Ashley P. Thrall

Myron and Rosemary Noble Assistant Professor

of Structural Engineering

University of Notre Dame
Department of Civil and Environmental Engineering
and Earth Sciences

CURRENT AND RECENT RESEARCH PROJECTS

 

CAREER: Transitional Bridging: From Rapidly Deployable Disaster Relief to Permanent Infrastructure Solutions

 

Funded by a National Science Foundation Faculty Early Career Development (CAREER) Program award, ongoing research efforts are building a theoretical framework for transitional bridging - bridges that can be rapidly deployed for immediate disaster relief and can be transformed in-situ for higher load capacity to support long-term, sustainable development. Following natural and anthropogenic hazards, rapidly deployable bridges are critical to restoring vital transportation arteries. The long recovery times following the 2010 Chile earthquake and tsunami demonstrate the need for bridging solutions that can provide an immediate response but also serve as permanent infrastructure. To this end, the project will test the hypothesis that novel adjustable connections can increase efficiency of rapidly erectable bridging systems by enabling a diversity of structural forms which can more effectively carry load using less material. The research plan will also test the hypothesis that novel adjustable modules can provide transitional capabilities. The efficiency of the transitional bridging framework which integrates the adjustable connections and modules will be verified numerically and experimentally. For more information on this project, see the project-specific website.

 

Relevant products:

 

Gerbo, E.J., Casias, C.M., Thrall, A.P., and Zoli, T.P. (2015). "Shape Optimization of a Bowstring Truss for Transitional Bridging," Engineering Mechanics Institute Conference, Stanford, CA.

 

Casey, C.M. (2015) Novel Bridge Forms Composed of Temporary Modules for Transitional Bridging, MSCE Thesis, University of Notre Dame. Advisor: A.P. Thrall

 

Novel Deployable Origami Shelters with Integrated Energy Planning and Management

 

Funded by the US Army Natick Soldier Natick Soldier Research, Development and Engineering Center, a novel deployable origami shelter with integrated energy planning and management has been developed. This research was motivated by the rising priority for reducing fuel consumption for heating and cooling military shelters. To address this need, the Kinetic Structures Laboratory (KSL) has designed a concept for a folding, rigid wall structure inspired by the art of origami. It is comprised of sandwich panels which provide a high-strength to weight ratio and thermal insulation. The structure folds to a compact state for transportability. To develop this concept, the KSL has performed structural analysis according to design loads and optimized the shape for structural performance and energy efficiency in heating and cooling. The concept has been demonstrated through the erection of a full-scale prototype. To further investigate behavior of this structure, the KSL has performed experimental testing on a half-scale prototype (including material testing according to ASTM standards, component testing on a single panel, testing during deployment, and testing of the erected prototype). The KSL is collaborating with mechanical and electrical engineers who are testing thermal behavior of the shelter and developing a control system for heating and cooling the shelter with the aim of conserving fuel consumption.

 

See a feature website and video here.

 

Relevant products:

 

Ballard, Z.C., Thrall, A.P., and Smith, B.J. (2015) "Measured and Numerical Behavior of an Origami-Inspired Shelter during Deployment." American Society of Civil Engineers Structures Congress, Portland, Oregon.

 

Quaglia, C.P. (2014) "Novel, Deployable Origami-Inspired Shelters for Forward Operating Bases: Design and Optimization." MSCE Thesis, University of Notre Dame. Advisor: A.P. Thrall

 

Quaglia, C.P., Yu, N., Thrall, A.P., and Paolucci, S. (2014) “Balancing Energy Efficiency and Structural Performance through Multi-objective Shape Optimization: Case Study of a Rapidly Deployable Origami-inspired Shelter.” Energy and Buildings, 82, 733-745.

 

Quaglia, C.P., Dascanio, A.J., and Thrall, A.P. (2014) “Bascule Shelters: A Novel Erection Strategy for Origami-Inspired Deployable Structures.” Engineering Structures, 75, 276-287.

 

Martinez-Martin, F.J. and Thrall, A.P. (2014) “Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-objective Optimization for Minimum Weight and Maximum Energy Efficiency,” Engineering Structures, 69, 158-167.

 

Thrall, A.P. and Quaglia, C.P. (2014) “Accordion Shelters: A Historical Review of Origami-like Deployable Shelters Developed by the US Military,”
Engineering Structures, 59, 686-692.

 

Quaglia, C.P. and Thrall, A.P. (2014) "Shape Optimization of an Origami-inspired Deployable Shelter for Minimum Deflections." International Association for Shells and Spatial Structures Symposium, Brasilia, Brazil.

 

Quaglia, C.P., Ballard, Z.C., and Thrall, A.P. (2014). “Parametric Modelling of an Air-Liftable Origami-Inspired Deployable Shelter with a Novel Erection Strategy.” 4th International Conference on Mobile, Adaptable and Rapidly Assembled Structures, Ostend Belgium.

 

Martinez-Martin, F.J. and Thrall, A.P. (2013). "Minimum Weight Optimization of Honeycomb Core Sandwich Panels for Origami-Inspired Shelters." World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida.

 

Prefabricated High-Strength Rebar Systems with High-Performance Concrete for Accelerated Construction of Nuclear Concrete Structures

 

This project involves innovative research that offers the promise of dramatically reduced field construction times and fabrication costs for reinforced concrete (RC) nuclear structures through: 1) high-strength steel deformed reinforcing bars (rebar); 2) prefabricated rebar assemblies with headed anchors; and 3) high-performance concrete. The focus is on shear walls, their connections/joints, and around large penetrations/embedments because they are the most common lateral load-resisting members in non-containment nuclear structures. Specific research goals are to: A) develop transparent limit/cost-benefit frameworks; B) develop an optimization methodology for design; C) conduct experimental evaluations of structural members, member-to-member/foundation joints, splices, anchorages, and penetrations; D) develop validated numerical simulation models; E) develop validated design procedures/tools/criteria; and F) develop field procedures that are consistent with current methods. The experiments to be used for the validation of the design methods and simulation models include testing of: 1) high-strength materials; 2) headed rebar details (e.g., anchorages); 3) shear-wall-to-foundation joints under pure shear; and 4) multi-story shear walls under service, thermal, and seismic loads (combined shear and flexure). This project is funded by the Department of Energy. It is a collaborative effort with Dr. Yahya Kurama (University of Notre Dame, Lead), Dr. Scott Sanborn (Sandia National Laboraties), and Mr. Matthew Van Liew (AECOM).

 

See the press release here.

 

Re-Conceptualization and Optimization of a Rapdily Deployable Causeway

 

In collaboration with the US Army Engineer Research and Development Center (ERDC), a rapidly deployable, modular, floating causway was re-conceptualized and optimized. Prior to the collaboration, ERDC developed a prototype of the causeway (comprised of aluminum modules joined by compliant connections and supported by pneumatic floats) in response to the demand for a lightweight, air-liftable, quickly emplacable causeway.  ERDC identified eliminating the heavy and complex compliant connections as a potential area for improvement. To eliminate these compliant connections, the KSL has re-conceptualized and optimized this design so that a desired superstructure flexibility (that takes advantage of buoyancy while meeting deflection limits) is achieved.

 

Relevant products:

 

Russell, B.R., Thrall, A.P., Padula, J.A., and Fowler, J.E. (2014). “Re-Conceptualization and Optimization of a Rapidly Deployable Floating Causeway.” American Society of Civil Engineers Journal of Bridge Engineering, 19(4), 04013013, 9 pages.

 

Russell, B.R. (2013) "A Novel Rapidly Deployable Floating Causeway: Design and Optimization." MSCE Thesis, University of Notre Dame. Advisor: A.P. Thrall

 

Russell, B.R. and Thrall, A.P. (2013). "Cross-section Optimization of a Rapidly Deployable Causeway System." World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida.

 

Russell, B.R. and Thrall, A.P. (2013). “Portable and Rapidly Deployable Bridges: Historical Perspective and Recent Technology Developments.” American Society of Civil Engineers Journal of Bridge Engineering, 18(10), 1074-1085.

 

Russell, B.R. and Thrall, A.P. (2012). "Review of Deployable Bridges for Disaster Relief Applications in Developing Countries." Faces Behind the Figures: Visions of Prosperity, Progress and Human Potential, University of Notre Dame, Notre Dame, Indiana.

 

Transitional Sheltering and the Universal Scissor Component

 

In collaboration with the Vrije Universiteit Brussels (VUB), the KSL investigated the behavior of scissor-like elements as components for transitional shelters - shelters which can be rapidly deployed for immediate disaster relief and later reconfigured to support long-term recovery and reconstruction. Research to date has included parametric finite element modeling and experimental validation using digital image correlation and tracking of a deployable scissor arch (see video below). Research activities have also included opitmizating the universal scissor element - a multi-configurable scissor element which has the potential to improve the transitional capacity of scissor shelters. A parametric evaluation of the scissor arches provided further insight for design.

 

 

Relevant Products:

 

Alegria Mira, L., Filomeno Coelho, R., Thrall, A.P., and De Temmerman, N. (2015) "Parametric Evaluation of Deployable Scissor Arches." Engineering Structures, 99, 479-491.

 

Alegria Mira, L., Thrall, A.P., and De Temmerman, N. "The Universal Scissor Component: Optimization of a Reconfigurable Component for Deployable Scissor Structures." Engineering Optimization, In Press.

 

Alegira Mira, L. (2014) "Parametric Structural Assessment of Deployable Scissor Systems: Optimising the Universal Scissor Component." PhD Dissertation. Vrije Universiteit Brussel. Advisors: N. De Temmerman and A.P. Thrall

 

Alegria Mira, L., Thrall, A.P., and De Temmerman, N. (2014) “Deployable Scissor Arch for Transitional Shelters.” Automation in Construction, 43, 123-131.

 

Alegria Mira, L., Thrall, A.P., and De Temmerman, N. (2014) "Non-linear Analysis of Deployable Structures Comprised of Optimized Universal Scissor Components." International Association for Shells and Spatial Structures Symposium, Brasilia, Brazil.

 

Alegria Mira, L., Fiomeno Coelho, R., De Temmerman, N. and Thrall, A.P. (2014). “Evaluation of Design Parameters for Deployable Planar Scissor Arches.” 4th International Conference on Mobile, Adaptable and Rapidly Assembled Structures, Ostend Belgium.

 

Alegria Mira, L., De Temmerman, N., and Thrall, A.P. (2013). "Construction of a Deployable Scissor Arch for Shelters." Transformables 2013, Seville, Spain.

 

Hoberman Sphere at the Liberty Science Center (top), Willis Avenue Bridge (middle), and Tipi (bottom).