
Use cases and challenges of distributed workflows at JCVI

Andrey Tovchigrechko JCVI

1

Illumina (HiSeq2000), 454 (Titanium) and Sanger

Generation per month: 6.6 billion reads 668 Gbp

Plus external data

454 is still viable for metagenomics and viral assembly. In one recent

test on marine dataset, it gave better assemblies and more read-

based BLASTP protein hits than 100x more Illumina data from the

same sample, with corresponding savings in CPU cost

JCVI’s current computing capability:

1700 cores, several petabytes of storage

1 million 454 reads can be annotated in

24 CPU hours (1 day) with 180 nodes (720 cores) = 17280 CPU*hrs.

JCVI sequencing and computing

2

16S WGS

WGS Reads

Reads

ORF’s

ORF’s

Scaffolds

Tab delimited flat files

Reads

JLIMS

JTC

Metagenomic
Assembly

Classification
Pipeline

Sample
Comparison

Deconvolution
QC /Filtering/de duplication

Linker removal (viral)

ORF calling Pipeline
(With or without Frame shift

correction)

Functional Annotation Pipeline
(Meta- Prok / Meta-Viral)

Fragment Recruitment

Taxonomic Classification
(APIS)

METAREP
(Visualization and analysis)

Public Repository submission

Mapping to Reference
Genomes

Taxonomic classification
(MGTAXA)

 Meta data

METAGENOMIC DATA PROCESSING

16S

3

Metagenomic Annotation Pipeline Overview

90% of the

Compute

time

8% of the

Compute

time

Structural
Annotation

Functional
Annotation

4

Uniref100

Main workflow support

 VICS – Venter Institute Compute Services

 Java server application

 A workflow is described by a mix of XML (sequence of workflow steps as local jobs,
single SGE jobs, SGE array jobs) and Java classes (generation of each step inputs
and command lines)

 Talks to the SGE cluster via DRMAA

 Web form interface is generated (some extra Java code is needed to describe
input fields)

 SOAP bindings are generated automatically

 Workflow becomes part of the code base and needs to be deployed into a specific
server

 No restart capability – if one step fails because of node failure, workflow has to be
re-run from scratch

 Plans are to use Kepler workflows inside VICS in place of VICS native
implementation

5

Celera Assembler Pipeline

Matrix partition,

parallel

computation.

Sequence-free

overlap graph in

core RAM.

Scaffold graph in

core RAM with

mate links.

Progressive

consensus, partition

by scaffold.

Unitigs Overlaps Scaffolds Consensus

Stage

Structure

Requirement (one HMP sample)

SGE grid

(~100 core ½ day)
Big RAM box

(~100GB ½ day)
Big RAM box

(~100GB ½ day)
SGE grid

(~100 core ½ day)

6

Workflow is self-resubmitting SGE jobs with dynamic modification of

existing job dependencies, Perl script

Ways to scale BLAST at JCVI

 Example used is BLASTP search of proteins annotated on Velvet assembly of one HMP sample against
PANDA DB (124,000 peptides of average length 176). E-value cutoff 10E-5.

• “Matrix” of serial NCBI BLAST jobs <Query chunk> X <DB partition> on HTC cluster, followed by a
single aggregator job

• Runs under VICS workflow manager

• 660 CPU*hrs

• TimeLogic Tera-BLAST

• FPGA card, closed source, implements something similar to older NCBI one-hit extension algorithm with default word size
4 (for BLASTP)

• Runs under VICS

• 1.3 CPU*hrs (where “CPU” is one TimeLogic card)

• 500x speed up over NCBI BLAST on one CPU core

• Lost about 10,000 hits out of 700,000

• mpiBLAST from VA-Tech on TACC Ranger

• NCBI C Tookit code patched and integrated into MPI application. Worker nodes send hits from seeds to master node that
tells them which ones to extend, thus providing superlinear speed-up. Many other optimizations (MPI-IO, virtual DB files
etc).

• We were not able to run it stably on TACC Ranger in 2010 despite going through the matrix of different
(compiler)(MPI)(runtime options) and support lists. It had some fixes after that but we did not try again.

• Lessons learned: TimeLogic seems to be a solution (even considering its price), but it will never give the same
results as NCBI BLAST. It is simply somewhat different algorithm.

7

Storage

 Current solutions at JCVI - NFS (NetApp) and NFS-compatible clustering FS (Isilon)

 Most flexible – provides tradition random access file operations on a shared
filesystem

 Expensive to scale with increasing number of compute nodes

 Solutions like Hadoop Distributed Filesystem are economical to scale, but at the
expense of recasting all applications into streaming data access patterns

 JCVI has a 16 node Hadoop cluster that is currently used to a test-bed for Cloud
Viral Annotation project

 If external computing resources are used, the transfer to and from its filesystems
becomes a bottleneck. 25G BLAST DB took 50 min to push from JCVI to TACC with
gridFTP (we are connected to Internet 2). Transfer can easily take longer than
processing.

 Local solutions like TimeLogic do not have this network transfer issue (you only
pushing to a dedicated machine on your local network)

8

Bioinformatics on large cyber

infrastructure

 Two NSF projects (metagenomic taxonomic assignment
and proteogenomics) had been requested by the
funding agency to use TeraGrid/XSEDE

 Most TeraGrid clusters schedule efficiently only large
MPI jobs (100s of CPU cores)

 Workflows of many serial jobs are not supported by
local resource managers

 Two ways to use such supercomputers for serial
workflows:

 Fake serial High Throughput Computing

 Re-write workflows into MPI parallel code, at least for
critical parts

9

Accommodating supercomputer to existing

bioinformatics pipelines

 Two-level scheduling (“glide-ins”)

 Condor “glide-ins”, glideinWMS, SWIFT, MyCluster and Makeflow with MPI
WorkQueue workers.

 E.g. SWIFT takes care of everything – data movement, resubmission of failed jobs,
optimizing glide-in allocation, quick scheduling of very small jobs.

 WorkQueue implementation is more restricted, but the big advantage is that the
same Makeflow file can be executed on a serial SGE or Condor cluster

 Glide-in tools require certain minimum level of host OS support (Posix “fork” – not
available on earlier Blue Gene OSes)

 SWIFT develops its own ecosystem that includes a Linux kernel on BlueGene (“fork”;
shared RAM caching drives local to the groups of compute nodes; tuning to BG
network topology)

 Data exchange and synchronization is through files, unless a specific pattern is
implemented internally by the workfllow engine like AllPairs or MapReduce in
CCTools

10

MR-MPI BLAST+ implementation
11

 A regular MPI program – runs on any
supercomputer with a shared file system

 Makes high-level API calls to unmodified
NCBI C++ Toolkit – results are fully
compatible with the upstream NCBI
code; easy to keep up to date

 Implemented with MapReduce MPI (MR-
MPI) library from Sandia Lab that helps
organizing computations and data flow

 The library scheduler was modified to
solve the problem of maintaining context
between map() calls – a common
problem with the classical MapReduce
algorithm

 Performs sorting of final output in
parallel. This is an advantage compared
to a typical HTC matrix-split
implementation with a single combiner
job for sorting, if the number of hits is
large Control flow of the MR-MPI BLAST

MR-MPI BLASTN and BLASTP scaling

12

Scaling chart for MR-MPI BLASTN showing process wall

clock time at different total core counts in MPI job. The

total number of query sequences is 40,000. The

sequences are split into 40 blocks of 400 kbp. Each

block, when combined with one DB partition, forms a

sequential work unit for the MapReduce algorithm. The

data point labels represent time in minutes.

DB is NCBI WGS+nt+hg (109 1G formatted partitions).

"Useful" CPU utilization per core during the course of the

computation for the MR-MPI BLASTP run with 1024

cores. CPU user time used at any given moment within a

BLAST call was divided by the corresponding wall clock

time, summed over all concurrent calls, and divided by a

total number of cores allocated to the MPI program.

MGTAXA – composition-based taxonomic classification

in metagenomes: http://andreyto.github.com/mgtaxa/

Predict taxonomy for bacterial metagenomic sequences

• Glimmer ICM based classifier (similar to Phymm approach). Parallelized on HTC
cluster, Galaxy Web interface. Sequences above 300 bp.

• BLAST+ and Batch SOM implementations for HPC clusters with MPI-MapReduce
framework. Calls to pristine NCBI BLAST+ API – full compatibility. Scales to 2000
cores on TeraGrid (TACC Ranger).

Predict hosts for bacteriophages in metagenomes

• Explores compositional similarity between phage and host

• ICM and SOM for prediction and visualization

• Assigns phage scaffolds (5Kbp) to bacterial sequences

• Uses infrastructure and interfaces of the bacterial classifier

CRISPR pipeline

• Scans genomes & metagenomes for CRISPR arrays and genes

• Connects with viral metagenomes through spacer matches – alternative way to
establish the bacteriophage-host relationship

• Parallelized on HTC cluster

13

http://andreyto.github.com/mgtaxa/

Server - architecture
14

Galaxy
Patched DRMAA

runner to support

staging

GridWay

metascheduler

Our Proxy-MAD

(middle-access

driver) requester

Apache Qpid

messaging server
Fire

wall

DMZ

disk

Cluster

disk

Our Proxy-MAD

dispatcher

Validation and

untainting of job

requests

LRM

(SGE)

DMZ Intranet

DRMAA

Local copy of

Galaxy on disk

for pristine code

of Galaxy tools

MGTAXA

tools

Self-submit

workflows of

100s of jobs –

workflow

through SGE

job

dependencies

Protein-protein docking

 A way to model protein interactions

 Given a 3D structures of two unbound proteins, predict a
3D structure of their complex (transient or obligate)

 GRAMM-X docking Web server created while at KU, has
been running since 2006

 Current NSF-Microsoft grant to implement enhanced
version in Azure cloud

GRAMM-X

Data Flow and

Process

Organization

Client-cloud docking application (Azure)

17

Web RESTful

generic API

like PiCloud

Web

simple

form

interface

Scheduler /

Worker role

allocator

Worker
Worker

Worker

Makeflow

master

WQ

Worker

A
zure

 Ta
b
le

s A
nd

B
lo

b
s, insta

nce

sto
ra

g
e

•WQ file staging

saturates master node

for network for large

files

•Scaling in Azure is

clumsy

•Iterative user-driven session

•Start with rigid-body docking

(~1 min on 100 cores)

•Select candidate predictions

and refine

•Can submit for off-line

processing and disconnect

•Command for power-user –

submit arbitrary Makeflow

•Storage is abstracted behind

REST API – can be node local

or Azure Blob internally

Any

scripting

client

PyMOL

molecular

viewer user

session

•Framework is designed for portability to other clouds or clusters

•Only a small bootstrap .NET module – the rest is Java

Generic self-spinning, self-scaling framework for running any Makeflows in Azure

Porting Proteogenomics Pipeline to

XSEDE

 NSF project to use proteomics data for improving
genome annotation (PI Sam Payne, now at PNNL)

 Was originally implemented as VICS pipeline with a
mix of single and array SGE jobs

 10 GB of input files, 200 jobs, total CPU time 300 hrs

 Using Makeflow, it was made portable across XSEDE
SGE MPI sites and serial SGE clusters like JCVI’s

 Still assumes shared file system on the cluster – too
much work to get rid of deep directory structure in
each workflow instance

18

Viral annotation pipeline in EC2 and Ecalyptus

19

Galaxy

Cloudman /

JCVI BioLinux

Remote

desktop

for

genome

editor

SGE master, NFS

server

Worker
Worker

Worker
Worker

Cloudman uses

standard EC2

interfaces to

bootstrap and

scale the SGE

cluster

•PI: Konstantinos

Krampis; white paper

funded by NIH GSC

•Make existing JCVI

viral assembly and

annotation pipeline

public by creating a

cloud port

•Porting annotation is

straightforward

•Assembly internally

includes closure step

Web

browser

interface to

Galaxy

• One virus annotation is cheap serial pipeline. This is

already ported.

•One lane of Illumina sequences 100 viruses with SISPA

barcoding

•Assembly and annotation of all is currently done with

shell scripts + CLC Workbench

•CLC will have to be replaced with open source tool

•Some workflow engine can simplify work a lot

Acknowledgments

 Mathangi Thiagarajan (Metagenomics pipelines)

 Jason Miller (Celera Assembly)

 Jeff Hoover (TimeLogic BLAST)

 Seung-Jin Sul (MR-MPI BLAST)

 Shibu Yooseph (Metagenomics pipelines)

 Dana Busam (Sequencing stats)

 Hyunsoo Kim (Azure)

 Support from NSF, NIH, DOE, Microsoft, Battelle

20

