Logarithic derivatives on nonconstant commutative algebraic groups, and transcendence questions (Joint work with D. Bertrand)

Anand Pillay

University of Leeds

November 14, 2008

Aims of the talk

- I will talk about a functional/differential algebraic analogue of the Lindemann-Weierstrass (L-W) theorem, for semiabelian varieties G over function fields K, whose statement is still moving.
- ► L-W says that if x₁,..., x_n are Q-linearly independent algebraic numbers, then e^{x₁},..., e^{x_n} are algebraically independent. It is the "exponential side" of Schanuel's conjecture that tr.deg(Q(x₁,...,x_n, e^{x₁},..., e^{x_n})/Q) ≥ n for an arbitrary set (x_i)_i of Q-linearly independent complex numbers.
- The novelty, compared with say work of Ax on the function field case, is that we will allow "nonconstant" semiabelian varieties.
- ► I will always concentrate on the "exponential" side where the x_i's are rational over the base field K, even though some methods give information on other cases such as the logarithmic side too.

- Let K be an algebraically closed field of transcendence degree 1 over C. We can equip K with a derivation ∂ with field of constants C (e.g ∂ extends d/dt.)
- If x ∈ K, y = exp(x) makes sense, as a point in a larger differential field F: x ∈ K₀ for some finitely generated differential subfield of K containing C. So x can be viewed as a rational function on a complex curve S, so exp(x) lives in a differential field F₀ of meromorphic functions on some small disc in S, and can be jointly embedded with K over K₀ into suitable F.
- ► Moreover the differential relation ∂y/y = ∂x is satisfied by any (y, x) for which y = exp(x).

Theorem 1.1

(Exponential side of Ax) Suppose $x_1, ..., x_n \in K$ are \mathbb{Q} -linearly independent modulo \mathbb{C} . Then (i) if $y_1, ..., y_n$ are elements of a differential field F > K such that $\partial y_i/y_i = \partial x_i$ for i = 1, .., n then $y_1, ..., y_n$ are algebraically independent over K. (ii) In particular if $y_i = exp(x_i)$ for i = 1, ..., n then $y_1, ..., y_n$ are

(II) In particular if $y_i = exp(x_i)$ for i = 1, ..., n then $y_1, ..., y_n$ are algebraically independent over K.

Note that in this functional setting, the "modulo $\mathbb{C}"$ part of the hypothesis is needed.

Proof. (i)

- ▶ If not then we may choose such solutions $y_1, ..., y_n$ in K^{diff} with $tr.deg(K(y_1, ..., y_n)/K) < n$.
- ▶ Let $a_i = \partial x_i \in K$. So $(y_1, ..., y_n)$ is a solution of the system $\partial y_i = a_i y_i$, i = 1, ..., n of linear differential equations.
- $L = K(y_1, ..., y_n)$ is a Picard-Vessiot extension of K.
- In fact if σ ∈ Aut(L/K) then σ(y_i) = y_i ⋅ b_i(σ) for some unique b_i(σ) ∈ C^{*}, and the map which takes σ to (b₁(σ),..,b_n(σ)) is an isomorphism of Aut(L/K) with a proper algebraic subgroup H of C^{*n}.
- *H* is defined by equations $z_1^{k_1} \cdot ... \cdot z_n^{k_n} = 1$ ($k_i \in \mathbb{Z}$, not all 0).
- Hence for some such $k_1, ..., k_n$ we have that $b_1(\sigma)^{k_1} \cdot ... \cdot b_n(\sigma)^{k_n} = 1$ for all $\sigma \in Aut(L/K)$.

The functional case for algebraic tori IV

- ▶ Then check that $\sigma(y) = y$ for all $\sigma \in Aut(L/K)$, where $y = y_1^{k_1} \cdot ... \cdot y_n^{k_n}$.
- But then $y \in K$.
- ▶ It is clear that $\partial y/y = \partial x$ where $x = k_1x_1 + ... + k_nx_n$, and $x \notin \mathbb{C}$ by hypothesis.
- So we have reduced the theorem to the case n = 1, which states essentially that a rational function f(z) cannot be both a derivative and a logarithmic derivative, unless it is 0, And this is left to the reader.

End of proof.

The functional case for arbitrary semiabelian varieties over $\mathbb C$ I

- For G a commutative connected n-dimensional algebraic group over C and LG = Gⁿ_a its Lie algebra, we have exp_G : LG(C) = Cⁿ → G(C), an analytic surjective homomorphism between the two complex Lie groups, characterized by its differential at 0 being the identity.
- ► We have Kolchin's logarithmic derivative ∂ln_G : G → LG. This is a first order differential rational homomorphism, surjective when considering points in a differentially closed field, and with kernel the constants in whichever differential field the map is being evaluated.
- ► For example if G is an elliptic curve over \mathbb{C} in standard form $\partial \ell n_G$ is $\partial x/y$.
- ► We just write $\partial : \mathbb{G}_a^n \to \mathbb{G}_a^n$ for the map taking $(x_1, ..., x_n)$ to $(\partial(x_1), ..., \partial(x_n).$

The functional case for arbitrary semiabelian varieties over $\mathbb C$ II

- ▶ If K is as before (tr.deg 1 algebraically closed extension of \mathbb{C} with derivation ∂), and $x \in LG(K) = K^n$, then $y = exp_G(x) \in G(F)$ for suitable F > K makes sense, and we have:
- $\blacktriangleright \ \partial \ell n_G(y) = \partial(x)$
- ▶ We consider a semiabelian variety G defined over \mathbb{C} , namely we have an exact sequence $T \to G \to A$ of commutative algebraic groups over \mathbb{C} with T an algebraic torus and A an abelian variety.
- Let G̃ be the "universal vectorial extension" of G. Namely G̃ is an extension of G by some vector group W = C_a^m and for any other such extension H of G there unique G̃ → H with everything commuting.

The functional case for arbitrary semiabelian varieties over $\mathbb C$ III

Theorem 1.2

(Exponential side of Ax-Kirby-Bertrand) Let G be a semiabelian variety over \mathbb{C} , and let $x \in LG(K)$ be such that $x \notin LH(K) + LG(\mathbb{C})$ for any proper algebraic subgroup H of G. (i) Let y be any solution of $\partial \ell n(y) = \partial(x)$ in a differential field Fextending K. Then tr.deg(K(y)/K) = dim(G). In particular $tr.deg(K(exp_G(x))/K) = dim(G)$. (ii) Let $\tilde{x} \in L\tilde{G}(K)$ be any lift of x. Then again for any solution \tilde{y}

of $\partial \ell n(-) = \partial(\tilde{x})$ we have that $tr.deg(K(\tilde{y})/K) = dim(\tilde{G})$. In particular $tr.deg(K(exp_{\tilde{G}}(\tilde{x}))/K) = dim(\tilde{G})$.

Again this result reduces, via differential Galois theory, to showing that $y \notin G(K)$ in some "irreducible" contexts.

- ► Let *K* be as before and we will consider commutative connected algebraic groups *G* defined over *K*.
- ▶ We call G constant if G is isomorphic as an algebraic group to one defined over C.
- ► G always has a maximal constant algebraic subgroup, denoted by G₍₀₎.
- There are at least two sources of nonconstant G; first nonconstant abelian varieties, such as the elliptic curve y² = x(x − 1)(x − t) where t ∈ K \ C.
- ► Secondly nonconstant extensions of a constant abelian variety A by an algebraic torus: the extensions of A by Cm have a moduli space (which is the dual abelian variety Â).

- If A is an abelian variety over K then up to isogeny A = A₀ × A₁ where A₀ is constant, and A₁ of ℂ-trace 0 (totally nonconstant).
- If T → G → A is a semiabelian variety, let G₀ denote the preimage in G of A₀ and call it the *semiconstant* part of G. So G₍₀₎ ⊆ G₀.

Nonconstant case - exp

- For G a commutative connected algebraic group over K and LG = 𝔅ⁿ_a its Lie algebra, and for x ∈ LG(K) we can speak of exp_G(x), as a point in a larger differential field:
- ► Again x ∈ LG(K₀) = C(S) for some complex curve S with all data defined over K₀.
- ► G is the "generic fibre" of a fibration G → S of complex varieties, where the fibres G_s are complex algebraic groups.
- ► Likewise there is a corresponding complex vector bundle LG → S whose generic fibre is LG.
- ▶ $x \in LG(K_0)$ is then a rational section of LG $\rightarrow S$, holomorphic on some small S_0 .
- Applying appropriate exp's in the fibres, gives us a holomorphic section exp_G(x) of G → S above S₀, which we call exp_G(x), and lives in the differential field of meromorphic functions on S₀, which extends K₀.

Nonconstant case - logarithmic derivatives I

- Let now G be a possibly nonconstant semiabelian variety over K
- ▶ To obtain an appropriate analogue of the differential relation $\partial \ell n(y) = \partial(x)$ which was satisfied by the graph of exponentiation in the constant case, we are in general *forced* to pass to the universal vectorial extension \tilde{G} of G.
- ► The point is that G̃ has a (unique) so-called D-group structure, namely an extension ∂' of ∂ on K to a derivation of the "coordinate ring" of G̃ which respects co-multiplication.
- Equivalently, a *D*-group structure on \tilde{G} is given by a *K*-rational homomorphic section $s: \tilde{G} \to T_{\partial}(\tilde{G})$.
- ► Here T_∂(G̃) is the "first prolongation" or "shifted tangent bundle" of G̃, which can be described as follows:

Nonconstant case - logarithmic derivatives II

- As above view \tilde{G} as the generic fibre of a group scheme $\pi: \tilde{\mathbf{G}} \to S$.
- We have the induced group scheme $T\pi: T\tilde{\mathbf{G}} \to TS$.
- ▶ View ∂ as a vector field on S. For t a generic point of S, $(t, \partial(t)) \in TS$, and then $T_{\partial}(\tilde{G})$ is precisely $(T\pi)^{-1}(t, \partial(t))$, which is both an algebraic group (over K), and a torsor for TG.
- ▶ In any case, the *K*-rational homomorphic section *s* yields our logarithmic derivative $\partial \ell n_{\tilde{G}} : \tilde{G} \to L\tilde{G}$ as follows:
- ▶ For *F* a differential field extending *K* and $g \in \tilde{G}(K)$, $\partial \ell n_{\tilde{G}}(g) = \partial(g) - s(g)$ where - is in the sense of the canonical group structure on $T_{\partial}\tilde{G}$. (The same definition works to give Kolchin's log.derivative in the constant case, taking s = 0.)

Nonconstant case - logarithmic derivatives III

- ▶ The D-structure on \tilde{G} gives rise to the "connection" $\partial_{L\tilde{G}}$ on $L\tilde{G}$:
- ► Either by differentiating (in the sense of Kolchin) ∂ℓn_{G̃} at the identity, or by considering the map from the cotangent space of G̃ at the identity to itself, induced by the derivation ∂' (as in [PZ]).
- ▶ In any case $\partial_{L\tilde{G}} : L\tilde{G} \to L\tilde{G}$ is additive and satisfies the Leibniz rule with respect to scalar multiplication, namely equips the vector space $L\tilde{G}$ with a ∂ -module structure, but now possibly nontrivial.
- When A is an abelian variety over K, then LÃ identifies with the dual of the de Rham cohomology group H¹_{dR}(A), and ∂_{LG̃} coincides with the dual of the standard Gauss-Manin connection on H¹_{dR}(A).

- ▶ In any case for $\tilde{x} \in L\tilde{G}(K)$, and $\tilde{y} = exp_{\tilde{G}}(\tilde{x})$ it is again the case that $\partial \ell n_{\tilde{G}}(\tilde{y}) = \partial_{L\tilde{G}}(\tilde{x})$, although with our differential algebraic definitions above, this requires some work to verify.
- ▶ We are now in a position to state the main theorem, of which Theorem 1.2 above is a special case.

(日) (同) (三) (三) (三) (○) (○)

Theorem 2.1

Let G be a semiabelian variety over K. Let $x \in LG(K)$. Assume that

 $Hyp_x: x \notin LH(K) + LG_{(0)}(\mathbb{C})$ for any proper algebraic subgroup H of G; moreover for any quotient G_1 of G, the same holds for the image of x in $L(G_1)$.

Let $\tilde{x} \in L\tilde{G}(K)$ be any lift of x. Then (i) If \tilde{y} is any solution of $\partial \ell n_{\tilde{G}}(-) = \partial_{L\tilde{G}}(\tilde{x})$ in a differential field $(F, \partial) \supseteq (K, \partial)$ then $tr.deg(K(\tilde{y})/K) = dim(\tilde{G})$. (ii) In particular $tr.deg(K(exp_{\tilde{G}}(\tilde{x}))/K) = dim(\tilde{G})$, and so $tr.deg(K(exp_{G}(x)/K)) = dim(G)$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへの

Main theorem and remarks II

- ▶ The hypothesis Hyp_x is easily seen to be necessary. But when the semiconstant part G_0 of G coincides with the constant part $G_{(0)}$, then the moreover clause in Hyp_x follows from the first clause, so can be dispensed with.
- ▶ But in the simplest case where the semiconstant part of G is not constant, namely when G is a nonconstant extension of a constant elliptic curve E by G_m, the moreover clause canNOT be dropped. Even to see this counterexample requires results around variation of mixed Hodge structure.
- Note that when G = A is an abelian variety with C-trace 0 then Hyp_x says simply that x ∉ LB(K) for any proper abelian subvariety of A, and is a *direct* translation of the hypothesis on x₁,..,x_n in the number theoretic situation (Theorems 1.1, 1.2).

- Applying Theorem 2.1 to the case where G is a power of a nonconstant elliptic curve, one obtains:
- ▶ If \wp is an elliptic function with nonconstant invariant $j \in \mathbb{C}(z)$ and zeta function ζ , and if $x_1(z), ..., x_n(z)$ are \mathbb{Z} -linearly independent algebraic functions, then the 2n analytic functions defined on some open domain in \mathbb{C} by $\wp(x_1(z)), ..., \wp(x_n(z)), \zeta(x_1(z)), ..., \zeta(x_n(z))$ are algebraically independent over $\mathbb{C}(z)$.

(日) (同) (三) (三) (三) (○) (○)

Comments on the proof I

- The proof of Theorem 2.1 is inductive in nature and takes us into the category of "almost semiabelian *D*-groups".
- ▶ Deligne's theorem of the fixed part (that the set of K-rational solutions of the linear DE ∂_{LÃ}(−) = 0 is trivial when A is abelian and traceless) plays a role.
- There are essentially two base cases of the inductive proof. The first can be taken to be the case when G is constant (so Theorem 1.2).
- ▶ The second is a kind of n = 1 case of the other extreme: and says that when G = A is simple and of \mathbb{C} -trace $0, x \in LA(K)$ is nonzero, and $\tilde{x} \in L\tilde{A}(K)$ is an arbitrary lift of x, then there is NO $\tilde{y} \in \tilde{A}(K)$ satisfying $\partial \ell n_{\tilde{A}}(\tilde{y}) = \partial_{L\tilde{A}}(\tilde{x})$.
- The latter is precisely Manin's "theorem of the kernel" in the form discussed by Coleman and proved by Chai.

Comments on the proof II

- ▶ We call \tilde{G} K-large, if working in the differential closure K^{diff} of K, the kernel of $\partial \ell n_{\tilde{G}}$ is contained in $\tilde{G}(K)$.
- ► If G̃ is K-large, then the reduction to the two special cases above can be effected via (generalized) differential Galois theory, as in our proof of Theorem 1.1 above.
- ► However K-largeness of G̃ is a rather restrictive condition. But it holds for example if G is a product of a torus, a constant A₀ and a "general" traceless A₁.
- ▶ To effect the inductive proof in general we need the "socle theorem" (from [PZ]): If G is a connected finite-dimensional differential algebraic group and X is an irreducible differential algebraic subvariety of G with trivial stabilizer, then X is contained in a coset of the maximal "split" or "algebraic" connected differential algebraic subgroup of G.

- ▶ Even in this exponential side of nonconstant Ax, our statement is not optimal. One would like for example, for arbitrary $x \in LG(K)$ a geometric object attached to x which governs the relevant transcendence degrees (as in the usual statements of Ax).
- One would again look for such statements in the logarithmic and mixed cases, although some work on the logarithmic case already appears in Bertrand's paper in the Newton volume.