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Abstract

Discrete tone sound generation in a subsonic fan
subject to 3-D disturbances is investigated. The
analytical model used treats the fan rotor and
stator as linear cascades of thin airfoils in a
rectangular duct subject to a 3-D gust for which a
complete aerodynamic theory already exists. The
sound pressure can then be cast as the sum of a
finite number of discrete sound waves {modes) the
magnitude of which depends on an unknown function
satisfying a singular integral equation. Similarity
rules are derived to reduce the problem to that of a
2-D gust. 3-D effects on- the cut-off condition,
the sound pressure, and the acoustic power are first
investigated for each mode. The theory is then
applied to noise generated by typical rotor-wake-
defect and rotor-tip-vortex disturbances interacting
with a stator.
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integer specifying acoustic waves
acoustic pressure, Fourier expansion
index in direction

disturbance velocity N

Fourier expansion index in K direction
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Xs¥»Z duct coordinates, x-axis in axial
direction
XosY,s2 cascade coordinates, xz-axis parallel to
blade
A vortex intensity
Ap q,Bp q Fourier coefficients of 3-D disturbances
3 3
B number of rotor blades
H velocity defect amplitude
i acoustic intensity
T1,3],? unit vectors in the X],Y1,Z directions
2
K 2k1Mr/Br
Kq qu/(srb)
L L/(npocUra)
N aerodynamic 1ift
M0 UO/c0
Mr Ur/co
P defined by Eq. (7)
S duct area
Uo velocity of rotor
U, incoming mean velocity
Ur mean velocity relative to stator
v defined by Eq. (8)
W acoustic power
ay defined by Eq. (31)
1
-M2Y)%2
8. (1-m2) .
Y (a2 - «2)*
Gn,en,x+ defined by Egs. (35)
£ tip vortex width in span direction
K (K2 - Ké)%r
N gust angle
v angle of incoming velocity with machine
axis
E,n Prandt1-Glauert coordinates
0 density
o interblade phase angle
w Qp
T defined by Eq. (20)
X stagger angle
Q angular velocity of rotor
Subscripts
n mode number
p.q Fourier expansion indices
Superscripts
+ upstream propagation

- downstream propagation

I. Introduction

For aircraft turbofan engines operating at sub-
sonic flow conditions, the noise spectrum consists
of a number of discrete tones superimposed on a
broad band spectrum. The discrete or pure tones
are mainly distributed at integer multiples of the
blade passing frequency of the fan. They constitute



the most objectionable part of the noise spectrum
1].

Discrete tones may be generated by steady rotor
blade forces in a similar fashion to the Gutin
mechanism for propellers, or they may result from
the interaction of flow nonuniformities with the fan
rotor blades or guide vanes. However, in fan
acoustics one has to consider simultaneously the
mechanism generating the sound waves and their
transmission through the duct. Tyler and Sofrin
[2] have shown that at subsonic tip Mach number,
the symmetrically distributed spinning modes of a
single rotor are not 1ikely to propagate in the
duct, but rather will decay rapidly. This elimi-
nates the steady aerodynamic loading of rotor blades
as a source of noise. But when the rotor is operat-
ing in a spatially nonuniform flow due to inlet
distortion or inlet turbulence some of the resulting
modes will propagate along the duct. Similarly,
when the rotor is operating in combination with
stator vanes, many patterns are generated, some
of which may be spinning above their critical Mach
number.  These high speed patterns will also pro-
pagate along the duct and radiate sound outside.

Hence, there are essentially two relevant noise
generating mechanisms in subsonic fans, namely, in-
let distortion and turbulence interacting with the
rotor, and rotor-stator interaction. Both are
governed by the same aerodynamic process: a row of
blades swept by a spatially nonuniform but periodic
flow.

Recent investigations of fan noise by Cumpsty
and Lowrie [3], and Feiler and Merriman [4] have
indicated that the rotor-stator interaction is the
dominant source of pure tone noise for subsonic fans
in flight. This interaction, first studied by Kemp
and Sears [5], has been traditionally viewed as the
interaction of the rotor blade wakes with the down-
stream vanes. However,in a recent review, Dittmar
[6] has pointed out the importance of interaction
of rotor blade tip vortices and velocity defects
with the downstream stator vanes as a source of
pure tone noise. Dittmar further suggested that
rotor tip flow irregularities interacting with
stator blades would produce noise of comparable
strength to the more commonly studied rotor wake-
stator interaction mechanism.

The objective of the present paper is to calcu-
late the noise level and spectrum produced in re-
sponse to every source of flow nonuniformities, and
thus to establish the dominant noise generating
mechanism of the fan. In subsonic fans, the type
of flow nonuniformities superimposed on the mean
flow is well illustrated by the flow behind a row
of rotor blades. Figure (1) schematically shows
the development of viscous wakes, the formation of
tip and hub vortices, and the establishment of
secondary flows. Detailed investigations of such
flows have been carried out by Raj and
Lakshminarayana [7] and Ravindrath and
Lakshminarayana [8]. 1It is important to note the
three-dimensional character of these flow irregu-
larities. Their decay rate slows down as they move
downstream and their magnitude as thev interact with
a subsequent stator row is usually small compared
to the mean flow velocity. Hence they can be
approximated by frozen small amplitude disturbances
convected by the mean fiow.
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Fig. 1 Schematic Representation of Flow Behind a

Rotor Blade Row.

In this paper, we study sound generation in a
cascade of thin airfoils subject to three-dimensional
vortical disturbances convected in a subsonic uni-
form fiow. Essentially there are two approaches to
this problem. One approach is to use Lighthill's
analogy [9] to calculate the sound field. Goldstein
et al. [10] used this method to calculate inlet flow
distortion noise in a two-dimensional fan.

Kobayashi and Groeneweg [11] carried out similar
calculations for a three-dimensional fan and account-
ed for the effects of noncompact sources. This
approach usually uses certain approximations regard-
ing the fluctuating dipole distribution along the
fan blades. The other method is to directly solve
the inviscid flow equations subject to the boundary
conditions on the fan blades and the duct walls,
This method yields the sound field as the far field
solution. The theory is greatly simplified by
assuming the two-dimensional fan approximation;

that is by unrolling the fan and replacing the
annular duct by a rectangular duct. The periodicity
condition of the annular duct is here accounted for
by considering aninfinite linear cascade of thin.
airfoils.

In the present analysis, we use the rectangular
fan approximation and employ the direct method to
calculate the sound propagating in the fan duct. As
will be discussed below, a mathematical theory treat-
ing this problem already exists and has been applied
to two-dimensional disturbances. The emphasis of
this paper will hence be on calculating and analyzing
the sound generated by three-dimensional vortical
disturbances interacting with a linear cascade., It
is convenient in the following to describe the in-
teraction mechanism producing the sound as a rotor
wake-stator interaction. The basic analysis and re-
sults essentially apply to stator wake-rotor inter-
action and to inlet distortion and turbulence in-
teracting with a rotor. Any significant differences
will be pointed out in the analysis.

II. Theoretical Formulation

The mathematical theory for a linear cascade of
flat plate airfoils in subsonic flow was first
developed for two-dimensional disturbances by Lane
and Friedman [12]. The theory leads to a singular.



integral equation for the pressure distribution
along the airfoil surface. Using this theoretical
framework, Kaji and Okazaki [13] and Whitehead [14]
studied the sound generation in cascade and obtained
expressions for the far field solution corresponding

to the outgoing sound waves in the cascade. The
theory was extended by Goldstein [1, ch.5] to
account for three-dimensional disturbances. The

present work follows very closely the theory
developed by Goldstein, and the notation has been
chosen so as to be Tlargely identical with his. De-
tails of the mathematical derivation will be found
in Goldstein's book, only those necessary for under-
taking the present work will be reproduced here,

We consider a stator cascade of flat plates of
chord length ¢ and span b at an angle X to the axis
of the machine as shown in Figure (2). The cascade
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Fig. 2. Flow into Cascade.

is Tocated between two infinite horizontal plates
at distance b from each other. Upstream of this
Tinear cascade, there is a rotor moving with a
linear velocity U_ = arys where 9 is the angular
velocity of the rotor and r,, is some mean radius of
the fan. The mean flow behqnd the rotor has a
velocity U_ at angle v to the machine axis. Super-
imposed to U, is a three-dimensional disturbance
., Which can be represented by a double Fourier
series in the coordinates Y, and z. Applying the
condition that Em is solenoidal and expressing Y
in terms of the coordinates X5 =Yg» We obtain the
following expression
>
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where 1 ,31 and K are the unit vectors in the X-Yys
and z directions respectively; A and B are
complex constants; the angles v Pedd o Bed defined
in Fig. (2); and Ly = 2mry.

The disturbance velocity can then be written
Jeb % - (2)
Assuming the flow to be isentropjc and non-heat con-

ducting the equations governing & and the distur-
bance pressure p are

D
0+ _ _
DO—D'Eq] vP s (3)
D P
ol (a)
oo
where o represents the mean density of the air;
Cy> the speed of sound and
E.Q.:a_q-U-.a_—-
Dt at r ox,

If we consider only one Fourier component of (1),
the boundary condition to be satisfied by 9 is

in[(x2 +mscotu)/Ur-t]
vy=-a cos(E%E)e ., (5)

-C + _C
for o <Xy - ms < 5

m=0,+1, +2... (6)

Yo =ms
0 <z<b

where v1 is the component of Ei along theiyz-axis,
a=-A sinup + B cosu, s is the interblade gap

measu?ég normal to the chord, s* is the stagger
distance measured parallel to the chord, and c¢ is
the chord length. The cascade parameters are shown
in Figure (3).
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Fig. 3. Cascade Geometry,



Equation (5) suggests the use of the following
new dependent variables.

p=-ap U P(xz,yz)e'1wt cos(ﬁgl) (7
vy = - aV(x2,y2)e'1wt cos(ﬁgé) (8)
where w =pQ -on/rM If one further introduces the

Prandtl:Glauert coordinates ¢ =x,/c, and n =B, ¥o/Cs
as well as the new dependent variable

v = pelMrke (9)
it is possible to reduce Egs. (3,4) to
2 2
%§+%§+(w-%w=o . (10)
and
i(B2KE)/M . (5 -i(K/M g
r d
=-g. e r J e r H% £, (11)
where
U
M =L , (12)
rooc,
BI" H Vi 'Mr E) (13)
wC = 2
K=oz = 2qM/82 (14)
o°r
_ "9
Kq 2T 2k3/3r (15)
r
Note that k, =wc/2U, is the reduced frequency, and

k3 =mqc/2b 1s the spanwise wave number. Hence the

problem is reduced to solving (10) with the boundary
conditions

+

dy _ 1 s
dn ~° TeET <
(82 K/M, )(£+rn—-60tu)
—— B

V=oe (16)

N —

A formal solution for V can be obtained in terms
ofa function fo(a)

-i(a'FMrK)g

Br‘ M f (a)y(a)e
V(z.n) -——j i
-0 r‘
(17)
ey +(1/72)a, oy +(1/2)a_ 4
1 ST o
sinh 7 A, sinh Vi A

SBy
for Oin<T,

where
SB rY
A (a) i(r+22— ) e (18)
v(a) =vaZ - KZ + qu . (19)
M Ks + 82g
T=zo+ rT— _5_r z—+—£— coty) (20)

o is the so-called interblade phase angle. Applying
conditions (16) at the surface of the blades yields
the two simultaneous integral equations to be
satisfied by fo(a).

. K
- -ia +y-)e
. Br + fo(a) MY‘ _
P> 4 e YE(a) da =1,
e M to
r (21)
for - %—< £<3
and

1(a +M K)g

F (o) —zif e (22)

1
e

that causes the pressure jump [P] to vanish at the

trailing edge. Note that
SB.Y
sinh —
Elo) = ——55 — (23)
cosh —— - cos(r + — ~

accounts for cascade effects.

E(a) =

The solution of Eqs. (21) and (22) yields fo(u)
and the pressure jump [P] along the blade surface.
The upstream and downstream acoustic pressure can
then be obtained by considering the farfield up-
stream and downstream expressions of V given in
(17) and using (7), (9) and (11).

For a single airfoil

It is important to note that because of the
term E(a) in (21) there is a significant difference '
between the case of a cascade and that of a single
airfoil. When the denominator of E(a) has a double
root, E{a) has a non-integrable singularity and
therefore f (o) and [P] vanish at the surface of
the blade. “Such a condition is known as the
resonance condition and was first discussed for a
cascade by Lane and Friedman [12]. 1In the present
case the mathematical expression of the resonance
condition can easily be given as

cr 2
( —) = k% - k2 , (24)
q
where
T-2nm ,n=0, +1,2,..., (25)



d* = (s+” + p252)7

The effects of resonance on the aerodynamics of
the blades will be discussed in section {IV) and on
the acoustic solution in section (V).

ITI. Similarity Rules for Airfoil and Cascades
in Three-Dimensional Gusts

Similarity rules equivalent to those derived by
Graham [15] for airfoils in oblique gusts can also
be established for three-dimensional gusts acting
upon airfoils and cascades. As we examine the pre-
sent boundary-value problem defined by Eqs. (10} and
(11) and conditions (16), we see that, as in Grahams
case, it can be reduced to two simpler classes of
problems depending. whether o =K/K is larger or
smaller than one. 9

(a)

Reduction to 2-D Gusts in Compressible
Flows for & > 1.

For K > K,, Eq. {10) is a Helmholtz
equation similar tg that governing the 2-D gust
problem in compressible flow forwhich K =¢ or
6 ==, Hence this class of flows can be reduced to
the asymptotic case 6 == by the set of similarity
rules:

3

(1) K,,=(K2-Kg)’ .

(ii) qu =0 s 1
(111) M. =M .(1-1/02)% ,
() & = Erese), @)
ORI
/

(vi) cotu, = [g./(8y) Jcotu

Equation (11) shows that g, is the same
for the two flows, and therefore (9) gives

P(M,S ss+sUaKqu) = P(Mwasm,S:suw,Kw,O)

By -i[M K-Mp K (27)
X (=) T Voo
Br‘

The pressure p can then be calculated from (7). It
is interesting to note that (g, /B.) which figures
in (26) and (27) depends only of the gust
characteristics, since

r k2 s
= 3
-[1+——2— . (28)
B8 k1

and its value varies significantly for different
Fourier components (p,qg of (1).

(b) Reduction to 3-D Gusts in Incompressible
Flows for 6 < 1.

For K < K , Eq. (10) is a Klein-Gordon
equation similar to that governing the 3-D gust prob-

lem in - incompressible flow for which M=0, Hence,
this class of flows can be reduced to the asymptotic
case M=0, by the set of similarity rules:

(i) My =0 ,

(1) Kk, = (K2 -Kk2)2

i) % ( 3 ) 1

(111) k, =k/82 s
S >

() (=@ s (29)
S+ S+

{v) (E—)o = () ,

(vi) cotuo = 8, coty

Therefore, for the pressure function P
we have

+
2S_sH ok LK) x

+
P(M,S,S ’U9kaKq) —P(O,So oMo o qo

-iMrKg
(1/8,) e (30)

For K=K _, the two similarities overlap and the flow

is similar to the incompressible two-dimensional
case studied by Sears [16].

Because of these similarity rules, it is
possible to use the computer codes developed for the
asymptotic cases 6=« and M=o0 to calculate the
aerodynamics of the general three-dimensional gust
problem. For 6=«, we have used a code written by
Desmarais at NASA Ames Research Center for a single
airfoil and for a cascade Dr- Groeneweg from NASA
Lewis Research Center provided us with a code
written by Ventres. For M=o, we have modified these
codes using Graham mathematical analogy by the com-
plex variable transformation,

X —> ix

y — iy

IV. Aerodynamic Results

The jump in the aerodynamic pressure [P] along
the blades surface represents a dipole distribution
and therefore directly affects the acoustic radia-
tion. In the following, we briefly discuss the
effects of compressibility, and spanwise wave
number of the gust, k3 for a single airfoil and a
cascade.

Figure (4) shows plots of the unsteady 1ift L
per unit span acting upon a single flat plate air-
foil at M_=0.8. L is normalized with respect to
(npUraCD. The real part of L is plotted in abscissa
and the imaginary part in ordinates. Along each
curve the value of k3 is fixed while the reduced
frequency is varied from 0 to 5. Comparison with
the popular Sears function [16] and Graham's re-
sults [15] and [17] shows significant effects due
to M. and k3. The abrupt change in behavior of
constant k, curves occurs at K=K _. For K>K the

flow is similar to a two-dimensional compressible
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Fig. 4 The Lift Coefficient L for a Single Airfoil
for k, = 0.0, 0.2, 0.4, 0.6, 1.0, 2.0, and
3.0. The reduced frequency is varied along
each curve from 0 to 5.

flow, while for K < Kg. the flow is similar to the
three-dimensional gust in incompressible flow. For
K=Ky, we find the classical Sears' results. It is
to be noted that though increased Mach number tends
to increase the magnitude of L, because of the effect
of ky, increased reduced frequency does not
neceSsarily lead to lower L.

Figure (5) shows a comparison between the un-
steady pressure distributions for a single airfoil
and a cascade at M_=0.4 and M_=0.8, both at k3=0
and interblade phase angle ¢ =n/5. Cascade effects
become significant at higher Mach number. Figure (6)
shows a similar comparison for M_=0.8, and k =1,
and o =2. ° 3
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Fig. 5 The Normalized Unsteady Pressure |
Distribution for a Single Airfoil and a
Cascade, kq = 0.0.

We note that for the flow conditions of Fig. 6,
the 1ifts for a single airfoil and a cascade are
only ten percent apart. However, their pressure
distribution shows more significant differences.
This will affect accordingly noise calculations
taking non-compact source effects into account.
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Fig. 6 The Normalized Unsteady Pressure
Distribution for a Single Airfoil and a
Cascade, k3 = 1.0,

At resonance conditions the 1ift of a cascade
biade vanishes. This is shown in Figure (7) where
the 1ift coefficients for a single airfoil and a
cascade are ploted versus the Mach number for a
very large cascade spacing d/c = 10 and pu =50°.

As we approach resonance conditions at M =0.931,
the cascade 1ift rises above that of a single air-
foils then decreases steeply to zero. . This
essential difference between the two cases is im-
portant to consider for acoustic calculations at
near resonance conditions.
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Fig. 7 The Lift Coefficient L for a Single Airfoil
and a Cascade Versus Mr'

V. Acoustic Solution

The upstream and downstream radiated acoustic
waves are given by the farfield solution of (17)
as £ » * =, respectively. It is shown in [1] that
this acoustic solution corresponds to the real poles
of the bracketed term of (17). These poles are
given by

+ cs+ -1, T, 2]

R B I -(—+—) for n=0,+1,+2,..
d d

(31)



Acoustic waves will exist only if uﬁ are real, that
is

T2
-
d+

2

2 = K% - Kg > (32)

Thus the total acoustic solution is a superposition
of a number of eigenfunctions which are called
modes. Condition (32) marks the boundary between
acoustic propagation and exponential decay for any
mode. Therefore n has minimum and maximum values of
my and m,, respectively for which inequality (32)
holds. Eondition (32) will be referred to as the
cut-off condition since a mode n will be cut-off
if this inequality is not satisfied. The expression
for the acoustic pressure is derived in [1] as

m
2
Pv ) P, , as Eo>-e
n=m
1
(33)
M2
P Z pr'] m as £ >+ow
n=m
1
where for each mode n
+ T ccose
Py = - (po au) —37————B-fo(nsin eﬁ) (34)
d sin 85
ilut+(csin 6F +M K) £-K(cosoTIn]
-i[wt+(csin 6 -K(cose")In
X e nor n cos(EgE)
with
cr
-1 n
§ =cos” (—3) ,
n dt
+ +
oy == x t8. (35)
+
+ -
X =tan1(—52—)
+ S
OL;]'=K$1n 6;

These expressions are all derived in terms of
the fan parameters. They show how each mode com-
ponent of the acoustic pressure is generated in
terms of the aerodynamics of the fan. Hence in
what follows we will first study the conditions of
existence and the properties of the acoustic
solution in terms of the aerodynamic parameters.
But since the sound is radiated outside after
crossing the fan duct, we will later study the
sound field in terms of the duct parameters.

1. The Cut-0ff Condition

Condition (32) determines the number of
modes in the acoustic solution for each harmonic
{p,q) of disturbance (1), and for given cascade
geometry and Mach number M_. Substituting (25)
and (20) for T,» We find that at given M_ and span-
wise member k,, there is a range of redufed frequen-
cy ky for eacﬁ mode number n for which inequality
(32) is satisfied. Figures 8 and 9 show the ranges
of propagating frequencies for spanwise wave numbers
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Fig. 8 The Reduced Frequency Range for Propagating
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Fig: 9 The Reduced Frequency Range for Propagating
Modes for k3 = 0.0, 0.5, 1.0, and 3.0.
Mr =0.8.

0.0, 0.5, 1.0, and 3.0, for several acoustic modes
at Mach numbers 0.4 and 0.8, respectively; the
stagger angle x =45° and y =67.5. For each mode the
shaded columns show the frequency range at which the
acoustic mode will propagate. When the upper limit
of ky is very high {k7 >10), the four columns are
cut. Hence once a mode appears at a given frequency,
onty a finite number of its harmonics, if any, will
also appear in the solution. For example, in

figure 8 we see that for n=1, if the fundamental
frequency corresponds to k1=2.5, none of its
harmonics will propagate because the upper limit at
which mode n=1 is cut, is below ky=5. Therefore

the upper cut-off limit for ki is significant for
low mode members n and large k3. For fixed
reduced frequencies, ky, the ranges of k3 are shown ,
in Figure 10 for M. =0.8, and the same cascade para-
meters as in Figs. 8 and 9. Again we note that
there exists an upper limit for q above which no
sound will propagate in response to a (p,q)
disturbance of (1).

As the reduced frequency is increased more
acoustic modes appear in the solution. Hence higher
order harmonics contain more propagating modes than
lower order harmonics. On the other hand as the
Mach number is increased, the Tower cut-off
frequency is reduced while the upper cut-off limit
is increased, thus extending the frequency range
for which a mode can exist. This is shown in
Figure 11 for a staggered cascade at 45°, u=67.6°,
d/c =1, and n=1. Three-dimensional effects of the

*gust are illustrated by the effect of k3 on the

admissible frequency range. As k3 is increased the
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Versus My at Constant k.
ki-range is reduced. For k3 = 4.45, the ki-range is

reduced to a point and mode n=1 will no more pro-
pagate.

2. Non-Compact Source Effects

The present analysis of course accounts for
non-compact source effects since it uses a full
solution of the unsteady flowfield. However in
many other analyses using Lighthill's analogy the
compact source approximation is used. This is
tantamount to replacing f, (a%) in (34) by L/2. The
relationship between fo and the pressure jump along
the blade surface is given by

5ooi(a +MK)E
fole) == | 171 de .

i
7

(36)

The 1ift corresponds to f (a=-M.K}. To evaluate
the compact-source appronmation we have plotted in
Figure 12 the function fp(a) for a single blade at
Mp =0.8, ky =5 and k3 =0. Tablel gives the values
of aﬁ for the six modes making up the sound field
under these conditions.

max fol@) = 0.1324 and occursat a=-7.9 fota)
fola=-KM=-T11) = 0117 Max fo(a) 015
ORDINATE GIVES
LIFT
L 1 1 [
-15 -13 =1 -9

Fig. 12 The Function fy(a) for a single airfoil at
M. =0.8, k1 =5.0, and k3 =0.0.

Mode Number Upstream Downstream

+ -

n dn an

1 -11.68 -22.17

2 - .82 -19.98

3 7.33 -15.15

4 13.99 - 8.6

5 19.21 - .83

6 22.18 9.25

Table 1. Values of dﬁ for each mode.

The ordinate giving the value of the 1ift is

a=- 7.11.Thus we observe that the compact source
approximation may overestimate the acoustic pressure
by a factor of 2 to 3 for most modes. But because
the maximum value of fo(a) occurs at o =-7.9, it is
also possible that it may also underestimate the
acoustic pressure for some modes.

3. Radiated Acoustic Power

The expression for the radiated acoustic
power for the 3-D acoustic waves defined by (32) was
derived by Atassi [18] for each mode

+ "
W 2 2 +f°
n =1 € )" M2 g4 COSX ing—
pcazs & Ke (G3) M2 8y cosyt folksing,
00 d X
’ *
cos< 6
1
X sin & 4 X ?{s (37)
n [K-+MPK sine;]

where S = Bbd, is the cross-sectional area of the
duct, and B the number of blades. As mentioned
earlier, the compact source approximation consists
of replacing fy by L/2.

Because the sound pressure level is an im-
portant ingredient for the radiated acoustic power,
we have plotted its variations for mode n=1, versus
ki for upstream and downstream waves at k3=0.2 and
1.0 in Figures 13 and 14,respectively. The other
parameters are Mp=0.8, x =45°, and u=67.5°. We
note that the sound pressure rises sharply near
cut-off conditions. Indeed, the expression of p,
has fp(a) in its numerator, and sin § in the
denominator.
However, an analysis by Atassi [18] shows that the
Timit of f,/sins, is finite at cut-off. Hence P,

tends to a finite 1imit for a cascade, but is of
course infinite for a single blade. The reason of
the sharp rise in Py near cut-off shown in Figures
13 and 14 is due to inaccurate numerical evaluation
of folo) near cut-off conditions. On the other

Both terms vanish at cut-off conditions.
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We notice that at M. =0.8, the acoustic
power is about five times larger for downstream

waves than for upstream waves.

Besides the peak in

the former occurs around ky ~ 2, while for the

latter it is around 3.5,

The 3-D effects are quite

significant at k3 > 1, while they are small at

smaller k3.
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Reduced Frequency for a Cascade. x =45°,
d/c =1, u=67.5°, kg =1.0.

hand, W, should vanish at cut-off conditions for a

ca?cade since its expression contains the square of
fo Ct).

The total radiated power for a harmonic

component (p,q) of (1) is
m2

+ +

W=l oW

n
n=m,

(38)

For the same cascade and fiow conditions
we have plotted in Figures 15 to 18 the normalized
acoustic power

* = 2
W* = W/(po Co 2@ S) (39)
versus the reduced freguency for k, =0.2, 0.6, 1.0,
3.0, and 5.0, for upstream and dowhstream propagat-
ing waves. At frequencies corresponding to cut-off
conditions a new mode appears in the acoustic
solution and modifies the behavior of W* vs k..
Therefore in order to get smooth curves one'has to
calculate a large number or points near cut-off
conditions. In order to save on computer time we
have Timited the number of points in our computa-
tions. As a result, the curves of W* vs k1 are not
smooth.

Fig. 15 Acoustic Power Radiated in:Upstream.
Direction. k3 =0.2, 0.6, 1.0.
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VI. Noise Generated by Rotor Wake
Stator Interaction

We have so far only considered noise produced
in a cascade placed in a rectangular duct and sub-
ject to a sinusoidal disturbance (p,q). Rotor wake
flow irregularities, however, are quite complex but
they can be expanded in a double Fourier Series as
in (1). The spectrum and power of the noise radi-
ated will then strongly depend on the actual wake
velocity profile.

Two typical wake velocity irregularities will be
studied. First, we consider a velocity defect due
to the viscous wake behind each blade. It will be
assumed that this velocity defect extends uniformly
along the blade span and hence represents a two-
dimensional disturbance. The second type of distur-
bances considered is that of a tip vortex consisting
of swirling flow round the mean flow velocity.
Figure 19 shows schematically the two types of

TIP VORTEX
XE‘
e LU

SUGTION
SURFAGE B
-
PRESSURE

SURFACE

HUB

Fig. 19. Schematic of Rotor Wake Velocity Defect
and Tip Vortex.
disturbances. A1l the results discussed below are

for x =45°, u=67.5°, and d/c = 1

1. 'Retor Wake Defect Stator Interaction

Recent measurements reported in [7] and [8]

10

suggest that a two-dimensional model for rotor wake
defect would be adequate. This corresponds to

Bp q=° in (1) for all q and A_ =0 for all q#o.
Hence, omitting the index q , tﬁe upstream flow

disturbance can be expanded in a single Fourier
expansion
ipBal(x, +yy cotu)/Up-t]
>
qm=z T]Ape (38)

Data in [7] and [8] indicate that q can be
represented by a triangular profile of he1ght H and
base width (s +52) alternating at interval
£ =X cOSv. Th1s profile was used to calculate the
noise level of a single loaded blade by Atassi [19]
who gives the coefficients of expansion (38)

.- -Z‘ipns-l/l
o ~Tpr [ (s /D

A

=2ipws,/L
(1-e 27

- (52/25 €

-2'ip1TS-|/SL
1. (39)

Ravindranath and Lakshminarayana give the following
data at blade midspan from the rotor trailing edge

x/cr 0.01 0.02 0.14 0.35 0.53
H/U 6.82 0.77 0.31 0.24 0.16
(s1+52)/2 0.08 0.15 0.17 0.18 0.20

Therefore we should expect a considerable influence
of rotor-stator axial separation on the noise

spectrum and the acoustic power radjated. The total
acoustic power radjated is given by
P= 4+ n=mos 4
whesinzy ] A2 7T W (40)
p= - P n=m'| Ps

The effects of the wake width are shown in
Figure (20) for upstream waves where we have plotted
the acoustic power radiated for each harmonic for
two symmetric wakes (sy=s,) of width 0.17 and 0.20,
respectively. The fundamental harmonic corresponds
to the blade passing frequency B, where B is the
number of rotor blades. Harmonic frequencies are
normalized as reduced frequencies p(Ba)c/(2U,). In
thlS f1gure BPF = (BQ)c/(ZU ). In the present case
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Fig. 20 Upstream Noise Spectrum Due to Rotor Wake
Defect Stator Interaction. Mr =0.4.
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Defect Velocity as the Wake Moves Down-
stream.

We note that the fundamental harmonic is cut-
such at each high BPF. Also it is interesting EOOff
note that'evgn‘a small change of the wake width can
produce significant variation in the noise spectrum.
Figures (?1) and (22) again show the noise spectrum
but for higher Mach number (0.8) and at smaller BPF
(0.5). We note that for the noise propagating down-
stream the acoustic power is mainly concentrated in
the 4§h and 5th harmonics, while it is more evenly
distributed between the 3rd to the 10th harmonics
for sound propagating upstream.
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Fig. 24 Downstream Acoustic Power vs Amplitude of
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stream.

In order to illustrate the effect of rotor-
stator separation on the total acoustic power, we
have used the above data assuming that the stator
will not affect the wake characteristics. This is
shown in Figures (23) and (24) for upstream and
downstream propagating sound, respectively. The
acoustic power drops significantly as rotor-stator
separation is increased.

2. PRotor Tip-Vortex Stator Interaction

We consider a tip vortex (Fig. 19) of dia-
meter ¢ and intensity A Tocated at a distance cg

from the upper fan wall. The corresponding upstream
disturbance is

i 3 cos(T92) g 2ipb (192
A g qu,q[J1 cos( b )-K L,a cosv sin( b 1

ipBa[ (x5 +y2 cot u)/Ur-t]

Xe (4])
with BP q obtained by simple Fourier expansion
pke Qe 2¢_+e
B =(-1)0-1 2A sin(Fees)sin(ZEE)sin(ng—p—)
P ™ (_kzbg3 + 'ngzp)
" b (42)
2¢c +e
_r_11(g-1) 2b2kAe mgen s
Bo,q'(-'l) 739ZAcosy S1n(2b )Sln(——2b )
Bp’o = 0, all p.

Smoke visualization pictures of the tip vor-
tex taken by Hansen et al. [20] show that ¢ is
between .05b and 0.10b. Experimental results from
[8] indicate that the magnitude of the velocity
disturbance H/U_ near the vortex boundary is between

0.2 to 0.4. Hence we can relate the vortex inten-
sity to H by Stokes' theorem and we obtain
- 2H
A== (43)
The total acoustic power is then given by
P=t+w o n=mp 4
+
W =cos?u § 7 B2 ¥ W (44)
=-w o1 P29 femy PoOeN

The cut-off condition and the fast decay of Bp g as
p and g increase make it only necessary to calcu-
late a 1imited number of terms.

Figures 25 and 26 show the noise spectrum



produced by a tip vortex with BPF=0.5, M _=0.8,
e/b=0.05 for upstream and downstream prgpagating
waves, respectively. The basic spanwise wave

number (q=1) is taken here as kg =mc/(2b) =0.2. We
note that downstream radiated noise is dominated by

the second harmonic.
the vortex size increases as it moves downstream.

Figure 27 and 28 show the effect of increasing /b

Experimental results show that

on the total acoustic power for the same circulation

round the vortex.
as steeply as in the case of wake defect.
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The Circulation Round the Vortex is Held
Constant.

It is important to note that the radiated
acoustic power produced by a tip vortex remains much
smaller than that generated by velocity wake defect.
However, because the present problem depends on a
large number of parameters it is not possible yet to

The acoustic power drops but not
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generalize the present results and to refute the
point made by Dittmar about the equal importance of
the tip vortex and the wake velocity defect
irregularities. In fact, Figure 29 shows a case
where the tip vortex generates more upstream noise
than the wake velocity defect. More investigations
are certainly needed for better understanding of
these two noise generating mechanisms.

VI. Concluding Remarks

We have studied discrete tone sound generation
in a subsonic fan subject to three-dimensional
disturbances. The analytical model used yields
directly the radiated sound as the farfield solution
of the velocity. The results obtained for each
sinusoidal disturbance upstream show significant
effects of the spanwise wave number, the cut-off
condition, and the non-compactness of the noise
sources.

Preliminary results for two typical noise
generating flow irregularities were also presented
for a rotor wake stator interaction. They indicate
that the rotor wake velocity defect produces signi-
ficantly more radiated acoustic power, particularly
downstream, than the rotor tip vortex. This could
be attributed to the fact that the wake velocity
defect spreads along the full span of the rotor
blades, while the tip vortex size was relatively
small. Additional investigations using data an
wake characteristics will be needed to determine
their relative importance.

The results were presented in terms of the aero-
dynamic parameters of the cascade. This has the
advantage of showing how the acoustic field is



generated. Thus we have seen that for every sinu-
soidal upstream disturbance (p,q), the sound field
is composed of a finite number of discrete waves,
(modes) each propagating in a different direction.
The total sound field for any disturbance will be
obtained by summing over all p and q. On the other
hand, because the sound is radiated outside after
being transmitted through the duct, it is desirable
to present the results in terms of the duct para-
meters. In such a presentation the sound will be
considered as the sum of spinning modes. Each
spinning mode is the sum of discrete waves but
corresponding to different (p,q). The cut-off con-
dition will be accordingly expressed in terms of the
mode spinning velocity. Such results will be pre-
sented in a Tater paper.
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