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Caialytic mechanism of serine proteases
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Free energies of hydrelysis of some

biolegically-important compounds
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Standard free energles of hydrolysis of some phesphaie-
containing compounds of biolegical interest

Compound AG (kJ - mol™)
Phosphoenolpyruvate —61.9
1,3-Bisphosphoglycerate —49.4
Acetyl phosphate —43.1
Phosphocreatine —43.1
PP; —23.
ATP (— AMP + PP)) —32.2
ATP (— ADP + P)) —30.5
Glucose-1-phosphate —21.9
Fructose-6-phosphate —13.8
Glucose-6-phosphate —13.8
Glycerol-3-phosphate =92

Source: Jencks, W.P,, in Fasman, G.D. (Ed.), Handbook of Biochemistry
and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. 1, pp.
296-304, CRC Press (1976).
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The flow of phosphoryl groups from high-energy phosphate
donors, via the ATP-ADP system, to low-energy phosphate
acceptors (note the central role of ATP as energy currency).



H o
\ 7

C
I

H= ‘|: OH  glyceraldehyde
cuzo@ 3-phosphate

A covalent bond is formed between
glyceraldehyde 3-phosphate (the substrate)
and the -SH group of a cysteine side chain of
the enzyme glyceraldehyde 3-phosphate
dehydrogenase, which also binds
noncovalently to NAD".

Oxidation of glyceraldehyde 3-phosphate
occurs, as two electrons plus a proton (a

hydride ion, see Figure 2-60) are transferred
from glyceraldehyde 3-phosphate to the bound
NAD*, forming NADH. Part of the energy released
by the oxidation of the aldehyde is thus stored

in NADH, and part goes into converting the

bond between the enzyme and its substrate
glyceraldehyde 3-phosphate into a high-energy
thioester bond.

A molecule of inorganic phosphate displaces
the high-energy bond to the enzyme to create
1,3-bisphosphoglycerate which contains a high-
energy acyl-anhydride bond.
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Some fundamental chemical mechanisms



Modes of C—H bond breaking
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Biologically-importani nucleophilic groups

(a) Nucleophiles
Nucleophilic
form
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Biologically-important elecirophilic groups

(b) Electrophiles

H Protons
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R
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RI
R
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+
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Metabolic group-transfer reactions:
Acyl group transfer
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Metabolic group-transfer reactions:
Phosphoryl group transfer
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Metabolic group-transfer reactions:
Glycosyl group transfer

double [ +
@) O

0 displacement
/ (Sx1) R + oy | \
/X

_+_
Xi- Resonance-stabilized
lsmgle carbocation (oxonium ion)

displacement (Sy2) ¥i \i

0)

T Y




Elimination reaction mechanisms using
dehydration as an example
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SCHEME 10.2 Three general mechanisms for dehydration.
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Elimination reaction mechanisms using
dehydration as an example
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Example of an enzyme-catalyzed

elimination reaction
I
-H,O R
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SCHEME 10.1 Reactions catalyzed by dehydratases and hydratases.
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C—C bond formation and cleavage reactions:
Aldol condensation

(a) Aldol condensation
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C—C bond formation and cleavage reactions:
Claisen condensation (ester)

(b) Claisen ester condensation
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C—C bond formation and cleavage reactions:

Decarboxylation of a $-keto acid

(c) Decarboxylation of a B-keto acid

B-Keto acid
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