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1 Introduction

Contemporary or modern (mathematical) logic was born at the end of the
19th century. Its origin is connected with mathematics rather than philos-
ophy, and my article will likewise be informed by a mathematical culture
although I will try make connections with philosophy and the philosophy of
mathematics. Although mathematical logic emanates from a so-called West-
ern intellectual tradition, it is now, like mathematics as a whole, a world
subject with no essential national or cultural distinguishing marks.

Unfortunately I am not knowledgeable about philosophical and (early)
mathematical traditions in the Indian subcontinent, so will not be able to
make any serious comparative analyses. Also I am not trying here to give
a proper history of model theory with appropriate references, bibliography,
credits etc., but rather a description of how I see the subject now, with some
minor commentary on historical developments. Also I will only be able to give
a hint of the main technical notions and definitions in the subject. So I will
point the reader towards a few basic texts, reviews, and historical accounts
of the subject, where more details and as well as a detailed bibliography
can be found, such as Hodges’ textbook and history [3], [4] and Marker’s
textbook [5]. Another survey [7] by myself contains more technical details
than the current article, and my book [6] from 1996 contains an exhaustive
technical treatment of some of the themes I will discuss, but assuming a prior
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acquaintance with model theory. The volume [2] is a good reflection of the
state of model theory around the beginning of the modern era (1971). It also
contains an informative historical article by Vaught on model theory up to
1945. Finally the book [1] gives a readable account of some of the machinery
behind one of the major modern successes of the applications of model theory
(mentioned at the end of Section 6).

Among the strands in the early history of logic were identifications of
correct standard forms of argument (the syllogisms) but also, with Gottfried
Leibniz, the rather bold idea that one might in principle be able to settle all
disputes by mechanical logical means. These were complemented by consid-
erations of the nature of mathematical truths compared to empirical truths
(e.g. Kant), as well as the beginnings of the mathematicization of logic (e.g.
Boole).

So “logic” here is supposed to refer to intrinsic reasoning or truths, inde-
pendent of experience. For example the statement that a thing is equal to
itself is a truth of logic rather than experience, although philosophers such as
Hegel (and also I guess many Indian philosophers) have commented on the
vacuity and even conditionality of such truths. Likewise the fact that from
“P implies Q”, and P , we can deduce Q, is supposed to be valid on purely
logical grounds, independent of which statements P and Q denote.

Rather than try to base all knowledge on logic, Frege and Russell, among
others, attempted to show that all or at least major parts of mathematical
knowledge can be founded on logic. Once one starts to investigate seriously
such claims, one is forced to define one’s terms, and find a formal framework
within which to carry out the project. And this, in a sense, was behind
the birth of modern logic. But another crucial factor was that dominant
mathematicians of the time, such as Hilbert and Poincaré, were very caught
up in “foundational” problems, not only around whether mathematics could
be reduced to logic, but also about the justifications of the use of “infinitistic”
methods and objects, outside the scope of normal intuition. As it turned out
Gödel’s work in the 1930’s showed that not only the Frege-Russell-Whitehead
project, but also a “second level” program of Hilbert to “reduce” infinitistic
to finitistic methods, were doomed.

In spite of this failure of the logicist and Hilbert programs, the efforts
of these late 19th and early 20th century logicians left a lasting impact on
mathematics (and also philosophy). Firstly set theory as a universal lan-
guage for mathematics was largely accepted (even though not all mathe-
matical truths could be settled on the basis of accepted axioms about sets),
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and this contributed towards the possibility of mathematicians from different
subdisciplines being able, at least in principle, to communicate in a precise
and effective with each other. And of course the search for additional axioms
for sets led to the rich subject of contemporary set theory. Moreover the
“defining of one’s terms” issue mentioned above led to precise mathematical
treatments of notions such as truth, proof, and algorithm. It is interesting
that model theory (truth), proof theory (proof) and recursion theory (algo-
rithm), together with set theory, remain the four principal and distinct areas
of contemporary mathematical logic. In any case modern mathematics, its
language, and unity, are closely bound up with logic, although paradoxically
logic has been somewhat marginalized within contemporary mathematics.
Nevertheless, mathematical logic is now undoubtedly regarded as a bona
fide part of mathematics and the various areas and subareas have their own
internal programs and aims, which are continually being modified. But one
can ask to what extent these investigations can have impacts on mathematics
as a whole, as was the case at the beginning of the 20th century. I will try
to convey something both of the “inner movement” of model theory, as well
as its actual and potential wider impacts. To read this article profitably will
require some mathematical background, but as mentioned above I will try to
comment on the “philosophical” content and impact too.

2 Truth

The notion truth in a structure is at the centre of model theory. This is
often credited to Tarski under the name “Tarski’s theory of truth”. But
this “relative”, rather than absolute, notion of truth was, as I understand
it, already something known, used, and discussed. In any case, faced with
the expression “truth in a structure” there are two elements to be grasped.
Truth of what? And what precisely is a structure? An illuminating historical
example concerns the independence of Euclid’s “axiom of parallels” from his
other axioms. A statement equivalent to this axiom of parallels is
(AP): given any line ` and point p not on ` there is exactly one line through
p which is parallel to (does not intersect) `.
The independence statement is that (AP) is not a logical consequence of a
certain collection A of other axioms involving points and lines (such as that
any two distinct points lie on a unique line). This was shown by finding a
“model” of the set A of axioms in which moreover the statement (AP) is
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false. The kinds of things here that are (or are not) true are statements such
as (AP) or the statements (axioms) from A. And the relevant structure or
“model” consists of one collection P of objects which we call “points”, an-
other collection L of objects, called “lines”, and a relation I of “incidence”
between points and lines, thought of as saying that p lies on `. Note that
(AP) can be expressed, in a somewhat convoluted manner, as follows:
(*) for any p and for any ` such that not pI`, [there is `′ such that (pI`′ and
it is not the case that there exists p′ such that p′I` and p′I`′) and for any `′′

such that pI`′′ and it is not the case that there exists p′ such that p′I`′′ and
p′I`′′, `′′ = `′].
So the structure constructed (a model of non Euclidean geometry) was one
where the statements in A are true and the above statement (*) is false.
Already there is a considerable degree of abstraction in my presentation.
The intuitive geometric notions of point and line are replaced by purely for-
mal sets and relations. This is a typical example of a structure in the sense
of model theory, logic, or universal algebra (or even Bourbaki), namely a
universe of objects, together with certain relations between them. In the
example the objects come in two sorts, “points” and “lines” and the only
relation is I. Moreover statements such as (*) above, have a rather definite
logical form. They involve the basic “variables” p, `, as well as expressions
(logical connectives) such as “and”, “not”, “for all”, “there exists”, as well
as “equality”. To check the truth or falsity of such an axiom in a structure,
the “for all” and “there exists” connectives should range over objects in the
structure at hand, and it is this kind of proviso which typifies “truth in a
structure” as opposed to “absolute truth”.
So at the basic level, model theory is concerned with two kinds of things,
structures and formal sentences (or statements), as well as the relation (truth
or falsity of a sentence in a structure) between them. Traditionally the ex-
pressions syntax (for formal statements) and semantics (for the interpretation
of sentences in structures) were a popular way of describing model theory.
The formal sentences in the example above belong to what is called first
order logic, because the for all, and there exists expressions (or quantifiers)
range over objects or elements of the underlying set of the structure (rather
than subsets of the underlying sets for example). Higher order and/or infini-
tary logic involve quantifying over subsets or subsets of the set of subsets etc,
and/or infinitely long sentences or expressions. There are also other variants,
involving cardinality or probability quantifiers for example. These higher or-
der or infinitary logics were extremely popular in the 1960’s and 1970’s, and
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are still the subject of substantial research. However we will, in this article,
concentrate on the first order case.
So, summarizing, a structure M is a set X equipped with some distinguished
family R of relations on X, namely subsets of X,X × X, X × X × X etc.
We also allow a family F of distinguished functions from X × X × ... × X
to X. There are two typical kinds of examples. First of a combinatorial
nature such as graphs. A graph is a set X (of “vertices”) equipped with a
binary relation R ⊂ X×X, representing adjacency. Secondly, the structures
of algebra, such as groups, rings, fields etc. For example a group is a set
X equipped with a function m : X × X → X satisfying the group axioms
(associativity, and existence of an identity and inverses). Corresponding to
a structure M is a formal first order language L(M) within which one can
express properties which may or may not be true in the structure M . For
example, in the case of graphs the property that every element is adjacent
to another element can be expressed by:
for all x there is y different from x such that R(x, y),
or more formally

∀x∃y(x 6= y ∧R(x, y))

Likewise in the case of groups the basic group axioms can be expressed in
a first order manner, and by definition a group is a structure (with a single
distinguished binary function) in which these axioms are true.
Commonly the notion that a (formal) sentence σ is true in a structure M , is
also expressed by saying that M is a model of σ, as discussed at the beginning
of this section. The formal notation is M |= σ.
What is called a theory in logic is some collection of sentences belonging
to some first order language. An example of such is Th(M) for M a given
structure, namely the collection of all sentences in L(M) which are true in
M .
If M and N are structures for a common first order language (for example
M,N are both graphs) it makes sense to ask whether M and N are isomor-
phic, meaning that there is a bijection between the underlying sets X, Y say
of these structures which interchanges the distinguished relations. Being iso-
morphic means being the same to all intents and purposes. A weaker notion
is elementarily equivalence meaning that any first order sentence true in M
is true in N (and vice versa). The question of when elementarily equiva-
lent implies isomorphic is a pervasive problem in model theory which will be
discussed subsequently.
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I mentioned at the beginning of this paragraph the idea that “truth in a
structure” is a kind of relative rather than absolute truth. However I should
make it clear that this is neither a notion of “truth in a possible world”,
nor “truth relative to a point of view”, nor “approximate truth”, although
model-theoretic tools have been used to explore these latter notions.

3 Decidability

I want to distinguish at the beginning between those first order theories which
I will call foundational and those which I will call tame. The foundational
theories (such as the accepted axioms of set theory in the language with
a “membership relation”) are those which purport to describe all or large
chunks of mathematics, and are connected to the origin of modern logic as
described in section 1. Gödel proved that in general such foundational theo-
ries are undecidable. Namely there is no algorithm to decide whether or not
a given (formal) statement, is or is not a consequence of the axioms. Among
the important foundational theories is Th(N) where the structure N consists
of the set of natural numbers equipped with addition and multiplication.
Undecidability of Th(N) amounts to there being no algorithm or effective
method for deciding which (first order) statements about N are true. The
proof of this rests on Gödel’s insight that arithmetic, namely the structure
N, is rich enough to represent reasoning and computation in a “first order”
manner. So for example any effective procedure for deciding which first or-
der statements or sentences are true in M would yield an effective procedure
for deciding whether or not for any given computing device and any given
input, there is a well-define output (which is known to be impossible). At
the opposite end of the spectrum are the “tame” theories and/or structures,
which are as a rule decidable. A typical example is real plane geometry. The
real plane P = R2 is just a flat surface, as usually understood, stretching to
infinity in all directions. The relevant structure has two sorts of objects, the
set P of points of the plane, and the set L of straight lines in P , equipped
with a single relation I(p, `) expressing that the point p is on the line `. It
is a fact that the structure M = (P,L, I) is decidable. Already one sees a
distinction between “geometry”, represented by the structure M , and arith-
metic, represented by the structure N. In addition to the real numbers there
are other number systems which belong to geometry, such as the complex
numbers and the p-adic numbers. And again the number systems themselves
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(fields), or plane geometry over those number fields, are decidable structures.
The distinction between “foundational” and “tame” theories is heuristic

rather than mathematically precise. But model theory does have a number
of precise notions other than decidability, which separate these classes of
theories, and more generally provide other meaningful dividing lines between
classes of first order theories and structures. Contemporary model theory
has tended to concentrate on the tame region of mathematics, although ex-
ploration of the borderline or middle ground between tame and foundational
is a fascinating topic.

4 Foundations revisited

As mentioned in the introduction the two main programs to build mathemat-
ics on, or recover mathematics from, logic, namely axiomatic or set-theoretic
(Frege, Russell, Whitehead), and proof-theoretic (Hilbert), failed. But as one
might expect, these programs have been preserved or resurrected in more
modest fashions. The proof theory/set theory/recursion theory nexus has
been the main environment for such endeavours. One of the popular pro-
grams is what is called “reverse mathematics”, developed by Harvey Fried-
man and Steve Simpson among others. To go into detail here would be be
too technical for the mature of this article. But briefly the idea is to recover
certain parts of mathematics from certain parts of logic (and vice versa) at
the level of theorems and axioms. The logical environment here is what is
called second order arithmetic, although it is actually a first order theory.
The kind of axioms considered are set existence axioms of a logical nature.
It was recognized rather early that theorems of mathematics, such as the
existence of solutions of differential equations, depend on such logical axioms
of various levels of strength. The point of reverse mathematics is that often
one can in turn derive the logical axiom from the mathematical theorem. So
here the strength or content of an axiom of logic is expressed by an accepted
theorem of mathematics. This gives a new sense in which logic explains
mathematics, mathematics is recovered from logic, or even logic is recovered
from mathematics. This subject of reverse mathematics has not been uncon-
troversial, but nevertheless the subject has had a pervasive influence around
the proofs/sets/computability side of mathematical logic. One of the things
I want to discuss is a kind of reverse mathematics at the level rather of log-
ical properties and mathematical objects. The logical properties will come

7



from model theory, and the mathematical objects from some basic kinds of
geometry. The whole relationship will exist within “tame” mathematics, far
from the foundational theories discussed earlier. This “model-theoretic” re-
verse mathematics was the creation of Boris Zilber. But there are a couple
of provisos. First the relationships between logical properties and geometry,
were just conjectural. Secondly these conjectured relationships turned out
to be false. In the next section I will describe this model-theoretic reverse
mathematics.

5 Categoricity

A natural property of a structure M for a first order language L is cate-
goricity, which means that whenever N is elementarily equivalent to M then
in fact N is isomorphic to M . Namely M is completely determined by the
first order sentences which are true in M . Unfortunately (or fortunately)
because of the compactness theorem of first order logic, a structure M will
be categorical if and only if it (or rather its underlying set) is finite. (The
compactness theorem states that a set Σ of first order sentences has a model
if and only if every finite subset of Σ has a model.) As model theory typically
deals with infinite structures, the next best thing is the notion of categoricity
with respect to a cardinal number. So here some acquaintance with basic
set theory, cardinal numbers and ordinal numbers, is required. The smallest
infinite cardinal is ℵ0 the cardinality of the set of natural numbers. The next
bigger after that is ℵ1. The cardinal numbers are all of the form ℵα for some
ordinal α. As soon as M is infinite, there will (by the compactness theorem)
be structures elementarily equivalent to M of any infinite cardinality. For
κ an (infinite) cardinal, we will say that the structure M is κ-categorical if
whenever M1,M2 are structures elementarily equivalent to M , both of car-
dinality κ, then M1 and M2 are isomorphic. By definition the property that
M is κ-categorical, is a property of the first order theory Th(M) of M .

It turns out that the case when κ = ℵ0 is very special and in some sense
a “singularity”. The study of ℵ0-categorical structures is equivalent (by
considering automorphism groups) to the study of a certain class of infinite
permutation groups, often called “oligomorphic” permutation groups. The
model-theoretically more interesting notion is κ-categoricity, for uncountable
κ, namely κ > ℵ0 (or κ = ℵα for α > 0). In this context we have the
celebrated theorem of Michael Morley that a structure M is κ-categorical

8



for some uncountable κ just if M is κ-categorical for any uncountable κ.
Bearing in mind Morley’s Theorem we use the expression M is uncountably
categorical for “M is κ-categorical for some uncountable κ”.

One of the key “number systems” in mathematics is the field C of com-
plex numbers. We view this as a structure (C,+,×) namely C equipped
with addition and multiplication as distinguished functions. For different
reasons related to definability which will be discussed later, this structure is
sometimes identified with the subject algebraic geometry, the study of sets
of solutions of systems of polynomial equations. What is relevant to our
current discussion is that (C,+,×) is an uncountably categorical structure:
any structure elementarily equivalent to it will be an algebraically closed field
of characteristic 0, (F,+,×), the isomorphism type of which is determined
by its transcendence degree, which coincides with its cardinality if F is un-
countable.

Another basic example of an uncountably categorical structure is a vector
space V over a countable field F . The structure is (V,+, {fr : r ∈ F})
where fr : V → V is scalar multiplication by r. The structures elementarily
equivalent to this are precisely the vector spaces over F , each of which is
determined by its F -dimensions, which again agrees with its cardinality in
the uncountable case. Again for definability reasons, this structure (or class
of structures) is sometimes identified with linear geometry over F (sets of
solutions of linear equations).

A third basic example is the set Z of integers (positive AND negative)
equipped with the successor function f which takes x to x + 1. Th(Z, f)
contains the information that the underlying set is infinite and that f is
a bijection such that for each n fn(x) 6= x for all x (where fn denotes f
iterated n times). We leave it to the reader to check that again this structure
is uncountably categorical. One can not really see any natural geometry
attached to this structure.

The thrust of what came to be called Zilber’s conjecture was that, in a
technical sense which I do not want to go in to now, the above three structures
(or rather their theories) are the only examples of uncountably categorical
structures. So Zilber’s conjecture was saying that some very fundamental
structures of mathematics can be characterized by logic, namely through the
notion of uncountable categoricity of their first order theory, and so in a sense
this class of structures is“implicitly defined” by logic. This conjecture and
in fact the general point of view giving rise to it, presents another possible
fundamental relationship between logic and mathematics.
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Zilber’s conjecture turned out to be false. Ehud Hrushovski, in the late
1980’s, found a combinatorial method for constructing new uncountably cat-
egorical structures which do not fit into the three cases described above.
For now let us say that the first example above (the complex field) has a
model-theoretic property called nonmodularity, the second example has a
property modularity and nontriviality and the third a property triviality.
What Hrushovski’s examples gave were nonmodular structures which were
not “essentially” algebraically closed fields. Zilber has since attempted to
preserve at least the spirit of his original conjecture by trying to show that
these new examples of Hrushovski also have a geometric origin and corre-
spond to some classical mathematical objects. But what for me is more
interesting is the fact that the original Zilber conjecture is valid in a range of
very interesting and rich contexts, and carries with it new insights as well as
analogies between different parts of mathematics. Some such examples will
be discussed below.

6 Definable sets

An interest in the definable sets in a structure M has always been present
in model theory. But since the 1980’s the study of definable sets has moved
to centre stage in the subject. In section 2, I introduced and discussed the
notion σ is true in M , notationally, M |= σ, where M is a structure for a
language L and σ is a first order sentence of that language. In particular I
mentioned the sentence

∀x∃y(x 6= y ∧R(x, y))

in the language of graphs expressing that every element is “adjacent” to
another element.
However consider the expression

∃y(x 6= y ∧R(x, y))

which I will denote φ(x). It does not really make sense to ask whether this
expression is true or false in a structure M = (X,R), because it depends on
what x refers to. But it does make sense to ask, given a structure M together
with an element a ∈ X, if φ(x) is true of a in M , which in this specific case
means to ask whether a is adjacent to some other element in M . We write
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M |= φ(a) to mean that φ(x) is true of a in M . The set of such a, is a typical
example of a definable set in M . The expression φ(x) above is called a first
order formula, and x is called a free variable in the expression, because it is
not controlled or quantified by a “for all” or “there exists”. Likewise we can
speak of formulas ψ(x1, x2, .., xn) of a first order language L, in any number
of free variables. If M is a structure for such as language, then the set defined
by ψ in M is, by definition:

{(a1, .., an) ∈Mn : M |= ψ(a1, .., an)}

Sets as above, which are collections of finite tuples of the underlying set of
the structure M , are precisely what we call definable sets in the structure
M . There is a natural way of saying that a map (or function) between two
definable sets is definable. Hence from a structure M we obtain a category
Def(M), the category of definable sets in M .

It has become useful to think of definability in a “geometric” rather than
“combinatorial” way. For example consider the circle with centre (0, 0) and
radius 1 in the real plane. It is defined in the structure (R,+,×, 0, 1) by the
formula

φ(x1, x2) : x2
1 + x2

2 = 1

Note that the formula φ(x1, x2) does not contain any “for all” or “there
exists”. It is a quantifier-free formula. On the other hand the formula

ψ(x) : (∃y)(x = y2)

does have a quantifier, and moreover defines, in (R,+,×, 0, 1) the set of
nonnegative elements of R.

Many structuresM of a “tame” nature often have a “quantifier-elimination”
property that definable sets in the structure can be defined by formulas with
not so many quantifiers (“for all”, “exists”). This enables one to get a handle
on Def(M). In the case of (C,+×, 0, 1) there is a full quantifier elimination,
in the sense that all definable sets are defined without quantifiers. The conse-
quence is that Def((C,+,×, 0, 1)) is “essentially” the category of “complex
algebraic varieties”. In the case of (R,+,×, 0, 1) there is a relative quantifier
elimination yielding that the category of definable sets is precisely the cat-
egory of “semialgebraic” sets. Each of these categories (algebraic varieties,
semialgebraic varieties) corresponds to a whole subject area of mathematics.
These quantifier elimination results are associated with Abraham Robinson
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and Alfred Tarski. Moreover in the case of (R,+,×, 0, 1) the relative quan-
tifier elimination result lies at the foundations of semialgebraic geometry.

The (so far undefined) properties of nonmodularity, triviality, etc. from
section 5, can be expressed or seen in the behaviour of definable families
of definable sets. For example nonmodularity of (C,+,×) is seen via the
2-dimensional family of lines in C × C (a 2-dimensional definable family of
definable 1-dimensional subsets of C × C). Among other rich mathemati-
cal structures M where Def(M) is tractable, are differentially closed fields,
and compact complex manifolds (proved by Robinson, and Zilber, respec-
tively) The mathematical sophistication increases here. But in both these
cases the Zilber conjecture from section 5 is true, in suitable senses. More-
over, without going into definitions and extreme technicalities, the property
of “nonmodularity” has definite mathematical meaning and consequences in
these examples. Differentially closed fields are “tame” structures appropriate
for or relevant to the study of ordinary differential equations in regions in
the complex plane. Definable sets are essentially solution sets of differential
equations. And the property of nonmodularity (of a definable set) is related
to the complete integrability of the corresponding differential equation. For
compact complex manifolds, a definable set is essentially a compact com-
plex analytic variety, and nonmodularity is related to it being “algebraic”
(biholomorphic to a complex algebraic variety).

Among the celebrated applications of model theory to other parts of
mathematics is Hrushovski’s proof of a certain “number theoretic-algebraic
geometric” conjecture, the Mordell-Lang conjecture for function fields of pos-
itive characteristic, which makes essential use of the validity of the Zilber con-
jecture in “separably closed fields” (as well as using other model-theoretic
techniques).

7 Miscellanea

What I have given so far is a discussion of a few themes in contemporary
model theory, influenced by my own preoccupations. Here I will attempt to
rectify the balance, mentioning other trends and themes (some of which are
also close to my own work and interests).

Well into the 1970’s it was a pretty common belief within the mathemat-
ical logic community that model theory consisted essentially of a collection
of tools and techniques related to the fundamental notions of semantics and
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syntax, possibly enhanced by a few basic theorems. (This may also be sug-
gested by the previous sections of the present paper.) In spite of the strength
of logic and model theory in the Soviet Union, Poland, and other countries in
Eastern and Western Europe, it must be said that in the 1950’s and 1960’s
the (emerging) subject was dominated by two schools, one around Alfred
Tarski in Berkeley, and the other one around Abraham Robinson in Yale.
Both stressed the potential applications of model theory within other parts
of mathematics (although we should note that already in 1940 the Soviet
logician Malt’sev was applying the compactness theorem to obtain results
in group theory). In the case of Robinson the intention was very clearly
reflected in his pioneering work around nonstandard analysis, the theory
of model companions, and applications to complex analysis, among other
things. It was a little less clear what Tarski had in mind, in spite of his early
and fundamental work on definable sets in the field of reals. But undoubt-
edly the group around Tarski, including Vaught, Morley and Keisler, set the
stage for later developments in “pure” model theory. The 1960’s and 1970’s
also saw a close relationship developing between model theory and set theory,
with for example an intense investigation of infinitary and/or non first order
logics, where Tarski and his group had a major influence. In fact around this
time the conventional wisdom was that the future of model theory lay in its
connection with set theory, in spite of Morley’s work on categoricity (from
the mid 1960’s). It was Saharon Shelah who, building on the work of Morley,
showed that (first order) model theory could be a subject with its own coher-
ent and internal program. With the benefit of hindsight I would say that he
raised the question of whether there could be a meaningful classification of
first order theories (not explicitly involving decidability properties). Shelah
tended to look for dividing lines among first order theories, as well as “test
questions” which would be answered one way on one side of the dividing line
and another way on the other side. The test questions which Shelah asked
typically had a strong set-theoretic content, possibly resulting from the sur-
rounding mathematical culture and influences (such as Tarski). One such test
question, coming naturally out of Morley’s work, was, for a given theory T ,
what could be the function I(T,−) which for a cardinal κ gives the number
of models of T of cardinality κ, up to isomorphism. Shelah’s investigation
(and solution) of this problem involved a series of dividing lines among first
order theories, the first of which was “stable versus unstable”. The property
of “stability” for a first order theory T (or structure M) vastly generalizes
the property of uncountable categoricity from section 5. A rough definition
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of stability of T is that no linear ordering is definable on any infinite set in
a model of the theory T (so the real field (R,+,×) is unstable). Shelah and
other model theorists developed a considerable machinery for constructing
structures, classifying structures, and also studying and classifying definable
sets in structures, under a general assumption of stability. This is called sta-
bility theory. Although Zilber’s conjectures were not originally formulated
within the generality of stable theories, it is stable theories that provide the
right environment for these notions. The integration of these different points
of view is often called geometric stability theory (or even geometric model
theory).

There are two conclusions to this part of the story. Firstly, that in spite
of the heavily set theoretic appearance of Shelah’s work in model theory
(up to and including the present) it actually has a strong geometric content
with amazing mathematical insights. Secondly, it is now uncontroversial that
model theory exists as a subject in and for itself, and part and parcel of the
subject is its strong connections to other parts of mathematics.

An important and respected tradition in model theory, to which both
Robinson and Tarski contributed seriously, and which is already referred to
above, is the model-theoretic and logical analysis of specific concrete struc-
tures and theories. But the issue is which notions or “bits of theory” are
guiding the analysis. Decidability and quantifier elimination were histori-
cally major such notions. Valued fields have been studied logically for a
long time. Again the mathematical sophistication increases here, but I just
want to comment that fields equipped with a valuation are another context
in which“infinitesimals” appear in mathematics. The work of Ax-Kochen-
Ershov on the first order theory of Henselian valued fields (late 60’s), followed
by Macintyre’s quantifier elimination theorem for the field Qp of p-adic num-
bers (mid 70’s) represented and led to another major interaction of model
theory with algebraic geometry and number theory. More recently, this log-
ical analysis of valued fields has been increasingly informed by notions from
stability theory, even though the structures under discussion are unstable.

In the early to mid 1980’s, several model theorists (including myself)
tried to develop a theory, analogous to stability theory, based on abstracting
definability properties in the unstable structure (R,+,×). This came to be
called o-minimality. This has been another successful area with close contacts
to real analytic geometry. But even here, the connection with stability theory
has recently turned out to be much more than an “analogy”.

I have restricted myself in the bulk of this article to first order logic and
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model theory, where the syntax is of a restricted form. But more general log-
ics, involving infinitely long expressions, and/or quantifiers other than “there
exists” and “for all”, continue to be investigated. At the same time, “finite
model theory”, the study of the connection between semantics and syntax
when we restrict ourselves to finite structures, has seen a fast development
and is now integrated into computer science.
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