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Aims of the talk

I I will talk about a functional/differential algebraic analogue of
the Lindemann-Weierstrass (L-W) theorem, for semiabelian
varieties G over function fields K, whose statement is still
moving.

I L-W says that if x1, .., xn are Q-linearly independent algebraic
numbers, then ex1 , .., exn are algebraically independent. It is
the “exponential side” of Schanuel’s conjecture that
tr.deg(Q(x1, .., xn, ex1 , .., exn)/Q) ≥ n for an arbitrary set
(xi)i of Q-linearly independent complex numbers.

I The novelty, compared with say work of Ax on the function
field case, is that we will allow “nonconstant” semiabelian
varieties.

I I will always concentrate on the “exponential” side where the
xi’s are rational over the base field K, even though some
methods give information on other cases such as the
logarithmic side too.



The functional case for algebraic tori I

I Let K be an algebraically closed field of transcendence degree
1 over C. We can equip K with a derivation ∂ with field of
constants C (e.g ∂ extends d/dt.)

I If x ∈ K, y = exp(x) makes sense, as a point in a larger
differential field F : x ∈ K0 for some finitely generated
differential subfield of K containing C. So x can be viewed as
a rational function on a complex curve S, so exp(x) lives in a
differential field F0 of meromorphic functions on some small
disc in S, and can be jointly embedded with K over K0 into
suitable F .

I Moreover the differential relation ∂y/y = ∂x is satisfied by
any (y, x) for which y = exp(x).



The functional case for algebraic tori II

Theorem 1.1
(Exponential side of Ax) Suppose x1, .., xn ∈ K are Q-linearly
independent modulo C. Then
(i) if y1, .., yn are elements of a differential field F > K such that
∂yi/yi = ∂xi for i = 1, ., n then y1, .., yn are algebraically
independent over K.
(ii) In particular if yi = exp(xi) for i = 1, , ., n then y1, .., yn are
algebraically independent over K.

Note that in this functional setting, the “modulo C” part of the
hypothesis is needed.



The functional case for algebraic tori III

Proof. (i)

I If not then we may choose such solutions y1, .., yn in Kdiff

with tr.deg(K(y1, .., yn)/K) < n.

I Let ai = ∂xi ∈ K. So (y1, .., yn) is a solution of the system
∂yi = aiyi, i = 1, .., n of linear differential equations.

I L = K(y1, .., yn) is a Picard-Vessiot extension of K.

I In fact if σ ∈ Aut(L/K) then σ(yi) = yi · bi(σ) for some
unique bi(σ) ∈ C∗, and the map which takes σ to
(b1(σ), .., bn(σ)) is an isomorphism of Aut(L/K) with a
proper algebraic subgroup H of C∗n.

I H is defined by equations zk1
1 · .. · zkn

n = 1 (ki ∈ Z, not all 0).

I Hence for some such k1, .., kn we have that
b1(σ)k1 · ... · bn(σ)kn = 1 for all σ ∈ Aut(L/K).



The functional case for algebraic tori IV

I Then check that σ(y) = y for all σ ∈ Aut(L/K), where
y = yk1

1 · .. · ykn
n .

I But then y ∈ K.

I It is clear that ∂y/y = ∂x where x = k1x1 + .. + knxn, and
x /∈ C by hypothesis.

I So we have reduced the theorem to the case n = 1, which
states essentially that a rational function f(z) cannot be both
a derivative and a logarithmic derivative, unless it is 0, And
this is left to the reader.

End of proof.



The functional case for arbitrary semiabelian varieties over
C I

I For G a commutative connected n-dimensional algebraic
group over C and LG = Gn

a its Lie algebra, we have
expG : LG(C) = Cn → G(C), an analytic surjective
homomorphism between the two complex Lie groups,
characterized by its differential at 0 being the identity.

I We have Kolchin’s logarithmic derivative ∂`nG : G → LG.
This is a first order differential rational homomorphism,
surjective when considering points in a differentially closed
field, and with kernel the constants in whichever differential
field the map is being evaluated.

I For example if G is an elliptic curve over C in standard form
∂`nG is ∂x/y.

I We just write ∂ : Gn
a → Gn

a for the map taking (x1, .., xn) to
(∂(x1), .., ∂(xn).



The functional case for arbitrary semiabelian varieties over
C II

I If K is as before (tr.deg 1 algebraically closed extension of C
with derivation ∂), and x ∈ LG(K) = Kn, then
y = expG(x) ∈ G(F ) for suitable F > K makes sense, and
we have:

I ∂`nG(y) = ∂(x)
I We consider a semiabelian variety G defined over C, namely

we have an exact sequence T → G → A of commutative
algebraic groups over C with T an algebraic torus and A an
abelian variety.

I Let G̃ be the “universal vectorial extension” of G. Namely G̃
is an extension of G by some vector group W = Gm

a and for
any other such extension H of G there unique G̃ → H with
everything commuting.



The functional case for arbitrary semiabelian varieties over
C III

Theorem 1.2
(Exponential side of Ax-Kirby-Bertrand) Let G be a semiabelian
variety over C, and let x ∈ LG(K) be such that
x /∈ LH(K) + LG(C) for any proper algebraic subgroup H of G.
(i) Let y be any solution of ∂`n(y) = ∂(x) in a differential field F
extending K. Then tr.deg(K(y)/K) = dim(G). In particular
tr.deg(K(expG(x))/K) = dim(G).
(ii) Let x̃ ∈ LG̃(K) be any lift of x. Then again for any solution ỹ
of ∂`n(−) = ∂(x̃) we have that tr.deg(K(ỹ)/K) = dim(G̃). In
particular tr.deg(K(expG̃(x̃))/K) = dim(G̃).

Again this result reduces, via differential Galois theory, to showing
that y /∈ G(K) in some “irreducible” contexts.



Nonconstant case - background I

I Let K be as before and we will consider commutative
connected algebraic groups G defined over K.

I We call G constant if G is isomorphic as an algebraic group to
one defined over C.

I G always has a maximal constant algebraic subgroup, denoted
by G(0).

I There are at least two sources of nonconstant G; first
nonconstant abelian varieties, such as the elliptic curve
y2 = x(x− 1)(x− t) where t ∈ K \ C.

I Secondly nonconstant extensions of a constant abelian variety
A by an algebraic torus: the extensions of A by Gm have a
moduli space (which is the dual abelian variety Â).



Nonconstant case - background II

I If A is an abelian variety over K then up to isogeny
A = A0 ×A1 where A0 is constant, and A1 of C-trace 0
(totally nonconstant).

I If T → G → A is a semiabelian variety, let G0 denote the
preimage in G of A0 and call it the semiconstant part of G.
So G(0) ⊆ G0.



Nonconstant case - exp

I For G a commutative connected algebraic group over K and
LG = Gn

a its Lie algebra, and for x ∈ LG(K) we can speak of
expG(x), as a point in a larger differential field:

I Again x ∈ LG(K0) = C(S) for some complex curve S with all
data defined over K0.

I G is the “generic fibre” of a fibration G → S of complex
varieties, where the fibres Gs are complex algebraic groups.

I Likewise there is a corresponding complex vector bundle
LG → S whose generic fibre is LG.

I x ∈ LG(K0) is then a rational section of LG → S,
holomorphic on some small S0.

I Applying appropriate exp’s in the fibres, gives us a
holomorphic section expG(x) of G → S above S0, which we
call expG(x), and lives in the differential field of meromorphic
functions on S0, which extends K0.



Nonconstant case - logarithmic derivatives I

I Let now G be a possibly nonconstant semiabelian variety over
K

I To obtain an appropriate analogue of the differential relation
∂`n(y) = ∂(x) which was satisfied by the graph of
exponentiation in the constant case, we are in general forced
to pass to the universal vectorial extension G̃ of G.

I The point is that G̃ has a (unique) so-called D-group
structure, namely an extension ∂′ of ∂ on K to a derivation of
the “coordinate ring” of G̃ which respects co-multiplication.

I Equivalently, a D-group structure on G̃ is given by a
K-rational homomorphic section s : G̃ → T∂(G̃).

I Here T∂(G̃) is the “first prolongation” or “shifted tangent
bundle” of G̃, which can be described as follows:



Nonconstant case - logarithmic derivatives II

I As above view G̃ as the generic fibre of a group scheme
π : G̃ → S.

I We have the induced group scheme Tπ : T G̃ → TS.

I View ∂ as a vector field on S. For t a generic point of S,
(t, ∂(t)) ∈ TS, and then T∂(G̃) is precisely (Tπ)−1(t, ∂(t)),
which is both an algebraic group (over K), and a torsor for
TG.

I In any case, the K-rational homomorphic section s yields our
logarithmic derivative ∂`nG̃ : G̃ → LG̃ as follows:

I For F a differential field extending K and g ∈ G̃(K),
∂`nG̃(g) = ∂(g)− s(g) where − is in the sense of the

canonical group structure on T∂G̃. (The same definition
works to give Kolchin’s log.derivative in the constant case,
taking s = 0.)



Nonconstant case - logarithmic derivatives III

I The D-structure on G̃ gives rise to the “connection” ∂LG̃ on

LG̃:

I Either by differentiating (in the sense of Kolchin) ∂`nG̃ at the
identity, or by considering the map from the cotangent space
of G̃ at the identity to itself, induced by the derivation ∂′ (as
in [PZ]).

I In any case ∂LG̃ : LG̃ → LG̃ is additive and satisfies the
Leibniz rule with respect to scalar multiplication, namely
equips the vector space LG̃ with a ∂-module structure, but
now possibly nontrivial.

I When A is an abelian variety over K, then LÃ identifies with
the dual of the de Rham cohomology group H1

dR(A), and ∂LG̃
coincides with the dual of the standard Gauss-Manin
connection on H1

dR(A).



Nonconstant case - logarithmic derivatives IV

I In any case for x̃ ∈ LG̃(K), and ỹ = expG̃(x̃) it is again the
case that ∂`nG̃(ỹ) = ∂LG̃(x̃), although with our differential
algebraic definitions above, this requires some work to verify.

I We are now in a position to state the main theorem, of which
Theorem 1.2 above is a special case.



Main theorem and remarks I

Theorem 2.1
Let G be a semiabelian variety over K. Let x ∈ LG(K). Assume
that
Hypx: x /∈ LH(K) + LG(0)(C) for any proper algebraic subgroup
H of G; moreover for any quotient G1 of G, the same holds for
the image of x in L(G1).
Let x̃ ∈ LG̃(K) be any lift of x. Then
(i) If ỹ is any solution of ∂`nG̃(−) = ∂LG̃(x̃) in a differential field

(F, ∂) ⊇ (K, ∂) then tr.deg(K(ỹ)/K) = dim(G̃).
(ii) In particular tr.deg(K(expG̃(x̃))/K) = dim(G̃), and so
tr.deg(K(expG(x)/K)) = dim(G).



Main theorem and remarks II

I The hypothesis Hypx is easily seen to be necessary. But when
the semiconstant part G0 of G coincides with the constant
part G(0), then the moreover clause in Hypx follows from the
first clause, so can be dispensed with.

I But in the simplest case where the semiconstant part of G is
not constant, namely when G is a nonconstant extension of a
constant elliptic curve E by Gm, the moreover clause canNOT
be dropped. Even to see this counterexample requires results
around variation of mixed Hodge structure.

I Note that when G = A is an abelian variety with C-trace 0
then Hypx says simply that x /∈ LB(K) for any proper
abelian subvariety of A, and is a direct translation of the
hypothesis on x1, .., xn in the number theoretic situation
(Theorems 1.1, 1.2).



Main theorem and remarks III

I Applying Theorem 2.1 to the case where G is a power of a
nonconstant elliptic curve, one obtains:

I If ℘ is an elliptic function with nonconstant invariant j ∈ C(z)
and zeta function ζ, and if x1(z), .., xn(z) are Z-linearly
independent algebraic functions, then the 2n analytic
functions defined on some open domain in C by
℘(x1(z)), .., ℘(xn(z)), ζ(x1(z)), .., ζ(xn(z)) are algebraically
independent over C(z).



Comments on the proof I

I The proof of Theorem 2.1 is inductive in nature and takes us
into the category of “almost semiabelian D-groups”.

I Deligne’s theorem of the fixed part (that the set of K-rational
solutions of the linear DE ∂LÃ(−) = 0 is trivial when A is
abelian and traceless) plays a role.

I There are essentially two base cases of the inductive proof.
The first can be taken to be the case when G is constant (so
Theorem 1.2).

I The second is a kind of n = 1 case of the other extreme: and
says that when G = A is simple and of C-trace 0, x ∈ LA(K)
is nonzero, and x̃ ∈ LÃ(K) is an arbitrary lift of x, then there
is NO ỹ ∈ Ã(K) satisfying ∂`nÃ(ỹ) = ∂LÃ(x̃).

I The latter is precisely Manin’s “theorem of the kernel” in the
form discussed by Coleman and proved by Chai.



Comments on the proof II

I We call G̃ K-large, if working in the differential closure Kdiff

of K, the kernel of ∂`nG̃ is contained in G̃(K).

I If G̃ is K-large, then the reduction to the two special cases
above can be effected via (generalized) differential Galois
theory, as in our proof of Theorem 1.1 above.

I However K-largeness of G̃ is a rather restrictive condition.
But it holds for example if G is a product of a torus, a
constant A0 and a “general” traceless A1.

I To effect the inductive proof in general we need the “socle
theorem” (from [PZ]): If G is a connected finite-dimensional
differential algebraic group and X is an irreducible differential
algebraic subvariety of G with trivial stabilizer, then X is
contained in a coset of the maximal “split” or “algebraic”
connected differential algebraic subgroup of G.



Comments on the proof III

I Even in this exponential side of nonconstant Ax, our
statement is not optimal. One would like for example, for
arbitrary x ∈ LG(K) a geometric object attached to x which
governs the relevant transcendence degrees (as in the usual
statements of Ax).

I One would again look for such statements in the logarithmic
and mixed cases, although some work on the logarithmic case
already appears in Bertrand’s paper in the Newton volume.
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