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1 Overview

Overview

• I will take as a definition of model theory the study (classification?) of
first order theories T .

• A “characteristic” invariant of a first order theory T is its category Def(T )
of definable sets. Another invariant is the category Mod(T ) of models of
T .

• Often Def(T ) is a familiar category in mathematics. For example when
T = ACF0, Def(T ) is essentially the category of complex algebraic vari-
eties defined over Q.

• Among first order theories the “perfect” ones are the stable theories.

• Stability theory provides a number of tools, notions, concepts, for under-
standing the category Def(T ) for a stable theory T .

• Among stable theories are the theory of algebraically closed fields, the
theory of differentially closed fields, as well as the theory of abelian groups
(in the group language).

• An ingenious method, “Hrushovski constructions”, originally developed
to yield counterexamples to a conjecture of Zilber, produces new stable
theories with surprising properties.

• However, modulo the work of Sela, nature has provided us with another
complex and fascinating stable first order theory, the theory Tfg of the
noncommutative free group.

• One can argue that the true “algebraic geometry over the free group”
should be the study of Def(Tfg).
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• Some references are given at the end of the notes. The references (1), (2)
include all the material covered in the first section of these notes (and
much more).

• I have given several references (3)-(6) for stability and stable groups. But
let me mention here that the first chapter of reference (5) (my Geometric
Stability Theory) gives an exposition of the basics of stability and stable
groups, more or less in the style of these lecture notes.

2 Model Theory

Beginning model theory

• We fix a “language” L consisting of some relation symbols Ri, function
symbols fj and function symbols ck (countable if you wish), where each
Ri and fj comes equipped with an “arity” (positive integer). We impose
that the relation symbols include a privileged binary relation symbol =.

• From this, together with the logical connectives ∧, ∨, →, ¬, ∃, ∀, an
infinite supply of “variables” x0, x1, x2, .... and maybe some parentheses (,
), we build up the collection of first order L-formulas.

• Bear in mind that when L is Lg the language of groups, we have only func-
tion symbols for “multiplication” and “inversion” and a constant symbol
for the identity, and no relation symbols other than equality.

• In fact we first define L-terms: A constant symbol or variable is a term,
and if t1, .., tn are terms and f is an n-ary function symbol then f(t1, .., tn)
is a term.

• Now for L-formulas: If t1, .., tn are L-terms and R and n-ary relation
symbol then R(t1, ., tn) is an L-formula (called an atomic L-formula). E.G.
t1 = t2

• If φ, ψ are L-formulas, so are (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (¬φ), (∃xφ) and
(∀xφ) (where x is any variable).

• There is an obvious notion of an occurrence x of a variable in a formula φ
being “in the scope of a quantifier ∃ or ∀”, or as we say bound. The free
variables of φ are by definition the variables which have some non bound
occurrence in φ. EXAMPLE!!
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• If a formula φ has free variables among x1, .., xn we sometimes write φ
as φ(x1, .., xn). A formula with no free variables is called an L-sentence,
sometimes denoted by σ, τ, ...

• Now we bring in structures. By an L-structure M we mean a set (or
universe), sometimes notationally identified with M , together with for
each relation R, function f , or constant symbol c of L a corresponding
relation RM ⊆M× ..×M , function fM : M× ..×M →M , of appropriate
arities, and element cM ∈M . E.G. for L = Lg any group G = (G, ·,−1 , e)
is an Lg structure.

• Finally truth: for an L-structure M , and L-formula φ(x1, .., xn) and
a1, .., an in (the universe of)M , we can define (inductively) “M |= φ(a1, .., an)”,
in words “φ(x1, .., xn) is true in M when xi is assigned ai for i = 1, .., n”
or even “φ(x1, ., xn) is true of (a1, .., an) in M”.

• Again there are several steps involved. The first is for a term t(x1, .., xn)
(i.e. where the variables in t are among x1, .., xn) and a1, .., an ∈ M , to
define (inductively) tM (a1, .., an) (the interpretation of t in M when ai is
assigned to xi for i = 1, .., n. ).

• The next step, is for an atomic formula φ of the form R(t1, .., tk) with
(free) variables among x1, .., xn, and a1, .., an ∈ M , M |= φ(a1, .., an) if
(tM1 (a1, .., an), ..., tMk (a1, .., an)) ∈ RM .

• The key inductive step involves the quantifiers. So suppose φ has free
variables among x1, .., xn and has the form ∃xn+1ψ (so ψ has free variables
among x1, .., xn, xn+1).

• Then M |= φ(a1, .., an) if for some an+1 ∈M , M |= ψ(a1, .., an, an+1).

• Note there is nothing special in this definition about the choice of variables
x1, .., xn.

• What we have essentially defined is: for a formula φ with free variables
among y1, .., yk say, and a1, .., ak ∈ M , when φ is true in M under the
assignment of ai to yi for i = 1, .., k.

• When σ is an L-sentence, then we read M |= σ as “σ is true in M”, or M
is a model of σ. And for Σ a set of L-sentences, M |= Σ means M |= σ
for all σ ∈ Σ and is read M is a model of Σ.
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• There are obvious notions of substructure, extension, isomorphism, for
L-structures, but the key model-theoretic notion is elementary substruc-
ture/extension: Suppose M ⊆ N are L-structures. We say that M is an
elementary substructure of N (N is an elementary extension of M), no-
tationally M ≺ N , if for every L-formula φ(x1.., xn) and a1, .., an ∈ M ,
M |= φ(a1, .., an) iff N |= φ(a1, .., an). ((N,<) is a substructure of (Z,<)
but not an elementary substructure.)

• Finally we have elementary equivalence: L-structures M,N are elementar-
ily equivalent if for every L-sentence σ, M |= σ iff N |= σ. (So elementary
substructure implies elementary equivalence, BUT (2Z,<) is a substruc-
ture of (Z,<), they are isomorphic so elementarily equivalent, and NOT
(2Z,<) ≺ (Z,<).)

Mod(T ) and Def(T )

• A first order L-theory T is simply a collection of L-sentences which has
a model (usually T is also assumed to be closed under “logical conse-
quence”).

• Mod(T ) is the category whose objects are models of T and whose mor-
phisms are elementary embeddings (where an elementary embedding of M
into N is an isomorphism of M with an elementary substructure of N).

• Fix an L-theory T . L-formulas φ(x1, .., xn), ψ(x1, .., xn) are said to be
equivalent modulo T if the L-sentence ∀x̄(φ(x̄) ↔ ψ(x̄)) is true in all
models of T (we sometimes write T |= ∀x̄(φ(x̄)↔ ψ(x̄)) for this).

• Bn(T ) denotes the Boolean algebra of equivalence classes.

• For φ(x1, .., xn) an L-formula and M |= T (or any L-structure for that
matter) φM denotes {ā ∈Mn : M |= φ(ā)}, the set defined by φ(x1, .., xn)
in M . It clearly depends only on the equivalence class of φ.

• T is said to be complete if any two models of T are elementarily equivalent
(equivalently for any L-sentence σ, σ ∈ T or ¬σ ∈ T ).

• If T is complete, and M is ANY model of T , then Bn(T ) identifies with
the Boolean algebra of subsets of Mn defined by L-formulas.

• A morphism between [φ(x1, .., xn)] ∈ Bn(T ) and [ψ(y1, .., yk)] ∈ Bk(T ) is
given by (the equivalence class modulo T ) of some formula χ(x1, .., xn, y1, .., yk)
which in any model M of T defines the graph of a function from φM to
ψM .
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• We can now define Def(T ) as the category whose set of objects is the
disjoint union of the Bn(T ) (as n varies) and with morphisms as defined
above.

• Again when T is complete, and M any model of T , Def(T ) identifies with
the category of sets and functions defined by L-formulas in M .

• We may and should consider also sets definable with parameters. There
are different formalisms for this.

• For example, fix some L-structure M and some subset A of the universe
of M . Let LA be the language obtained from L by adding new constant
symbols ca for the elements a ∈ A.

• Then if φ(x1, .., xn) is an LA formula, it will define naturally a subset of
Mn which we call a set definable in M over A and again write as φM .

• Let us make the connection with Def(T ). M can be canonically viewed
as an LA-structure which we write as (M,a)a∈A. Let TA be the “com-
plete theory” of this LA-structure, namely the set of LA-sentences true in
(M,a)a∈A.

• Then we obtain, as before, the category Def(TA) which identifies with
the category of sets and functions definable in M over A.

• A final remark is that that, for T a theory and φ(x̄) a formula, it is useful
to regard φ (or [φ]) as a functor from Mod(T ) to Set, namely the functor
just takes M to φM .

Types

• There are some fundamental compact (and totally disconnected) spaces
attached to a first order theory T , the type spaces.

• Sn(T ) is by definition the Stone space of the Boolean algebra Bn(T ), that
is the collection of ultrafilters on Bn(T ).

• The topology on Sn(T ) is given by: a basic open (in fact clopen) is {p ∈
Sn(T ) : φ(x̄) ∈ p} for φ(x̄) an L-formula.

• A type p(x̄) ∈ Sn(T ) gives, potentially, a complete description of the first
order properties of some n-tuple ā in some model of T .

• To actualize this potential description depends on the compactness theo-
rem for first order logic.
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• In its basic form the compactness theorem says that if Σ is a collection of
L-sentences such that every finite subset Σ0 of Σ has a model, then Σ has
a model.

• An application of the compactness theorem (via adjoining constant sym-
bols to the language) yields the following: Let p(x̄) ∈ Sn(T ). Then there
is a model M of T and n-tuple ā from M such that for all L-formulas
φ(x̄), M |= φ(ā) if and only if φ(x̄) ∈ p.

• In this situation we say that ā realizes p(x̄) in M , and that p(x̄) is the
type of ā in M , p(x̄) = tpM (ā).

• All this can again be done “over parameters”: Namely fix a model M of
T and a subset A of M . Then any p(x̄) ∈ Sn(TA) can be realized in some
elementary extension N of M by some n-tuple ā, and we say that p(x̄) is
the type of ā over A in N , p(x̄) = tpN (ā/A). We sometimes write Sn(A)
for Sn(TA)

• Looking ahead, a basic problem is to describe in some fashion Sn(Tfg).

• It makes perfect sense to speak of the space of complete “quantifier-free”
n-types of a theory T , Sn,qf (T ), consisting of complete descriptions of the
quantifier-free formulas true of a potential n-tuple in a model of T .

• And in the case of Tfg these complete quantifier-free n-types are in natural
1 − 1 correspondence with the collection of isomorphism types of pairs
(G, ā) where G is a limit group and ā an n-tuple which generates G.

• This makes use of the characterization of limit groups as ω-residually free,
and the compactness theorem.

Saturation

• I will now assume, for convenience, that T is a complete first order L-
theory.

• Does T have “canonical models” from the point of view of model theory?

• This is different from asking whether T has “natural” models. For exam-
ple (looking ahead) when T = Tfg the natural, or standard, models are
precisely the free groups Fn (n ≥ 2, maybe infinite).

• In any case the answer to the canonical models question is yes, modulo
some set theory (such as assuming GCH).

• Fix an infinite cardinal κ and a model M of T of cardinality κ.

• We will say that M is saturated if for any subset A of M of cardinality
< κ, any p(x̄) ∈ Sn(TA) (i.e. complete type over A) is realized in M .
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• An equivalent, and possibly more accessible characterization is: whenever
A is a subset of M of cardinality < κ and Σ(x) is a collection of formulas
of LA with free variable x, such that for every finite subset Σ0 of Σ,
M |= ∃x(∧Σ0(x)), then there is a ∈ M such that M |= φ(a) for all
φ(x) ∈ Σ(x).

Theorem 2.1. (i) Any two saturated models of T of the same cardinality are
isomorphic.
(ii) If M is a saturated model of T of cardinality κ then any model of T of
cardinality ≤ κ elementarily embeds in M .
(iii) Under GCH for example, for any regular cardinal κ, T has a saturated
model of cardinality κ.

• So saturated models are our canonical models.

• They are all “essentially” the same apart from the accidental fact of having
different cardinalities.

• Saturated models are analogous to Grothendieck’s universes or Weil’s uni-
versal domains.

• If T is stable we don’t need any set-theoretic hypothesis to get saturated
models.

• It has become customary to “work inside a saturated model of large car-
dinality” of T in order to either study models of T or definability in T .

• There are several important consequences/properties of saturated models
and I will discuss two, homogeneity, and definable families.

• The first (homogeneity) concerns the ubiquity of automorphisms and/or
an automorphism-theoretic accouunt of types.

Lemma 2.2. Suppose that M |= T has cardinality κ and is saturated. Let
A ⊂ M have cardinality < κ and let b̄, c̄ be two n-tuples from M (n finite).
Then tpM (b̄/A) = tpM (c̄/A) if and only if there is an automorphism g of M
which fixes A pointwise and takes b̄ to c̄.

• A very important notion in model theory is that of a definable family of
definable sets (sometimes called a uniformly definable family of definable
sets).

• This is simply given by an L-formula φ together with a division of the
free variables in φ into two tuples of variables x, y, and so we may write
φ as φ(x, y). For any choice of a tuple b in a model M (where the length
of b is the length of the tuple y of variables), we obtain the definable set
φ(x, b)M , a subset of Mn if x is an n-tuple of variables).
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• The family {φ(x, b)M : b ∈M} is then a definable family of definable sets.

• For example, working with the structure (C,+,×, 0), the collection of all
lines in C × C is the definable family of definable sets defined by the
formulas y = ax+ b, as (a, b) varies in C2.

• A special case of a definable family of definable sets is a “definable fibra-
tion”.

• This is the case when the formula φ(x, y) defines a partial function from
x-space to y-space: namely the sentence ∀x∃≤1y(φ(x, y) is in the theory
T (so true in all models).

• Fixing a modelM , and writingX for ∃y(φ(x, y))M , and Y for ∃x(φ(x, y))M ,
we see that the formula φ(x, y) defines a surjective function f : X → Y ,
and the family (Xb)b∈Y of fibres is the definable family of definable sets
given by φ(x, y).

• The question is whether we really see all possible properties or behaviour
of the fibres Xb in the model M .

• Of course passing to an elementary extension N of M gives rise to the
family which I will write f(N) : X(N) → Y (N), and if b ∈ Y (N) \ Y
then X(N)b is a “new fibre”. But if for some c ∈ Y , tpN (b) = tpM (c)(=
tp(N (c)), then the new fibre X(N)b will have similar properties to Xc (e.g.
one is infinite iff the other is infinite).

• So if M is already saturated then all possible types p(y) containing the
formula ψ(y) will be realized in M and so all possible types of fibres Xb

will be already present.

• Everything I said about definable families makes sense for definable with
parameters families.

• In general it is properties of definable families (essentially of L-formulas
δ(x, y)) which we use to define and distinguish classes of first order theo-
ries, as we see in the next section.

Example

• A basic “nice” example for model theory in general and stability in par-
ticular is the theory ACF0 of algebraically closed fields of characteristic 0
(characteristic p too), and there is no harm in repeating it.

• The language here is the language Lr = {+,−, ·, 0, 1} of rings. It is not
hard to write down an (infinite) set of Lr-sentences whose models are
precisely the algebraically closed fields of characteristic 0.
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• This set of sentences (or rather its logical closure) is ACF0.

• ACF0 is complete, which means that all algebraically closed fields of char-
acteristic 0 are elementarily equivalent (a special case of the Lefschetz
principle).

• ACF0 has quantifier elimination meaning that every Lr-formula φ(x1, .., xn)
is equivalent modulo ACF0 to a formula ψ(x1, .., xn) without quantifiers.

• Any model of ACF0 is determined up to isomorphism by its transcendence
degree (over Q).

• Any model of infinite transcendence degree is saturated, in particular every
uncountable model is saturated.

• Another basic example is where T is the theory of (Z,+, 0) and where the
saturated models are of the form Ẑ ⊕Q(κ).

3 Stability

Beginning stability

• Let us fix a (first order) L-theory T , which we assume to be complete.

• x, y, z, .. now range over finite tuples of variables. When we write an L-
formula δ as δ(x, y) we mean as above that x, y include all free variables
in δ and we do not insist that there is no overlap.

• So a formula δ(x, y) gives rise to a definable family (as above, in fact in two
ways), but could also be viewed as defining in any model M a “bipartitite”
graph, namely ((∃yδ(x, y))M , (∃xδ(x, y))M , δ(x, y)M ).

Definition 3.1. (i) The formula δ(x, y) is stable (for T ) if it NOT the case that
there is some model M of T and tuples ai, bi in M for i ∈ N such that for all
i, j ∈ N , M |= δ(ai, bj) iff i < j.
Equivalently (by the compactness theorem) there is some k ∈ N such that for
some (any) model M of T , it is not the case that there are ai, bi in M for i < k
such that M |= δ(ai, bj) iff i < j.
(ii) T is stable if every L-formula δ(x, y) is stable for T .

Lemma 3.2. If φ(x, y), and ψ(x, y) are stable, so is φ∗(y, x) (= φ(x, y))) as
well as ¬φ(x, y), φ(x, y) ∧ ψ(x, y), φ(x, y) ∨ ψ(x, y).
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• A interesting strengthening of the notion of a stable formula is an “equa-
tion”.

Definition 3.3. (i) A formula δ(x, y) is an equation in the sense of Srour, if it
is NOT the case that there exists a model M of T and ai, bi in M for i ∈ N
such that M |= δ(ai, bj) for all i > j but M |= ¬δ(aj , bj) for all j.
(ii) T is said to be equational in the sense of Srour if every L-formula φ(x, y) is
equivalent modulo T to some “finite Boolean combination” of equations δ(x, y).

• For δ(x, y) to be an equation is a Noetherian condition on the uniformly
definable family (δ(x, b))b of definable sets: In any model, any intersection
is a finite subintersection.

Lemma 3.4. (i) Equations are preserved under positive Boolean combinations
(but not negations).
(ii) If δ(x, y) is an equation, then δ(x, y) is stable.
(ii) So by (ii) and Lemma 3.2, if T is equational then it is stable.

• The basic examples of stable theories are equational and this moreover
“explains” stability.

• For example we mentioned that ACF0 has quantifier elimination imply-
ing that any Lr-formula φ(x, y) is equivalent modulo ACF0 to a Boolean
combination of formulas of the form P (x, y) = 0 where P is a polynomial
over Z.

• Clearly P (x, y) = 0 is an equation in the sense of Srour. In fact the
Noetherian condition holds for the solution sets of all P (x, b) = 0 even as
P varies.

On the other hand:

Theorem 3.5. (Sela,...) Let Tfg be the first order theory of the noncommutative
free groups Fn (n ≥ 2) in the group language Lg (i.e. the collection of Lg-
sentences true in ALL the Fn). Then
(i) Tfg is complete (Tarski’s problem).
(ii) Any formula φ(x̄) of Lg is equivalent modulo Tfg to a Boolean combination
of ∀∃ formulas. (EXPLAIN.)
(iii) Tfg is stable.
(iv) Tfg is NOT equational.
(v) Tfg is decidable (?)
(vi) The natural embeddings of Fn in Fm (n < m) are elementary embeddings.

Example

• I want to describe a or the characteristic feature of stability of a theory
T .
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• A motivating example again comes from ACF0 (or ACFp).

• Fix an algebraically closed field K, an algebraically closed subfield k < K
and an irreducible (affine say) variety X over k, which we identify with its
set X(K) ⊆ Kn of K-rational points, a definable (with parameters from
k) set in K.

• Then (i) the collection of proper subvarieties of X defined over K is a
(proper) ideal in the Boolean algebra of definable (over K) subsets of X
(by virtue of irreducibility of X).

• But more importantly, by virtue of QE, there is a unique type p(x̄) ∈
Sn(K) which contains (the formula defining) X and the negation (com-
plement) of any (formula defining a) proper subvariety of X, i.e. p avoids
the ideal mentioned above.

• p(x̄) is none other than the generic point of X ⊗k K, viewed as a scheme
over K.

• If we realize p(x̄) by a point ā in an (elementary) extension K ′ of K then
we call ā a generic point of X over K (following Weil) and any two such
generic points will be conjugate via Aut(K ′/K).

• So suitable definable sets (irreducible varieties) have “unique” generic
points over any set of parameters, where the notion of “generic” appears
to depend on facts about ACF0.

• A similar kind of analysis works for equational theories.

• For an arbitrary stable theory where there is no a priori distinction be-
tween “positive” (closed) and “negative” (open) formulas or definable sets,
we must work with (the set of realizations of) a complete type p(x̄) rather
than an irreducible closed set, and with the ideal of “small” formulas given
by Shelah’s combinatorial notions of forking (or dividing).

• Another point I will want to make (relevant to the free group) is that
theory is “local”, working for so-called φ(x, y)-types, where φ(x, y) is a
stable formula in a possibly unstable theory.

Forking

• We fix a saturated model M̄ of a complete first order theory T which
we will later assume to be stable. As mentioned before all models of
T of cardinality at most that of M̄ can be assumed to be elementary
substructures of M̄ .
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• A pervasive notion in model theory is that of an indiscernible sequence:
Let I = (bi : i ∈ N) be a sequence of n-tuples from M̄ , and A a subset of
M̄ . We say that I is indiscernible over A, if for any i1 < i2 < .. < ik, and
j1 < j2 < .. < jk in N , tp(bi1 , ..., bik/A) = tp(bj1 , .., bjk/A).

• Now fix a “small” set A of parameters, and a formula φ(x, b) over M̄ where
we make explicit the parameters b in the formula.

• We say that φ(x, b) divides over A if there is some indiscernible sequence
(bi : i ∈ N) over A, with b0 = b such that the set {φ(x, bi) : i ∈ N} is
inconsistent i.e. has no common solution in M̄ (which by compactness
amounts to saying that for some k, M̄ |= ¬∃x(

∧
i<k φ(x, bi))).

• Example: if tp(b/A) has infinitely many solutions in M̄ (we say b /∈
acl(A)), then the formula x = b divides over A (with in fact k = 2 above).

Lemma 3.6. Assuming T stable, then the collection of formulas φ(x, b) which
divide over A (φ(x, y) and b varying) is a proper ideal in the Boolean algebra
Bn(M̄) of formulas over M̄ .

• In fact more is true. Let us fix a complete type p(x) ∈ S(A), and let
X = pM be the set of realizations of p(x) in M̄ (a so-called type-definable
over A subset of M̄n). For a (small) set B ⊇ A of parameters we will
say that c ∈ X is a generic point of X over B if M̄ |= ¬φ(c, b) whenever
φ(x, b) is a formula over B which divides over A; namely if tp(c/B) avoids
the ideal of formulas which divide over A.

With this notation, assuming stability of T , we have the following “funda-
mental theorem of stability theory”:

Theorem 3.7. (i) There is a generic point c of X over B, and we call tp(c/B)
a “nonforking extension” of p(x) over B.
(ii) There are at most continuum many such distinct types tp(c/B) for c ∈ X
generic over B.
(iii) Moreover if A is an elementary substructure M0 of M̄ (or more generally
“algebraically closed”) then there is a unique such type, i.e. X has a unique
generic point over B (up to Aut(M̄/B)-conjugacy), equivalently p(x) has a
unique nonforking extension over B.

In general we will say that a type p(x) ∈ S(A) is stationary if it has a unique
nonforking extension over any B ⊇ A.
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• A brief comment on nomenclature.

• The reader might have expected us to talk about “nondividing extensions”
rather than “nonforking extensions”.

• There is a definition of a formula φ(x, b) forking over A which is a slight
weakening of the notion dividing, but in stable theories is equivalent, and
this equivalence is the content of Lemma 3.6.

• So this explains the use of “nonforking”.

• So we have given a generalization of the “uniqueness of generic points of
irreducible algebraic varieties” to arbitrary stable theories.

• Moreover the above machinery gives rise to a notion of independence or
freeness in stable theories with symmetry, transitivity properties.

• With previous notation, we see that c ∈ X is a generic point of X = pM̄

over B precisely if “M̄ |= ¬φ(c, b) whenever φ(x, b) is a formula over B
which divides over A” and we will also say that c is independent from B
over A.

• Then we have for example symmetry: c is independent from A ∪ {b} over
A if and only b is independent from A ∪ {c} over A, and

• transitivity: Assuming A ⊆ B ⊆ C, c is independent from C over A iff c
is independent from C over B and from B over A.

• The existence, symmetry and transitivity properties of dividing as dis-
cussed above are valid for a larger class of first order theories, the so-called
“simple theories” (including theories of the random graph, pseudofinite
fields,..) but not the uniqueness part which is characteristic of stability.

• In any case these “algebraic” properties of dividing/forking provide a use-
ful “calculus” in stable theories.

• In a smaller case of stable theories, the superstable theories, types come
equipped with an ordinal valued dimension, the U -rank, with the feature
that for c and A ⊆ B, c is independent from B over A iff U(tp(c/B)) =
U(tp(c/A)). Such ranks are computationally useful (but are not present
in Tfg which is unsuperstable).

• And in the special case of ACF this U -rank of a type is just the algebraic
geometric dimension of the associated algebraic variety.
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• I will briefly discuss definability and finite satisfiability of types. We as-
sume T to be stable.

• For any M |= T and p(x) ∈ Sn(T ), p(x) is definable meaning that for
any L-formula φ(x, y), {b ∈ M : φ(x, b) ∈ p(x)} is a definable set in the
structure M (and this property in turn implies stability of T ).

• Moreover, if M0 is an elementary substructure of M , the following are
equivalent:
(i) p(x) is definable over M0, (ii) p(x) is finitely satisfiable in M0, (iii) p(x)
is the nonforking extension of p|M0.

The local theory

• Let T be an arbitrary complete theory, and let ∆(x) be a collection of
stable formulas δ(x, y) (y varying with δ), for example ∆(x) = {δ(x, y)} a
single stable formula, or when T is stable, it might be all formulas δ(x, y).
There is no harm to assume ∆ is Booleanly closed.

• For A ⊆ M |= T , by a complete ∆ type over A we mean an ultrafilter
on the Boolean algebra B∆(A) generated by φ(x, b) for φ(x, y) ∈ ∆ and
b ∈ A.

• Then the previous theory goes through, for example if p(x) ∈ S∆(M), and
M ≺ N then p(x) has a unique “nonforking” extension to some p′(x) ∈
S∆(N).

• And there are suitable versions of symmetry and transitivity.

• This formula-by-formula theory explains even the fully stable case, where
the nonforking extension of a complete type p(x) ∈ S(M) to N is just the
union of the nonforking extensions of the various δ(x, y) types.

• Looking ahead a bit, for Tfg, and taking for ∆ the quantifier-free formu-
las one obtains traditional “algebraic geometry over the free group”, but
looking at the case of diophantine sets could be interesting.

Stable groups

• The above theory of forking in stable theories has an “equivariant version”
namely in the presence of a definable transitive group operation, due to
Zilber in the ℵ1-categorical case, Cherlin-Shelah in the superstable case,
and Poizat in full generality.

• I will restrict myself to just groups (i.e. acting on themselves by left or
right translation) rather than the more general homogeneous space case.

• By a stable group we mean in full generality a group definable in (a model
of) a stable theory.
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• For simplicity I will consider the case where T is a stable theory and the
language includes suitable functions (for multiplication and inversion) and
a constant (for the identity), suchg that with respect to the interpretations
of these symbols any (some) model of T is a group.

• We allow of course other relations, functions etc in addition to the group
structure, and definability will mean with respect to all this structure.

• I will use G in place of M (an arbitrary model) and Ḡ for a saturated
model. x denotes a single variable (ranging over the group) rather than a
tuple. Stability of T is assumed.

• Let X be a definable (with parameters) subset of Ḡ defined by a formula
φ(x, b) say. We will say that X is left generic if for every g ∈ Ḡ, the left
translate gX (defined by φ(g−1x, b)) does not divide over ∅.

• For an arbitrary model G ≺ Ḡ and X a definable (with parameters) subset
of G we call X left generic if X̄ ⊂ Ḡ is generic where X̄ is the set defined
in Ḡ by the formula which defines X in G. (Maybe X(Ḡ) for X̄.)

With this notation:

Lemma 3.8. Let X be a definable (with parameters) subset of G. Then the
following are equivalent.
(i) X is left generic,
(ii) Finitely many left translates of X (by elements of G) cover G.
Moreover we also have that X is left generic iff right generic (iff finitely many
right translates of X cover G) and we just say “generic”.

In particular we see that genericity of a definable subset X of G can be
understood without passing to the saturated model Ḡ.

• We will call G connected if G has no definable (with parameters from G)
proper subgroups of finite index.

• Clearly this is a property of T , namely one model G is connected if all are.

• It is a fact coming from stability that if H is a definable subgroup of G of
finite index, then H contains another subgroup of G of finite index which
is definable without parameters.

• Hence we can define Ḡ0 (connected component of Ḡ) to be the intersection
of all (∅-) definable subgroups of finite index. It will be a normal subgroup
of Ḡ defined by at most countably many formulas, and the quotient Ḡ/Ḡ0

is naturally a profinite group (finite iff Ḡ0 is definable). In general we need
saturation of Ḡ to “see” Ḡ/Ḡ0. In any case it is a fundamental invariant
of T .
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• EXAMPLE: When T is the theory of (Z,+, 0) then Ḡ/Ḡ0 is Ẑ, the profi-
nite completion of the group Z.

• Now we discuss generic types. A complete type p(x) ∈ S(A) (A any set
of parameters) is said to be generic if it contains only generic formulas. It
is a fact that a nonforking extension of a generic type is generic (and vice
versa).

• Let G be a model, and let Sgen(G) be the space of generic types over G.
It is a closed subspace of the Stone space Sx(G) and is invariant under
the natural left or right action of G. (Note that G acts on the Boolean
algebra of definable subsets of G so also on the space of ultrafilters.)

• Moreover there is a natural (continuous) group operation on Sgen(G):
given p(x), q(x) in Sgen(G), let p ∗ q = tp(ab/G) where a, b realize p, q
respectively in Ḡ in such a way that a is independent from b over G.
(This of course has to be proved and is in fact the main content of the
following theorem.)

The fundamental theorem of stable groups is the following:

Theorem 3.9. Fix any G |= T . Then there is a natural isomorphism of topo-
logical groups between Ḡ/Ḡ0 and (Sgen(G), ∗).

• Any type p(x) ∈ S(G) picks out a coset of each finite index definable
subgroup hence an element of Ḡ/Ḡ0. The point of the theorem is that re-
stricted to Sgen(G) this induces a bijection, and moreover an isomorphism
of topological groups.

• In particular if G is connected then there is exactly one generic type over
any model and in fact over any set.

• In this context we call the unique generic type over ∅, p0, and denote by
p0(A) or p0|A the unique generic type over a set A of parameters.

• p0 is stationary and for any A, p0|A is the unique nonforking extension of
p0.

4 The free group

Introduction

• I will first use some elementary methods to obtain information regarding
“the” generic type p0 of Tfg, and then discuss further results and problems.

• I will assume the statements (vi) and (iii) of Theorem 3.5, but it would
be interesting to see to what extent things go through without assuming
in advance stability of Tfg.

16



• Note that by 3.5 (vi) for any cardinals 2 ≤ κ < λ, the natural embedding
of Fκ in Fλ is elementary, in particular every Fκ |= Tfg.

• By a “standard model” of Tfg I mean some finite rank free group Fn
(n ≥ 2).

Connectedness

Lemma 4.1. (In (10) but essentially due to Poizat) Let e1, e2, ... be free gen-
erators of Fω. Let X ⊆ Fω be definable (with parameters). Then X is generic
if and only if it contains all but finitely many ei.

• Proof:

• Suppose first X to be generic and let g1X ∪ ...gnX = Fω.

• Let r be such that the parameters in the formula defining X as well as
g1, .., gn are all words in e1, .., er.

• Let i > r. Then ei ∈ gtX for some t. So g−1
t ei ∈ X.

• But there is an automorphism of Fω which fixes e1, .., er and takes g−1
t ei

to ei (as {e1, .., er, g
−1
t ei} ∪ {ej : j > r, j 6= i} is also a basis of Fω).

• So ei ∈ X. We have shown left to right.

• Conversely if X is non generic then its complement Xc is generic (by
stability), so by the first part X contains only finitely many of the ei.

Corollary 4.2. (In (10).) The free group is connected (no proper definable
subgroup of finite index, and a unique generic type over any set of parameters).

• In fact we can either use Lemma 4.1 to see that Fω (so all models of
Tfg) has no proper definable subgroup of finite index (and then use 3.9),
OR directly, using stability of Tfg (definability of types) and Lemma 4.1,
conclude that for any model G of Tfg and definable X ⊆ G exactly one of
X, G \X is generic, giving unique generic types over any model.

• As mentioned earlier we let p0(x) be the (unique) generic type over ∅, i.e.
the collection of formulas φ(x) without parameters which are generic (or
define generic sets in some/any model).

• We obtain a bit more from Lemma 4.1:

Corollary 4.3. Any basis {e1, .., en} of a standard model Fn is an independent
(in the stability-theoretic sense) set of realizations of p0 in Fn (in other words

(e1, .., en) realizes p
(n)
0 ). Likewise in any Fκ. In particular a primitive element

in any Fκ realizes p0 (where by definition a primitive element is a member of a
basis).
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Weak homogeneity
I will prove a converse to Corollary 4.3:

Lemma 4.4. (In (11).) (i) Any realization of p0 in a standard model Fn (and
in fact in any Fκ) is a primitive.
(ii) Any maximal independent set of realizations of p0 in a standard model Fn
is a basis.
(iii) In particular we have “homogeneity” with respect to realizations of p

(k)
0 in

standard models. (Explain.)

The proof uses a nice result of Chloé Perin:

Theorem 4.5. (8) Any elementary substructure of a standard model Fn is a
free factor of Fn (i.e. a free group Fk for some 2 ≤ k ≤ n with a basis which
extends to a basis of Fn)

• We sketch the proof of Lemma 4.4.

• Let a1, .., an be a basis of Fn = F . Let b realize p0 in F . Let F ≺ Fn+1

where the latter has basis a1, .., an, an+1.

• Then b and an+1 are independent realizations of p0, hence by Corollary
4.3 (b, an+1) has the same type in Fn+1 as a basis in F2, whereby the
subgroup G of Fn+1 generated by {b, an+1} is an elementary substructure
(isomorphic to F2).

• By Theorem 4.5, G is a free factor of Fn+1, so {b, an+1} extends to a basis
{b, an+1, c1, .., cn−1} of Fn+1.

• Let φ be the retraction from Fn+1 to F taking an+1 to 1. Then {b, φ(c1), .., φ(cn−1)}
generates Fn hence must be a basis.

• This proves (i), and (ii) is similar (and easier).

• Let us remark that natural extensions of Lemma 4.4 (ii), (iii) and Perin’s
Theorem 4.5 fail for free for free groups on infinitely many generators, and
this is related to material in the next subsection.

Weight

• I want here to describe a result which may seem a bit esoteric to non
stability-theorists, although the proof is at the classical combinatorial
group theory level.

• As mentioned earlier, for a stable theory to be superstable means that an
ordinal valued dimension (or rank) can be attached to any type, which
moreover “reflects forking”. Gibone and Poizat gave proofs of the non-
superstability of Tfg.
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• A consequence of superstability of a theory T is “strong stability”, namely
any type has finite weight, namely (working over some set of parameters
in a saturated model), for any finite tuple a there is a finite bound on the
cardinality of any independent set {bi : i ∈ I} such that a depends on bi
for each i.

• On the other hand a theory may be nonsuperstable but at the same time
strongly stable. EXAMPLE?

So we prove the following strengthening of nonsuperstability of Tfg.

Theorem 4.6. ((11), (12)). Tfg is not strongly stable. In fact p0 has “infinite
weight”. In fact in Fω there is a realization a of p0 and an independent set
(bi : i ∈ N) of realizations of p0 such that a depends on (forks with) bi for all
i ∈ N .

We will use the following elementary consequence of the theory of Whitehead
automorphisms of a free group.

Lemma 4.7. If {a1, .., an} is a basis of Fn, m ≤ n and k1, .., km are all > 1,
then ak11 ...a

km
m is not a primitive.

Corollary 4.8. Let G be any model of Tfg and a1, .., am an independent set of

realizations of p0 in G. Suppose k1, .., km are all > 1. Then ak11 ....a
km
m does not

realise p0 in G.

• There is a “forking calculus” for “generics” in stable groups, remarkably
similar to the theory of Whitehead automorphisms.

• In particular (∗): (if in a stable connected group G), a realizes p0 and a
is independent from b ∈ G, then each of ab, ba realizes p0.

• Let us prove Theorem 4.6.

• This is an improvement, due to Sklinos (12), over the original proof of
“infinite weight” in (11).

• Let {a1, a2, .....} be a basis of Fω.

• Let b1 = a1a
2
2, b2 = a1a

3
2a

2
3, b3 = a1a

3
2a

3
3a

2
4, bn = a1a

3
2....a

3
na

2
n+1,.....

• We claim first that {bi : i = 1, 2, ..} is an independent set of realizations
of p0 in Fω. The fact that each bi realizes p0 is due to (∗) above.

• But independence is because for each n, {b1, .., bn, an+1} generates Fn+1 ≺
Fω, hence is a basis of Fn+1.
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• Hence by 4.3, {b1, .., bn} is an independent set of realizations of p0 in Fn+1

so also in Fω.

• Secondly we claim that a1 depends on each bn:

• If not then also bn is independent of a−1
1 so by (*), a−1

1 bn realizes p0,
namely a3

2a
3
3...a

2
n+1 realizes p0 which contradicts Corollary 4.8. End of

proof of 4.6.

• The same construction yields (12) non homogeneity of the free groups Fκ
for κ uncountable, as well as that in Fω not every maximal independent
set of realizations of p0 is a basis:

• For example, work in F = Fκ generated freely by {a1, a2, ..., aα, ....}. Then
as above (a1, a2, ..., an, ..) and (b1, b2, .., bn, ...) have the same type in F .

• But the map taking ai to bi for i = 1, 2, .. does not extend to an automor-
phism f of F . If it did, let c be such that f(c) = a1. Now c (being a word
in finitely many generators) will be independent of some an.

• But then by automorphism a1 will be independent of bn, giving a contra-
diction as above, and proving non homogeneity of Fκ.

• Finally, it is not difficult to see that {bi : i ∈ N} is a maximal independent
set of realizations of p0 in Fω which is not a basis.

• Hence if G is the subgroup of Fω generated by the bi then G ≺ Fω but is
not a free factor. So 4.4(ii) and Perin’s 4.5 fail for Fω.

Diophantine sets

• A positive primitive Lg-formula φ(x) (x a finite tuple of variables) is some-
thing of the form ∃y(∧i=1,..,kwi(x, y) = 1) (where again y is some finite
tuple of variables, and the wi are just words (or terms).

• By a (strict) definable (with parameters) diophantine set in a model G of
Tfg I mean a subset of Gn defined by a formula of the form φ(x, b) where
b is a tuple from G and φ(x, z) is a positive primitive Lg-formula.

• Passing to finite disjunctions we get “diophantine formulas” and definable
(with parameters) diophantine sets.
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• Let me first recall that if G is a commutative group (still written in multi-
plicative notation and with x, z tuples of variables) and φ(x, z) is a positive
primitive formula of Lg, then φ(x, 1) is an Lg-formula which defines a sub-
group H say of Gn.

• And for any tuple b from G, φ(x, b) defines a coset of H.

• Hence, with respect to the first order theory of the commutative group G,
a p.p- formula φ(x, z) is an equation in the sense of Srour in a very strong
sense: any two “instances” φ(x, b), φ(x, c) of φ(x, z) are either equivalent
or disjoint (in the obvious sense).

• I understand that Sela has proved “diophantine” equationality of Tfg
namely that with respect to Tfg any positive primitive formula φ(x, z)
is an equation in the sense of Srour.

• We recall that this means that in any model G of Tfg, if b1, b2, .... are
tuples from G (with length that of z) and if Xi ⊂ Gn is that the set
defined by φ(x, bi) in G, THEN the sequence:

• X1 ⊇ X1 ∩X2 ⊇ X1 ∩X2 ∩X3 ⊇ .... stabilizes, in fact (by compactness)
stabilizes at some k which depends only on the formula φ(x, z), not on the
model G or the bi’s.

• On the other hand we do not have the DCC (or Noetherianity) on the
class of all (strict) diophantine sets:

Lemma 4.9. There are infinite descending chains of (strict) diophantine de-
finable sets. In fact Tfg is not “diophantine-superstable”.

• Proof outline (Sklinos-thesis).

• Work in Fω with basis {a1, a2, ...}.

• Let φ1(x) be ∃y(x = a1a
2
2y
−2), φ2(x) be ∃y(x = a1a

2
2(a2a

2
3y
−2)−2), φ3(x)

be ∃y(x = a1a
2
2(a2a

2
3(a3a

2
4y
−2)−2)−2), etc.

• Then the diophantine sets defined by the φn(x) form a descending chain,
and moreover

• letting An = {a1a
2
2, a1a

3
2a

2
3, .., a1a

3
2, , a

3
na

2
n+1}, each φn is defined over An

and φn+1(x) divides over An.

• END OF PROOF.
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• Can we also witness “infinite weight” in a diophantine way?

• Sela has defined the “diophantine envelope” of a definable set (in a stan-
dard model), a kind of local diophantine Zariski closure, and a stability-
theoretic interpretation would be useful.

Negligibility

• Bestvina and Feighn have introduced, in as yet unpublished work, what
is in effect a combinatorial but still conjectural account of genericity for
definable sets in a free group.

• Rather roughly speaking a subset X of Fn = 〈a1, .., an〉 is negligible if for
some k > 0 and 0 ≤ ε < 100, for all w ∈ X except finitely many, all but ε
percent of w can be covered by at most k “pieces”.

• Where a “piece” of w is a (proper) subword of w appearing in w in two
“different ways”.

• The “BF-conjecture or hypothesis” is that

• (*) if X ⊆ Fn is definable, then either X or the complement of X is
negligible.

• It follows quickly (using connectedness of the free group) that a definable
(with parameters) subset of Fn is generic (finitely many translates cover
Fn) iff it is non-negligible.

• The BF-conjecture provides a computational substitute for ranks (Morley
rank, U -rank) in free groups, and I used a version of it (which was stated
by Sela as a theorem) in (10) to show that that the free group is rather
complicated from the point of view of “geometric stability theory” (non
CM -trivial) , and hence “morally” can not be obtained via a Hrushovski-
type construction.

• There are several appealing model-theoretic properties of the free group,
the only proofs of which I know go through the BF-conjecture.

• These include:

• (i) If G |= Tfg then the proper definable subgroups of G are precisely
the centralizers CG(a) of elements of G. They coincide with the maximal
abelian subgroups of G, and in “standard models” are cyclic.

• (ii) G is definably simple (no proper nontrivial definable normal sub-
groups), although G is not simple as an abstract group. This would be
the only known example of a definably simple, non simple, stable group.
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Axiomatizing p0

• The issue here is to give an explicit axiomatization of the generic type p0.

• Namely to describe explicitly a collection Σ(x) of formulas (without pa-
rameters) φ(x), such that for any model G of Tfg, and a ∈ G, a realizes
p0 if and only if a satisfies all the formulas in Σ(x).

• It is not hard to see that a single formula does not suffice (i.e. p0 is not
“isolated” in the space S(Tfg)).

• On the other hand, if we take for granted the decidability of Tfg then by
uniqueness of the generic type p0, p0(x) (as a collection of formulas) is
already decidable. (EXPLAIN.)

• Maybe this is an appropriate place to mention a formula (in p0) which
is thought to be not (equivalent to) a Boolean combination of universal
(existential) formulas (Razborov).

• φ(x) : ∀y, z, w(x = y2z2w3 → (∃r, s, t)(rw = wr ∧ x = t−1r−1ts2)).

Homogeneity and forking

• Perin and Sklinos (9) have substantially generalised the results in Lemma
4.4 (and (i) below was independently proved by Ould-Houcine (7)).

Theorem 4.10. (i) Any Fκ (κ ≥ 2) is ℵ0-homogeneous (in the model-theoretic
sense): if b̄, c̄ are n-tuples from Fκ with the same type in Fκ then there is an
automorphism f of Fκ such that f(b̄) = c̄.
(ii) Let b̄ and c̄ be finite tuples in a standard model Fn and let G be a free factor
of Fn (maybe trivial). Then ā and b̄ are independent over G (in the sense of
forking) if and only if Fn admits a free decomposition H ∗ G ∗ K such that
b̄ ∈ H ∗G and c̄ ∈ G ∗K.

• Concerning (i): when κ = 2 the result is relatively easy (and was first
observed by Nies).

• Namely one reduces to the case when neither b̄ nor c̄ is contained in a free
factor of F2. Let b̄ = w̄(a1, a2) where (a1, a2) is a basis of F2 and w̄ an
n-tuple of words.

• The formula (without parameters) φ(x̄): ∃y1, y2(x̄ = w̄(y1, y2)∧ [y1, y2] 6=
1) is true of b̄ so also of c̄.

• One obtains an injective endomorphism f1 of F2 taking b̄ to c̄ and an
injective endomorphism f2 taking c̄ to b̄. The composition f takes b̄ to
b̄ and is injective, hence by the indecomposability assumption, f is an
automorphism.

• The key point here is that injectivity of an endomorphism h of F2 is
equivalent to [h(a1), h(a2)] 6= 1.
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• Generalizing the proof to n > 2 requires dealing with this “expressibility”
of injectivity, and the proof (at least that by Perin-Sklinos) depends on a
relative version of the “K-M,S” finiteness theorem.

• I won’t say much about (ii) (forking) other than that it uses (i) heavily.

DOP

• Here we are concerned with questions from “classification of stable theo-
ries” in the sense of Shelah, where the number of models of a theory T of
this or that cardinal is a key problem.

• The property DOP is a so-called “nonstructure” property which if it holds
for a stable theory T gives rise to the maximum possible number of ℵ1-
saturated models of cardinality κ for suitable κ (all κ > ℵ1?)

• The DOP property (when it holds) is typically witnessed by a definable
family of definable sets (as described earlier) f : X → Y (in a saturated
model M̄ say) where the base has a definable group structure, and mutu-
ally generic fibres Xg, Xh are “orthogonal”, roughly meaning that there
are no nontrivial definable (even with additional parameters) relations
between these fibres.

• In the case of Tfg a natural candidate for such a witness to DOP is the
definable family of centralizers, where the base Y is the universe of a model
of Tfg with its given group structure.

• This more or less boils down to proving that in a standard model Fn,
if a1, a2 are distinct members of a basis then there is no definable iso-
morphism between finite index subgroups of C(a1) (= 〈a1〉) and C(a2)
(= 〈a2〉).

Description of saturated models and types

• Finally a few unstructured questions/comments.

• A very basic problem is to say something meaningful about a (or the)
saturated model Ḡ of Tfg.

• The asymptotic cone is part of the picture in some sense (as a quotient of
some set in Ḡ).

• But even in the case of (Z,+) where a saturated model is Ẑ⊕Qκ and the
asymptotic cone is R (as a group), neither tells us much about the other.
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• A related question is to give a description of the space of types over arbi-
trary models. This is the “normal” way by which one proves stability of
specific theories, as stability of T is equivalent to there being “few types”
over models.

• Already, a description of S(Tfg) (= ∪n(Sn(Tfg)), i.e. complete types of the
theory Tfg would be useful. In this case I now take as given or understood

the types p0, p
(n)
0 , and thus also any type of a tuple in a standard model

(as a word in p
(n)
0 ).

• Of course any p(x) ∈ S(Tfg) is an ultraproduct of types realized in any
given standard model, but this is not very informative.

• It is somewhat interesting that we can take the types realized in finitely
generated models of Tfg as “known” or “classified”.

• This is because of what I understand from Perin to be a classification
(Sela?) up to isomorphism of pairs of the form (G, ā) where G is a model
of Tfg and ā is a finite tuple of generators of G, using “hyperbolic towers”.

• And the set of complete types of Tfg whose realization in some (any) model
of Tfg generates an elementary substructure, is in 1-1 correspondence with
the collection of isomorphism types above.
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