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Abstract

When a direct current (DC) electric field is applied across an ion-selective
nanoporous membrane or a nanochannel with an overlapping Debye
layer, a surprising microvortex instability occurs on the side of the mem-
brane/channel through which counterions enter. Despite its micro and nano
length scales, this instability exhibits all the hallmarks of other classical hy-
drodynamic instabilities—a subharmonic cascade, a wide-band fluctuation
spectrum, and a coherent-structure dominated by spatiotemporal dynam-
ics. Moreover, the resulting convection enhances the ion flux into the ion-
selective medium and gives rise to an overlimiting-current bifurcation in
the current-voltage relationship. This hydrodynamically driven nonequi-
librium ion flux does not seem to have any equivalent in cell membrane
ion channels. Yet, by introducing asymmetric entrances to provide differ-
ent polarized regions and/or viscous arrest of the vortex instability, one can
fabricate a hydrodynamic nanofluidic diode. With other modifications, hys-
teretic, excitable, and oscillatory ion flux dynamics could also be elicited—all
with strong hydrodynamic features.
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Debye layer: the
ionic structure that
forms at the surface of
a solid when it is
placed into an
electrolyte, so as to
screen its surface
charges; also called the
double layer or
electrical double layer

INTRODUCTION

The advent of nanofabrication technologies in the past decade has spurred numerous new and
active research areas. These areas include molecular Raman scattering enhanced by plasmonic
resonance at metallic nanocolloids and at hotspots on nanoscale grids, near-field subwavelength
single-molecule imaging by nanoscale conic structures, the enhancement of solar-cell efficiency
by nanostructure scattering, and field-effect transistor molecular sensors consisting of single
carbon nanotubes.

In fluid mechanics, whether the thermal conductivity of a suspension of nanocolloids (nanoflu-
ids) is anomalously high (Eastman et al. 2001) has been hotly debated for several years. In another
and larger nanofluidic community, our ability to fabricate pores or channels with spatial dimen-
sions comparable with ion channels on cell membranes has generated considerable excitement.
There are dreams, mostly unrealized, that we can fabricate channels that mimic ion channels,
such that they allow only certain ions/molecules to pass and can elicit the rich electrical action
potential dynamics of a cell that is typically attributed to ion channels: excitability, bistability, and
oscillations (Keener & Sneyd 1998). The gating property could be steric, electrostatic, or endowed
by specific gating molecules functionalized to the nanochannel entrance. In fact, single-molecule
translocation through a nanopore can now be detected (Craighead 2006, Dekker 2007) by con-
ductance or impedance measurement across the pore and can be directly visualized (Mannion
& Craighead 2006). While translocating through a nanopore, a large linear molecule typically
assumes an elongated conformation, thus suggesting that impedance measurement by interdigi-
tated nanoelectrodes within the pore can decipher the identity of each base of a double-stranded
DNA—a rapid, next-generation sequencing technique that IBM and others are currently pursuing
(Branton et al. 2008).

Because the electric field of the surface charge within such nanochannels spans the entire
channel (the Debye layers of opposite walls overlap), the nanochannel can regulate electrophoretic
ion flux through it (ion permselectivity) (Stein et al. 2004). There are hence hopes that we can
produce new integrated nanofluidic ion circuits with rectification (diode) (Vlassiouk & Siwy 2007),
gating (transistor) (Karnik et al. 2005, Cheng & Guo 2007), and nonlinear I-V (current-voltage)
characteristics (Kim et al. 2008). These nanofluidic circuits would be the analogs of positively (P)
and negatively (N) doped semiconductors, with surface charges replacing the doped impurities
and counter-/coions replacing the holes and electrons. Just as P and N semiconductors have
been integrated into PN junctions and integrated electronic circuits for various devices, the
analogous nanofluidic ion circuits can be used for several molecular/ion sensing, reaction, and
energy-conversion applications: to amplify molecular sensing signals (Chang & Yossifon 2009),
concentrate analytes (Pu et al. 2004, Wang et al. 2008), control the local reactant environment
(Cheng et al. 2010), or even precondition electrochemical (electron-transfer) reactions (Basuray
et al. 2009) for molecular assays and enhance electrical energy conversion from mechanical
energies (Heyden et al. 2005). These circuits need not be artificial nanochannels—they can
also be nanoporous membranes with similar ion-flux regulation properties. Some of these
nanopore circuits have been realized and integrated into microfluidic devices (Chang & Yeo
2010). For example, Figure 1 shows hysteretic and rectification measurements by Li-Jing Cheng
at University of Michigan (Cheng & Guo 2009) and at Notre Dame for a single nanopore with
asymmetric surface charges and for bipolar membranes that can break water. As in diodes, an
asymmetric PN junction is responsible for rectification, whereas the ion-generation mechanism
of the water-breaking reaction is responsible for hysteresis. The bipolar membrane is part of a
microfluidic device for on-chip protein separation by isoelectric focusing.

In this review, we focus on an often-ignored phenomenon in nanoscale ion flux: hydrodynam-
ics. At first glance, nanoscale hydrodynamics should contribute negligibly to ion flux, given the
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Figure 1
Field-enhanced water dissociation increases ionic currents in (a) a reverse-biased 20-nm-thick bipolar-
junction nanofluidic channel containing positive and negative surface charges (|Vm| > 0.6 V) and
(b) a UV-polymerized bipolar membrane (Vm < −10 V). (c) Hydroxide ions and protons are produced at the
bipolar membrane junction and transport to opposite sides of the membrane. The pH change of the solution
in the microchannels can be observed with a mixture of a universal pH indicator. The left half of the bipolar
membrane is positively charged, whereas the right half is negatively charged. Figure taken with permission
from Cheng & Guo (2009).

Limiting current:
asymptotically
approached value of
the ionic current with
increased applied
voltage, corresponding
to the complete
depletion of ions at the
counterion influx side
of the ion-selective
membrane

large viscous dissipation rate at that scale. Indeed, we are not interested in charge polarization
by pressure-driven flow through charged nanopores, which is responsible for the electroviscous
and streaming potential phenomena (Hunter 1981) and was suggested as a mechanical-electrical
energy-conversion technique (Heyden et al. 2006). As shown in the next section, the mechanical
energy dissipation rate of viscous flow in nanochannels is large compared to the current generated.
We hence do not expect the efficiency of such an electricity-generation mechanism to be high. Nor
are we interested in the contribution of electro-osmotic flow to ion flux in the nanopores. Again,
a simple scaling theory will show that it becomes insignificant with decreasing nanochannel size.

Instead we review recent results showing that ion flux through a nanopore is strongly affected
by the flow not within the pore but at the entrance and exit of the pore, where it connects to
channels with supermicrometer scales and with much less hydrodynamic resistance. The relevant
flow can be driven by an imposed pressure gradient or an applied electric field, or it can result from
a natural microscale instability at the entrance. This strong hydrodynamic effect on the ion current
is realized when ion transport through the nanopore is controlled by the ion flux at the entrance.
Entrance gating of the nanopore ion current occurs often and is in fact a major design consideration
for liquid fuel cells—it occurs near the limiting-current condition (Levich 1962). We hence review
some recent results for the onset of the limiting current, which involves reviewing the classical
membrane theories. Consequently, we show that microvortices at the membrane entrance are in
fact responsible for the transition from the limiting-current region to an overlimiting region with
much higher current flux. The limiting-current region corresponds to the depletion of ions at one
nanopore entrance or one membrane surface and hence can be used to desalt the solution and
filter/concentrate charged analyte (Kim et al. 2010).

Other than the practical importance of these effects of hydrodynamics on ion flux through
nanopores or nanoporous membranes, the underlying hydrodynamic phenomena are also rich.
Although the hydrodynamics occurs outside the nanopore, the dimension of the resulting vor-
tices is still quite small—smaller than 1 mm typically. The relevant hydrodynamics hence involves
microscale vortices, vortex instabilities, and even turbulence-like eddy fluctuations with vortex-
pairing dynamics that creates a range of vortex sizes, all at miniscule Reynolds numbers! These
vortices are driven by charge polarization that results from ion depletion, and both the ion concen-
tration and flow fields are sensitive to the disparate length scales at the nanopore/microreservoir
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Donnan potential:
arises between the
interstitial ion-
selective mem-
brane/nanochannel
space and the external
ionic solution because
of a jump in ionic
strength

junction. These entrance electrokinetic vortices hence are related to Moffat vortices at geometric
singularities (Moffatt 1964), and their dependence on singular electric fields is similar to that seen
in direct current (DC) Taylor cones (Taylor 1964) and alternating current (AC) cones (Chetwani
et al. 2008)—all phenomena amenable to local self-similar analysis because of their lack of natural
length scales. Singularities, instabilities, turbulence, the continuum of length scales, self-similar
solutions, and vortex pairing are among the phenomena that are dear to every hydrodynami-
cist. It is our hope that this review attracts the hydrodynamic community to this new area of
microhydrodynamics driven by nanoscale electrokinetics.

DONNAN POTENTIAL AND PSEUDO-EQUILIBRIUM
INTRAPORE ION FLUX

We begin with the classical Guoy-Chapman theory for ion-selective membranes and apply it to
a nanopore with overlapping double layers. At equilibrium for a symmetric electrolyte with unit
valency, the cation and anion concentrations obey Poisson-Boltzmann equilibrium and depend on
the local electric potential φ by the Boltzmann distribution, C± = C0e∓φF/RT , where C0 is the bulk
concentration outside the nanopore, and the zero potential reference state is designated to be at
that concentration. Herein F denotes the Faraday number, R is the universal gas constant, and T is
the absolute temperature. Assuming, for simplicity, the ion distribution in a nanoporous membrane
or nanopore does not vary along the wall, but only normal to it, one then obtains the distribution
of the net charge of mobile ions in the membrane, −2FC0 sinh(φF/RT ). Because the nanopore
is overall electroneutral, the surface charge density σ s must balance this net space charge within
the nanopore, and hence the Donnan potential in the interstitial space is φd = RT

F sinh−1( σs
FC0h ),

where the length scale h is the twice the ratio of the interstitial volume to surface area—the
channel height for a straight wide channel, half the channel height for a square channel, and
the radius for a cylindrical nanopore. Using the wide channel as a model, one can define an
effective volume concentration for the space charge � = − 2σs

Fh such that φd = RT
F sinh−1(− �

2C0
) =

RT
F ln(− �

2C0
+

√
( �

2C0
)2 + 1) with the double-valued inversion of the hyperbolic sine. Other than

this explicit expression for the Donnan potential, the last expression also allows the determination

of the mobile ion concentration in the interstitial space C± = ±�

2 +
√

( �

2 )2 + C2
0 such that the

ionic strength within the space is Cslot = C++C−
2 =

√
( �

2 )2 + C2
0 , which is roughly |σs |

Fh in the ideally

selective limit, and the charge density of the mobile ions is ρ = F� = − 2σs
h . For perspective, at the

maximum surface charge density of one electron per 10 nm2, a 10-nm nanopore will have a local
ionic strength of approximately 10 mM. Although this concentration is much higher than the bulk
for an ion-selective nanopore with overlapping Debye layers, the pore remains the rate-controlling
region for ion flux through the pore. Even at deionized water conditions in the bulk, 10 mM is
only four orders of magnitude higher than the bulk concentration. In contrast, a single nanopore
is often six orders of magnitude smaller in cross section than the electrodes or microreservoir.
Hence, in most cases, the intrapore conductance is ion-flux controlling, and one does not need to
be concerned with ion-flux resistance outside the pore.

This simple equilibrium theory allows for order-of-magnitude estimates of several transport
coefficients for near-equilibrium fluxes that do not perturb the above equilibrium distributions.
These estimates allow us to evaluate several nanofluidic phenomena and technologies that have
been suggested in the literature. The electro-osmotic velocity in a nanopore with overlapping
double layers scales as u ∼ ρh2 E‖

4η
= − σs hE‖

2η
, where E‖ is the tangential field, and η is the dy-

namic viscosity. In contrast, the electrophoretic velocity of an ion with size a and net charge q is
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u p = q E‖/6πηa . Hence the effect of electro-osmotic flow on ion flux becomes negligible when
|σs | � q

3πah . A rule of thumb for the surface charge density is that its maximum is one electron
charge per Bjerum length lB [which equals e2

4πε0εr κB T ∼ 5–10 nm, where εr ∼ 5–10 is the relative di-
electric constant of the substrate (Pyrex/polysilicon)] squared, as even closer packing would mean
Coulombic repulsion between a condensed charge, and the next condensing charge would exceed
the thermal energy gained. Hence, for monovalent buffers, the electro-osmotic contribution to ion

flux is negligible when l2
B

3πah � 1. A proton, a common cation, is believed to have a hydrodynamic
radius as small as 10−4 nm, and larger ions rarely exceed 10−2 nm. Hence osmotic convective
current flux is important only for nanopores much larger than l2

B/a or ∼100 nm in radius. Using
the Einstein-Stokes relationship to relate the electrophoretic mobility to the diffusivity of the ion,
one can express this criterion as a dimensionless Péclet number Pe = |σs |h RT

2ηF D � 1, where the
characteristic length scale 2ηF D

|σs |RT is approximately 10 nm, with D the diffusion coefficient. Because
the Debye length for aqueous solutions never exceeds 100 nm, this phenomenon is not impor-
tant for electrolytes and would occur only for organic solvents with low ionic strengths, as was
measured by Wang et al. (2006).

Conversely, if there is no applied electric field, the current flux due to a pressure-driven flow
with a characteristic flow rate of Q scales as Qρ, whereas the mechanical input pumping power
scales as ηl Q2/h4, where l and h are the length and radius of the nanopore, respectively. As such,
the net current per unit power input is ρh4/ηl Q, which becomes extremely small for nanopores.

The equilibrium ionic conductance of a nanochannel of length l, height h, and width w for a
monovalent symmetric electrolyte can now be estimated from the ion concentrations:

I/V = Fμ
(
C+ + C−) wh

l
= 2Fμ

√(
�

2

)2

+ C2
0
wh
l

, (1)

where μ = F D/RT is the ion mobility. Consequently, when the nanopore becomes highly
selective, �/2 � C0, the conductance becomes independent of the bulk concentration C0. Such
a curious conductance dependence on bulk ionic strength is shown in the data of Yossifon et al.
(2010b) in Figure 2, in which the ion selectivity is observed to occur below 1 mM of KCl solution.
The double layer begins to overlap below this ionic strength, and the ion selectivity becomes
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Figure 2
Conductance of an aqueous-filled, polysilicon/Pyrex glass, wide nanoslot (2.5 mm), as a function of the ionic
strength C0. The symbols denote experiment, the continuous line is the model (Equation 1), and the dashed
line is the bulk conductivity (Equation 1 with � = 0). Figure taken from Yossifon et al. (2010b).
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more pronounced. Even before the double layers overlap, weak ion selectivity can still occur at
the transition region near 1 mM. This method of estimating the ion selectivity of a nanochannel
has now become standard.

There is considerable evidence that at high voltages, ion depletion and enrichment occur within
the pore such that the above equilibrium distributions are no longer valid. Such depletion is most
pronounced for conic pores and other pores with asymmetric pore geometries or asymmetric
surface charge and is in fact responsible for rectification phenomena in conic pores, as shown in
Figure 1 (Cheng & Guo 2010). However, even with such internal deviation from the equilibrium
distribution, the pore remains the ion-flux-controlling region between two electrodes with the
lowest conductance. From equilibrium theory, it is clear that a bulk concentration-independent
conductance (Equation 1 for the limit of �/2 � C0) can be defined for the nanopore, and hence
the I-V curve should be linear (constant resistance). It is until ion depletion occurs at the entrance
of the nanopore that ion-flux resistance shifts from the intrapore region to the pore entrance and
nonlinear I-V characteristics begin to develop. The break in the linear I-V curve at higher voltages
is clearly seen in the data of Yossifon et al. (2009b) in Figure 3. A lower differential conductance is
observed beyond a critical voltage, with an I-V characteristic quite distinct from the hysteretic one
in Figure 1. This is commonly referred to as the limiting-current region. However, at another,
even higher voltage, the differential conductance undergoes a discontinuous jump to another high
conductance value at an overlimiting region. It is the overlimiting transition that is controlled by
hydrodynamics, but the origin of this hydrodynamic instability can be traced back to the entrance
ion-depletion phenomenon that occurs in the limiting-current region.

LIMITING CURRENT, ENTRANCE ION DEPLETION,
AND EXTENDED POLARIZATION

For electroneutral ion flux, the Nernst-Planck equation for ion transport in a symmetric electrolyte
exhibits a curious mathematical invariance—the opposite electromigration fluxes of the two ions
cancel each other when the two ion-transport equations are summed to produce a diffusion equa-
tion for C = C++C−

2 , with a diffusivity that is twice the symmetric ionic diffusivity. When the sym-
metric electrolyte is electroneutral, the two ions must exist in equal concentration C+ = C− = C ,
and hence the solution of the diffusion equation for C also offers the solution for C± , without
solving the nonlinear Nernst-Planck equation or the Laplace equation for the potential! More-
over, if the bulk counterions C+ enter an ideally cation perm-selective nanoslot or nanoporous
membrane, such that a zero-flux coion exists everywhere, then the electromigration flux of the
counterions is equal to the diffusive flux, − DF

RT C+∇φ = − DF
RT C−∇φ = −D∇C− = −D∇C+.

Hence the total current density consisting of the counterion flux only is twice the diffusive flux
j = −2D∇C+ = −2D∇C . It was Levich (1962) who first realized that an ion-selective membrane
will soon deplete the counterions at the membrane surface where counterions enter (and enrich the
counterions at its opposite surface). As a result, an ionic concentration gradient is established in the
bulk electrolyte until the membrane concentrations of both ions vanish at the membrane surface.
For a sufficiently large membrane surface, this limiting-current density is then jlim = −2DC0/L,
where L is the diffusion length typically taken to be the distance from the membrane surface either
to the electrode in the case of stagnant diffusion layer or to the edge of a well-mixed region. To
obtain the limiting current, Levich simply multiplied the limiting-current density by the total
pore area of the membrane.

As seen in Figure 3a, this limiting current is also observed for ion-selective nanochannels, and
its associated differential conductance value is typically much lower than that predicted by the
channel conductance in Equation 1. Hence once ion depletion is completed at the nanochannel
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Figure 3
(a) Current-voltage characteristics of a nanoslot (inset) for varying ionic strengths. The symbols denote
experiment, the continuous lines represent the model L = Lelectrode = 0.8 mm, and dashed lines represent
the model L = Linstability = 0.1 mm. (b) Collapse of large-current data in panel a using Ben & Chang’s
(2002) theory. The continuous line represents L = Lelectrode, and the dashed line represents L = Linstability.
Figure taken from Yossifon et al. (2009b).

entrance, the highest resistance for ion transport shifts from the intrapore region to the entrance
region. Unlike membranes, the nanoslot tends to have a much smaller cross-section area than the
adjacent microreservoir or the electrode. In fact, the resulting field-focusing effect is why intrapore
ion conductance is less than bulk ion conductance at low voltages, even though the pore has a
higher volume conductivity. Fortunately, as only the diffusion equation is at play, only its solution
at the entrance geometry is relevant. Depending on the width of the nanoslot relative to its height,
the nanochannel resembles a line or a point sink for the ions, with singular fundamental solutions
to the diffusion equation that scale as lnx or 1/x relative to the normal coordinate x, respectively.
Recent confocal images of the fluorescent ion field (Yossifon et al. 2010b) outside the entrance
for nanoslots of variable width (but constant height) do indeed exhibit these geometry-dependent
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singular concentration profiles, as seen in the images of Figure 4 and the imaged concentration
profiles. The depletion length is much longer for a wide slot and approaches a constant as the slot
width narrows. For a wide nanoslot with lnx concentration profile at the entrance, the limiting
current has been shown by Yossifon et al. (2009b) to be IL = − π F DC0w

ln(h/L) ( γ+1
γ−1 ), where the nonideal

perm-selectivity is captured by the parameter γ = C+(�)/C−(�), and L is now the radial length
of the depletion region. The critical voltage for the onset of the limiting-current region due to
the entrance effect can then be obtained by multiplying this current density by the nanoslot area
and relating it to the current due to intrachannel flux in Equation 1:

V 0 = − π RT/F
2(h/ l) ln(h/L)

⎛
⎝

√(
�

2C0

)2

+ 1

⎞
⎠

−1 (
γ + 1
γ − 1

)
. (2)

This estimate for the onset of the limiting current for a wide nanoslot is favorably compared with
experimental data in Figure 3a.

Similar expressions for the onset of the entrance effect for nanopores and other geometries can
be found in Yossifon et al. (2010b). An important observation is that for isolated small pores, the
depletion length L can never exceed the pore radius and hence has a high flux per pore due to the
1/L scaling for the diffusive flux of such point sinks. When the pores are separated by a distance
less than their radius, their depletion regions overlap. Consequently, a row of nanopores behaves
like a line sink or a wide nanoslot, whereas a two-dimensional (2D) array of nanopores behaves like
a flat membrane. Thus the ion transport through the nanopore, nanoslot, and membrane can be
modeled using spherical, cylindrical, and Cartesian coordinate systems, respectively. Both the line
and 2D surfaces exhibit lower flux per pore than isolated nanopores because of the decreased field-
focusing effect and consequently its associated increased depletion length L. However, because
they have more pores per area, there exists an optimum pore separation for maximum conductance
for a given surface area and nanopore radius.
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However, as seen in Figure 3a, although the onset voltage for entrance depletion and flux-
controlling resistance is accurately captured, the current does not reach a constant asymptote as
predicted by Levich’s theory. This subtlety of the I-V curve results from another singular solution,
not for the diffusion equation but for the electric potential. In the limit that both ion concentrations
approach zero, the Boltzmann distribution for the zero-flux coion at ideal selectivity would stipu-
late that the potential must approach negative infinity. We can demonstrate this more explicitly for
a pseudo-1D membrane without electric field or concentration focusing. The electroneutral solu-
tion to the diffusion equation is then linear in the normal coordinate x, C+ = C− = C = C0 − j

2D x
for a given ionic flux j. Consequently, the potential distribution within the electroneutral region
has a logarithmic dependence on the normal coordinate φ = RT

F ln(1 − j
2DC0

x). At the entrance
(x = 1), the potential approaches negative infinity in a logarithmic manner when the interfacial
concentration Ci vanishes. The solution of the Nernst equation by Ben & Chang (2002), repro-
duced in Figure 5, indeed shows this logarithm blow up the asymptote of the potential near the
membrane surface.

This is clearly impossible, and Rubinstein & Shtilman (1979) first postulated that this potential
singularity must be smoothed by an extended polarized region that matches the electroneutral
fundamental solution of the diffusion equation. Ben & Chang (2002) carried out the matched
asymptotics from the electroneutral region with the extended polarized region and obtained the
following prediction of the ionic flux beyond V0:

j − jlim = 3Dε0εf
(V −V 0)

FλL2
. (3)

We offer a rough scaling theory for this correction to Levich’s limiting-current theory—as the in-
terfacial concentration Ci vanishes, the current does not approach a constant asymptote, but rather
the differential conductance approaches a low constant, much lower than the pore conductance
of Equation 1. Away from the logarithmic singularity at the interface, the potential has a linear
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Extended
polarization:
extended space-charge
layer, occurring
between the Debye
and the electroneutral
layers, necessary to
sustain the
overlimiting current

profile and extrapolates to the membrane as φ ∼ − RT
F

j
2DC0

x as in a well-mixed electroneutral
region prior to the establishment of the diffusive linear concentration profile. The outer potential
field in the bulk, when extrapolated from the bulk toward the membrane, has a nonzero apparent
potential V0 at the interface that is different from the true membrane potential. The electric field
from the membrane is screened by the Debye-layer counterions in the absence of flux, but the
depletion effect removes this screening. The extended polarization also contributes to a signifi-
cant excess potential drop. Both effects produce a field jump across the depletion and extended
polarization regions that can be modeled as a negative surface electric field (positive potential
gradient) on the membrane, which can be related to an effective negative surface charge density
on the membrane ε0εf (V −V 0)/L. To assure continuity of the concentration field, there must
be a corresponding effective interfacial concentration, when the bulk concentration profile is ex-
trapolated from the bulk, that is negative. The effective negative surface charge density can be
related to the negative effective interfacial concentration by dividing the former by the Debye
length λ, the length scale of the inner extended polarized region, to produce Ci ∼ − 3ε0εf (V −V 0)

2FλL ,
which is evident in Figure 5. Because j = 2D C0−Ci

L , the effect of extended polarization on the
current in Equation 3 is then captured once one imposes the condition that the Ci = 0 limit
corresponds to Levich’s limiting current.

As seen in Figure 3b, despite this near-onset limitation, scaling Equation 3 collapses the
nanoslot I-V data of Yossifon et al. (2009b) in the limiting-current region, with L = 0.8 mm
corresponding to the actual microreservoir dimension. Most surprisingly, the overlimiting data
also collapse and can also be captured by Equation 3 if L is reduced from 0.8 mm to 100 μm. There
is hence a new mechanism that has reduced the depletion length by a factor of eight, leading to
the larger current in the overlimiting region. Hydrodynamics is responsible for choosing this new
depletion/diffusion length scale.

MICROVORTICES GENERATED BY EXTENDED POLARIZATION

Extended polarization exists on one membrane surface or one nanopore entrance over a length
scale comparable with the Debye length and larger. Unlike polarization due to surface charge in
an equilibrium Debye layer, the extended polarization results from an external field and can be
sustained only if there is a flux of ions into the membrane or nanopore—it is a nonequilibrium phe-
nomenon. This extended polarization can also drive tangential electro-osmotic flow if a tangential
electric field exists. In fact, this is the basis of Dukhin’s (1991) electro-osmotic flow of the second
kind for surfaces with curvature. Because of the curvature, the normal field that drives normal ion
flux into the granule changes along the surface. From Equation 3, the flux-induced potential at
the surface V0 is proportional to the normal flux, which is proportional to the bulk normal electric
field. Hence the local velocity scales as the product of the normal and tangential field components.
This implies that, for a conducting ion-selective granule, the induced electro-osmotic velocity is
maximum not at the equator (zero normal field) or pole (zero tangential field), but at an inter-
mediate azimuthal position close to 45◦. This variation in the induced tangential electro-osmotic
velocity along a curved surface necessarily implies the formation of vortices, as flow continuity
stipulates that the tangential pressure gradient must exist to drive a vortex—the tangential flow
to the equator is forced back further away from the surface in a vortex pair around the spherical
granule. Because only the influx side of the granule can sustain such extended polarization, a vortex
pair exists only on the side of the granule when the net ion current enters the granule. This is the
basis of Dukhin’s electro-osmosis of the second kind and superelectrophoresis for ion-exchange
granules—because of the asymmetry of the vortex pair, there is a net electrophoretic motion
due to this flux-induced electro-osmosis on a granule (Barany et al. 1998). Not surprisingly, the

410 Chang · Yossifon · Demekhin



FL44CH17-Chang ARI 18 October 2011 18:22

Overlimiting
current: sustained
current in excess of the
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superelectrophoretic velocity scales quadratically with respect to the applied field with an effec-
tive zeta potential of Ea, where a is the granule radius (Dukhin 1991). At high Péclet numbers,
however, convection may alter the ion flux and hence perturb the scaling of Equation 3 and the
field scaling of the superelectrophoretic velocity of ion-selective granules (Ben et al. 2004).

It is less obvious that the extended polarization layer is unstable on a flat membrane and
hence can sustain a microvortex instability. This theory was first advanced by Rubinstein & Zaltz-
man (2000). They argued that the concentration and potential fields of the extended polarization
inner region, as shown in Figure 5, create a thin film near the membrane, much like a free sur-
face. When the polarization layer thins because of some kind of localized disturbance, the nearly
singular electric field of Figure 5 becomes even more intense, thus creating a high–Maxwell
pressure εE2 spot at the membrane surface. This high-pressure spot drives liquid radially away
from it on the membrane surface and, again because of flow continuity, produces a vortex pair
on a linear membrane (a wide nanoslot) and a vortex torus on a planar membrane, both with
a diverging stagnation point on the membrane. This diverging stagnation flow pushes the ex-
tended polarization at the stagnation point, thus providing a linear positive-feedback mechanism.
This mechanism is quite similar to other classical free-surface hydrodynamic instabilities such as
the free-surface Rayleigh-Bénard instability with a high normal temperature gradient in a film.
Here the temperature gradient is replaced by a potential gradient (field) and the hydrostatic pres-
sure dependence on temperature by the Maxwell pressure gradient dependence on the field. If
the disturbance is not localized, vortex streets and vortex arrays are hence expected. Similar to
other hydrodynamic instabilities, we expect this positive feedback mechanism to be stabilized by
viscosity at short length scales and be saturated by nonlinearity at large length scales. Hence one
expects a particular vortex size to be selected, and this vortex size corresponds to the depletion
length L of the overlimiting region in Figure 3b.

Earlier experiments (Maletzki et al. 1992, Rubinstein et al. 2002) provide some support of this
theory. The overlimiting region is not observed if the electrolyte is replaced by a hydrogel. Near the
onset, the fluctuation of the overlimiting current does exhibit certain fundamental frequencies,
corresponding perhaps to flux fluctuations produced by vortices of a given size. However, the
fluctuation becomes broadbanded further from criticality as in the classical transition to turbulence.

Yet this vortex instability and its connection to the overlimiting current have been verified
experimentally only in the past two years (Rubinstein et al. 2008, Yossifon & Chang 2008). Re-
alizing that a nanoslot is a good model for a linear membrane in a planar system, Yossifon &
Chang (2008) used confocal imaging of fluorescent charged dye to detect these vortices. The ex-
tended polarization may be less than 1 μm thick and is hence not detectable, but the microvortices
sustained by it are 10 to 100 times larger. Nevertheless, as the mixing action of the vortices can
quickly disperse the dye concentration within the vortex, imaging the steady or stationary vortices
is difficult. The evolution dynamics of the vortices, presumably involving the merging of small
vortices, that is responsible for the turbulent broadband fluctuation observed (Maletzki et al. 1992)
would be almost impossible. Instead, Yossifon & Chang (2008) used a low-frequency (<1 Hz) AC
field to entrain the vortices. The depletion region is regenerated at every half-cycle, thus allowing
the vortex instability to develop every cycle. The vortex images are shown in Figure 6. Larger
vortices are observed for longer periods T, suggesting that the larger vortices result from merging
of the smaller ones at the onset and that the merging is sequential, from one generation of vortices
to the next. Some pair-wise coalescence is indeed observed over one half-cycle for larger vortices
at large T.

The periodic forcing also allows the estimate of the depletion length as a function of the period
T. As the ionic strength C = C++C−

2 obeys the diffusion equation, the depletion layer is created
with a diffusion front that advances away from the membrane. As the front position should scale
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(a) Confocal image snapshots of the maximum extent L of the concentration polarization layer either in its enrichment (cathodic
polarity) or its depletion (anodic polarity) phase at different AC frequencies at the same voltage difference of 80 V peak to peak (see
Supplemental Video 1; follow the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.
org). (b) A close-up of one of the depletion regions showing its inner structure consisting of a vortex pair. (c) A log-log graph of the
experimentally measured L (triangles) versus the frequency and also of a

√
Dt trend (continuous line). (Inset) The schematic configuration

of the nanoslot device. Figure taken from Yossifon & Chang (2008).

Depletion front:
the self-similar
propagating
electroneutral
diffusion front that
propagates from the
ion-depleted region at
the nanoslot entrance
toward the bulk region

as
√

Dt, the onset of a vortex instability should be signified by a departure from this self-similar
scaling. In fact, we expect that the front position should saturate at a constant value, the selected
depletion length, once it departs from the self-similar scaling. This is indeed observed in the
measured depletion-layer thickness as a function of time at different periods in Figure 7. For
smaller periods, the observed vortices are not fully established and hence cannot suppress the
diffusion-layer growth, and the depletion front obeys the self-similar scaling. Beyond a critical
period, corresponding to the onset time of the fully established vortices, the front position breaks
away from the self-similar dynamics and saturates at a constant asymptote within the depletion
half-cycle. In fact, when a similar nanoslot is used, the selected depletion length is exactly 100 μm,
the depletion length used to collapse the overlimiting I-V data of Figure 3b. Pair-wise merging of
the vortices evolves until a particular vortex size and depletion length are reached. These values
are observed to be a function of the width and height of the microchannel outside the nanoslot,
as viscous dissipation seems to be responsible for the arrest of the vortex-pairing dynamics. The
vortex instability hence selects the depletion length.
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Time evolution of the instantaneous depletion-front thickness for different frequencies at the same voltage
difference of 80 V peak to peak. Also depicted is the

√
Dt scaling (continuous line). A clear break from the

self-similar scaling is observed at L ∼ 220 μm. Figure taken from Yossifon & Chang (2008).

That the microchannel height determines the final selected vortex size and depletion length
was more conclusively verified by Yossifon et al. (2010a) using a wide nanoslot (of fixed height)
connecting symmetric microchambers of varying height on its two opposite sides. The selected
depletion-layer length, vortex size, overlimiting current, and even the onset voltage for the over-
limiting behavior are shown to be sensitively dependent on the connecting microchamber height
(see Figure 8). The vortex-pairing dynamics that occurs for tall microchambers is observed to pro-
ceed until only two vortex pairs survive. In contrast, vortex formation is not observed for short mi-
crochambers. The final depletion length is also quite distinct for the two cases, with a much longer
depletion length for the shorter microchamber without the vortex instability. In fact, the depletion
length extends to the electrode in the vortex-free case. It is expected that intermediate depletion
lengths could be chosen with different numbers of final vortices for intermediate microchamber
heights. Simple scaling arguments relating the microchamber depth to the effective fluid viscosity
[ηeff ∼ 12η(w/H )2, where H is the microchamber height and w is the nanoslot width] produce
experimentally verified scaling dependencies. In the case of a sufficiently deep microchamber, it
is the vortex instability electroconvection that counteracts the diffusive growth of the concentra-
tion polarization layer. For shallow microchambers, the vortex instability is suppressed, and the
diffusive layer grows indefinitely to reach the microchamber end (Figure 8b). Recently, the condi-
tions for the propagation of such a shock-like concentration depletion front in a shallow and wide
microchannel-nanochannel system were studied theoretically by Mani et al. (2009) and verified
experimentally by Zangle et al. (2009). Also, Jung et al. (2009) have recently shown a rectification
effect in the overlimiting region across a nanopore connecting asymmetric chambers. It is the
different confinement constraints on the electroconvection flow within the microchambers that
affected the current. However, with their design (of significant field-focusing), Dukhin’s electro-
osmosis of the second kind rather than Rubinstein’s vortex instability mechanism clearly prevails.

A more smooth transition from the mechanism of Rubinstein’s electroconvection instability to
Dukhin’s electro-osmosis of the second kind for vortex generation was recently shown by Yossifon
et al. (2010b). Nanoslots with varying widths were fabricated on a chip (Figure 4b, inset) as a simple
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(a) Current-voltage curves for 10-μM KCl (strong Debye-layer overlap) buffer concentrations for various
microchamber depths. (Inset) Measured critical voltage for the limiting to overlimiting transition for varying
microchamber depths (corresponding to the symbols in panel a). The continuous line represents scaling
theory. (b) Sequence showing the depletion-layer pattern evolution as a response to a step input of 40 V (see
Supplemental Videos 2 and 3). In particular, in the case of the deep (122-μm) microchamber, one clearly
sees the complex process of wavelength selection by small vortices breaking up through fusion and the
transformation into still larger vortices until a quasi-steady-like pattern is formed. In contrast, these patterns
do not occur for the shallow (2-μm) microchamber. Instead, a relatively flat concentration polarization layer
front is observed to propagate until it reaches the electrode. Figure taken from Yossifon et al. (2010a).

model for capturing the increased field-focusing effect for the transition from a line (wide nanoslot)
to a point (narrow nanoslot) sink. Although not a nanoslot array, this decrease of the nanoslot
width resembles the increase of channel spacing leading eventually to isolated nanoslots. One of the
consequences of the isolation is a single localized depletion region in the narrow nanoslot case
(Figure 9b) instead of an array of them in the wide nanoslot case (Figure 9a) due to Rubinstein’s
vortex instability. This isolated space-charge region at the pore entrance produces an ejecting vor-
tex pair for isolated narrow nanochannels (Figure 9c) or a vortex toroid for isolated nanopores. An
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Confocal image snapshots of (a) the depletion array pattern for the wide (2.5-mm) nanoslot (see
Supplemental Video 4), (b) a single depletion region for the narrow (50-μm) nanoslot (see Supplemental
Video 5), and (c) a close-up of the narrow nanoslot’s depletion region and its associated single vortex pair
that ejects from the corners, as observed using fluorescently tagged nanobeads. (d ) Normalized (by the
corresponding Ohmic conductivity) I-V data of nanoslots with varying widths, w, at 10−5M KCl
concentration clearly showing the vanishing of the limiting-resistance voltage window with increased
field-focusing effect. Figure taken from Yossifon et al. (2010b).

important consequence is the vanishing of the limiting-resistance window in the narrow nanoslot
in contrast to a clear region in the wide nanoslot case (Figure 9d), thus producing very high cur-
rent density for all voltages that are not limited by Levich’s diffusion-limited current. It is directly
attributed to the gradual change in field-focusing effects and the appearance of an ejecting vortex
pair at the corners, which has replaced the vortex array due to Rubinstein’s instability, to dictate
the I-V characteristics. As corner vortices are not observed for communicating nanoslot arrays, it is
expected that pore isolation is necessary for their appearance. The same phenomenon is expected
for real membranes with separated pores. As such, the I-V characteristics of isolated pores can be
dramatically different from communicating ones. This pore communication effect is most likely
related to another well-known empirical fact. It is known that nonuniformity of the membrane sur-
face can reduce the voltage range of the undesirable limiting-resistance window (Blaster et al. 2007).

Yossifon et al. (2009a) recently showed that interchannel communication can dramatically affect
the electroconvection processes taking place at the microchannel connecting a nanochannel array.
A nanochannel array with homogenous surface charge and height (i.e., uniform electrochemical
potential) but with asymmetric channel spacing at its opposite entrances (Figure 10a) has been
shown to exhibit a strong rectification factor (i.e., ratio of the ionic currents under reverse and for-
ward voltage bias) as high as three (Figure 10b), reminiscent of a semiconductor bipolar diode. As
observed, this rectification phenomenon is appreciable only in the overlimiting region, as the extent
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(a) Asymmetric nanoslot entrances to the microchambers (see Supplemental Videos 6 and 7). On the right side, the separate nanoslots
exit directly into the microchamber, whereas on the left side they first merge into a wide slot that in turn exits into the microchamber.
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view). (b) I-V measurements for varying ionic strengths and applied voltages. The continuous lines represent reverse bias, and the
dashed lines represent forward bias. Figure taken from Yossifon et al. (2009a).

of both the vortex-pairing dynamics and the selected depletion length is sensitive to the entrance
polarization effects (i.e., space charge) occurring at the nanochannel array’s asymmetric opposite
entrances. There is no rectification at lower voltages, at which hydrodynamics effects are absent.

Previous low-voltage Ohmic studies of ionic current rectification within nanopores/channels
(Cheng & Guo 2007, Karnik et al. 2007, Vlassiouk & Siwy 2007) have attributed this phenomenon
to intrinsic nonuniformity of the electrochemical potential along the nanochannel (e.g., by chang-
ing the nanochannel cross-section geometry and hence the Debye layer overlap and surface charge
patterning). In contrast, the high-voltage rectification of the nanochannel array is because of the
combined asymmetry of space-charge polarization and that of the nano-/microchannel geometry
at its opposite entrances, resulting in quite different electroconvection behavior. With a clever
combination of intrapore and external asymmetries, it is quite possible to design a nanofluidic
diode that inverts the rectification direction at a critical voltage—ion current is permissible in
different directions at low and high voltages.

SELF-SIMILAR DEPLETION FRONT DYNAMICS AND SELECTION
OF EQUILIBRIUM DEPLETION LENGTH

The self-similar evolution of the depletion front and the resulting vortex-merging dynamics have
recently been verified by the simulation work of Demekhin et al. (2008) and Kalaidin et al. (2010).
In addition to the self-similar diffusion dynamics in the electroneutral outer region, Kalaidin et al.
obtained a self-similar structure also for the polarized region. They demonstrated that with the
following self-similar transform of the normal coordinate y from the membrane η = y/

√
4Dt and

ε = λ/
√

4Dt, the transient 1D Nernst-Planck equation and the Poisson equation reduce to a set
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NANOFLUIDIC DIODES

Nanofluidic diodes that exhibit rectification of ion currents have been intensively researched, as they mimic voltage-
gated ion channels on cell membranes. The standard assumption is that such PN diodes can be achieved only with
asymmetric surface charge in the nanochannel or with converging geometry. The microvortex instability discussed
in this review offers another asymmetry that can be manipulated with macroscopic designs outside the nanochannel,
or at its very entrance where polarization effects dominate, to produce rectification and possibly other nonlinear
ion-flux dynamics—it is a hydrodynamic nanofluidic diode.
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where J is the dimensionless current at the membrane:

J = C+ d�

dη
+ dC+

dη
at η = 0.

As is in the steady case studied by Ben & Chang (2002), the self-similar solution is insensitive to
p. We note that F is the potential drop across the extended polarized region as the Ohmic drop
in the electroneutral region has been subtracted from the overall applied voltage in the boundary
condition at infinity. Consequently, for a given J, Equation 4 can be integrated to calculate the
potential drop F due to extended polarization or vice versa. In Figure 11, this self-similar
solution is satisfactorily compared to the integration of the full set of transient equations by using
the following parameterization, J(t) = 2 j (t)

√
t and F (t) = V − j (t)/2 = V − J(t)/4

√
t,

such that for every applied voltage V, the current J can be determined as a function of time t. It
is quite clear that the measured current obeys the self-similar evolution dynamics with respect to
the (excess) potential drop in the extended polarized region, F (t) ∼ V − J(t)/4

√
t for a range

of V. This self-similar dynamics provides the same
√

t diffusive dynamics in the electroneutral
region, which was predicted and experimentally verified by Yossifon & Chang (2008) in Figure 7.
Kalaidin et al. have shown that the self-similar structure extends into the polarized layer, thus
mathematically proving the validity of the self-similar solution for the entire domain and even
when the extended polarization region is very thick. Indeed, numerical simulation of the full
equation on the depletion-region evolution dynamics by Kalaidin et al. is in good agreement with
the experimental data of Yossifon & Chang, as seen in Figure 12.

Although Kalaidin et al. allowed for an infinitely deep microchannel in their 2D model, such that
viscous dissipation is dominated by the sidewalls, they nevertheless observed a selected depletion
length in their simulations. How a specific length scale is selected is evident in Figure 13. Pairwise
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(a) Numerically computed evolution of the extended polarized region (solid lines) compared with the self-similar solution (dashed lines).
(b) The current during the evolution is found to obey a self-similar relationship with respect to the voltage drop in the extended
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Vortex coalescence:
evolution dynamics of
the vortices,
presumably involving
merging of small
vortices, responsible
for the turbulent
broadband fluctuation
observed

vortex coalescence occurs until a critical separation when new vortices nucleate in the quiescent
region between two distant vortex pairs—each spike in the charge density generates a vortex pair
with a diverging stagnation point at the membrane surface, as is consistent with the images of
Figure 8 for tall microchambers. The turbulence that is observed corresponds to the repeated
merging and nucleation of the vortex pairs to select a time-averaged vortex size and a depletion
length that are constant. Unlike bulk turbulence, a continuum of vortex size does not appear at
every instant in time, and the coarsening does not proceed indefinitely to infinite length scales.
Instead, one length scale is selected at a given time until an equilibrium one is selected because of
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Figure 12
The depletion length from self-similar solution (a) and from 2D simulation (b) with Yossifon & Chang’s
(2008) experimental data in Figure 7 in the inset. Figure taken from Kalaidin et al. (2010). Vortices are not
observed in region I and begin to appear in region II. The evolution of these vortices in region II is shown in
Figure 13.
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Figure 13
Evolution of the charge density in two dimensions (coordinates are normalized by the space between two
electric membranes), showing vortex merging until an equilibrium vortex separation/size when nucleation of
new smaller vortices at the quiescent regions balances the loss of vortices by coalescence.

the annihilation and creation dynamics of localized coherent structures—the charge density spikes
and vortex pairs. This coherent structure dynamics is quite similar to solitary wave dynamics on
falling films; the solitary waves also annihilate each other until new ones can nucleate from the flat
film in between to select an equilibrium wave texture (Chang 1994, Chang & Demekhin 2002).

OTHER MICROVORTICES IN ELECTROKINETICS

The vortex instability at the extended polarization layer is the most dramatic vortex-formation
mechanism in electrokinetics—and is most important in terms of controlling the I-V curve of
the nanopore, nanoslot, or nanoporous membrane. However, there are other vortex-formation-
dynamics phenomena in electrokinetics. Thamida & Chang (2002) showed that at the sharp inside
corners of a turn in a microfluidic channel, there can be significant field penetration across the
corner, even if the wall permittivity is low but not zero. Yossifon et al. (2006) derived an effective
boundary condition for this field-induced corner polarization and were able to solve the 2D flow
problem in a bent channel by conformal mapping. The vortex topologies shown in Figure 14
are functions of channel geometry, natural zeta potential, and the permittivity ratio. For narrow
nanoslots whose small width suppresses vortex instability, such corner vortices can also be observed
at the nanoslot entrance, as seen in Figure 9. The circulation and symmetry of these corner vortex
pairs are quite different from those resulting from the vortex instability at the polarization layer.
Nevertheless, they can affect the depletion length of narrower slots.
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Calculated streamline patterns for a channel width ratio of 10 and varying ratio λ, characterizing the relative
importance of the induced and linear respective parts of the zeta potential. Figure taken from Yossifon et al.
(2006).

If the microchannel walls outside the nanoslot have surface charges, another mechanism for
vortex formation arises: flow balance. A classical electrokinetic theory by Morrison (1970) states
that, in the electroneutral region outside the thin Debye layers, the streamlines are identical to
the field lines for electrically insulated and flow/ion-impenetrable channels with uniform surface
charge. Hence the resulting electro-osmotic flow is irrotational, and there is no internal pressure
buildup. This is in fact why electro-osmotic flow cannot push bubbles in a microchannel (Takhistov
et al. 2002). If the surrounding film is thick enough, then the field (current balance) through the
wetting film also implies liquid-flow balance around a stationary bubble, and pressure cannot build
up behind the bubble to push it forward. This theory is why the vortices discussed in this review
are so unique. The vortices discussed above revoke this “similaritude” because of ion flux into
the membrane (microvortex instability) and field penetration into the wall at corners (Figure 14).
The hydrodynamic shear of the flow resides entirely within the Debye double layer at the wall,
and the electro-osmotic flow in the electroneutral region is a potential flow.

This similaritude breaks down, however, when the electro-osmotic flow is required to pass
through a nanoslot or toward a dead end. As the Debye layers overlap across the nanoslot, a
net charge � = − 2σs

Fh exists within it, and in the presence of a longitudinal electric field, the
electric body force in the liquid must be balanced by viscous effects. As such, the flow field in
a nanopore is not irrotational—a flat velocity profile does not occur for straight channel flow.
The Morrison similaritude assumption is hence revoked. In fact, the small or zero flow rate
through the nanopore becomes controlling, and pressure must build up at the entrance to eject
the excessive incoming electro-osmotic flow. As in Moffat’s pressure-driven vortices toward a
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(a) Schematics of the 90◦ wedge and sink simplifications of the micro- and nanochannel junction geometries, respectively.
(b) Analytically calculated radial velocity versus θ for varying κh values. (c,d ) Numerically calculated velocity streamline for the case of
(c) strong and (d ) weak electrolytes for a model geometry. Figure taken from Yossifon & Chang (2010).

dead-end corner, this imbalance in electro-osmotic flow produces vortices outside the nanopore.
The flow problem for the micro- and nanochannel junction could be simplified as a converging
sink flow in a 90◦ wedge (Figure 15). In the microreservoir, the thin-Debye-layer assumption
holds. Hence the electrostatic problem is obtained by solving the Laplace equation together with
Neumann boundary conditions on the microchannel walls (x = 0, y = 0) and a sink of strength
m = 2E0h/π located at the origin (x = y = 0). The Stokes equation can then be solved with
boundary conditions (Helmholtz-Smoluchowski slip velocity at the wedge walls), and matching
the flow rate with that at the nanoslot (Yossifon & Chang 2010),

Qnanoslot = ζ eq ε0εf

μ
E0h

(
1 − tanh(κh/2)

κh/2

)
, (5)

wherein ε0 is the dielectric permittivity of vacuum, εf is the dielectric constant of the fluid, μ is
the fluid viscosity, and E0 is the uniform externally applied electric field within the channel. The
Stokes equation admits the separation-of-variables solutions. This solution contains a pressure-
driven flow counter to the electro-osmotic flow because of the back pressure that builds up to
ensure flow balance into the nanoslot. The resulting radial velocity component (uθ = 0 due to
azimuthal symmetry) is

ur = 1
πr

[
2 + 3

tanh(κh/2)
κh/2

((
4
π

)2

θ2 − 1

)]
Q0

nanoslot, (6)

where Q0
nanoslot = (ζ eq ε0εf /μ)E0h is the electro-osmotic nanoslot flux in the limit of infinitesimally

thin Debye layer. The vortices appear at a critical λ/h ratio—where the minimum radial velocity
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Figure 16
Colloid dynamics for different applied voltages that are (a) below 5 V, (b) beyond 20 V at the first voltage,
and (c) beyond 40 V for the second critical voltage (see Supplemental Video 8). The dynamics in panel a
exhibits linear colloid translations within the colloid band, whereas those in panels b and c exhibit complex
torroidal movements. Furthermore, the tangential motion of colloids trapped just at the nanoslot entrance
becomes more pronounced with increased voltage. Nanocolloids larger than the nanoslot depth and weak
electrolytes (0.1 mM) were used. Figure taken from Yossifon & Chang (2010). Abbreviations: EOF, electro-
osmotic flow; EP, electrophoresis.

component becomes negative (Figure 15b). This pressure-driven backflow in the microreservoir
is responsible for the corner vortices with a vorticity direction parallel to the chip substrates.
Figure 15c,d shows more explicit numerically computed streamlines for a simple model geometry
of a nanoslot bounded by two microreservoirs. The occurrence of this corner vortex can be simply
explained based on liquid flux continuity arguments.

As these vortices driven by electro-osmotic flow in the microchannel have a vorticitiy axis
parallel to the width of the nanoslot, they are perpendicular to the vortices in Figure 6 because
of the vortex instability. Figure 16 shows a nanocolloid suspension at the depleted entrance of a
nanoslot first captured by the horizontal vortices at low voltages and then by the vertical vortex
array due to instability at higher voltages, producing a complex toroidal pattern at the end. The
figure also shows these dynamic nanocolloids trapping at the depleted side of a fluidic nanoslot
entrance (Yossifon & Chang 2010) to sensitively regulate DC ion transport through the nanoslot
such that a second limiting-overlimiting transition occurs in its nonlinear I-V characteristics. The
transition from the corner vortex to a complex torus with both vortical motions coincides with
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the first overlimiting transition, whereas electrostatic interaction of nanocolloids in these vortices
with the nanoslot entrance drives the second limiting transition.

CONCLUDING REMARKS

It is counterintuitive that microvortices can appear at microfluidic scales and that these vortices can
dramatically enhance current through ion-selective nanoslots and nanoporous membranes. We
believe these vortices can remove filter cake and fouling on membranes and can enhance the effi-
ciency of many ion-exchange and separation processes involving ion-selective membranes. When
large and charged biomolecules such as nucleic acids hybridize onto a nanoslot or a nanoporous
membrane, they can form a permselective monolayer such that the monolayer/nanoslot membrane
becomes a bipolar membrane with new and distinct ion current dynamics. We hence believe that
the large-voltage nonlinear phenomena involving hydrodynamics, combined with low-voltage
rectification due to intrapore asymmetries, can lead to a new class of nonlinear nanofluidic circuits
for very sensitive biosensing. In such circuits, nanofluidic diodes will be connected to nanofluidic
oscillators, relays, and hysteretic elements to produce ion current networks not unlike those in
neuronal networks. It is quite fortuitous that they also exhibit a rich spectrum of hydrodynamic
and pattern-formation phenomena that are of interest to the fluid dynamics community.

SUMMARY POINTS

1. The microvortex instability of extended polarization has been verified. Also, convection
by the instability produces a sharp increase in ion-selective membrane flux: the overlim-
iting current.

2. Hydrodynamic nanofluidic diodes can be designed with asymmetric microchannel and/or
nanochannel entrance geometries.

3. Vortex dynamics involves classical subharmonic vortex coalescence.

4. The diffusion front dynamics during the establishment of the extended polarization allows
simple universal scaling.

5. The depletion length that determines the overlimiting current is selected by an equilib-
rium vortex state.

6. External hydrodynamics is important to ion flux through nanochannels and ion-selective
membranes.

FUTURE ISSUES

1. Investigators should focus on the exact mechanism for selecting the vortex equilibrium
state and the depletion length scale for different entrance geometries—radially conver-
gent/divergent vortices, microchamber height/width, and asymmetric ionic strengths.

2. The sensitivity of microvortex instability and the overlimiting current to membrane
charge and morphologies should be studied.

3. The flux interaction among nanopores should be explored.

4. Researchers should work on developing hydrodynamic molecular sensors that are sensi-
tive to molecular hybridization onto membranes.
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5. An important topic is rectification inversion as the intrapore mechanism due to nanochan-
nel asymmetry at low-voltage transitions to high-voltage external depletion mechanisms
due to microchamber or nanochannel entrance asymmetry.

6. Molecular mixing, concentration, and separation using the depletion and microvortices
should be explored.

7. Excitable, bistable, and oscillatory ion currents should be generated using, for example,
bipolar membranes.
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