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Abstract

We study analogues of the notions from Lie theory of Levi subgroup
and Levi decomposition, in the case of groups G definable in an o-
minimal expansion of a real closed field. With suitable definitions, we
prove that G has a unique maximal ind-definable semisimple subgroup
S, up to conjugacy, and that G = R-.S where R is the solvable radical
of G. We also prove that any semisimple subalgebra of the Lie algebra
of G corresponds to a unique ind-definable semisimple subgroup of G.

1 Introduction and preliminaries

The “Levi-Mal’cev” theorem sometimes refers to Lie algebras (over any field
of characteristic 0) and sometimes to Lie groups. For Lie algebras L it says
that L is the semidirect product of a solvable ideal t and a semisimple sub-
algebra s (with certain uniqueness properties) and, as such, is valid for Lie
algebras over real closed fields. s is sometimes called a Levi factor of L. For
connected Lie groups G it says that G has a unique, up to conjugacy, maximal
connected semisimple Lie subgroup S, and for any such S, G = R-S where R
is the solvable radical (maximal connected solvable normal subgroup). And
of course RN S is 0-dimensional. S need not be closed, but when G is simply
connected, S is closed and RN.S = {1} (so G is the semidirect product of R
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and ). S is sometimes called a Levi subgroup of G. See Theorems 3.14.1,
3.14.2 and 3.18.13 of [15] for example. We also refer to the latter book for
basic facts and definitions concerning Lie algebras and Lie groups.

In this paper we are concerned with G a (definably connected) group
definable in an o-minimal expansion M of a real closed field K, so this goes
outside the Lie group context unless K = R. We are interested not only in
the existence of a “Levi” subgroup and decomposition of the group G but
also in definability properties. Even in the case where M = (R, +, ) and so
G is a Nash group (semialgebraic Lie group), this is a nontrivial issue and S
need not be semialgebraic, as pointed out in the first author’s thesis (see also
Example 2.10 of [3]). In the general situation G' will have a Lie algebra L(G)
(over the relevant real closed field K') which has its own Levi decomposition
as a sum of a solvable ideal and a semisimple algebra, so the issue is what
kind of subgroup of G, if any, corresponds to the semisimple subalgebra, and
also to what extent it is unique.

We will be forced into the category of “ind-definable” subgroups, i.e. de-
fined by a possibly infinite, but countable, disjunction of formulas. We will
give an appropriate (strong) definition of an ind-definable semisimple sub-
group of GG, and in analogy with the classical case, prove the existence and
uniqueness up to conjugacy of a maximal such ind-definable semisimple sub-
group S of G, as well as that G = R - S where R is the solvable radical of G.
Definability of S in this general context corresponds more or less to S being
a closed subgroup of G in the classical context. As remarked above, the first
example of nondefinability of S was given in [3]. We will also give a number
of situations where S is definable.

We now aim towards stating formally the main result. We assume M to
be an o-minimal expansion of a real closed field, and G to be a definably con-
nected definable group in M. G has a unique maximal definably connected
solvable subgroup which we call R. We denote the quotient G/R by P, a
definable (equivalently interpretable) group which is definably connected and
semisimple in the sense that it has no infinite normal solvable (equivalently
abelian) subgroups, or equivalently the quotient of P by its finite centre is a
direct product of finitely many definably simple (noncommutative) definable
groups. We sometimes call P the semisimple part of G.

A crucial notion in this paper is that of an ind-definable semisimple group
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(or subgroup of a given group) S. The meaning is that S is ind-definable,
(locally) definably connected, has a “discrete” centre Z(.S) and the quotient
is a definable semisimple group. The notions will be explained in section 2.

Theorem 1.1. G has a mazximal ind-definable semisimple subgroup S, unique
up to conjugacy i G. Moreover

(i) G=R-S,

(ii) The centre of S, Z(S), is finitely generated and contains RN S.

It will also follow from material in section 2 that if 7 : G — P is the canon-
ical surjective homomorphism, then the (surjective) homomorphism from S
to P induced by 7 is a quotient of the o-minimal universal cover of P. We
will call S as in Theorem 1.1 an ind-definable Levi subgroup of G, and the
decomposition of G given by Theorem 1.1 the ind-definable Levi decomposi-
tion of G. When G is a definable real Lie group this decomposition coincides
with the usual Levi decomposition of G referred to earlier. Note that by
uniqueness of the (ind-definable) Levi subgroup up to conjugacy, some Levi
subgroup will be definable iff all are. When K = R the examples of nonde-
finability of the Levi subgroup, given in [3], [4] and [2], come from encoding
the universal cover of P as an ind-definable but non definable subgroup of
G, and for this to be possible P has to have infinite “fundamental group”.

Our methods will also yield:

Theorem 1.2. Let s be a semisimple Lie subalgebra of L(G). Then there is
a unique ind-definable semisimple subgroup S of G such that s = L(5).

In section 2 we discuss ind-definable groups, semisimplicity, and universal
covers. In sections 3 and 4 we will prove Theorem 1.1 (and Theorem 1.2) in
some special cases, and then combine these in section 5 to give the proofs in
general. At the end of section 5 we will list a number of hypotheses which
imply definability of the Levi subgroups. In the remainder of this introduc-
tion we will recall some basic facts and notions.

Usually M denotes an o-minimal expansion of a real closed field K and
G a group definable in M. For various reasons, especially when dealing
with ind-definable objects, we should bear in mind a saturated elementary
extension M of M. We refer to earlier papers such as [12] for an account
of the general theory of definable sets and definable groups in M, as well as
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the existence and properties of tangent spaces and Lie algebras of definable
groups. But we repeat that for any k a definable group can be equipped with
a (essentially unique) definable C*-manifold structure over K with respect
to which the group operation is C*. Likewise for definable homogeneous
spaces. Definable connectedness of a definable group has two equivalent
descriptions; no proper definable subgroup of finite index, and no proper
open definable subgroup with respect to the topological structure referred to
above. Definability means with parameters unless we say! otherwise.

Definition 1.3. G is semisimple if G is definably connected and has no
infinite normal abelian (definable) subgroup.

Remark 1.4. Assume G definably connected. G is semisimple if and only
if Z(Q) is finite and G/Z(G) is a direct product of finitely many definably
simple, noncommutative, definable groups.

We now list some basic facts, from [9], [11], [12], [13], which we will use:

Fact 1.5. (i) Assume G is definably connected. Then G has a unique max-
imal definable definably connected normal solvable subgroup R and G/R is
semisimple.

(i) If G is semisimple then G is perfect (i.e. G equals its commutator sub-
group [G,G]), and moreover for some r every element of G is a product of
at most r commutators.

(111) If G is definably connected, then G/Z(QG) is linear, namely definably
embeds in some GL,(K).

(iv) Let G be definably connected. Then G is semisimple iff L(G) is semisim-
ple.

(v) If 5 is a semisimple Lie subalgebra of gl,(K), then there is a (unique)
definably connected definable subgroup S of GL,(K) such that s = L(95).
Moreover S is semialgebraic (and semisimple by (iv)).

(vi) If G is definable, semisimple and centreless, then G is definably isomor-
phic to a semialgebraic subgroup of some GL,(K) which is defined over R
(in fact over 7).

This paper is closely related to our earlier papers [3], [4], to [9], and to themes
in the first author’s thesis [2]. The first author would like to thank her advisor
Alessandro Berarducci, as well as Ya’acov Peterzil.



2 Ind-definability, semisimplicity, and univer-
sal covers

The expressions ind-definable, V-definable, and locally definable are more or
less synonymous, and refer to definability by a possibly infinite disjunction of
first order formulas. There is a considerable literature on ind-definability and
the “category” of ind-definable sets. See for example the detailed treatment
in section 2.2 of [8]. Likewise there is a lot written on ind-definable spaces
and groups in the o-minimal setting, especially in the context of universal
covers and fundamental groups. See for example [5] and [6]. So we refer
to these other sources for more details and restrict ourselves here to fixing
notation suitable for the purposes of this paper.

We start with 7" an arbitrary complete theory in a countable language L
say and M a saturated model of 7. A definable set means a definable set in
M unless we say otherwise. M denotes a small elementary substructure.

Definition 2.1. (i) By an (abstract) ind-definable set X we mean a countable
collection (X; : i < w) of definable sets together with definable injections
fi + Xi — X1 for each i, where we identify X with the directed union (via
the f;) of the X;. By a definable subset of X we mean a definable subset of
some X; (in the obvious sense). We say X is defined over M if the X; and
fi are, in which case we also have X (M).

(ii) An ind-definable group is an ind-definable set as in (i) such that X has
a group operation which is definable, namely the restriction to each X; x X;
is definable, hence with image in some Xy.

(11i) An ind-definable set X as in (i) is called a concrete ind-definable set
if for some definable set Y, all the X; are subsets of Y and each f; is the
identity map restricted to X;, namely X; C X, 1 for all i whereby X is simply
U, Xi, an ind-definable subset of Y.

Remark 2.2. (i) If X is an ind-definable subset of the definable set Y as
in (iii) above, and Z is a definable subset of Y contained in X, then by
compactness Z is contained in some X;. Hence the notion of a definable
subset of the abstract ind-definable set X is consistent with the natural notion
when X is concrete.

(ii) There are obvious notions of a function between (abstract) ind-definable
sets being definable (or we should say ind-definable). Note in particular that
if X 1s ind-definable, Y is definable and f : X — Y s definable and surjective
then already the restriction of f to some X; is surjective (by compactness).
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We can formulate some basic notions such as definable connectedness for
groups at this level of generality.

Definition 2.3. (i) Let X be an ind-definable set and Y a subset of X. We
will say that'Y s discrete if for any definable subset Z of X, ZNY 1is finite.
(ii) Let G be an ind-definable group. We will call G definably connected if
G has no proper subgroup H with the properties: for each definable subset Z
of G, ZN H is definable and Z meets only finitely many distinct cosets of H
n G.

Maybe we should rather use the expression “locally definably connected”
in (ii) above, but we leave it as is. In any case when X is a definable set (G
a definable group) the above notions reduce to Y is finite (G has no proper
definable subgroup of finite index). Let us state for the record:

Lemma 2.4. Let G be a definably connected ind-definable group. Then any
discrete normal subgroup of G is central.

Proof. Let N be a discrete normal ind-definable subgroup of G. Then G acts
on N by conjugation. Let n € N and let H be Cg(n) which clearly meets
each definable subset of GG in a definable set. Let Z be a definable subset
of G. Then {gng™! : g € Z} is a definable subset of N, so finite as N is
discrete. So only finitely many distinct cosets of H in G meet Z. As this is
true for all definable Z and G is definably connected we see that H = G, i.e.
n is central in G. O

We now specialize to the o-minimal case, i.e. T"is an o-minimal expansion
of RCF. We will only work with concrete ind-definable sets. When X = G
is a (concrete) ind-definable group, then by [5] X can be definably equipped
with a topology such that the group operation is continuous (as in the case
for definable groups), and in fact C* for arbitrarily large k. Definable con-
nectedness as defined above has a “topological” interpretation. Also G has
a well-defined Lie algebra (over the ambient real closed field). Here is our
main definition (which agrees with the usual one when G is definable).

Definition 2.5. We will call G ind-definable semisimple if G is ind-definable
and definably connected, Z(G) is discrete, and G/Z(G) is definable and
semisimple (namely there is a definable semisimple group D and a defin-
able surjective homomorphism from G to D with kernel Z(G), and note that
D will be centreless).



Remark 2.6. An equivalent definition is: G is ind-definable, definably con-
nected, and there is a definable surjective homomorphism © from G to a
definable (not necessarily centreless) semisimple group D such that ker(m) is
discrete.

Lemma 2.7. An ind-definable semisimple group is perfect.

Proof. Let G be our ind-definable semisimple group, and 7 : G — D definable
with D definable semisimple. Let G; = [G,G]. We want to argue that (i)
the intersection of (G; with any definable subset Z of G is definable and
that moreover (ii) Z intersects only finitely many distinct cosets of G in G.
Definable connectedness of GG; will then imply that G; = G.

We first prove (i). It suffices to show that for arbitrarily large definable
subsets Y of G, Gy NY is definable. As D = [D, D], (the collection of
products of r commutators), we may assume, by enlarging Y that Y N[G, G|
maps onto D under 7. Now clearly Y N [G, G| is ind-definable.

Claim. Y \ |G, G| is ind-definable.

Proof of claim. Let y € Y\ [G,G], and let 7(y) = d € D. By our assumption
above there is x € Y N [G, G] such that 7(x) = d. Hence 27 'y € ker(r) =
Z(@). Note that 7'y € Y'Y a definable subset of G. By definition of G
being ind-definable semisimple, Z(G) N (Y - Y1) is finite. Hence Y\ [G, G]
equals the union of translates ¢ - (Y N [G, G]) for ¢ ranging over the (finite)
set of elements of Z(G) N (Y - Y~!) which are not in [G, G]. This proves the
claim.

By the claim and compactness, Y N [G, G| is definable. We have proved (i).
The proof of the claim shows (ii). So the lemma is proved. O

Lemma 2.8. Let G be an ind-definable semisimple group. Then L(G) is
semisimple.

Proof. Let m : G — D be the canonical surjective homomorphism to a de-
finable semisimple group. As ker(r) is discrete, 7 induces an isomorphism
between L(G) and L(D) and the latter is semisimple by 1.5(iv).

m

As remarked earlier there is a body of work on o-minimal universal covers,
which it will be convenient to refer to (although we could use other methods,
such as in section 5 of [4]). The content of Theorem 1.4 of 7] is:



Fact 2.9. Let G be a definable, definably connected group. Then

(i) The family Cov(G) = {f : H — G, where H is ind-definable, definably
connected, f is surjective and definable with discrete kernel} has a universal
object, namely some 7 : G — G in Cov(G) such that for any f : H — G in
Cov(G) there is a (unique) surjective definable homomorphism h : G — H
such that ho f =m.

(ii) Moreover the kernel of 7 : G — G is finitely generated.

7 : G — G is what is known as the “o-minimal universal cover of G” and
it is proved in [7] that ker(m) coincides with the “o-minimal fundamental
group” m(G) of G given in terms of definable paths and homotopies in [1].
Also if G is definable over M sois 7: G — G.

Although not required for the purposes of this paper, one would also expect
7 : G — G to have the additional property:

For any (locally) definable central extension f : H — G of G there is a
(unique) definable (but not necessarily surjective) homomorphism k : G — H
such that 7 = h o f.

Remark 2.10. If G is an ind-definable semisimple group and f : G —
G/Z(G) = H s the canonical surjective homomorphism from G to a defin-
able semisimple group, then by Fact 2.9(i) f is a quotient of the o-minimal
universal cover m: H — H, and by Fact 2.9(ii), Z(Q) is finitely generated.

We now briefly recall the relation of the o-minimal universal covers to the
classical universal covers of connected Lie groups. Let us suppose that GG is a
definably connected definable group (identified with its group of M-points).
Let L~ be a sublanguage of the language L(T) of T including the language
of ordered fields, such that for some copy R of the reals living inside K, R
with its induced L~-structure is an elementary substructure of M|L~. Let us
suppose also that G is definable in L~ with parameters from R. Then G(R)
is a connected Lie group. Moreover the o-minimal universal cover G of G is
(ind)-definable in L~ over R whereby G(R) makes sense as a topological (in
fact Lie) group. Then Theorem 8.5 and its proof from [9] says that G(R) is
the classical universal cover of G(R). Moreover the kernel of G — G coincides
with the kernel of IG(R) — G(R), which is the fundamental group of the Lie
group G(R).

This applies in particular to the case when G is semisimple: By [9], G is
definably isomorphic in M to a group definable in the ordered field language



over R. So we may assume G to be already definable in the ordered field
language over R. So the o-minimal fundamental group of GG coincides with
the fundamental group of the semisimple real Lie group G(R).

In the rest of the paper, the model M will be an arbitrary model of an o-
minimal expansion of RC'F. When we speak of of an ind-definable set (group)

in M we mean X (M) (G(M)) for X (G) an ind-definable set (group) in M
which is defined over M.

3 Central extensions of definable semisimple
groups

Here we prove Theorem 1.1 when R is central in G, hence R = Z(G)°. In
fact S will be turn out to be the commutator subgroup [G,G], but one has
to check the various properties claimed of S.

We start with a trivial fact about abstract groups, which we give a
proof of, for completeness. Recall that an (abstract) group G is said to be
perfect if G coincides with its commutator subgroup [G, GJ.

Fact 3.1. If G is a central extension (as an abstract group) of a perfect group
P, then [G, G| is perfect.

Proof. Let N be the kernel of the surjective homomorphism 7 : G — P. N is
central in G by assumption. Let H = [G,G]. As P is perfect 7(H) = P, and
for the same reason w([H, H]) = P. If by way of contradiction H = [H, H]|
is a proper subgroup of H, then, as G = N - H' we see that [G,G] = H is
contained in H'. Impossible. So H is perfect. O

We now return to the o-minimal context.

Lemma 3.2. Suppose R = Z(G)". Let S = [G,G]. Then:

(i) S is the unique mazimal ind-definable semisimple subgroup of G.
(ii)) G=R-S.

(11i)) RN S is contained in Z(S) and the latter is finitely generated.

Proof. Let P be the semisimple part of GG, namely P is definable semisimple
and 7 : G — P is surjective with kernel R = Z(G)°.



(i) We first prove that S is “ind-definable semisimple”. Clearly S is ind-
definable. By Fact 1.5(ii), P is perfect hence 7 induces a surjective ho-
momorphism 7|5 : S — P. By Remark 2.6 it suffices to prove that S is
definably connected and ker(n|S) is discrete. By Lemma 1.1 of [4], for each
n, [G,G], N Z(G)° is finite, clearly showing that ker(r|S) is discrete. If S
were not definably connected, let this be witnessed by the subgroup S; of
S. As P is definably connected, m(S;) = P, hence G = R - S;, but then
S =[G, G] is contained in Sp, so S = S; (contradiction).
We will now show maximality and uniqueness simultaneously by showing
that any ind-definable semisimple subgroup S; of GG is contained in S. So let
S1 be such. By Lemma 2.7 S; is perfect, hence S; = [S1,51] < [G,G] = S.
So (i) is proved. We now look at (ii) and (iii). As P is perfect (1.5(ii)), S
maps onto P, so G = R-S. As remarked earlier [G, G], N R is finite for all
n, whereby RN S is discrete, so by Lemma 2.4 is central in .S. Also by Fact
2.9, Z(S) is finitely generated.

O]

4 The almost linear case

Assume to begin with that G is linear, namely a definable subgroup of
GL,(K). Let g be its Lie algebra, a subalgebra of gl (K). Let t be L(R)
where remember that R is the solvable radical of G.

Lemma 4.1. (G linear.) Let S be a mazimal ind-definable definably con-
nected semisimple subgroup of G. Then S is definable (in fact semialgebraic).
Moreover G = R-S and RN S is contained in the (finite) centre of S.

Proof. Let s be the Lie algebra of S which is semisimple by Lemma 2.8. By
[15] s extends to a Levi factor s, of g (i.e. a semisimple subalgebra such
that g is the semidirect product of v and s1). By Fact 1.5(v) there is a defin-
able semisimple subgroup S; of G such that L(S;) = s,. We will prove that
S < 51, so by maximality S = S; and is definable.

This is a slight adaptation of material from [12] to the present context. Con-
sider the definable homogeneous space X = G/S;. We have the natural
action o : G x X — X of G on X, which is differentiable (when X is de-
finably equipped with suitable differentiable structure). Let a € X be S;
and let f : G — X be: f(g) = ¢g-a. By Theorem 2.19(ii) of [12], L(S;) is
precisely the kernel of the differential df. of f at the identity e of G. Consider
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the restriction f; of f to S. As L(S) = s is contained in s, = L(S}), we see
that (dfy). is 0. By Theorem 2.19(i) of [12], (dfi), = 0 for all h € S, so f;
is “locally constant” on S. It follows that Fiz(a) = {h € S : h(a) = a} is
a subgroup of S which is “locally” of finite index (as in Definition 2.3(ii)),
hence Fiz(a) = S which means that S < Si, as desired.

For dimension reasons G = R -S. Clearly RN S is finite (for dimension
reasons, or because it is solvable and normal in S), hence central in S as S
is definably connected. O

Now we want to prove conjugacy.

Lemma 4.2. (G linear.) Any two maximal ind-definable definably connected
semisimple subgroups of G are conjugate.

Proof. Let S, S7 be such. By Lemma 4.1 both S, S, are semialgebraic sub-
groups of G < GL,(K). By the proof of Lemma 3.1 in [14], the (abstract)
subgroup H of GL,(K) generated by S and S is contained in some algebraic
subgroup H; of GL,(K) such that moreover H contains an open semialge-
braic subset of H;. For dimension reasons the definably (or equivalently semi-
algebraically) connected component of H; is contained in GG. Hence we may
assume that G is already semialgebraic. (One could also get to this conclu-
sion by using 4.1 of [13] that there are semialgebraic G; < G < Gy < GL,(K)
with G normal in G normal in G5 and G; normal in G5 such that G, /Gy is
abelian.)

We now make use of transfer to the reals together with the classical Levi
theorem to conclude the proof. Without loss of generality G, .S, S; are defined
by formulas ¢(z, b), ¥ (z,b), 11 (x,b) where these are formulas in the language
of ordered fields with parameters witnessed by b. We may assume that these
formulas include conditions on the parameters b expressing that the group
defined by ¢(z,b) is definably connected and of the given dimension, also
that the subgroups defined by 1 (z,b), 11(x,b) are mazimal (semialgebraic)
semisimple. For example the family of definable abelian subgroups of a defin-
able group is uniformly definable in terms of centralizers, so we can express
that the subgroup defined by v (z, b) is semisimple (definably connected with
no infinite normal abelian subgroup). We can also express maximality, by
witnessing a solvable definable normal subgroup R such that G is R-1(z,b)".
Let o be the sentence in the language of ordered fields expressing that for
any choice ¢ of parameters, the subgroups of ¢(z,c)¥ defined by v (x, ¢) and
¥1(x, ¢) are conjugate.
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Claim. o is true in the model (R, +, -, <).

Proof of claim. Choose parameters ¢ from R. Let H,W,W; be the groups
(subgroups of GL,(R)) defined by the formulas ¢(x,c), ¥(x,c), ¥1(z,c). It
is not hard to see that W, W; are maximal semisimple Lie subgroups of H
(which also happen to be closed) hence are conjugate in H by 3.18.13 of [15].
So the claim is proved, hence o is true in the structure M, whereby S, S; are
conjugate in G. O

Note that Lemmas 4.1 and 4.2 give Theorem 1.1 in the linear case. Let us
now prove Theorem 1.2 in the linear case, by a slight extension of the proof
of Lemma 4.1.

Lemma 4.3. (G linear.) Let s be a semisimple Lie subalgebra of L(G).
Then there is a unique ind-definable semisimple subgroup S of G such that
L(S) =s. Moreover S is definable.

Proof. First let S; be a semialgebraic semisimple subgroup of G with s =
L(S7). Let S be another ind-definable semisimple subgroup of G with L(S) =
5. The proof of Lemma 4.1 shows that S < S;. Let P be a semisimple
centreless definable group with 7 : S — P witnessing the semisimplicity of .S
(according to Definition 2.5). By 1.5(vi) we may assume P to be linear and
semialgebraic. Let us now work inside the linear semialgebraic group S; x P.
The graph of m, W say, is clearly an ind-definable semisimple subgroup of
Sy x P. Let o be its Lie algebra, which is semisimple by 2.8. By 1.5(v), there
is a semialgebraic semisimple W; < Sy x P such that L(W;) = w. Again as
in the proof of 4.1 one sees that W < Wj. Note that dim(W;) = dim(S;) =
dim(P). So Wi has finite cokernel. We will assume for simplicity that this
cokernel is trivial whereby Wj is he graph of a definable (semialgebraic)
homomorphism 7; from S; to P, which has to have finite kernel. Hence
ker(m) is also finite from which it follows that 7 is definable, as is S. Hence

S =25 [l

We will say that G is almost linear if for some finite central subgroup N of

G, G/N is linear (i.e. there is a definable homomorphism from G into some
GL,(K) with finite central kernel).

Lemma 4.4. Theorems 1.1 and 1.2 hold when G is almost linear. Moreover
in this case any ind-definable semisimple subgroup of G is definable.
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Proof. Let G/N be linear where N is finite (central) and let 7 : G — G/N be
the canonical surjective homomorphism. Note first that by Lemma 4.3 (and
Lemma 2.8), any ind-definable semisimple subgroup of G/N is definable. So
if S < @ is ind-definable semisimple then 7(.S) is definable, and so thus is S.
This proves the moreover clause. The rest easily follows from the previous
lemmas. O

5 The general case

This is an easy consequence of the special cases in section 3 and 4 but we
sketch the proofs nevertheless.
First:

Proof of Theorem 1.1. We construct the obvious ind-definable semisimple
subgroup S of GG, observe the desired properties, then we prove its maxi-
mality and uniqueness up to conjugacy.

By Fact 1.5(iii), G; = G/Z(G)° is almost linear. Let 7 : G — Gy be the
canonical surjective homomorphism. Also let R be the solvable radical of G
(which contains Z(G)°?) and then R; = 7(R) will be the solvable radical of
G;.

By Lemma 4.4 let S; be a a definable Levi subgroup of G; and let H =

771(S}), a definably connected definable subgroup of G. So H is definably
an extension of semisimple definable S; by the central subgroup Z(G)°. So
Z(@)° coincides with Z(H)? and will be the solvable radical of H.
So Lemma 3.2 applies with H. Let S = [H, H| which is in particular an
ind-definable semisimple subgroup of G. As S; N R, is finite, and SN Z(G)°
is finitely generated, S N R is finitely generated (and normal, discrete hence
central in 5).

It remains to prove, maximality and uniqueness up to conjugacy of S.
Suppose S5 is an ind-definable semisimple subgroup of G containing S. Then
7(S2) is an ind-definable, semisimple, subgroup of G; containing Sj, so as S}
was a Levi subgroup of Gy, m(S5;) = S;. Hence S is contained in H and by
Lemma 3.2 applied to H equals S.

Now let S5 be another maximal ind-definable semisimple subgroup of G. Let
W(SQ) = 53 < Gl.

Clearly S3 is an ind-definable semisimple subgroup of G;, which is by Lemma
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4.4 definable. Let S; be a maximal definable semisimple subgroup of G,
containing S3. Noting that Gy = R;-Sy, and as (by Lemma 2.7), Ss is perfect,
we see by Lemma 3.2, that [771(S,), 771(S,)] is ind-definable semisimple and
contains Se hence by maximality of S we have equality, and S3 = S, and
moreover Sy = [171(S3), 771(S3)]. By Lemma 4.4 again S3 is conjugate in G4
to Sy by gy say. Hence (as ker(m) is central in ) for any lift g of g; to a point
of G, Sy = [771(S3), 77 1(S3)] is conjugate via g to S = [71(S), 7 1(S1)],
and we have proved conjugacy.

This completes the proof of Theorem 1.1. n

Proof of Theorem 1.2. Againwelet 7 : G — G/Z(G)° = G, be the canonical
surjective homomorphism. If s is semisimple and §; = 7(s) (namely the
image of s under the differential of 7 at the identity), then s; is also semsimple
and so by Lemma 4.4 is the Lie algebra of a unique definable semisimple
subgroup S; of Gy. Let H = 771(S;). Then by Lemma 3.2 applied to H we
see that s is the unique Levi factor of L(H) and S = [H, H] is the unique
ind-definable semisimple subgroup of H with L(S) = s.
If S, is another ind-definable semisimple subgroup of G with L(S;) = s,
then by Lemma 4.4, 7(S3) = Si, and by perfectness of Sy and definable
connectedness of [H, H] = S we see that Sy = S.

Theorem 1.2 is proved. O

Finally we mention cases when some (any) ind-definable Levi subgroup of G
is definable. GG remains a definably connected group definable in M.

Proposition 5.1. Suppose either of the following hold:

(i) G is affine Nash,

(i1) G/N is linear for some finite central N,

(iii) the semisimple part P of G has finite o-minimal fundamental group,
(iv) the semisimple part P of G is definably compact.

THEN any ind-definable Levi subgroup S of G is definable (whereby G = R-S
with RN S finite).

Proof. (i) G being affine Nash means that G is definable in the RC'F' language
and with its unique structure as a Nash manifold has a Nash embedding in
some K™. See [10]. In fact in the latter paper it is proved that G is a finite
cover of an “algebraic group” (namely of H(K)? where H is an algebraic
group defined over K). Remark 2.9 of [3] says that H(K)° has a definable
Levi subgroup, and this lifts to G.
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(ii) This is already part of Lemma 4.4 above.

(iii) The previous material shows that it suffices to look at central extensions
G of a semisimple group P, in which case by Lemma 3.2, S = [G, G] is the
ind-definable Levi subgroup. The induced surjective homomorphism S — P
is, by Remark 2.10, a quotient of the o-minimal universal cover of P, so if P
had finite o-minimal fundamental group, then the kernel of S — P is finite
whereby easily S is definable.

(iv) If P is definably compact then it has finite o-minimal fundamental group
(as this corresponds to the usual fundamental group of the associated com-
pact semisimple Lie group discussed at the end of section 3), so we can use
(iii). But this case also follows from the results of [9]. O
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