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Logic I

I Modern mathematical logic developed at the end of the 19th
and beginning of 20th centuries with the so-called
foundational crisis or crises.

I There was a greater interest in mathematical rigour, and a
concern whether reasoning involving certain infinite quantities
was sound.

I In addition to logicians such as Cantor, Frege, Russell, major
mathematicians of the time such as Hilbert and Poincaré
participated in these developments.

I Out of all of this came the beginnings of mathematical
accounts of higher level or “metamathematical” notions such
as set, truth, proof, and algorithm (or effective procedure).



Logic II

I These four notions are still at the base of the main areas of
mathematical logic: set theory, model theory, proof theory,
and recursion theory, respectively.

I Classical foundational issues are still present in modern
mathematical logic, especially set theory.

I But various relations between logic and other areas have
developed: set theory has close connections to analysis, proof
theory to computer science, category theory and recently
homotopy theory.

I And we will discuss the case of model theory. Early
developments include Malcev’s applications to group theory,
Tarski’s analysis of “definability ” in the field of real numbers,
and Robinson’s rigurous account of infinitesimals
(nonstandard analysis).



Model theory I

I What is model theory?

I Some may think of it as a collection of techniques and notions
(compactness, quantifier elimination, o-minimality,..) which
come to life in applications.

I But there is a “model theory for its own sake” which I would
tentatively define as the classification of first order theories.

I A first order theory T is at the naive level simply a collection
of “first order sentences” in some vocabulary L with relation,
function and constant symbols as well as the usual logical
connectives “and”, “or”, “not”, and quantifiers “there exist”,
“for all”.

I “First order” refers to the quantifiers ranging over elements or
individuals rather than sets.



Model theory II

I A model of T is simply a first order structure M consisting of
an underlying set or universe M together with relations
(subsets of Mn), functions Mn →M and “constants
corresponding to the symbols of L, in which the sentences of
T are true. It is natural to allow several universes
(many-sorted framework)

I There is a tautological aspect here: the set of axioms for
groups is a first order theory in an appropriate language, and a
model of T is just a group.

I On the other hand, the axioms for topological spaces, and
topological spaces themselves have on the face of it a “second
order” character. (A set X is given the structure of a
topological space by specifying a collection of subsets of X
satisfying various properties..)



Model theory III

I Another key notion is that of a definable set.

I If (G, ·) is a group, and a ∈ G then the collection of elements
of G which commute with a is the solution set of an
“equation”, x · a = a · x.

I However Z(G), the centre of G, which is the collection of
elements of G which commute with every element of G, is
“defined by” the first order formula ∀y(x · y = y · x).

I In the structure (R,+, ·,−) the ordering x ≤ y is defined by
the first order formula ∃z(y − x = z2).

I Our familiar number systems already provide quite different
behaviour or features of definable sets.



Model theory IV

I In the structure (N,+,×, 0), subsets of N definable by
formulas φ(x) which begin with a sequence of quantifiers
∃y1∀y2∃y3...∀yn get more complicated as n increases.

I The collection of definable subsets of N is called the
arithmetic hierarchy, and already with one existential
quantifier we can define “noncomputable” sets.

I Whereas in the structure (R,+, ·), the hierarchy collapses, one
only needs one block of existential quantifiers to define
definable sets. Moreover the definable sets have a geometric
feature: they are the so-called semialgebraic sets.

I Namely finite unions of subsets of Rn of form
{x̄ : f(x̄) = 0 ∧

∧
i=1,..k gi(x̄) > 0} where f and the gi are

polynomials with coefficients from R.



Model theory V

I In the case of the structure (C,+,×) it is even better: the
hierarchy collapses to sets defined without any quantifiers.
The definable sets are precisely the constructible sets: finite
Boolean combinations of algebraic varieties. (Chevalley’s
theorem.)

I We will restrict our attention to complete theories T , namely
theories which decide every sentence of the vocabulary.

I For example ACF0, the axioms for algebraically closed fields
of characteristic 0.

I So attached to a first order theory there are at least two
categories, Mod(T ) the category of models of T , and
Def(T ) the category of definable sets, where the latter can
be identified with Def(M), the category of definable sets in a
“big” model M of T .



Stability I

I Model theory in the 1960’s and 70’s had a very
“set-theoretic” character (influenced by Tarski among others)
and the original questions which led to the development of the
subject as something for its own sake have this form.

I For example the spectrum problem: given a (complete)
theory, we have the function I(−T ) from (infinite) cardinals
to cardinals, where I(κ, T ) is the number of models of T of
cardinality κ, up to isomorphism. What are the possible such
functions, as T varies?

I Shelah solved the problem for countable theories, in the
process identifying the class of stable first order theories. In
hindsight these are the “logically perfect” first order theories.



Stability II

I The spectrum problem is “about” Mod(T ), but the proof
gave an enormous amount of information about and tools for
understanding Def(T ) when T is stable.

I The (or a) definition of stability is not particularly enlightening
but is a good example of a “model-theoretic” property: T is
stable if there is no model M of T definable relation R(x, y)
and ai, bi ∈M for i = 1, 2, .. such that R(ai, bj) if i < j.

I ACF0 is the canonical example of a stable theory. Another
(complete) example is the theory of vector spaces over a fixed
division ring.

I More recently it was discovered (Sela) that the first order
theory of the free group (F2, ·) is stable, yielding new
connections between model theory and geometric group
theory.



Finite rank stable theories I

I Among the more tractable classes of stable theories are those
of “finite rank”, i.e. where all definable sets X have finite
rank/dimension, in a sense that we describe now:

I The relevant dimension notion is traditionally called “Morley
rank” and is simply Cantor-Bendixon rank on the Boolean
algebra of definable subsets of X:

I X has Morley rank 0 if X is finite, in which case the
multiplicity of X is its cardinality.

I X has Morley rank n+ 1 and multiplicity 1 if it has Morley
rank > n and cannot be partitioned into two such definable
subsets.

I The building blocks of all definable sets (in a geometric sense
that I will not make precise) are what I will call the minimal
definable sets.



Finite rank stable theories II

I Loosely speaking X is minimal if generically it cannot be
partitioned into 2 infinite definable sets.

I A special case is strongly minimal meaning precisely Morley
rank and multiplicity 1, namely cannot be partitioned into 2
infinite definable sets.

I There is a natural equivalence relation on minimal sets:
=X ∼ Y if there is a definable Z ⊆ X × Y projecting
generically finite-to-one on each of X,Y (a definable
correspondence).

I A basic and very influential conjecture of Boris Zilber (from
early 80’s??) was that that any minimal set is of three
possible (mutually exclusive) types:

I (a) “field like”: up to ∼, X has definably the structure of an
algebraically closed field



Finite rank stable theories III

I (b) ”vector space like”: up to ∼ X has a definable
commutative group structure such that moreover any
definable subset of X × ..X is up to finite Boolean
combination and translation, a definable subgroup.

I (c) X is “trivial”: there is no infinite definable family of self
correspondences of X.

I A counterexample was found by Hrushovski in the late 80’s,
and the methods for constructing such examples have become
a subarea of model theory.

I However the conjecture has been proved for some very rich
finite rank stable theories (originally via Zariski geometries,
but other proofs were found later).



DCF0 and CCM I

I DCF0 is the theory of differentially closed fields of
characteristic 0, the theory of a “universal” differential field
(U ,+,×, ∂).

I It is stable (not finite rank) but the collection of finite rank
definable sets is rich.

I CCM is the many sorted structure of compact complex
manifolds, where the distinguished relations (on finite
Cartesian products of manifolds) are the analytic subvarieties.
It is a finite rank stable structure (theory).



DCF0 and CCM II

I Both these structures contain algebraic geometry (i.e.
ACF0). For U algebraic geometry lives on the field of
constants C. And in CCM it lives on the sort P 1(C).

I The Zilber conjecture is valid for both these
theories/structures (as well as a related theory of difference
fields) and in the case of DCF0 gave rise to new proofs of
function field diophantine geometric theorems.

I In both cases minimal sets of kind (a) live in the algebraic
geometry part of the structure. Minimal sets of kind (b) are
connected with abelian varieties/complex tori, and there is a
growing interest in identifying minimal sets of type (c).

I In DCF0 the property of being of type (c) has implications for
algebraic independence of solutions. As an example.



DCF0 and CCM III

Theorem 0.1
(with Nagloo.) Consider the Painlevé II family of second order
ODE’s: y′′ = 2y3 + ty + α where α ∈ C. Then the solution set Yα
of the relevant equation is strongly minimal iff α /∈ Z + 1/2, and
moreover for all such α, Yα is of type (c) (trivial).
Moreover any “generic” equation in each of the Painlevé families I
-VI, is strongly minimal and strongly trivial in the sense that if
y1, .., yn are distinct solutions, then the y1, y

′
1, ..., yn, y

′
n are

algebraically independent over C(t).



DCF0 and CCM IV

I Finally I discuss some results, as well as problems/conjectures
(some of which I hear from F. Campana, about minimal sets
in CCM , sometimes assumed Kaehler.

I First the complex geometers have a name for minimal ccm’s.
They call them simple (although sometimes reserved for
dim > 1.

I A general problem is to classify simple ccm’s up to
bimeromorphic equivalence.

I When X,Y are strongly minimal ccm’s then they are
bimeromorphic iff biholomorphic.

I When X is simple and of kind (a) then X is a smooth
projective curve, and in cases (b), (c), dim(X) > 1.

I If X is strongly minimal (meaning no proper subvarieties,
except finite ones), and X is of type (b), then X IS a (simple)
complex torus.



DCF0 and CCM V

I We conjecture that if X is strongly minimal, Kahler of kind
(c) then X is hyperkaehler (up to finite cover).

I It is a theorem that if X is strongly minimal, dim(X) > 1
then X is of kind (b) iff H0(X,TX) 6= 0.

I We conjecture that again for X strongly minimal of dim > 1,
X is of type (b) iff X has infinite fundamental group....


