU(b/A, c)[m] ≥ n,
and b forks with c over A in (M̄, σm). A Morley sequence argument shows
that we may assume that SU(c/A)[m] is finite. So we may assume that
σm(c) ∈ acl−(A, c). So, as b forks with c over A in (M̄, σm), our assumptions
above on m imply
(*) clσr(A, b) forks with A, c over A in the model M̄ of T , for all r divisible
by m.
By 7.12, evSU(b/clσm(A, c)) ≥ n. By 7.11 f extends to an isomorphism f ′

of (clσm(A, b, c), σlm) with a σlm-closed substructure of M̄ , for some l. Let
f(c) = c′. By (*), b′ forks with c′ over A in (M̄, σmn) whenever l divides n.
On the other hand, by the induction hypothesis, evSU(b′/clσml(A′, c′)) ≥ n.
It follows that evSU(b′/A′) ≥ n+ 1.
We have shown that evSU(b/A) ≥ n + 1 implies evSU(b′/A′) ≥ n + 1. By
symmetry we get equality of evSU(b/A) and evSU(b′/A′).

Problem 7.18 Is it the case that for b of finite order over A, SU(b/A)
depends only on qftp(b/A)?
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8 Limit structures

In this section A will be algebraically closed (in (M̄, σ)), and (M,σ) an |A|-
saturated (but still small) elementary substructure of (M̄, σ) containing A.

Definition 8.1 (i) The complete quantifier-free type p(x) = qftp(a/A) is
said to be basic if (a) (ALGm) for some m ≥ 1, σm(a) ∈ acl−(A, a), and (b)
evSU(a/A) = 1.
(ii) p(x) = qftp(a/A) is said to be semi-basic if it satisfies (a) above, and
also there exist a1, .., an, such that qftp(ai/A) is basic, the ai are independent
over A in the sense of T , and acl−(A, a) = acl−(A, a1, .., an).

Note that by 7.17, (i) makes sense. (Eventual rank of tp(a/A) depends only
on qftp(a/A)).

Definition 8.2 Let p be semi-basic. Then χp(M) is the set of those a ∈ M
such that a realises p[m] for some m ≥ 1. χp is the same thing but allowing
any a (not just in M)

Remark 8.3 (i) χp depends only on the ∼-equivalence class of p where we
put p ∼ q if p[m] = q[m] for some m. (Zoe calls the ∼-class of a basic type
p a virtual basic type.) Similarly for a virtual semibasic type.
(ii) Suppose p(x) is semi-basic. Let a, a1, .., an be as in Definition 8.1. Let
b ∈ χp(M). Then there are b1, .., bn, L

−-independent over A, each realising
a basic type over A, such that acl−(A, b) = acl−(A, b1, .., bn).
(iii) Let p be as in (ii). Then evSU(p) = n.

Proof. (ii) Suppose a satisfies AGLm. Let l be divisible by m be such that b
realises p[l]. By 7.11, there are k and b1, .., bn such that qftp(a, a1, .., an/A)[kl] =
qftp(b, b1, .., bn/A)[kl]. This is enough.
(iii) Left to you.

We now want to define a structure on χp(M). For some reason, they consider
a many-sorted structure with sorts corresponding to the semi-basic types.
They introduce various “coordinate rings” and virtual ideals. Working in
TA we want to do this with formulas. Why do they work with complete
quantifier-free types rather than quantifier-free formulas? Probably to get
“smoothness” of the Zariski geometries in the ACFA case. Anyway, here is
my tentative definition.
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Definition 8.4 (i) χ(M) will be a many-sorted structure whose sorts are the
χp(M) for p semi-basic, in the following language L∗. Let p1(x1), .., pn(x1) be
semi-basic types. Let φ(x1, .., xn) be a quantifier-free formula over A. Then
Rφ will be a relation symbol in L∗, with interpretation in χ(M) as follows: let
Qφ be the set of complete quantifier-free types q(x1, .., xn) over A containing
φ(x1, .., xn). Then for (a1, .., an) ∈ χp1(M) × ... × χpn(M), (a1, .., an) ∈ Rφ

iff for some q ∈ Q and some m, (a1, .., an) realises q.
(ii) Similarly, we define a structure on χp(M) for a fixed p.

I will work with χp(M), where p is basic. We would like to prove:

Theorem 8.5 Suppose p(x) is a basic type over A. Then χp(M), as an
L∗-structure, is qf-saturated, qf-homogeneous, and qf-strongly minimal.

Remark 8.6 (i) qf-homogeneity means that any partial isomorphism be-
tween small subsets of the L∗-structure χp(M) extends to an automorphism.
qf -saturation means that any collection of quantifier-free formulas over a
small subset of χp(M), evety finite subset of which is realised in χp(M), is
itself realised in chip(M). Qf-strong minimality means that any qf-definable
subset of χp(M) is finite or cofinite. Moreover there should be a finite bound
on the finite sets so defined, as the parasmeters vary, for a given qf-formula
of L∗.
(ii) As we pointed out before (M̄, σ) is qf-ω-stable: there are only countably
many quantifier-free types over any countable set. One can then define Mor-
ley rank etc. for qf-formulas, and try to work inside a qf-strongly minimal
set. One will obtain qf-saturation (from saturation of the ambient structure)
but not qf-homogenity.
(iii) Essentially all model theory goes through in the qf-saturated, qf-homogeneous
context.

From now on, p is basic. Underlying what will be done now is quantifier-
free stability, which I will use freely. The main point, as far as I can see
is:

Lemma 8.7 Suppose b, c are tuples of the same length from the L∗-structure
χp(M). Then b and c have the same quantifier-free L∗-type in χp(M) iff
for some m, qftp(b/A)[m] = qftp(c/A)[m] (namely b and c have the same
quantifier-free type over A in (M̄, σm)).

44



Proof. Right to left is easy, but I’ll do it nevertheless. Suppose qftp(b/A)[m] =
qftp(c/A)[m]. Let φ(y) be a quantifier-free formula over A (in L). Sup-
pose that Rφ(b). This means that there is a complete qf-free type q(y)
over A containing φ(y), such that b satisfies q[l] for some l. Note that
qftp(b/A)[ml] = qftp(c/A)[ml], so qftp(c/A)[ml] = q[ml]. Thus c satis-
fies Rφ too.
Left to right is a bit more problematic.
Suppose b and c have the same qf-L∗-type in χp(M). To make life easy I will
assume that b = (b1, b2) (bi ∈ χp(M)) and similarly for c.
Claim 1. evSU(b/A) = evSU(c/A).
Proof. Exercise.
If evSU(b/A) = 2, then for some m, SU(p)[m] = 1 and SU(b/A)[m] =
SU(c/A)[m] = 2. The qf-theory implies that qftp(b/A)[m] = qftp(c/A)[m].
Similarly if evSU(b/A) = 0 then b ∈ A and there is nothing to do. So suppose
evSU(b/A) = 1. Without loss of generality SU(p)[k] = 1 for all k, and for a
realising p, σ(a) ∈ acl−(A, a). (Pass to (M̄, σr) for sufficiently large r.) So
σ(b2) ∈ acl−(A, b1). Then there is a qf-formula over A, ψ(x1, x2), witnessing
this, and such that there is a unique nonalgebraic qf-type q(x1, x2) over A
containing ψ. Then Rψ holds of b, so also of c. As evSU(c/A) = 1 it follows
that c realises q[m] for some m.

Lemma 8.8 (Qf-ω-homogeneity of chip(M).) Suppose that b, c are finite
tuples from χp(M) of the same length with the same quantifier-free L∗-type.
Let d ∈ χp(M). Then there is e ∈ chip(M) such that (b, d) and (c, e) have
the same qf-L∗-type.

Proof. By the previous lemma, for some m, qftp(b/A)[m] = qftp(c/A)[m].
So there is an isomorphism f overA between (clσm(A, b), σm) and (clσm(A, c), σm)
fixing A pointwise and taking b to c. Let B = clσm(A, b, d). By 7.11, there
is r such that f extends to an isomorphism f ′ between (clσm(B), σmr) and
(B′, σmr) for some B′ ⊂ M̄ . Let e = f ′(d). By saturation of (M,σ) we may
assme that e ∈ M , and so clearly e ∈ χp(M). Note that qftp(b, d/A)[mr] =
qftp(c, e/A)[mr] and so by the previous lemma, (b, d) and (c, e) have the
same qf-L∗-type in χp(M).

Lemma 8.9 (Qf-ω-saturation of χp(M).) Suppose that b is a finite tuple
from χp(M). Let Σ(z) be a set of qf-L∗-formulas over b which is finitely
satisfiable in χp(M). Then Σ(z) is satisfiable in χp(M).
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I will start things over a bit. To make a life a bit easier I will assume
that the complete qf type p(x) over A has order 1. p(x) = qftp(a/A),
U(tp−(a/A)) = 1, and σ(a) ∈ acl−(A, a).

Lemma 8.10 Let φ(x1, .., xn) be a quantifier-free formula over A. Let Q be
the set of complete qf types q(x1, .., xn) over A such that q(x1, .., xn) contains
p(xi) for each i. Fix m. Then there is a quantifier-free formula ψ(x1, .., xn)
in L|σm such that for any realizations b1, .., bn of p[m], qftp(b1, .., bn/A)[m] =
q[m] for some q ∈ Q if and only (b1, .., bn) satisfies ψ.

Proof. Again to make life easy, let’s assume that φ(x1, x2) implies that x1

and x2 are interalgebraic (in either equivalent sense) over A. Fix m, and let
Ψm(x1, x2) be all formulas overA in L|σm which are consequences of φ(x1, x2).
So there is ψ(x1, x2) ∈ ψm which implies x1 and x2 are interalgebraic over
A. So we can choose such ψ such that there are b1, b2 realising p[m] with
ψ(b1, b2 and such that the (finite) set of solutions of ψ(b1, x2) is minimized.
This formula should work (??)

I will come back to this stuff sometime. I believe these limit structures
can be constructed in TA.

9 Examples in ACFA

I will look at the interesting examples from section 6 of [1]. These concern
the model theory of finite rank types in ACFA. So we will work in some
saturated model (M̄, σ) of ACFA.
We start by looking at the difference equation φb(x): σ(x) = x2 + b, in the
characteristic 0 case. We will prove

Proposition 9.1 (ACFA0.) Suppose that σ(b) 6= −b2/2. Then φb(x) is
strongly minimal and is trivial.

We give some explanation. To say that φb(x) is strongly minimal means
that it cannot be partitioned into two infinite definable subsets. This is
equivalent to, for every set E containing b, there is a unique nonalgebraic
type over E containing φb(x). To be trivial, means that whenever a1, .., an, c
are solutions of φb(x), and c ∈ acl(b, a1, .., an) then c ∈ acl(b, ai) for some
i. It would be equivalent if we replaced b by any set containing b. The
proof of the proposition will go through several remarks and observations.
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newline Note first that φb(x) is an order 1 equation, thus every nonalgebraic
complete type extending the formula has SU -rank 1. (In other words φb(x)
has SU -rank 1.)

Remark 9.2 φb(x) is qf-strongly minimal. Namely, φb(x) cannot be par-
tioned into two qf-definable infinite sets.

Proof. What this amounts to is that over any E containing b, there is a
unique nonalgebraic complete quantifier-free type containing φb(x). So let
E be algebraically closed, and a realise φb(x) with a /∈ E. Now tp−(a/E)
is uniquely determined. So as σ(a) = a2 + b, tp−(a, σ(a), σ2(a), .., /E) is
uniquely determined. So therefore so is tp−((σi(a)i/E), but the latter is
precisely qftp(a/E).

E will denote an algebraically closed set containing b. Note that for a /∈ E
satisfying φb(x), tp(a/E) is unbounded (as for negative k, mult−(σk(a)/E, a)
is arbitrarly large). So by Proposition 6.16 we have tp(a/E) is (strongly) sta-
tionary, thus of U -rank 1. This does not necessarily imply strong minimality.
We will first prove:

Lemma 9.3 Let a be a nonalgebraic (over E) solution of φb(x). Suppose
σ(b) 6= −b2/2. Let K = clσ(E, a). Then K has no finite σ-invariant (Galois)
extension.

Proof. Suppose for sake of contradiction that L is a (proper) finite Galois
σ-invariant extension of K. L has the form K(c) for some finite tuple c. Now
tp−(c/K) is determined by some L−-formula ψ(y, e). As e ∈ K = clσ(E(a)),
it follows that for some n, σn(e) ∈ E(a), and ψ(σn(b), σn(e)) holds. Let
L1 = E(a, σn(b)). It follows that L1 is a Galois extension of E(a)), that
[L : K] = [L1, E(a)] and that L = K.L1. Moreover σ(L1) ⊆ L1, σ

−1(L1) =
E(σ−(a)).L1 and K is linearly disjoint from L1 over E(a).
We will now aim for a contradiction by looking at ramification issues, as in
section 6. E(a) is the function field of P1(E) with generic point a. L1 is the
function field of a smooth projective curve X, and the inclusion E(a) < L1

induces a surjective finite-to-one morphism π : X → P1 defined over E.
Throw away from X the preimage of ∞ under π, and we have an induced
surjective morphism pi from X ′ onto A1, where X ′ is now affine. As L1 is a
proper extension of E(a), π is generically n to 1 for some n > 1. As A1(C) is
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simply connected, π could not be a covering map, and thus the set of points
α ∈ E such |π−1(α)| < n is nonempty (and finite). Let T denote this set.
The inclusion E(a) < E(σ−(a)) corresponds to the surjective morphism f :
A1 → A1 defined by f(x) = x2 + σ−1(b). Note that the only point in A1(E)
ramifying for f is σ−(b). σ−1(L1) which is remarked above to be equal to
E(σ−(a)).L1 is the function field of the curve Y = σ−1(X) which projects
onto P1 by σ−1(π) and also onto X by g (and onto P1 by π.g). Any element
c of Y is determined by its images under σ−1(π) and g.All these surjective
morphisms of curves are Galois.

Claim 1. Suppose α ∈ T and α 6= σ−1(b). Then ±
√
σ(α)− b ∈ T .

Proof. α has two distinct preimages under f : ±
√
α− σ−1(b). They must

both both ramify under σ−1(π) (why?). Apply σ to see that ±
√
σ(α)− b

ramifies for π.
Claim 2. Suppose σ−1(b) ∈ T with ramification index e 6= 2. Then 0 ∈ T .
Proof. The unique preimage of σ−(b) under f is 0. Then the number of
preimages of 0 under σ−1(π) must be n/e or n/(e/2) (by counting points in
the preimage of σ−(b) under π.g). In particular 0 ramifies under σ−(π). So
by applying σ, 0 ramifies under π.

For each m let pm(x) be the polynomial over E such that σm(a) = pm(a).
Note that all monomials in pm have even degree, and so pm is symmetric
(pm(x) = pm(−x)). In particular:
(*) if both α and −α are solutions of pm(x) = σm(x), then α = 0.
We aim towards showing that T = {σ−1(b)} (from which we shall derive a
contradiction). Let S = T \ {σ−1(b)}.
Claim 3. There is m such that for all α ∈ S, pm(α) = σm(α).
Proof. Let R be the following (directed) binary relation on S: αRβ iff
β2 = σ(α) − b. By Claim 1 (and the assumption that b 6= 0, if α ∈ S
then there is β ∈ S such that αRβ. Fix α ∈ S. It is not hard to show
that if α = α1, α2, ..., αk is a maximal sequence of distinct elements of S
such that αiRαi+1 for i = 1, .., k − 1 then αkRα. It follows easily that
pk+1(α) = σk+1(α), and the same for any multiple of k + 1 in place of k + 1.
As S is finite, we can find suitable m.

We obtain, from Claim 3 and (*):
Claim 4. If both α and −α are in S, them α = 0.
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Claim 5. T contains σ−1(b).
Proof. If not, then as T is nonempty, so is S. Let m be as in Claim 3. Let
α ∈ S. As in the proof of Claim 3, we have an R-path in S = T from α to
itself. In particular there is β ∈ S such that βRα. By Claim 1, −α is also in
S. By (*), α = 0. By Claim 1, ±

√
−b are in S. So, as we have just shown

b = 0, a contradiction.

Claim 6. The ramification index of σ−1(b) under π is 2.
Proof. Suppose not. Then by (Claim 4 and) Claim 2, 0 ∈ T . So 0 ∈ S. As
in the proof of Claim 3, there is α ∈ S such that αR0. But then σ(α) = b so
α = σ−1(b), a contradiction.

Claim 7. T = {sigma−1(b)}
Proof. Note by the proof of Claim 3 and Claim 4 that S is a subset of
{0,−σ−1(b)}. We will first suppose that 0 ∈ S (and get a contradiction).

Then ±
√
−b ∈ T by Claim 1. So, by Claim 4, one of them, say +

√
( − b)

equals σ−1(b). Then easily (*) σ(b) = −b2. Then −σ−1(b) ∈ S. So, by claim
1, ±β ∈ T , where β2 = σ(−σ−1(b)) − b = −2b 6= 0. So β = σ−1(b), and we
see that σ(b) = −b2/2, contradicting (*). Now suppose that −σ−1(b) ∈ S.
As before, we see that (σ−(b))2 = σ(−σ−1(b)) − b and so σ(b) = −b2/2,
contradicting our assumption.

By Claim 7 and Claim 6, π it is apparently standard (Hurwitz theorem??)

to deduce that L1 = E(a,
√
a− σ−1(b)). Given this, as σ(a) = a2 + b, a =

σ−1(a2) + σ−1(b), whereby σ−1(a) is a square root of a − σ−1(b). It follows
that L1 = E(σ−1(a)), contradicting their linear disjointness over E(a). This
proves the lemma.

Now suppose that a1, a2 are nonalgebraic (over E) solutions of φb(x) (b 6= 0).
As remarked before there is an isomorphism f between (clσ(E(a1))), σ) and
(clσ(E(a2))), σ) which is the identity on E and takes a1 to a2. By the lemma,
and Proposition 6.3, f extends to an isomorphism between (acl(E(a1)), σ)
and acl(E(a2)), σ), whereby a1 and a2 have the same type over E. This
proves the strong minimality of φb(x).

Before completing the proof of Proposition 9.1 (by showing the triviality of
φb(x)) we point out.

Lemma 9.4 Suppose that for some odd prime e, and primitive eth roots of

49



unity ζ, σ(η) = (η)2. Then the formula φ0(x) (σ2(x) = x2) is not strongly
minimal.

Proof. We follow notation as in the proof of the lemma. (a is a generic
solution of φ0(x) over E, where E is algebraically closed, andK = clσ(E(a))).
Let L = K(b) where b is an eth root of a (e as in the hypothesis). Note that
E(a, b) is linearly disjoint from K over E(a). As σ(a) = a2, we obtain
an automorphism σ′ of L extending σ by defining σ′(b) = b2. Note that
Gal(K(b)/K) = {τj : j = 1, .., e} where τj(b) = ζj.b. It is clear that σ′

commutes with each τj in Aut(K(b). Hence, σ has e extensions to Aut(K(b)),
up to isomorphism over K. This shows that there are at least e completions
of φ0(x) to a complete nonalgebraic type over E. So φ0(x) is not strongly
minimal.

We now return to the case where σ(b) 6= −b2/2.

Lemma 9.5 Suppose that c ∈ acl(E(a)) \ E, and c also satisfies φd(x) for
some d ∈ E. Then c = σk(a) for some k ∈ Z.

Proof. We may replace c by σr(c) whenever we want. Let K = clσ(E(a)).
Suppose, by way of contradiction that mult−(c/K) = s > 1. We can find
m < 0 such that mult−(c/E(σm(a)) = s. So replacing c by σm(c) we have
that mult−(c/E(a)) = s, and moreover mult−(σ(c)/E(a)) = s too. Thus
E(a, c) = E(a, σ(c)). It follows, by automorphism, that clσ(E(a, c)) =
clσ(E(a))(c), so we have a proper finite algebraic extension of K which is
σ-invariant. This contradicts Lemma 9.3 We have shown that c ∈ K.
Claim. E(c) = E(σk(a)) for some k.
Proof. There is minimal j ∈ Z such that σj(a) ∈ E(c) (why???). We
may assume j = 0, so E(a) ⊆ E(c). We want to show that E(c) ⊆ E(a).
Note that there is a smallest nonnegative k such that E(c) ⊂ E(σ−k(a)).
Suppose for the sake of contradiction that k > 0. In fact, suppose for sim-
plicity that k = 1 (similar argument in general). So c ∈ E(σ−1(a)), and
thus σ(c) ∈ E(a).Now mult−(c/E(σ(c)) = 2. Also mult−(a/E(σ(c)) = 2.
(Note that σ(a) ∈ E(σ(c)), so mult−(a/E(σ(c)) ≤ 2. If the latter is 1, then
also mult−(σ−1/E(a)) = 1, contradicting minimal choice of j above.) Now
mult−(a/E(c, σ(c)))) = 1, so we conclude that mult−(c/E(σ(c), a)) = 1.
Thus mult−(c/E(a)) = 1, which is either a contradiction or what we want.
OK.
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By the Claim we may suppose that E(a) = E(c). Thus c is obtained from
a by a linear fractional transformation over E: c = (α.a + β)/(γ.a + δ) for
some α, β, γ, δ ∈ E such that α.δ − β.γ 6= 0. Applying σ and looking at the
poles of the correspondinf=g rational function, we see that γ = 0, so we may
assume that c = α.a+ β (α 6= 0). Applying σ again we obtain
α2.a2 + 2αβa+ β2 + d = α.2̂ + α.b+ β.
Fromm this we conclude that β = 0 and α = 1, so c = a. This completes the
proof of the lemma.

We now complete the proof of the proposition (triviality of φb(x)). Let
a1, .., an, c be solutions of φb(x), such that c ∈ acl(b, a1, .., an). We may
assume (by induction) that c /∈ acl(b, a1, .., an−1). Let E = acl(b, a1, .., an−1).
By the previous lemma, c ∈ acl(b, an). Good.
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