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Abstract
We initiate an account of Shelah’s notion of “strong dependence”

in terms of generically stable measures, proving a measure analogue
(for NIP theories) of the fact that a stable theory T is “strongly
dependent” if and only if all (finitary) types have finite weight.

1 Introduction

Shelah [9] introduced the notion “T is strongly dependent” as an attempt to
find an analogue of superstability for NIP theories. When T is stable, strong
dependence is actually equivalent to “all finitary types have finite weight”,
rather than superstability. See [1]. Here I give a version of this equivalence
in the general NIP context using generically stable measures (see Theorem
1.1).

A strong influence on this work is a talk by Hrushovski in Oberwolfach in
January 2010 where he presented some tentative notions of “finite weight”
using orthogonality (in the sense of measure theory) and generically stable
measures. Some connections between strong dependence and suitable notions
of weight in the general NIP context also appear in [7], but only for types
(not measures).

In spite of the appearance of Theorem 1.1 below as a definitive charac-
terization of strong dependence, we view it as a first and even tentative step,
and we will state some problems and questions.
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In a first draft (June 2010) of the current paper we used average measures
rather than generically stable measures. The improvement in the current pa-
per is due partly to Theorem 2.1 in the recent preprint [6]. In any case thanks
are due to Ehud Hrushovski and Pierre Simon for various communications,
Itai Ben Yaacov for helpful discussions, and a referee of the earlier draft for
his/her comments,

In the remainder of this introduction, I will give an informal description of
the basic notions, referring to section 2 for the precise definitions and further
references, and then state the main result Theorem 1.1. I will assume a
familiarity with stability theory, the “stability-theoretic” approach to NIP
theories, as well as the notion of a Keisler measure. References are [8], [3],
[4], as well as papers of Shelah such as [10]. We will also be referring to
Adler’s paper [1] which gives a nice treatment of the combinatorial notions
around strong dependence, and makes explicit the connection with weight in
the stable case.

Concerning notation, we work in a very saturated model M̄ of a complete
first order theory T in language L. There is no harm to work in M̄ eq, except
that at some point we might want to make definitions concerning a given
sort. x, y, z, .. usually denote finite tuples of variables. Likewise a, b, c, ..
usually denote finite tuples of elements, and M0,M, .. normally denote small
elementary substructures of M̄ .

Recall that T has NIP (or is dependent) if for any indiscernible (over
∅) (ai : i < ω), and formula φ(x, b), the truth value of φ(ai, b) is eventually
constant. I will make a blanket assumption, at least in this introduction,
that T has NIP .

Our working definition of “T is strongly dependent” (or “strongly NIP”)
is that there do NOT exist formulas φα(x, α), kα < ω and tuples bαi , for α < ω,
i < ω, such that for each α, {φα(x, bαi ) : i < ω} is kα-inconsistent (every
subset of size kα is inconsistent), and for each η ∈ ωω, {φα(x, bαη(α)) : α < ω}
is consistent. This is equivalent to Shelah’s original definition assuming that
T has NIP . See Definition 2.1 and Fact 2.3.

When we speak of “global” types or measures we mean over M̄ . A global
Keisler measure µ(x) is said to be generically stable if µ(x) is both finitely
satisfiable in and definable over some “small” model M . See Definition 2.10.
In fact it follows from [4] that one can choose M of “absolutely” small car-
dinality such as 2|T |. We call a Keisler measure µ(x) over a small model
M , generically stable if µ(x) has a global nonforking (M -invariant) exten-
sion µ′(x) which is generically stable (in which case µ′ is both definable over
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and finitely satisfiable in M and is the unique global nonforking extension
of µ(x)). See Fact 2.11 and Definition 2.12. For µ(x) a generically stable
measure over M we denote by µ|M̄ the unique global nonforking extension
of µ. If λ(y) is another generically stable measure over M , we can form
the nonforking amalgam µ(x)⊗ λ(y), another generically stable measure (in
variables (x, y)) over M , and we have symmetry µ(x)⊗ λ(y) = λ(y)⊗ µ(x).
See Remark 2.13. We iterate this to form the nonforking amalgam of any set
of generically stable measures. A measure (generically stable or not) ω(x, y)
over M which extends µ(x) ∪ λ(y) will be called a forking amalgam if it is
not the nonforking amalgam. We will call ω(x, y) a strong forking amalgam
of µ(x) and λ(y), with respect to µ, if for some formula φ(x, y) over M ,
ω(φ(x, y)) = 1 but (µ|M̄)(φ(x, b)) = 0 for all b ∈ M̄ . See Definition 2.14.
We will relate this notion to orthogonality of measures in section 2, as well
as asking about symmetry. But let me remark for now that if T is stable
and ω(x, y) is a complete type over M realized by (a, b) then ω is a strong
forking amalgam of µ(x) and λ(y) with respect to µ if and only if tp(a/bM)
forks over M (iff tp(b/aM) forks over M). See Remark 2.15.

Of course we have the notion of a generically stable measure ω(xi : i ∈ I)
over a small model M in maybe infinitely many variables xi, and in fact ω
will be generically stable if and only if every restriction of ω to finitely many
variables is.

Our main result is:

Theorem 1.1. Suppose T has NIP . The the following are equivalent:
(1) T is not strongly dependent,
(2) There is a model M0 and generically stable measure ω(x, y0, y1, y2, ....)
over M0 with the following properties
(i) for each α < ω, ωα(x, yα) is a strong forking amalgam of λ(x) and µα(yα),
with respect to µα, and
(ii) The restriction of ω to (y0, y1, y2, ....) is the nonforking amalgam ⊗αµα(yα)
of the µα(yα),
where ωα(x, yα) is the restriction of ω to variables (x, yα), µα(yα) is the re-
striction of ω to variable yα and λ(x) is the restriction of ω to variable x.

To make the connection with weight in stable theories, let us see what
(2) in Theorem 1.1 means when T is stable and ω(x, y0, y1, .....) is a complete
type over M0 (which will of course be a generically stable type by stability
of T ). Let (a, b0, b1, ...) be a realization of ω. Part (ii) of (2) says that
{bα : α < ω} is M0-independent. And part (i) of (2) says (as remarked
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above) that tp(a/bαM0) forks over M0 for each α < ω. Hence tp(a/M0)
has infinite “pre-weight” in the strong sense that a forks over M0 with each
element of some infinite M0-independent set. In fact in a stable theory T ,
no type having infinite pre-weight is equivalent to every type p(x) having
finite weight in the sense that there is a greatest n such that after possibly
passing to a nonforking extension a realization of p can fork over the base
with at most n elements of some independent sequence. See Proposition 3.10,
Chapter 4 of [8].

So Theorem 1.1 is a generalization/analogue of the fact ([1]) that a stable
theory is strongly dependent iff every type has finite weight.

2 Preliminaries

The following definition is due to Shelah [9], and says that κict(T ) = ℵ0.

Definition 2.1. T is strongly dependent (or strongly NIP ) if there DO NOT
exist formulas φα(x, yα) ∈ L for α < ω and (bαi )α<ω,i<ω such that for every
η ∈ ωω, the set of formulas {φα(x, bαη(α)) : α < ω} ∪ {¬φα(x, bαi ) : α < ω, i <

ω, i 6= η(α)} is consistent.

Remark 2.2. (i) T is strongly NIP then T is NIP .
(ii) We can relativize the notion strong NIP to a sort S by specifying that
the variable x in Definition 2.1 is of sort S.
(iii) In Definition 2.1 we could allow the φα to have parameters (by incorpo-
rating the parameters into the bα).

Fact 2.3. Assume that T has NIP . The following are equivalent (also sort
by sort as far as the x variable is concerned).
(1) T is strongly NIP in the sense of Definition 2.1.
(2) It is not the case that there exist formulas φα(x, yα) for α < ω, bαi for
α < ω and i < ω, and kα < ω for each α < ω such that
(i) for each α, {φα(x, bαi ) : i < ω} is kα-inconsistent, and
(ii) for each “path” η ∈ ωω, {φα(x, bαη(α)) : α < ω} is consistent.

(3) Just like (2) but with a further clause
(iii) for each α, the sequence (bαi : i < ω) is indiscernible over

⋃
β 6=α{b

β
i : i <

ω}.

Proof. This is contained in [1] (see Propositions 10 and 13 there), and see [7]
for (3). Again one can allow parameters in the formulas in (2), (3).
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We now pass to Keisler measures, generically stable measures as well as
notions specific to this paper. When we speak of a formula φ(x) forking over
a set of parameters we mean in the sense of Shelah, namely φ(x) implies a
finite disjunction of formulas each of which divides over A.

A Keisler measure µ(x) (sometimes also written in earlier papers as µx)
over A is a finitely additive probability measure on the Boolean algebra of
formulas φ(x) over A up to equivalence (or of A-definable sets in sort x). Such
µ can be identified with a regular Borel probability measure on the Stone
space Sx(A) of complete types over A in variable x. By a global Keisler
measure we mean a Keisler measure over M̄ .

Definition 2.4. Let µ(x) be a Keisler measure over B, and let A ⊆ B. We
say that µ does not fork over A (or is a nonforking extension of µ|A) if any
formula φ(x) over B with positive µ-measure does not fork over A.

Remark 2.5. (i) It is easy to show, as in the case of types, that if µ is
a Keisler measure over B which does not fork over A ⊆ B then µ has an
extension over any C ⊇ B (in particular over M̄) which does not fork over
A.
(ii) If µ(x) is a Keisler measure over a model M , then µ does not fork over
M , hence by (i) has a global nonforking extension.

Fact 2.6. ([4]) Assume that T has NIP . If µ(x) is a global Keisler measure
and M0 is a small model, then the following are equivalent:
(i) µ does not fork over M0,
(ii) µ is Aut(M̄/M0)-invariant,
(iii) µ is Borel definable over M0.

The meaning of (iii) is that for any L-formula φ(x, y), and b ∈ M̄ ,
µ(φ(x, b)) depends in a Borel way on tp(b/M0) in the sense that the function
from Sy(M0) to [0, 1] taking tp(b/M0) to µ(φ(x, b)) is Borel. A global measure
µx satisfying (i) or (ii) or (iii) for some small M0 is called invariant.

At this point we will make a blanket assumption that T has NIP .

Definition 2.7. Let µ(x) be a global invariant Keisler measure (so comes
equipped with a Borel defining schema over some small model M0). Let λ(y)
be any global Keisler measure. Then µ(x)⊗λ(y) denotes the following global
Keisler measure (in variables xy): Let φ(x, y) be a formula over M̄ . Let M
be a small model containing M0 and the parameters from φ, so µ is Borel de-
finable over M . For any type q(y) ∈ S(M), let fµ,φ(q) = µ(φ(x, b)) for some
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(any) b realizing q. Then define µ(x)⊗λ(y)(φ(x, y)) to be
∫
Sy(M)

fφ(q)d(λ|M),

where λ|M is the restriction of λ(y) to a Keisler measure over M which we
identify with a regular Borel probability measure on Sy(M). It is not hard to
see that our definition of (µ(x)⊗λ(y))(φ(x, y)) above does not depend on the
choice of the model M .

Remark 2.8. If µ(x) and λ(y) are both global Aut(M̄/M0)-invariant mea-
sures, then so are µ(x)⊗λ(y) and λ(y)⊗µ(x). Moreover from [5], if at least
one of µ(x), λ(y) is generically stable then µ(x)⊗ λ(y) = λ(y)⊗ µ(x)

From Definition 2.7, we deduce the notion of a “Morley sequence” in µ
where µ(x) is invariant global type:

Definition 2.9. Let µ(x) be an invariant global type.
(i) Let µ(1)(x1) = µ(x1) and for n > let µ(n)(x1, .., xn) = µ(xn)⊗µ(n−1)(x1, .., xn−1).
(ii) Let µ(ω)(x1, x2, .....) = ∪nµ(n)(x1, .., xn).

Definition 2.10. Let µ(x) be a global Keisler measure and M0 a small model.
(i) µ is said to be definable over M0 if µ(x) is Aut(M̄/M0) invariant and
moreover for each φ(x, y) ∈ L (or even in L(M0)) the function taking tp(b/M0) ∈
Sy(M0) to µ(φ(x, b)) ∈ [0, 1] is continuous.
(ii) µ(x) is said to be finitely satisfiable in M0 if every formula φ(x) with
parameters from M̄ which has positive µ-measure is realized by an element
(i.e. tuple) from M0.
(iii) µ(x) is said to be generically stable if for some small M0, µ(x) is both
definable over and finitely satisfiable in M0.

Fact 2.11. ([5]) (i) Suppose that µ(x) is a Keisler measure over a small
model M0 and that some global nonforking extension (i.e. Aut(M̄/M0)-
invariant global extension) µ′(x) of µ(x) is generically stable. Then µ′(x)
is the unique global nonforking extension of µ′ and µ′ is both definable over
and finitely satisfiable in M0.
(ii) Suppose that µ(x) is a global generically stable Keisler measure. Then
there is a model M0 of cardinality at most 2|T | such that µ does not fork over
M0.

Definition 2.12. Let µ(x) be a Keisler measure over a small model M0.
(i) We will say that µ(x) is generically stable if some global nonforking ex-
tension µ′(x) is generically stable.
(ii) Suppose µ(x) is generically stable (as in (i)), and λ(y) is any Keisler
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measure over M0. We define the Keisler measure µ(x) ⊗ λ(y) (over M0

and in variables xy) as follows: for any formula φ(x, y) over M0, µ(x) ⊗
λ(y)(φ(x, y)) =

∫
Sy(M0)

fµ′,φ(q)dλ where µ′ is the unique global nonforking

extension of µ (given by Fact 2.22(i)), and as in Definition 2.7, fµ′,φ(q) =
µ′(φ(x, b)) for some (any) realization b of q.

Remark 2.13. Suppose M0 is a small model, µ(x) is a generically stable
measure over M0 (in the sense of Definition 2.12 (i)) and λ(y) is an arbitrary
Keisler measure over M0.
(i) µ(x)⊗λ(y) (as defined in 2.12(ii)) coincides with (µ′⊗λ′(y))|M0 (in the
sense of Definition 2.7) where µ′ is the unique global nonforking extension of
µ and λ′ is any global extension of λ.
(ii) If λ(y) is also generically stable then µ(x)⊗ λ(y) = λ(y)⊗ µ(x).

Here is the main new notion in this section:

Definition 2.14. Let M0 be a small model, µ(x) a generically stable measure
over M0, λ(y) an arbitrary measure over M0 and ω(x, y) a measure over M0

whose restrictions to the x variables, y variable, respectively are µ(x), λ(y).
Let µ′(x) be the unique global nonforking extension of µ(x). We say that
ω(x, y) is a strong forking amalgam of µ(x) and λ(y) with respect to µ(x),
if for some formula φ(x, y) over M0, ω(φ(x, y)) = 1, but µ′(φ(x, b)) = 0 for
all b ∈ M̄ .

Let us first remark that for types in stable theories, a strong forking
amalgam is simply a forking amalgam (and the reader can check that this
also goes through for generically stable types):

Remark 2.15. Suppose T is stable. Let p(x), q(y) and r(x, y) ⊃ p(x) ∪ q(y)
be complete types over a model M0. Let (a, b) realize r(x, y). Then r(x, y) is
a strong forking amalgam of p(x) and q(y) with respect to p(x) if and only
if it is a strong forking amalgam of p(x) and q(y) with respect to q(y) if and
only if tp(a/M0b) forks over M0 (if and only if tp(b/M0a) forks over M0.

Proof. If tp(a/M0b) forks over M0 then tp(a/M0b) 6= p|M0b (the unique
nonforking extension of p over M0b), so for some formula φ(x, y) over M0,
|= φ(a, b) but ¬φ(x, b) ∈ p|M0b. Let ψ(y) over M0 be the φ(x, y)-definition
of p. So |= ¬ψ(b), whereby the formula χ(x, y) : φ(x, y)∧¬ψ(y) is in r(x, y),
and for each b′ ∈ M̄ , ¬χ(x, b′) ∈ p(x)|M̄ .
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Another observation is that in the last clause of Definition 2.14 it suffices
to as that µ(φ(x, b)) = 0 for all b ∈M0:

Remark 2.16. Let µ′(x) be a global Keisler measure which is definable over
the small model M0. Let φ(x, y) be over M0. Suppose µ′(φ(x, b)) = 0 for all
b ∈M0, then µ′(φ(x, b)) = 0 for all b ∈ M̄ .

Proof. Suppose for a contradiction that µ′(φ(x, b)) = r > 0 for some b ∈ M̄ .
Let 0 < s < r. Then {b′ ∈ M̄ : µ(φ(x, b′)) > s} is defined by a disjunction∨
ψi(y) where the ψi are over M0. Now b satisfies some ψi hence there is

b′ ∈M0 satisfying ψi, contradiction.

Let us briefly make the connection with the notion of orthogonality of
(sets) of measures from [2]. For simplicity fix a topological space X and let
M(X) be the family of Borel probability measures on X. If M1,M2 ⊂M(X)
are disjoint then M1 is said to be orthogonal to M2 if for some Borel subset
B of X, µ(B) = 0 for all µ ∈ M1 and µ(B) = 1 for all µ ∈ M2. On could
restrict on’s attention to rather special B such as open, closed, then say that
M1 and M2 are orthogonal with respect to opens, closed, etc.

Remark 2.17. Let µ(x), λ(y) be Keisler measures over M0 with µ(x) gener-
ically stable, and let ω(x, y) over M0 extend µ(x) ∪ λ(y). Then ω(x, y) is a
strong forking amalgam with respect to µ(x), if and only {ω(x, y)} is orthog-
onal with respect to clopens to the SET {µ(x) ⊗ ε(y) : ε(y) any generically
stable measure over M0}.

Proof. Left implies right is immediate: suppose ω(x, y)(φ(x, y) = 1 but
µ′(φ(x, b)) = 0 for all b ∈ M̄ (where µ′ is the unique global nonforking
extension of µ). Then fµ′,φ(q) = 0 for all q ∈ Sy(M0), so from Definition 2.12
(ii) we see that (µ(x) ⊗ ε(y))(φ(x, y)) = 0 for any ε(y) over M0, generically
stable or not.
Conversely, suppose that ω(φ(x, y)) = 1, but µ(x)⊗ ε(y)(φ(x, y)) = 0 for all
generically stable measures ε(y) over M0. In particular, considering ε(y)
of the form tp(b/M0) for b ∈ M0, it follows (from Definition 2.12) that
µ(φ(x, b)) = 0 for all b ∈M0. By Remark 2.16 this implies µ′(φ(x, b)) = 0 for
all b ∈ M̄ , so ω(x, y) is a strong forking amalgam with respect to µ(x).

We are not sure of the status of the following question. A positive answer
would make the theory we develop here more robust.
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Question 2.18. Suppose that µ(x), λ and ω(x, y) ⊃ µ(x)∪λ(y) are all gener-
ically stable measures over M0. Is it the case that ω(x, y) is a strong forking
amalgam of µ(x) and λ(y) with respect to µ(x) if and only if ω(x, y) is a
strong forking amalgam of µ(x) and λ(y) with respect to λ(y)?

Finally in this section we state a couple of results which will play im-
portant roles in the proof of Theorem 1.1. First recall the notion weakly
random:

Definition 2.19. Let µ(x) be a Keisler measure over M (where now x may
be an infinite tuple of variables, and M may be the “monster model” M̄).
(i) A complete type p(x) ∈ Sx(M) is said to be weakly random for µ(x) if
every formula in p has positive µ-measure.
(ii) Assuming M is a small model, then a tuple c (of appropriate length) is
said to be weakly random over M for µ if tp(c/M) is weakly random for µ.

The first result is:

Lemma 2.20. Suppose that µ(x) is a global generically stable measure and
φ(x, y) is a formula over M̄ . Then the following are equivalent:
(i) µ(φ(x, b)) = 0 for all b ∈ M̄ .
(ii) For some n, µ(n)(∃y(φ(x1, y) ∧ ... ∧ φ(xn, y))) = 0,
(iii) for some n, for any weakly random type p(x) for µ, p(n)(x1, .., xn) implies
¬∃y(φ(x1, y) ∧ .. ∧ φ(xn, y)).

Proof. (i) implies (ii) is Proposition 2.1 of [6]. (ii) implies (iii) is Lemma
1.2 of [6]. And (iii) implies (i) is immediate (if µ(φ(x, b)) > 0, let p(x) be
a weakly random type for µ containing φ(x, b). Then φ(x1, b) ∧ ..φ(xn, b) ∈
p(n)(x1, .., xn), hence (iii) fails).

The second is:

Proposition 2.21. Suppose that µ1(y1), ..., .µn(yn) are global Keisler mea-
sures, all invariant over a small model M0. Let µ(y1, .., yn) be the nonforking
product µ1 ⊗ ..⊗ µn. Let B(y1, .., yn) be a Borel set over M0 with µ-measure
1. Then there are sequences Iα = (bαi : i < ω) for α = 1, .., n such that
(i) each Iα is weakly random for (µα)(ω)|M0

(ii) for all (c1, .., cn) ∈ I1 × ..× In, (c1, .., cn) ∈ B.
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Proof. We argue by induction on n. For n = 1, let x be the variable y1. Then
the intersection of all the B(xi) for i < ω and the closed set consisting of the

intersection of all M0-definable sets of µ
(ω)
1 -measure 1, is a Borel subset of the

type space over M0 in variables (x1, x2, ..) of µ
(ω)
1 -measure 1, hence contains

a point, and any realization is the required I1.
Assume true for n. Let B(y1, .., yn+1) be a Borel set over M0 of µ mea-
sure 1, where µ = µ1 ⊗ ... ⊗ µn+1). By Borel definability of invariant mea-
sures, and the definition of the nonforking product measure, {(c2, ..., cn+1) :
µ1(B(y1, c2, .., cn+1)) = 1} is a Borel set C(y2, .., yn+1) over M0 of (µ2 ⊗ ...⊗
µn+1)-measure 1. By induction hypothesis we find I2, .., In+1 satisfying (i)
and (ii) of the Proposition for C in place of B. Now again let x be the vari-
able y1. Consider the countable set of conditions B(xi, c2, .., cn+1) for i < ω
and (c2, .., cn+1) ∈ I2 × .. × In+1. The intersection of all of these is a Borel

set in variables (x1, x2, ...) which has µ
(ω)
1 -measure 1. The intersection of this

with the set of all formulas over M0 of µ
(ω)
1 -measure 1, again has a point,

which is the required I1.

3 Average measures

One direction of the proof of Theorem 1.1 will make heavy use of a special
class of generically stable measures, which we call average measures and were
introduced in [5]. So we will give the definition again here and record a few
facts concerning nonforking products (or amalgams) which will be needed
later.

Definition 3.1. By an indiscernible segment we mean something of the form
{ai : i ∈ [0, 1]} which is indiscernible with respect to the usual ordering on
[0, 1].

As pointed out in [5] such an indiscernible segment I gives rise to a global
generically stable measure µI : for any formula (with parameters) φ(x) the
set of i ∈ [0, 1] such that |= φ(ai) is a finite union of intervals and points
so has a Lebesgue measure, which we define to be µI(φ(x)). Noting that µI
is both finitely satisfiable in and definable over I, we see that µI is a global
generically stable measure, which is moreover, by Proposition 3.3 of [5], the
unique nonforking extension of µI |I.
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Definition 3.2. (i) By a global average measure we mean something of the
form µI for I an indiscernible segment.
(ii) For M0 a small model, by a average measure over M0 we mean something
of the form µI |M0 where µI is a global average measure which does not fork
over M0 (or is Aut(M̄/M0)-invariant).

Remark 3.3. A generically stable type is the same thing as an average
measure which happens to be a type.

We now introduce some data and notation relevant for the proposition
below. Let us suppose that for α < κ, Iα = (bαi : i ∈ [0, 1]) is an indiscernible
segment and that the Iα’s are mutually indiscernible in the sense that each Iα
is indiscernible over ∪β 6=αIβ. For i ∈ [0, 1] let ci be the sequence (bαi : α < κ).
It is then easy to see that K = (ci : i ∈ [0, 1]) is also an indiscernible segment
(of possibly infinite tuples if κ ≥ ω). So we have the average measure µK ,
as well as the average measures µIα for each α. As one might expect, with
these assumptions and notation we have:

Proposition 3.4. µK (in variables (xα : α < κ)) is the nonforking product
⊗α<κµIα(xα) of the µIα(xα).

Proof. It is clearly enough to prove the Proposition when κ = 2 (by finite
character together with induction for example). So let us rename I0 as I,
and I1 as J , as well as renaming x0 as x and x1 as y. Also let us write I as
(ai : i ∈ [0, 1]) and J = (bi : i ∈ [0, 1]). We still let ci denote (ai, bi).

We aim to prove that µK(x, y)|K coincides with (µI(x) ⊗ µJ(y))|K. As
both global measures µK and µI ⊗ µJ are generically stable and K-invariant
it will then follow from Proposition 3.3 of [4], that µK = µI ⊗ µJ .

So let us fix a formula φ(x, y, c) over K where c witnesses the parameters
in φ and without loss of generality c = (ci1 , ..., cik) with i1 < i2 < .. < ik ∈
[0, 1].

Claim 1. Let i 6= i1, .., ik. Then either
(a) for all j ∈ [0, 1] except possibly i1, ., ik we have |= φ(aj, bi, c) , or
(b) for all j ∈ [0, 1] except possibly i1, .., ik we have |= ¬φ(aj, bi, c).
Proof. By indiscernibility of I over J .

Claim 2. µJ({b ∈ M̄ : 0 < µI(φ(x, b, c)) < 1}) = 0.
Proof Note that by definability of µI over I, {b ∈ M̄ : 0 < µ(φ(x, b, c)) < 1}
is defined by a disjunction

∨
θ∈Θ θ(y) of formulas θ(y) over I. If by way
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of contradiction some θ ∈ Θ has µJ measure > 0 then by definition of
µJ , there are infinitely many i ∈ [0, 1] such that |= θ(bi). For each such
i, µI(φ(x, bi, c)) 6= 0, 1. On the other hand we know that µI(φ(x, bi, c))
is the Lebesgue measure of {j ∈ [0, 1] :|= φ(aj, bi, c)). We clearly have a
contradiction to Claim 1.

By Claim 2 and the definition of the product measure, (µI⊗µJ)(φ(x, y, c)) =
µJ({b ∈ M̄ : µI(φ(x, b, c)) = 1}). Now Z = {b ∈ M̄ : µI(φ(x, b, c)) = 1} is
type-definable over Ic by definability of µI over I, say by

∧
ψ∈Ψ ψ(y), where

each ψ(y) is over Ic. Now µJ(ψ(y)) is the Lebesgue measure of {i ∈ [0, 1] :|=
ψ(bi)}, and by indiscernibility of J over I, for i 6= j1, .., jk, whether or not
|= ψ(bi) depends on on the order type of i with respect to j1, .., jk in [0, 1].
In any case we see that µJ(Z) equals the Lebesgue measure of {i 6= j1, .., jk :
µ(φ(x, bi, c)) = 1} which is a moreover a union of intervals with endpoints
from 0, j1, .., jk, 1. By Claim 1, this coincides with the Lebesgue measure
of {i 6= j1, .., jk :|= φ(ai, bi, c)} which by definition of µK(x, y) is precisely
µK(φ(x, y, c)). We have shown that µK |K coincides with (µI ⊗µJ)|K, which
proves the proposition.

Finally, for the record we note the obvious.

Lemma 3.5. Suppose I = (ai : i ∈ [0, 1]) is an indiscernible segment over
A. Let φ(x, y) be a formula over A. Then the following are equivalent:
(i) µI(φ(x, b)) = 0 for all b ∈ M̄ .
(ii) for some n, for some (any) distinct i1, .., in ∈ [0, 1], |= ¬∃y(φ(ai1 , y) ∧
.. ∧ φ(ain , y)).

Proof. (ii) implies (i): if for some b, µI(φ(x, b)) > 0 then for infinitely many
i ∈ [0, 1], |= φ(ai, b), so clearly (ii) fails.
(i) implies (ii). If (ii) fails then by compactness there is b such that |= φ(ai, b)
for infinitely many i, hence µI(φ(x, b)) > 0.

4 Proof of Theorem 1.1

We start with
Proof of (1) implies (2).
Assume (1). By Fact 2.3, there are φα(x, yα) ∈ L for α < ω, bαi for α < ω
and i < ω, and kα < ω for each α < ω such that
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(i) for each α, {φα(x, bαi ) : i < ω} is kα-inconsistent, and
(ii) for each “path” η ∈ ωω, {φα(x, bαη(α)) : α < ω}, and

(iii) for each α, the sequence (bαi : i < ω) is indiscernible over
⋃
β 6=α{b

β
i : i <

ω}
By compactness we may find bαi for α < ω and i ∈ [0, 1] satisfying the
analogues of (i), (ii), (iii). So in (i) we now have η ∈ [0, 1]ω, and in (iii) we
mutually indiscernible segments. For each i ∈ [0, 1] let ci be the sequence
(bαi : α < ω). So (ci : i ∈ [0, 1]) is an indiscernible segement (of infinite
tuples). For each i let di realize {φα(x, bαi ) : α < ω}, and let ei be the sequence
(di, b

α
i )α (i.e. (di, b

0
i , b

1
i , ...).) Clearly we many assume that (ei : i ∈ [0, 1]) is

also an indiscernible segment (of infinite tuples).
Now let Iα denote (bαi : i ∈ [0, 1]), K denote (ci : i ∈ [0, 1] and J denote

(ei : i ∈ [0, 1]. Let M0 be any model containing J . Let ω(x, y0, y1, ...) = µJ ,
ν(y0, y1, ...) = µK and for each α < ω, µα = µIα . These are all global
average (so generically stable) measures, which are M0-invariant. Clearly
the restriction of ω to (y0, y1, ..) is ν and the restriction of ν to each yα is
µα. Let λ(x) be the restriction of ω to x and for each α let ωα(x, yα) be the
restriction of ω to (x, yα).
Claim 1. For each α, ω(φα(x, yα)) = 1, and hence ωα(φα(x, yα)) = 1.
Proof. Because |= φα(di, b

α
i ) for all i.

Claim 2. For each α < ω, µα(φ(d, yα) = 0 for all d ∈ M̄ .
Proof. This is by Lemma 3.5 and the fact that {φ(x, bαi ) : i ∈ [0, 1]} is
kα-inconsistent.

Claim 3. ν(y0, y1, ...) is ⊗αµα(yα) (and also for the restrictions of these
measures to M0).
Proof. By Proposition 3.4 and the mutual indiscernibility of the Iα’s.

By Claims 1 and 2, for each α < ω, ω|M0 is a strong forking amalgam (of
λ|M and µα|M) with respect to µα|M . Together with Claim 3, this yields
(2) of Theorem 1.1.

Proof of (2) implies (1).
Let M0, ω(x, y0, y1, ..), µα(yα), etc. be as in the statement of (2). For
each α < ω let φα(x, yα) be a formula over M0 witnessing that ωα(x, yα)
is a strong forking amalgam of λ(x) and µα(yα) with respect to µα, namely
ω(φα(x, yα)) = 1 but (µα|M̄)(φα(d, yα)) = 0 for all d ∈ M̄ (or equivalently
for all d ∈M0).
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The assumption that (2) fails gives average measures µα(yα) over M0 for
α < ω and ω(x, y0, y1, ...) over M0 extending ⊗αµα such that the restriction
ωα of ω to (x, yα) is a strong forking extension of µα(yα) for all α. By Lemma
2.20, for each α < ω let kα < ω be such that
(*) µ

(kα)
α (∃x(φα(x, yα,1) ∧ .. ∧ φα(x, yα,kα))) = 0.

Let us now fix N < ω. Let µ(y0, .., yN) be the restriction of ω to y0, .., yN
which we know to be µ0(y0)⊗...⊗µN(yN). So as ω(φ0(x, y0)∧...∧φN(x, yN)) =
1, it follows that µ(∃x(φ0(x, y0) ∧ .. ∧ φN(x, yN))) = 1. By Proposition 2.21
(where here the Borel set B(y0, .., yN) is the one defined by ∃x(φ0(x, y0)∧ ..∧
φN(x, yN))), there are weakly random Iα = (bαi : i < ω) for µα over M0, for
α = 0, .., N such that
(**) for all (c0, .., cN) ∈ I0× ..× IN we have |= ∃x(φ0(x, c1)∧ ...∧φN(x, cN)).
By (*) we have that
(***) for each α = 0, .., N , φα(x, bαi1) ∧ .. ∧ φα(x, bαikα ) is inconsistent, for all
i1 < ... < iikα .
Now (**), (***) and compactness yield the failure of (2) of Fact 2.3, whereby
T is not strongly dependent. This completes the proof of Theorem 1.1.

5 Final remarks and questions

A weakness in the theory developed here is the status of “strong forking
amalgams” and in particular that Question 2.18 has probably a negative
answer. Nevertheless the theory as it stands gives rise to obvious notions of
pre-weight and weight for a generically stable measure λ(x). Where for λ(x)
a generically stable measure over a model M0, the preweight of λ is defined
to be the supremum of κ such that there exists generically stable ω(x, yα)α<κ
over M0 such that the restriction of ω to (yα)α<κ is the nonforking product
of the its restrictions µα to each yα and where we have strong forking of
ωα(x, yα) with respect to yα (with the obvious notation).

Question 5.1. Suppose T is strongly dependent. Does every generically
stable measure have finite weight?

Another obvious question raised by the work concerns the relationship
between generically stable measures and average measures in a NIP theory.
In the stable case, any Keisler measure is a weighted average of some of its
weakly random types. (Strictly speaking we should consider here rather φ-
measures, for φ(x, y) a fixed L-formula.) Is there a similar relation between
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a generically stable measure and various average measures obtained from its
weakly random types?
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