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Abstract

For G a group definable in some structure M , we define notions of “defin-
able” compactification of G and “definable” action of G on a compact space X
(definable G-flow), where the latter is under a definability of types assumption
on M . We describe the universal definable compactification of G as G∗/(G∗)00M
and the universal definable G-ambit as the type space SG(M). We also point
out the existence and uniqueness of “universal minimal definable G-flows”,
and discuss issues of amenability and extreme amenability in this definable
category, with a characterization of the latter. For the sake of completeness we
also describe the universal (Bohr) compactification and universal G-ambit in
model-theoretic terms, when G is a topological group (although it is essentially
well-known).

1 Introduction and preliminaries

Given a topological (Hausdorff) group G, a compactification of G is a pair (H, f)
where H is a compact topological group and f : G → H a continuous homomor-
phism with dense image. There is a universal such compactification, called the Bohr
compactification. Let us note immediately that a compactification of the topological
group G is a special case of continuous action of G on a compact space X, where X
has a distinguished point x0 with dense orbit under G (a so-called G-ambit.) Again
there is a universal G-ambit. There is reasonably compehensive account of abstract
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topological dynamics in [1].

On the other hand, given a group G definable in a structure M , a saturated el-
ementary extension M∗ of M , G∗ the interpretation of the formulas defining G in
M∗ and a type-definable over M , normal subgroup N of G∗ of index at most 2|M |,
G∗/N , equipped with the so-called logic topology is a compact Hausdorff group, and
the identity embedding of G in G∗ induces a homomorphism from G into G∗/N with
dense image. There is a smallest such N which is called (G∗)00M , a kind of connected
component of G∗. More generally we have the action of G on the space SG(M) of
complete types over M concentrating on G, where SG(M) is the Stone space of the
Boolean algebra of definable subsets of G. And there is a canonical dense orbit:
G · tp(1G/M).

Here we will relate these two theories, in the context of two categories: first the
classical case of topological groups, and secondly the new case of definable groups.
The case of compactifications of topological groups was explicated by Robinson and
Hirschfeld ([15], [5]) in the language of nonstandard analysis. For the more general
case of G-flows, the explication of the universal G-ambit via the Samuel compact-
ification of G ([16], [19]), with respect to the right uniformity on G, is basically
equivalent to the model-theoretic account that we give below. As far as definable
groups are concerned, we give appropriate definitions (definable compactification,
definable G-flow), obtaining in a sense a theory of tame topological dynamics, al-
though we make a definability of types assumption on the model concerned, in the
case of group actions. A free group Fn (n ≥ 2), considered as a first order structure
(Fn, ·), will be extremely amenable as a definable group, although considered as a
discrete topological group, it will not be such.

A big influence on this paper is work of Newelski (for example [8], [9]) on trying
to use the machinery of topological dynamics to extend stable group theory to tame
unstable contexts. The present paper is quite soft, aiming partly at putting Newel-
ski’s ideas into a formal framework, definable, or tame, topological dynamics. On the
other hand the treatment of fsg groups in [13] and the case analysis of SL(2,R) in
[4] from this point of view, are rather harder.

In the remainder of this introduction, we recall some very basic model-theoretic
notions and constructions. A good reference for the kind of model theory in the
current paper is [14] as well as [6]. Whenever we take about a topological space we
assume Hausdorffness.

We fix a complete theory T in language L, a model M of T and a very satu-
rated elementary extension M∗ of M , for example κ-saturated of cardinality κ where
κ > 2|M |+|L|. For X a definable set in M∗, definable over M (or even a set definable
in M), SX(M) denotes the Stone space of complete types over M which concentrate
on (the formula defining) X. By a type-definable over M set in M∗ we mean the
common solution set in M∗ of a collection of formulas over M , equivalently an in-
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tersection of sets, definable in M∗ over M . Sometimes LM denotes the language L
expanded by constants for elements of M .

We first recall the logic topology on bounded hyperdefinable sets (in a saturated
model).

Definition 1.1. Let X be a definable set in the structure M∗, definable with pa-
rameters from M .

(i) Suppose E is a type-definable over M equivalence relation with a bounded
number of classes, that is < κ (equivalently ≤ 2|M |+|L|) many, and π : X →
X/E the canonical surjection. The logic topology on X/E is defined as follows:
Z ⊆ X/E is closed if π−1(Z) ⊆ X is type-definable over M .

(ii) Suppose C is a compact space, and f : X → C a map. We say that f is definable
over M , if for any closed subset D of C, f−1(D) is type-definable over M .

The following is well-known (see e.g. [6]).

Lemma 1.2. Let X, E be as in Definition 1.1 and C be a compact space.

(i) The set X/E equipped with the logic topology is a compact space, and π : X →
X/E is definable over M .

(ii) Conversely, suppose f : X → C is an M-definable map. Then:

(a) D = f(X) is closed in C,

(b) the equivalence relation E(x, y) ⇔ f(x) = f(y), for x, y ∈ X, is type-
definable over M and bounded,

(c) f induces a homeomorphism between X/E equipped with the logic topology
and D.

(iii) Let again f : X → C be M-definable. Then f factors through the tautological
map a 7→ tp(a/M) from X to SX(M), and C is equipped with the quotient
topology.

Fact 1.3. Suppose G is a group definable in M and G∗ is the interpretation in M∗

of the formulas defining G.

(i) Let N be a normal, type-definable over M , bounded index subgroup of G∗. Then
G∗/N equipped with the logic topology is a compact group.

(ii) There is a smallest, type-definable over M , subgroup of G. It is called (G∗)00M ,
and is normal in G∗.

We also recall:

Definition 1.4. (i) A type p(x) ∈ S(M) is definable if for any ϕ(x, y) ∈ L, {b ∈
M : ϕ(x, b) ∈ p} is a definable set in M .
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(ii) If A ⊇ M , and q(x) ∈ S(A), then q is said to be finitely satisfiable in M (or
equivalently a coheir of q|M) if every formula in q is satisfied by some element
or tuple from M .

(iii) If A ⊇ M and q(x) ∈ S(A), then q is said to be an heir of q|M if for any
LM -formula ϕ(x, y) such that ϕ(x, a) ∈ q for some a ∈ A, there is m ∈M such
that ϕ(x,m) ∈ q.

Fact 1.5. (i) tp(a/M, b) is a coheir of tp(a/M) if and only if tp(b/M, a) is an
heir of tp(b/M).

(ii) p(x) ∈ S(M) is definable if and only if p has a unique heir over any A ⊇M .

The property, for a given theory T , that all complete types over all models are
definable (equivalently all complete types over a sufficiently saturated model are
definable), is very strong, and equivalent to stability of T . On the other hand there
are certain important structures M over which all complete types are definable, even
though Th(M) is unstable. Examples are (R,+, ·) and (Qp,+, ·). There is also a
class of first order theories, properly containing the class of stable theories, for which
certain “mild” expansions of arbitrary models have the property that all types over
them are definable: T is (or has) NIP , if (working in a saturated model M∗) for any
L-formula ϕ(x, y), indiscernible sequence (ai : i < ω) and b ∈M∗, the truth value of
ϕ(ai, b) stabilizes as i→∞. Given a model M of any theory T , by M ext we mean the
structure whose universe is M and which has predicates for all externally definable
subsets of Mn: where X ⊆Mn is said to be externally definable, if there is a formula
ψ(x) possibly with parameters from M∗ such that X = {a ∈ Mn : M∗ |= ψ(a)}.
Note that M ext has (essentially) constants for all elements. The following is due to
Shelah [17], but see also [12] for a simplified account.

Fact 1.6. Assume that T has NIP . Then for any model M of T , Th(M ext) has
quantifier elimination and NIP . Moreover all complete types (in any number of
variables) over M ext are definable.

In fact Shelah suggests, in Thesis 0.5 of [18], that in studying an NIP theory
T , one should from the start work with the class of externally definable sets. This
in some sense provides some justification for our “definability of types” assumption
when we introduce “definable topological dynamics” in Section 3.

2 The topological case

We give a brief model-theoretic description of the topological case. We refer the
reader to [19] for a nice treatment of topological dynamics.

Let G be a topological group. As mentioned in the introduction G has a unique
“universal compactification”, called Bohr compactification. Here is a summary of a
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model-theoretic account. Let M be a structure whose universe is G, and has a symbol
for the group operation, and, for each open subset of G a predicate symbol PU whose
interpretation in M is U (and maybe more). We suppose the language L of M has
cardinality at most 2|M |. Let M∗ be a very saturated elementary extension of M
and G∗ the corresponding group. Let U∗ denote the interpretation of PU in M∗. The
following proposition immediately follows from [3, Theorem 5.6].

Proposition 2.1. Let N be the smallest subgroup of G∗ which has bounded index,
and is an intersection of some of the U∗’s. Then:

(i) N is normal (hence G∗/N with the logic topology is a compact group),

(ii) The mapping f from G to G∗/N induced by the identity embedding of G in G∗

is continuous and is the universal compactification of the topological group G.

Now we consider topological dynamics. G remains a topological group. By a G-flow
(X,G) we mean a continuous action of G on a compact space X (i.e. an action of G
on X such that the corresponding function G × X → X is continuous). Note that
for X a compact space, the space Homeo(X) of homeomorphisms of X equipped
with the compact-open topology, is a compact group. Moreover a G-flow (X,G) is
precisely given by a continuous homomorphism from G to Homeo(X). Note that if
x ∈ X, then the map taking g ∈ G to g ·x ∈ X is continuous. By a G-ambit (X, x0, G)
we mean a G-flow (X,G) together with a point x0 ∈ X such that the orbit G · x0 is
dense in X. There is a universal G-ambit, sometimes called S(G), with distinguished
point e say: for every G-flow (X,G) and p ∈ X there is a unique map of G-flows from
S(G) to X which takes e to p. The universal G-ambit is unique, by definition. The
following model-theoretic (nonstandard analytic) account of the universal G-ambit
is easily seen to follow from the account of S(G) as the “Samuel compactification”
of the uniform space (G,R) where R is the canonical right uniformity on G (see [19,
Section 2]). The basic entourages of R are {(x, y) ∈ G2 : xy−1 ∈ V }, where V ⊆ G
range over open sets containing the identity 1 of G.

Proposition 2.2. Let G be a topological group, and M a structure as described
at the beginning of this section. Let E be the finest bounded, type-definable over M
equivalence relation on G∗ which satisfies the following condition:

whenever g, h ∈ G∗ and gh−1 ∈ U∗ for every U which is a neighbourhood
of the identity, then E(g, h).

Then E is G-invariant, and G∗/E with the logic topology and distinguished point
1/E is the universal G-ambit.

Proof (sketch). S(G) is the completion of G with respect to the finest precompact
uniformity U which is coarser than R. Such a uniformity corresponds to a type-
definable equivalence relation E on G∗. Since U is precompact, E has boundedly
many classes. Also U is G-invariant, as R is. The completion of G with respect to U
is exactly G∗/E with the logic topology.
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We give a few additional remarks. The universal G-ambit S(G) has a canonical
semigroup structure (which in the proof of Theorem 2.1 in [19] is seen to follow
directly from the universality property of S(G)). This semigroup structure is in turn
used to prove the uniqueness of the universal minimal G-flow: A G-flow (X,G) is
minimal if X has no proper G-subflow (i.e. closed G-invariant subset). A universal
minimal G-flow is a minimal G-flow (X,G) such that for any (minimal) G-flow
(Y,G) there is some map of G-flows f : X → Y . So uniqueness of the universal
minimal G-flow is not built into the definition, but is nevertheless true. Computation
of the universal minimal flow M(G) for various topological groups is an important
enterprise. We have been told that for no locally compact noncompact topological
group G, has M(G) been explicitly described. The topological group G is said to
be (extremely) amenable if for every G-flow (X,G), there is a G-invariant Borel
probability measure on X (X has a G-invariant point). Clearly it suffices for the
universal G-ambit to have this property.

3 The definable case

The aim in this main section of the paper is to try to give appropriate analogues
of compactification and action on a compact space, for definable groups rather than
topological groups. Many of our formulations can possibly be improved or modified.
We also ask a few questions. We fix a first order structure M , not necessarily satu-
rated. By a definable set in M we mean a subset Y of Mn definable with parameters
from M . M∗ denotes a very saturated elementary extension of M . For Y a definable
set in M , we often use Y ∗ to denote the interpretation in M∗ of the formula which
defines Y in M .

We first give an analogue of Definition 1.1(ii) in the nonsaturated case:

Definition 3.1. Let Y be a definable set in M and C a compact space. By a definable
map f from Y to C we mean a map f such that for any disjoint closed subsets C1, C2

of C there is a definable subset Y ′ of Y such that f−1(C1) ⊆ Y ′ and Y ′∩f−1(C2) = ∅.

Lemma 3.2. Suppose Y is a definable set in M .

(i) Suppose f : Y → C is a definable map from Y to a compact space C. Then f ex-
tends uniquely to an M-definable map from Y ∗ to C (in the sense of Definition
1.1(ii)).

(ii) Conversely, suppose f ∗ is an M-definable map from Y ∗ to the compact space
C (in the sense of Definition 1.1(ii)). Then the restriction f of f ∗ to Y is a
definable map from Y to C in the sense of Definition 3.1.

Proof. (i) We first define f ∗. Let c ∈ Y ∗ and let p(y) = tp(c/M). For ϕ(y) a formula
in p, let f(ϕ(M)) denote the closure of f(ϕ(M)) in C.

Claim.
⋂
ϕ∈p f(ϕ(M)) is a singleton in C.
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Proof of Claim. Suppose for a contradiction that a 6= b are both in
⋂
ϕ∈p f(ϕ(M)).

Let C1, C2 be disjoint closed neighbourhoods in C of a, b respectively. So there is
ϕ(y) over M such that f−1(C1) ⊆ ϕ(M), and ϕ(M) ∩ f−1(C2) = ∅. Without loss of
generality ϕ(y) ∈ p(y). Now f(ϕ(M)) is disjoint from C2 hence (as C2 contains an
open neighbourhood of b), f(ϕ(M)) does not contain b, a contradiction.

So define f ∗(c) to be the unique element in
⋂
ϕ∈p f(ϕ(M)).

A similar argument to the claim shows that f ∗ is definable over M (if D ⊆ C is
closed, let Σ(y) be the set of formulas ϕ(y) over M such that f−1(D) ⊆ ϕ(M), and
show that if c satisfies Σ(y) in Y ∗ then f ∗(c) ∈ D). Uniqueness of f ∗ is also clear.

(ii) Let C1, C2 be disjoint closed subsets of C. Let Xi = (f ∗)−1(Ci) for i = 1, 2. As
X1 and X2 are disjoint, type-definable over M subsets of Y ∗, by compactness (or
saturation of M∗) they separated by an M -definable set Z. So f−1(C1) and f−1(C2)
are separated by Z(M), a definable set in M .

We start with the rather easy case of group compactifications.

Definition 3.3. Let G be a group definable in M . By a definable compactification
of G we mean a definable homomorphism from G to a compact group C with dense
image.

Proposition 3.4. Let G be a group definable in M . Then there is a (unique) uni-
versal definable compactification of G, and it is precisely G∗/(G∗)00M (where the ho-
momorphism from G to G∗/(G∗)00M is that induced by the identity embedding of G in
G∗).

Proof. Let f : G→ C be a definable compactification of G. By Lemma 3.2(i), f lifts
uniquely to an M -definable map f ∗ from G∗ onto C. We claim that f ∗ is a group
homomorphism. The proof of Lemma 3.2(i) shows that for any a ∈ G∗, f ∗(a) =⋂
ϕ∈p f(ϕ(M)), where p = tp(a/M). Let b ∈ G∗ and q = tp(b/M). Then⋂

ϕ∈p,ψ∈q

f(ϕ(M) · ψ(M)) =
⋂

ϕ∈p,ψ∈q

f(ϕ(M)) · f(ψ(M)) =
⋂
ϕ∈p

f(ϕ(M)) ·
⋂
ψ∈q

f(ψ(M))

= f ∗(a) · f ∗(b). This is enough to show that f ∗ is a homomorphism. So the kernel of
f ∗ is a normal type-definable (over M) subgroup of G∗ of bounded index. Also by
1.2, the topology on C coincides with the logic topology (on G∗/N). So if (G∗)00M is
the smallest type-definable over M subgroup of G∗ of bounded index, then we have a
canonical surjection map π : G∗/(G∗)00M → C = G∗/N , which is clearly a continuous
homomorphism and commutes with the canonical homomorphisms from G.

Now for definable group actions. Let again G be a group definable in a structure
M . Our aim is to give an account of “definable actions of G on compact spaces X”
which is analogous to the topological case and is a generalization of the case where G
is a discrete topological group. Now we have the action of G on the type space SG(M),
and the orbit of 1 is dense. If all subsets of G are definable, then SG(M) is precisely
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βG, the space of ultrafilters on the Boolean algebra of subsets of G. Moreover it is
well-known that (βG, 1) coincides with the universal G-ambit when G is considered
as a discrete topological group. So back in the situation of G being a definable group
in an arbitrary structure M , we would like a notion of “definable action of G on a
compact space X” such that (i) if Y is a closed G-invariant subset of X, then the
induced action of G on Y is definable, and (ii) (SG(M), 1) is the universal definable
G-ambit. We note now that these demands already place some constraints on G and
M : Let p ∈ SG(M) and let Y ⊆ X be the closure of the orbit G · p. By (i) and (ii),
there should be a continuous (G-invariant) map f : SG(M) → Y , taking g ∈ G to
gp. By 3.2 (essentially) the restriction of f to G should be definable, in the sense of
Definition 3.1. But then
(*) for any formula φ(x) over M (defining a subset of G), {g ∈ G : g · φ(x) ∈ p}
should be a definable subset of G.

This would be guaranteed if p were a definable type. So below we make the assump-
tion that all types in SG(M) are definable, and with suitable definitions develop the
desired theory. But the reader can check that in fact (*), for any p ∈ SG(M), is
enough to make the theory work.

As remarked in the introduction important unstable structures such as the field R
of real numbers, or the field Qp of p-adic numbers, do have the feature that all types
over them are definable. So our theory will apply to real and p-adic semialgebraic Lie
groups. Given an NIP theory T , an arbitrary model M of T and group G definable
in M , it would be natural to apply the theory we develop to G as a group definable
in the expansion M ext. In fact the third author already did this successfully for fsg
groups in [13]

ASSUMPTION. M is a first order structure, G is a group definable in M , and all
types in SG(M) are definable.

So note we do not assume that ALL complete types over M are definable, just
complete types extending the formula x ∈ G.

We now give a somewhat strong definition of a definable action of G on a compact
space X, suitable for our purposes, under the ASSUMPTION above.

Definition 3.5. Let X be a compact space.

(i) By a definable action of G on X (or definable G-flow) we mean that G acts on
X by homeomorphisms, and for each x ∈ X, the map fx : G→ X taking g to
g · x is definable.

(ii) A definable G-ambit is a definable G-flow (X,G) with a distinguished point
x0 ∈ X such that the orbit G · x0 is dense in X.

Remark 3.6. (i) The second clause in Definition 3.5(i) is equivalent to saying that
the induced map from G to the compact space XX is definable.
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(ii) If G acts definably on the compact space X and Y is a closed G-invariant
subset of X, then clearly the action of G on Y is also definable.

(ii) Itai Ben Yaacov suggested to the third author that the topologically correct
definition in (i) is that in addition to G acting by homeomorphisms, the map
from G to the space Homeo(X) of homeomorphisms of X, where Homeo(X)
is equipped with the compact-open topology, is definable when considered as
a map from G into the Roelcke compactification of Homeo(X). Under our
definability of types assumption, definable G-ambits will have this property.

Lemma 3.7. (i) The action of G on SG(M) is definable.

(ii) Moreover for any bounded type-definable over M , G-invariant equivalence re-
lation E on G∗, the action of G on G∗/E (equipped with the logic topology) is
definable.

Proof. (i) Clearly G acts on SG(M) by homeomorphisms. As SG(M) is totally dis-
connected, the second clause in Definition 3.5(i), says that for any LM -formula ϕ(x),
and p(x) ∈ SG(M), {g ∈ G : ϕ(x) ∈ gp} is a definable subset of G. And this follows
by definability of p(x).

(ii) This follows from (i): Let X = G∗/E and π the (continuous) G-invariant
surjection from SG(M) to X. Suppose a ∈ X and C1, C2 are disjoint closed subsets
of X. Let Di = π−1(Ci) for i = 1, 2. So D1, D2 are disjoint closed subsets of SG(M),
and by compactness (E being type-definable over M), there are M -definable sets
D′1, D

′
2, containing D1, D2 respectively, such that π(D′1) and π(D′2) are disjoint. Let

p(x) ∈ π−1(a). So as in (i) {g ∈ G : gp ∈ D′1} is a definable subset Y of G. We see
that Y separates {g ∈ G : g · a ∈ C1} and {g ∈ G : g · a ∈ C2}, as required.

Proposition 3.8. There is a (unique) universal definable G-ambit, which is precisely
the type space SG(M), under the natural action of G, where the distinguished element
of SG(M) is the identity element 1 of G. Namely for any other definable G ambit
(X,G, x0) there is a unique continuous (necessarily surjective) map h : SG(M)→ X
of definable G flows with f(1) = x0.

Proof. Let (X,G, x0) be a definable G-ambit. Let f : G → X be f(g) = g · x0. By
Lemma 3.2(i), f extends uniquely to an M -definable map f ∗ from G∗ to X, and thus
a continuous map h : SG(M)→ X. Note that h is surjective as its image is compact
and contains G · x0. Also note that h(1) = x0. It remains to see that h is a map
of G-spaces. This follows from the construction of f ∗ in the proof of 3.2: for p ∈
SG(M), and g ∈ G, gh(p) = g

⋂
ϕ∈p f(ϕ(M)) =

⋂
ϕ∈p gf(ϕ(M)) =

⋂
ϕ∈p f(gϕ(M))

=
⋂
ψ∈gp f(ψ(M)) = h(gp) (using the fact that f(ϕ(M)) = ϕ(M) · x0).

We now discuss the semigroup structure on SG(M)

Definition 3.9. Let p, q ∈ SG(M). Then by p∗q we mean tp(ab/M) where b realizes
q and a realizes the unique coheir of p over M, b. (Equivalently a realizes p and b
realizes the unique heir of q over M,a).
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So note that if p = g is in G (namely a realized type), then p ∗ q is just gq, so the
operation ∗ : SG(M)× SG(M)→ SG(M), extends the group action G×X → X.

Lemma 3.10. (i) ∗ is a semigroup operation on SG(M), continuous on the left,
namely for given q ∈ SG(M) the map taking p to p ∗ q is a continuous map
from SG(M) to itself.

(ii) Given q ∈ SG(M), let rq be the unique continuous function from SG(M) to
itself which takes 1 to q (given by Proposition 3.8). Then for any p ∈ SG(M),
rq(p) is precisely p ∗ q.

Proof. Left to the reader.

Definition 3.11. (i) By a minimal definable G-flow we mean a definable G-flow
(X,G) with no proper closedG-invariant subset (i.e. with no properG-subflow).

(ii) By a universal minimal definable G-flow, we mean a minimal definable G-flow
(I,G) such that for any minimal definable G-flow (X,G) there is a G-map from
I to X. (So in fact for every definable G-flow X, minimal or not, there is a
G-map from I to X).

Note first that any minimal G-subflow I of SG(M) will be a universal minimal
definable G-flow. (Because for any definable G-flow (X,G) there is by Proposition
3.8 a G-map from SG(M) to X whose restriction to I is a G map from I to X. )
On the other hand, there is no a priori reason for there to be a unique universal
minimal definable G-flow (in the obvious sense). But in fact uniqueness of the the
universal minimal definable G-flow is true. This makes use of the semigroup structure
on SG(M), and is well-known. But for completeness we go briefly through the steps,
following Section 3 of [19]. Let I be a minimal subflow of SG(M):

Claim. (i) Left ideals (with respect to ∗) of SG(M) coincide with closedG-subflows.

(ii) I contains an idempotent p0 and q ∗ p0 = q for all q ∈ I.

(iii) Every G-map f : I → I has the form p→ p ∗ q for some q ∈ I.

Proof. Consider h = f ◦ rp0 : SG(M)→ I. Then h = rt where h(1) = t ∈ I. As rp0|I
is the identity (by (ii)), f and h = rt have the same restriction to I.

Claim. (iv) Every G-map f : I → I is a bijection.

Proof. By (iii) f = rt|I for some t ∈ I. Now I ∗ t being an ideal contained in I
coincides with I (by minimality of I) hence s ∗ t = p0 for some s ∈ I. Let g : I → I
be the map rs|I. Then f ◦ g = id. As f was arbitrary all G-maps from I to I are
surjective. In particular g is hence f is a bijection.

We conclude from (iv):
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Proposition 3.12. There is a unique (up to isomorphism of G-spaces) universal
minimal definable G-flow, and it coincides with some (any) minimal G-subflow of
SG(M).

Proof. Let I be a given minimal subflow of SG(M), and J any other universal minimal
G-flow. There are G-maps f : I → J and g : J → I, both necessarily surjective. The
composition g ◦ f : I → I is bijective by (iv) above, whereby f is injective, hence a
homeomorphism.

So part of the content of [4] was to describe the universal minimal definable
G-flow when G = SL(2,R) and M = (R,+, ·).
Finally we discuss amenability. Our definability of types assumption remains in place.

Definition 3.13. (i) G is definably amenable if for every definable G-flow (X,G)
there is a G-invariant Borel probability measure on X.

(ii) G is definably extremely amenable if for every definable G-flow (X,G), X has
a fixed point.

Remark 3.14. By Proposition 3.8, definable (extreme) amenability of G is equivalent
to SG(M) having a G-invariant Borel probability measure (fixed point)

Question 3.15. Suppose G is definably amenable. Is there then a definable G-
invariant Borel probability measure on SG(M)? Where definability of µ means:
for any L-formula ϕ(x, y), and closed disjoint subsets C1, C2 of [0, 1] {b ∈ M :
µ(ϕ(x, b)) ∈ C1}, and {b ∈ M : µ(ϕ(x, b)) ∈ C2} are separated by a definable set in
M .

In the papers [6], [7], the expression “definable amenability” of a definable group
was used, without any definability of types assumption. It simply meant the existence
of a G-invariant Keisler measure on G, equivalently a G-invariant Borel probability
measure on SG(M). So we ask:

Question 3.16. Assume T has NIP , M |= T and G is a group definable in M (no
definability of types assumption).

(i) Suppose there is a G-invariant Borel probability measure on SG(M). Is there
also one on SG(M ext)?

(ii) Likewise, if there is a fixed point in SG(M) is there also one in SG(M ext)?

Question 3.16(i) has a positive answer when T is o-minimal, essentially by the
characterization in [2] as well as [13]. We are not sure about (ii), even in the o-minimal
case.

Finally we return to our definability of types assumption on SG(M), and point out
that Pestov’s characterization ([10], Theorem 8.1) of extreme amenability passes
suitably to the definable category. We say that a definable subset Y of G is left
generic if finitely many left translates of Y cover G.
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Proposition 3.17. G is (definably) extremely amenable if and only if for each de-
finable left generic subset Y of G, Y Y −1 = G

Proof. Suppose first that there is a G-invariant type p ∈ SG(M). We will prove the
right hand side without assuming any definability of types assumption. Let X be a
left generic definable subset of G. So for some g ∈ G, gX ∈ p. By G-invariance of p,
X ∈ p. As p is G-invariant, XX−1 = G.
Now for the converse. Given a definable subset Y of G we feel free to identify Y with
the clopen subset of SG(M) (and of any closed subset of SG(M)) it defines. So for
p ∈ SG(M) we may write p ∈ Y , although this corresponds to the formula defining
Y being in the type p. Assume the right hand side. Let M be a minimal closed
G-invariant subset of SG(M). We will prove that M is a singleton, by showing that
for any p ∈M, and g ∈ G, gp = p. Suppose for a contradiction that for some g ∈ G
and p ∈ SG(M), gp 6= p. Then there is a formula (i.e. definable subset of G) Y ∈ p
such that Y ∩ g(Y ) = ∅. Note that the union U of all gY must cover M, Because
if not then M\ U is closed G-invariant and nonempty, contradicting minimality of
M. By compactness of M, it is covered by g1Y ∪ . . . ∪ gkY for some g1, . . . , gk ∈ G.
Let Y1 = {h ∈ G : Y ∈ h(p)}. By definability of p, Y1 is a definable subset of G.

Claim (I). g1Y1 ∪ . . . ∪ gkY1 = G (so Y1 is left generic in G).

Proof of Claim (I). Let h ∈ G. So hp ∈M so hp ∈ giY for some i = 1, . . . , k. Hence
g−1i h ∈ Y1, and so h ∈ giY1.

Claim (II). Y1 ∩ gY1 = ∅ (so Y1Y
−1
1 6= G).

Proof of Claim (II). If not, let h ∈ Y1 such that gh ∈ Y1. So hp ∈ Y and ghp ∈ Y
hence hp ∈ Y ∩ g−1Y implying that gY ∩ Y 6= ∅, contradicting choice of Y .

Claims (I) and (II) contradict the right hand side, completing the proof.

Remark 3.18. (i) The proof above (which was adapted from Pestov’s proof of Theo-
rem 7.1 in [10]) generalizes to show that the kernel of the action of G on its minimal
subflow is precisely the intersection of the sets Y Y −1 for Y ⊆ G definable and left
generic.
(ii) If Th(M) is stable, then G is definably extremely amenable iff G is connected,
in which case there is a unique invariant type.
(iii) One might try to generalize Proposition 3.17 to the general situation with no
definability of types assumption. As an example the following holds: Every minimal
subflow of SG(M) is a singleton if and only if whenever Y ⊆ G is definable and (as
a clopen subset of SG(M)) meets some minimal subflow of SG(M) then Y Y −1 = G.
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