Strongly minimal pseudofinite structures

Anand Pillay

October 16, 2014

In this note we point out that any strongly minimal pseudofinite structure (or set) is unimodular in the sense of [1], [5], [2], and hence measurable in the sense of Macpherson and Steinhorn [3], [2] as well as 1-based. The argument, involving nonstandard finite cardinalities, is straightforward. A few people asked about this issue in private conversations and communications, in particular Martin Bays - Pierre Simon, Dugald Macpherson - Charles Steinhorn (in MSRI, spring 2014), and more recently Alex Kruckman. So we thought it worthwhile to clarify the situation with a quick proof. Thanks to all the above people for discussions.

Recall the basic notions. A structure M is in language L is pseudofinite if every sentence true in M is true in some finite L-structure. Equivalently M is elementarily equivalent to an ultraproduct of finite L-structures. If Mis pseudofinite and saturated say, then every definable set X in M has a "nonstandard finite cardinality" |X| which is an element of a saturated elementary extension of $(\mathbb{N}, +, \times, <,)$, and the map taking X to |X| satisfies the usual properties inherited from the finite setting.

Suppose D = M is strongly minimal and saturated. D is said to be unimodular if whenever $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$ are each independent ntuiples from D and $a \in acl(b)$ (so also $b \in acl(a)$) then mlt(a/b) = mlt(b/a).

Definable means possibly with parameters. We refer to [5] for basics of stability, Morley rank (RM(-)) etc.

Lemma 0.1. Suppose D is strongly minimal, saturated and pseudofinite. Let X be a definable set in D. Let b = |D|. Then there is a polynomial $P_X(x)$ in one variable x with (standard) integer coefficients and positive leading coefficient, such that |X| = P(b). Moreover RM(X) equals the degree of $P_X(x)$.

Proof. This is the main point and has maybe been observed before, although I have not seen anything. We prove the Lemma by induction on RM(X) also using the fact that D^n has Morley rank n and Morley degree 1. If X is finite, then |X| = |X|. Suppose RM(X) = n and $X \subseteq D^m$ (for some $m \ge n$). After writing X as a finite disjoint union of suitable definable sets, we may assume (using the induction hypothesis) that for some projection $\pi : D^m \to D^n$, and some positive integer t, $\pi(X)$ has Morley rank n and $\pi|X$ is t-to-one. So $|X| = t|\pi(X)|$. And $|\pi(X)| = |D^n| - |D^n \setminus \pi(X)|$. Now $|D^n| = b^n$, and $RM(D^n) \setminus \pi(X)$ has Morley rank < n. So we can apply the induction hypothesis to get the desired $P_X(x)$ and note that the leading coefficient of P_X is t > 0.

Now there are a few ways to proceed. We could use the pair $(RM(X), t_X)$ where t_X is the leading coefficient of P_X to show directly MS-measurability of D. Or directly obtain unimodularity. We will do the latter.

Corollary 0.2. Suppose D is strongly minimal and pseudofinite. Then D is unimodular.

Proof. We may assume D is saturated. Let $a, b \in D^n$ each be generic over \emptyset with acl(a) = acl(b). Let k = mlt(b/a) and $\ell = mlt(a/b)$. We have to prove that $k = \ell$. Let $\psi(x, y)$ be an L-formula such that $\models \phi(a, b), \psi(a, y)$ isolates tp(b/a) and $\psi(x, b)$ isolates tp(a/b). Let $\phi_1(x)$ be $\exists^{=k}y(\psi(x, y))$ and $\phi_2(y)$ be $\exists^{=\ell}x(\psi(x, y))$. Let $\chi(x, y)$ be the formula $\phi(x, y) \land \phi_1(x) \land \phi_2(y)$. So $\chi(x, y)$ is true of (a, b) in D. Let $Z \subseteq D^{2n}$ be the set defined by $\chi(x, y)$. We compute |Z| in two ways. Let X be the projection of Z on the first n-coordinates, and Y the projection of Z on the last n coordinates. Then $|Z| = k|X| = \ell|Y|$. Note that other X and Y have Morley rank n hence by Lemma 0.1, there are polynomials P(x), Q(x) over \mathbb{Z} of degree < n such that $|X| = b^n - P(b)$ and $|Y| = b^n - Q(b)$. If by way of contradiction $k > \ell$ we have $(k - \ell)(b^n) = kP(b) - \ell Q(b)$. This is impossible, as the right hand side is an integral polynomial of degree < n in b, for example by considering sufficiently large standard natural numbers b. So the Corollary is proved.

Remark 0.3. (i) One can deduce by standard means that any pseudofinite theory of finite U-rank (i.e. every complete type has finite U-rank) is 1-based. See the proof of Proposition 3.5 in [2] for example. In particular all definable groups in such a theory are abelian-by-finite.

(ii) There are examples of ω -stable non abelian-by-finite pseudofinite groups in [4].

(iii) We would tentatively conjecture that any regular type in a stable pseudofinite theory is locally modular???

References

- E. Hrushovski, Unimodular minimal structures, Journal LMS 46 (1992) 385-396.
- [2] C. Kestner and A. Pillay, Remarks on unimodularity, JSL 76(2011), 1453-1458.
- [3] D. Macpherson and C. Steinhorn, One-dimensional asymptotic classes of finite structures, Transactions AMS, 360 (2008), 411-448.
- [4] D. Macpherson and K. Tent, Stable pseudofinite groups, J. Algebra 312 (2007), 550-561.
- [5] A. Pillay, Geometric Stability Theory, OUP 1996.