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There has been recent renewed interest in electrocapillary and electrowetting phenomena

given its potential for microfluidic actuation and manipulation. Different approaches, in
which a variety of electrode configurations have been adopted, however, have dominated
the developments in this field. These different approaches have given rise to rich and
varied behavior, which has often led to some overlap and confusion in the literature.
In this article, we delineate the different observations and elucidate the relationship
between these phenomena by re-stressing classical concepts and examining their limita-
tions. Particular emphasis is placed on the distinction between static and spontaneous
electrowetting. In the former, a static change in the liquid–solid macroscopic contact an-
gle results when a dielectric film-coated planar plate electrode is employed. In the latter,
a spontaneous thin front-running electrowetting film is pulled out ahead of the macro-
scopic drop with the use of planar parallel line electrodes. This dynamically evolving
electrowetting film advances much faster than the macroscopic drop itself and behaves
in a self-similar manner analogous to gravity spreading films.

Keywords: Electrowetting; electrocapillary phenomena; interfacial tension; electric fields;
thin films.

1. Introduction

Electrocapillary phenomena dates back to the early observations of Lippmann1

who noted variations in interfacial tension as an electric potential is applied. The
Lippmann electrometer is shown in Fig. 1(a) demonstrating the principle of elec-
trocapillarity. As the potential applied to the mercury is increased, the meniscus
position of the polarized mercury/electrolyte interface (within the small tube at
the bottom of the long column) is altered. By adjusting the height of the mercury
reservoir h such that the meniscus is returned to its original position, the change
in the interfacial tension with applied potential can be quantified, as illustrated in
Fig. 1(b). The maximum in the electrocapillary curve in Fig. 1(b) occurs as the
isopotential point is achieved, i.e. when the counterions in the electrolyte exactly
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Fig. 1. (a) The Lippmann capillary electrometer. (b) Electrocapillary curves for different elec-
trolytes. The maximum in the curves is the isopotential point or the potential of zero charge.

balance the charge on the surface such that the net surface charge and electroki-
netic potential are zero, resulting in the collapse of the Debye double layer (complete
screening limit). The change in the mercury/electrolyte interfacial tension γ with
applied potential V is then described by the classical Lippmann equation:(

∂γ

∂V

)
T,P,µ

= −σ , (1)

where T is the temperature, P the pressure, and µ the chemical potential. The
surface charge density σ can be expressed as

σ =
C

A
V =

εoεl
d
V , (2)

where C is the capacitance of the double layer with cross-sectional area A and
separation d, εl is the relative permittivity of the liquid and εo is the permittivity
of vacuum, respectively. It then follows from Eqs. (1) and (2) that

∆γ = − εoεl
2d

V 2 . (3)

The double layer is on the electrolyte side of the mercury/electrolyte interface and,
since both the mercury and electrolyte are conducting media, most of the voltage
drop V is across this double layer.

The Lippmann equation is the fundamental basis for electrowetting, which at-
tempts to control the wettability of a liquid precisely and rapidly with electrical
fields in the absence of mechanically moving parts. Recent interest in such efforts
have been driven by the need for fluid handling and actuation mechanisms in mi-
crofluidic devices.2 Bockris and Reddy3 nevertheless propose a fundamental distinc-
tion between the classical Lippmann electrocapillary phenomena and electrowetting.
In classical electrocapillarity, described in the previous paragraph, the applied elec-
tric field energetically favors a change in the solid or liquid metal–electrolyte inter-
facial tension, i.e. there is an increase in the interfacial contact between the metal
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and the electrolyte, as shown in Fig. 2(a).4,5 Electrowetting, at least for static con-
tact angles without spontaneous spreading, has traditionally been concerned with
the change in the macroscopic liquid–solid wetting angle θ subtended when the
vapor/liquid, liquid and solid phases coincide at the three-phase contact line. Nev-
ertheless, the force balance at the contact line necessarily involves the vapor/liquid–
liquid interfacial tension γ. As such, the electrocapillary phenomena can be related
to static electrowetting. Substituting Young’s equation, which represents a balance
of tangential forces at the vapor–liquid–solid contact line,

γLV cos θ = γSV − γSL , (4)

where γLV, γSV and γSL are the vapor–liquid, vapor–solid and liquid–solid interfacial
tensions, respectively, into Eq. (1) with γ = γSL such that

d(cos θ)
V dV

=
C

γLV
. (5)

The equivalent Lippmann condition for electrowetting then reads

cos θ = cos θ0 +
εoεl

2dγLV
V 2 . (6)

In the above, θ0 is the contact angle in the absence of an electric field and ε = εoεl
is the electrolyte permittivity. εV 2/2d is hence the electrocapillary force per unit
length (linear force density) in the solid plane along the contact line, assuming
that the electrode configuration is such that the voltage drop V is mostly across a
dielectric film on the plane. The electric field has changed the vapor-liquid surface
force and hence altered the static contact angle when all three surface forces bal-
ance. Electrowetting, therefore, involves a slightly different configuration in which
the metal electrode is coated with an insulating dielectric, as shown in Figs. 2(b)
and 2(c). These electrode configurations are known in the literature as electrowet-
ting on dielectric (EWOD) or electrowetting on insulator-coated electrodes (EICE)
schemes. We note therefore that although Lee and Kim5 have termed their setup, de-
picted in Fig. 2(b) as continuous electrowetting, it is strictly speaking, more akin to
classical electrocapillarity because it involves a change in the liquid metal–electrolyte
contact angle.

However, by utilizing a parallel line electrode configuration as shown in Fig. 2(d),
in place of the typical dielectric film-coated electrode (EWOD/EICE) configurations
shown in Figs. 2(b) and 2(c), a spontaneous electrowetting film is produced instead
of a static change in the macroscopic contact angle. Jones6 has previously attempted
to distinguish between the two phenomena by defining the former [Fig. 2(d)] and
the height-of-rise experiments [Fig. 2(e)] as dielectropheretic (DEP) actuation and
the latter [Figs. 2(b) and (c)] as electrowetting. DEP force is a normal interfacial
force due to field-induced interfacial polarization.7,8 It has, in fact, the same phys-
ical origin as the electrocapillary phenomenon, although a very different electrode
geometry is required for spontaneous electrowetting. In addition, the Lippmann
condition given by Eq. (3) is generally no longer valid.
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Fig. 2. Typical schematic electrode configurations used in electrocapillary and electrowetting ex-
periments. (a) Electrode configuration demonstrating electrocapillarity, which involves a static
change in the liquid metal–electrolyte contact angle. (b) Dielectric film-coated top and bot-
tom plate electrodes giving rise to static changes in the liquid–solid contact angle. (c) Dielectric
film-coated planar plate electrode giving rise to static changes in the liquid–solid contact angle.
(d) Planar parallel line electrode configuration giving rise to spontaneous and dynamically ad-
vancing thin electrowetting films. (e) Classical height-of-rise experiments (the diagram on the left
shows the rise of an insulating dielectric liquid whereas the diagram on the right shows a mod-
ified setup to allow for the rise of an electrolyte using electrodes coated with a dielectric layer).
(f) Modification of the dielectric film-coated planar plate electrode configuration in (c) to allow
for moving contact lines.

The normal DEP force density on a liquid body experiencing a purely normal
field En can be converted to a Maxwell pressure

pM =
εoεl
2
E2

n . (7)

If both the liquid and ambient phases are conducting and if the field is normal to
the double layer of thickness d that exists at the interface, En = V/d and hence
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the Maxwell pressure given by Eq. (7) becomes εV 2/2d2, where ε = εoεl is the
electrolyte permittivity. On a planar interface, this pressure would contribute to the
linear force density εV 2/2d corresponding to the Lippmann conditions in Eqs. (3)
and (6). Such conditions correspond to the configurations given by Figs. 2(a) and
2(b) in which spontaneous electrowetting does not occur.

As discussed earlier, a dielectric film thickness d can replace the double layer,
such as given by the configuration in Fig. 2(c). This case will be shown in Sec. 2.2 to
also produce the Lippmann condition. We will show subsequently that only a static
change in the macroscopic contact angle arises; spontaneous electrowetting cannot
be achieved with this configuration. Moreover, the liquid above the dielectric film
must be conducting and the electric field must be directed normal to the dielectric
film. There is no surface tension associated with a solid dielectric film, however.
The contact line lying on this dielectric film will thus experience an electrocapillary
effect due to the Maxwell pressure across the dielectric film and hence the dielectric
Maxwell pressure becomes an electrocapillary effect at the contact line.

Nevertheless, there are very few examples where the interface is between two
conducting liquids such that the field is always normal to the interface and that
most of the voltage drop V is across the double layer or across the dielectric film at
the interface. More often, the interfacial Maxwell pressure should generally involve
contributions from both the normal and tangential electric fields such that

pM =
εoεl
2

(E2
n − E2

t ) , (8)

when the permittivity of one phase is negligible.9 The tangential field Et cannot be
described by V/d and hence the connection between electrocapillarity and interfacial
polarization and force becomes tenuous. The field components need to be solved
explicitly for an arbitrary interfacial shape and cannot be approximated in the
way that the normal field is approximated by V/d. Even if the interfacial field
and Maxwell pressure can be resolved, the bulk pressure gradient that drives the
flow in spontaneous electrowetting [Fig. 2(d)] still needs to be determined from
the hydrodynamic equations of motion. This is difficult to do in general, especially
if a generic description of the dynamic contact angle condition is to be derived to
replace its static counterpart in Eq. (6). The hydrodynamic problem, unfortunately,
is simply too complex to solve in general, and is complicated further by the different
drop and electrode geometries (some of which are shown in Fig. 2) that can produce
the requisite pressure gradient.

In spontaneous thin front-running electrowetting films of highly wetting flu-
ids, the tangential Maxwell pressure gradient at the interface is exactly the bulk
Maxwell pressure gradient since there is no normal pressure gradient in the thin
film or long-wave limit. The hydrodynamics therefore becomes simplified and
Yeo and Chang10 were able to derive a generic dynamic contact angle condition
for electrowetting. These complex relationships between static and spontaneous
(dynamic) electrowetting will be reviewed here. The theory introduced here applies
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for both dc and ac electric fields. However, with ac fields, charge relaxation becomes
important, especially when electrolyte is used and the charging/discharging capac-
itance effects of the double layer becomes signficant. Double-layer polarization can
overwhelm dielectric polarization and, depending on the applied frequency of the
ac field, can periodically change the interfacial field from a predominantly normal
field to a screened tangential field. Such charge relaxation and screening phenomena
produce frequency-dependence in the electrowetting dynamics with ac fields. These
effects will not be analyzed here; any dynamic capacitance effects are assumed to
be negligible. In this theory, there is therefore no distinction between dc and ac
fields. The interfacial field is simply stipulated to be either tangentially or normally
dominant.

The most curious distinction between static and spontaneous electrowetting,
however, is the absence of a bulk pressure gradient in the former to drive a wetting
flow. For this to occur, the dependence of the interfacial tension on the electric field
described by the Lippmann equation in Eq. (3) or a more generalized version of it
must be confined to the three-phase contact line. (More precisely, it is the interfacial
tension gradient that suffers this confinement; otherwise, electro-Marangoni effects
could still arise to drive a bulk flow.) At the contact line, the surface forces can
compensate the electrocapillary force, as given by Eq. (6), such that no pressure
gradient exists in the bulk. The reason why the electrocapillary force is confined to
the contact line cannot be argued by the simple physical considerations given above
and will be the focus of this review. However, it is quite clear that for both static
and spontaneous electrowetting, the Lippmann condition in Eq. (3) is invalid when
a generalized Maxwell pressure involving both normal and tangential components
of the electric field, as given by Eq. (8), is involved.

A further distinction should be made between these spontaneous electrowetting
films and dynamic electrowetting, which has important applications in electro-assist
coating technology. The term “dynamic electrowetting” was used by Schneemilch
et al.11 and Blake et al.12 to describe the process in which the dielectric film coating
in the EWOD/EICE configurations is conveyed over a grounded coating roller, as
shown in Fig. 2(f). With this geometry, it should be noted that the electric field does
not contribute to the forces at the contact angle of the front-running film dragged
out by the moving layer since the field is weak at this point. This is because the
EWOD/EICE electrode configuration, which remains much the same in this setup
except for the moving dielectric layer, cannot give rise to spontaneous electrowet-
ting, as will be shown subsequently. The contact angle here evolves dynamically,
solely due to the action of a moving contact line as a result of the shear imposed
by the conveying layer.
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2. Static Electrowetting

2.1. Experimental observations and deviations from the

Lippmann condition

The EWOD/EICE configuration shown in Figs. 2(b) and 2(c) consists of an insu-
lating layer, typically a dielectric material (e.g. polymer substrate) several microns
to millimeters in thickness to eliminate electrolysis, deposited onto a conducting
plate. In cases where the insulating layer is not hydrophobic (e.g. parylene), a very
thin hydrophobic layer such as a fluoropolymer of order nanometers in thickness,
is coated onto the insulator. When an ac or dc electric field is applied across the
plate and a line electrode brought into contact with the liquid drop, a large change
in the macroscopic solid–liquid contact angle of the drop is observed. However, the
observed change in the contact angle is static and proportional to the square of the
applied voltage. As such, there have been numerous efforts to correlate the observed
change in the contact angle to the Lippmann condition in Eq. (6).13,14

Below a critical applied voltage, the experimental contact angle measurements
can be universally described by the Lippmann condition. Above this limiting value,
however, contact line saturation occurs before complete wetting is achieved. Upon
saturation, the results begin to deviate from the behavior described by the Lipp-
mann condition. In addition, near the saturation point, contact angle hysteresis is
observed: the receding contact angle upon decreasing the voltage is observed to be
smaller than the advancing contact angle at increasing voltage. It should be noted
that this hysteresis effect is distinct from the usual contact angle hysteresis that oc-
curs in drops on inclined planes, where the receding contact angle is always greater
than the advancing contact angle.

These saturation effects have been attributed to several factors. One reason for
saturation is due to dielectric breakdown of the atmosphere in the contact line
region,15 although this effect is observed to be more pronounced when dc fields
are employed. This is supported by the results of Vallet et al.15 who showed that
the saturation threshold voltage at which the measurements begin to deviate from
the Lippmann condition coincides closely with the ionization voltage. When the
atmosphere ionizes, the ambient phase no longer acts as an insulator wherein the
charges that accumulate at the contact line exert an outwardly directed Maxwell
force which gives rise to the spreading. As a result, the leakage of charges into
the ambient phase weakens this Maxwell force, thus suppressing the electrowetting
behavior.15

When the ambient medium is water surrounding a dielectric liquid drop, contact
line saturation has been suggested to arise due to charge leakage from the aqueous
phase into the insulating polymer layer at high field intensities.13,16 Janocha et al.13

also suggest that it is the delayed release of the leaked charges from the polymer
surface back into the aqueous phase when the voltage is decreased that is responsible
for the contact angle hysteresis observed.
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Below the saturation threshold voltage, the deviation of the results from the
theoretical predictions has also been attributed to double-layer effects. Quinn et
al.17 proposed that specific ion adsorption at the interface between the aqueous
drop and the insulating polymer surface is responsible for the asymmetric devi-
ation of the contact angle behavior from theory. Deviations occurred at voltages
significantly lower than the saturation threshold voltage only when a positive po-
tential was applied. They therefore suggest that OH− ions in the aqueous solution
specifically adsorp onto the polymer surface when positive voltage is applied, thus
increasing the cation concentration in the aqueous drop phase and hence the charge
accumulation at the contact line which gives rise to the spreading. At a particular
voltage, however, saturation occurs and further ion adsorption ceases, therefore re-
ducing the charging efficiency and hence leading to the deviation of the results from
the Lippmann condition. On the other hand, when negative potentials are applied,
the OH− ions are repelled from the polymer surface and hence the abovementioned
effects are not observed. Their postulation is further supported by experimental
results that demonstrate the deviation to be sensitive to ionic concentration.

2.2. Theoretical framework

Several theories for static electrowetting have been proposed to describe the static
change in the macroscopic liquid–solid contact angle due to the influence of the
electric field. Using variational theory, Digilov18 proposed that the electrowetting
effect is due solely to line tension rather than surface tension effects, the change in
the contact angle arising due to the decrease in line tension as a result of charge
redistribution along the contact line (i.e. the excess free energy at the contact line).
Nevertheless, this has not been widely accepted since there have been no conclusive
evidence to show that the contact angle is dependent on the drop size, which would
have been observed if the theory is true.19 Other theoretical descriptions have been
proposed based on molecular kinetic,14,20 electromechanic21 and static22 analyses.
The electromechanic approach accounts for the equilibrium free energy of Coulom-
bic interactions of a charged drop at the contact line, whereas in the static approach,
equilibrium drop shapes have been generated by a local dominant balance between
the electrostatic and capillary forces at the contact line region. The molecular ki-
netic approach, in contrast, considers the viscous dissipation energy that arises due
to the liquid and solid molecular interactions at the contact line which provides a
mechanism for slip between the liquid and the solid surface, thereby removing the
difficulties associated with the stress singularity at the contact line.23,24

Both Vallet et al.15 and Kang25 have modeled static electrowetting of a drop
on a dielectric film-coated planar plate configuration [Fig. 2(c)] by considering an
infinite planar wedge analysis in the three-phase contact line region, as shown in
Fig. 3. As the electrode is in contact with the drop phase, represented by the
wedge, it is assumed to be a perfect conductor at constant potential and surrounded
by a perfectly insulating ambient medium. Since the dielectric permittivity of the
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polymer layer (with thickness d) is low, the permittivities of the ambient medium
and the substrate are assumed to be equal. In the absence of any free space
charge, the electrostatic potential in the ambient medium φ then obeys the Laplace
equation:

∇2φ = 0 , (9)

subject to the constant potential interface boundary conditions,

φ = 0 on Γ and Γd , (10)

and

φ = V on Γs , (11)

where Γ, Γd and Γs denote the interfaces between the drop and the ambient phase,
the drop and the dielectric layer, and, the dielectric layer and solid interfaces,
respectively. The tangential field here is assumed to be negligible, i.e. Et = 0.
Eqs. (9)–(11) can be solved using the Schwarz–Christoffel transformation15,25:

Z =
∫ w

iπ

(ew′
+ 1)αdw′ + iπ , (12)

where Z = x + iy (i =
√−1) and w = u + iv are the complex coordinates of the

transformed plane with u and v scaled by d/π and V/π, respectively. α = p/q =
1− θ/π, where p and q are positive integers and θ is the contact angle of the drop.
Vallet et al.15 then obtained the following expression for the normal field at the
interface between the drop and the ambient phase En:

En =
V

d

1
(eu − 1)α

. (13)

Adopting a cylindrical coordinate system (r, θ′, 0), where r is the radial distance
from the wedge tip, defined from Eq. (12) by25

r =
d

π

∫ u

0

|eu′ − 1|αdu′, (14)

r = 0 being defined at the wedge tip, we note that for small contact angles, i.e. as
θ → 0, En is singular and blows up as

En ∼ 1

|r|1/2
. (15)

In fact, En is always weakly singular for all θ < π, the singularity being most
significant the smaller the contact angle. Figure 3 schematically shows how this
normal field blows up at the wedge tip where the three-phase contact line is located.
We observe, however, that this weakly singular field only blows up in a very confined
region with a length scale of order d. Since the Maxwell pressure pM ∼ E2

n, the
Maxwell pressure gradient that arises as a result is localized in this confined region
at the contact line and cannot give rise to any bulk flow below the advancing contact
angle.
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Fig. 3. Wedge analysis representing the drop geometry in the contact line region. Black arrows
indicate the direction of the field and light bold arrows indicate the resultant point force and its
components at the contact line. The curve depicts the charge density or the normal field intensity
along the drop interface which is singular at the tip or the three-phase contact line for all θ < π.

The absence of bulk flow into the contact line region can also be observed by
considering the hydrodynamics in this region. Rotating the wedge in Fig. 3 in the
cylindrical coordinate system defined above such that it is symmetric about θ′ = π,
the stream function ψ satisifies the biharmonic equation

∇4ψ = 0 , (16)

with the boundary condition

ψ = 0 , (17)

on Γ and Γd, i.e. on θ′ = ± (π − θ/2), for steady viscous flow of an incompressible
Newtonian fluid. For

ur =
1
r

∂ψ

∂θ′
, and uθ′ = −∂ψ

∂r
, (18)

to remain bounded as r → 0 and for the boundary condition given by Eq. (17) to
hold, the pressure p can be shown from a harmonic expansion of the biharmonic
equation to read16

p ∼ Ã+ B̃r +
∞∑

m=2

(C̃rm−2 + D̃rm) , (19)

where Ã, B̃, C̃ and D̃ are arbitrary constants. At the wedge tip as r → 0, the
hydrodynamic pressure is never singular since m ≥ 2. We therefore note from a
normal stress jump across the isopotential interface where Et = 0,

p = γκ+ pM = γκ+
ε

2
E2

n, (20)

where κ is the mean interfacial curvature and ε is the permittivity of the dielectric
layer, that the behavior of the hydrodynamic pressure given by Eq. (19) as r → 0 is
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incompatible with the interfacial normal stress jump condition involving a singular
Maxwell stress εE2

n/2, in which En blows up in the manner stipulated by Eq. (15).
To carry this point further, the localized region in which the Maxwell pressure

gradient is significant is too small to be resolved in the continuum limit. In order
to obtain the net Maxwell force F , coarse graining or integration to average the
Maxwell stress is then required to obtain a finite pressure or force density25:

F =
ε

2

∫
Γ

E2
ndr . (21)

It then follows from Eqs. (13) and (14) that

F =
εV 2

2πd

∫ ∞

0

du
|eu − 1|α , (22)

which Kang25 shows to result in a net point force F at the contact line:

F =
εV 2

2d
cosec θ , (23)

which can be further decomposed into its horizontal and vertical components

Fx =
εV 2

2d
and Fy =

εV 2

2d
cot θ , (24)

respectively. Due to the planar geometry, Fx is actually the force per unit length of
the contact line. We note that upon balancing the surface forces at the contact line,
the Lippmann condition in Eq. (6) is recovered, the Maxwell pressure correction in
Eq. (24) accounting for the static change in the macroscopic contact angle. Since
the point Maxwell force balances the surface forces exactly, there is no net force
and hence no bulk liquid flow into the contact line region. We have omitted any
Maxwell pressure gradients away from the contact line. Thus, only a static change
in the macroscopic contact angle results; there is no spontaneous electrowetting film
produced in the absence of any bulk fluid motion. The arguments above therefore
show that spontaneous electrowetting films cannot be produced using the dielectric
film coated planar plate electrode (EWOD/EICE) configuration in Fig. 2(c). In
the next section, we will discuss why a spontaneous electrowetting film is produced
using a planar parallel line electrode configuration in Fig. 2(d).

3. Spontaneous Electrowetting

Spontaneous electrowetting films, in which a thin liquid film is pulled out ahead of
the macroscopic spreading drop due to an applied electric field, were first observed
by Jones et al.27 and Ahmed et al.28 using the parallel line electrode configura-
tion shown in Fig. 2(d). This thin electrowetting film advances much faster than
the macroscopic spreading drop itself and should not be confused with the molec-
ular precursor films associated with perfectly wetting or partially wetting liquids
that wet the solid substrate due to molecular forces at the contact line.29 The
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molecular precursor film is microscopic, several angstroms in thickness, whereas
the electrowetting film is macroscopic, with thicknesses of several microns.

Jones et al.27 attribute these spontaneous electrowetting films to dielec-
trophoretic (DEP) actuation of high permittivity, polar dielectric liquids, suggesting
that the spontaneous electrowetting film produced is due to the same mechanism
that results in the bulk upward motion of the liquid between two vertical electrodes
in the classical height-of-rise experiments.6 However, whilst the height-of-rise do ex-
hibit strong frequency dependence when an ac field is applied that is characteristic
and indicative of the DEP mechanism, there has yet to be systematic observations
documented to suggest that spontaneous electrowetting films show the same depen-
dence on frequency. Moreover, the derivation of Jones’ model involves a macroscopic
ponderomotive force that applies on the entire bulk of the liquid. Solution of the
Stokes equation to resolve the hydrodynamics was never carried out. This pondero-
motive force therefore cannot be localized to indicate where it acts on the liquid.25

In addition, the purely electrostatic model falls short of providing any hydrody-
namic mechanism that can capture the dynamic contact angle or the evolution
dynamics of the electrowetting film.

Yeo and Chang,10 on the other hand, have derived a model based on the coupling
between the electrodynamics and hydrodynamics that results in the generation
and propagation of a spontaneous electrowetting film ahead of the macroscopic
spreading drop. This spontaneous electrowetting film is shown to arise due to a
bulk Maxwell pressure gradient in the contact line region. In contrast to the singular
Maxwell stress at the contact line in static electrowetting, as discussed in Sec. 2.2,
the Maxwell stress that arises here is not singular nor is it confined to a localized
region. As a result, this macroscopic Maxwell pressure gradient produces a negative
capillary pressure that induces bulk liquid to flow into the contact line region thus
spontaneously pushing out a thin electrowetting film ahead of the macroscopic drop.

We proceed to present relevant scaling arguments and details of the model10 to
capture the spreading dynamics of a high permittivity dielectric liquid drop (εl �
εg, where εg is the permittivity of the ambient vapor phase). The hydrodynamics
is described by the equations governing mass and momentum conservation for an
incompressible fluid in the long-wave limit in which a slender drop is assumed (see
Fig. 4), i.e. the characteristic drop height H is small compared to the characteristic
streamwise and transverse drop length scales L such that ε ≡ H/L� 1:

∂u

∂x
+
∂v

∂y
= 0 ; (25)

∂p

∂x
= µ

∂2u

∂z2
. (26)

Here, u and v are the velocities in the streamwise (x-coordinate) and vertical (z-
coordinate) directions, respectively; p and µ, on the other hand, are the fluid pres-
sure and viscosity, respectively. The velocity in the transverse (y-coordinate) direc-
tion is negligible since the side contact lines of the electrowetting film is assumed
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contact line region in which the drop or the capillary ridge of the electrowetting film resembles
a wedge-like geometry. A cross-section ABCD of this wedge and the transverse field lines arising
due to the line electrodes, which resemble two point charges in this plane, are also shown.

to be stationary. Furthermore, the electrowetting film is assumed to be sufficiently
flat such that the film thickness h does not have any y-dependence.

The usual no-slip boundary condition applies on the solid substrate Γs where
z = 0:

u = v = 0 on Γs . (27)

At the air–drop interface Γ where z = h, the following tangential stress balance,
normal stress jump and kinematic boundary conditions apply:

∂u

∂z
= 0 on Γ , (28)

p = γ
∂2h

∂x2
+ pM on Γ , (29)

and
∂h

∂t
+

∂

∂x
(hū) = 0 on Γ , (30)

where ū is the cross-sectional mean velocity across the film height, and Etl
is the

tangential component of the liquid phase electric field. We note from the interfacial
jump conditions for the electric field in the absence of free space charge,

εlEnl
= εgEng on Γ, (31)

and

Etg = Etl
on Γ, (32)
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that the liquid phase normal field component Enl
as well as the vapor phase normal

and tangential field components, Eng and Etg , respectively, are negligible in the
limit εl � εg. Therefore, only Etl

appears in Eq. (29), which provides the coupling
between the hydrodynamic and electrodynamic mechanisms.

To obtain Etl
, the following electrodynamic model was adopted, noting that

the transverse y-dependence, which was absent in the hydrodynamic model due to
the flatness of the electrowetting film, becomes dominant due to the polarity of
the electrodes. The geometry of the system is shown by the cross-section ABCD

in the y–z plane in the inset of Fig. 4. In this plane, the two line electrodes can
be represented by two point charges on the solid substrate Γs. Since the free space
charge due to capacitance storage of charges in the double layer is assumed to
be negligible, the electrostatic potential in the liquid phase φ obeys the Laplace
equation:

∂2φ

∂y2
+
∂2φ

∂z2
= 0 . (33)

The boundary condition at the solid substrate Γs is given by the potential of the
electrodes:

φ = ±V at y = ∓Re/2 , (34)

where Re is the electrode separation, and the boundary condition at the interface
Γ is given by the interfacial jump condition in Eq. (31) in the limit εl � εg:

Enl
=
∂φ

∂z
= 0 . (35)

Equation (33) was solved, subject to the boundary conditions in Eqs. (34) and
(35) using the method of images.10 For simplicity, the solid substrate was shifted
downwards to the plane z = −h; the interface Γ is then located at z = 0. To account
for the boundary condition in Eq. (35), two image charges of the same signs as the
point electrode charges at z = −h are placed in the plane z = h. A combination of
the field arising from these four point charges then allows the construction of the
Green’s function that represents the liquid electrostatic potential. Differentiating
this potential with respect to y subsequently gives rise to an expression for the
tangential electric field. Evaluating this at the interface z = 0 and subsequently ex-
panding in the limit h/Re → 0 results in the following expression for the tangential
liquid field at the interface:10

Etl
=

4V
πRe

(
1 − 8h2

R2
e

)
. (36)

As the normal field Enl
vanishes from Eq. (35), the interfacial Maxwell pressure

given by Eq. (8) is then dominated by the tangential field in Eq. (36). This tangential
liquid electric field is therefore coupled to the hydrodynamics via the film thickness
h. Substituting this into Eq. (29) and noting that h = (xf − x) tan θf , where xf is
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figuration. The insets show enlargements of the precursor film region where viscous and capillary
forces are dominant and the capillary ridge region where the Maxwell and capillary forces are dom-
inant. The two regions are characterized by a static contact angle θf and an apparent dynamic
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the position of the three-phase contact line and θf is the contact angle or slope of
the capillary ridge (Fig. 5), we obtain

p = γ
∂2h

∂x2
− 8εoεlV 2

π2R2
e

[
1 − 16 tan2 θf

R2
e

(xf − x)2
]
, (37)

thus indicating that the tangential field is maximum at the three-phase contact line
where h = 0, and decays linearly along the interface away from the contact line at
x = xf . Unlike the static electrowetting case in Sec. 2.2, the field is not singular
at the contact line and the Maxwell pressure gradient arising from the linearly
decaying Maxwell stress is macroscopic. It is this macroscopic Maxwell pressure
gradient that is responsible for a negative capillary pressure in the contact line
region that sucks liquid from the bulk into the vicinity of the tip, thus pushing out
a thin spontaneous electrowetting film ahead of the macroscopic spreading drop.

The solid lines depicting the interface height profiles in Fig. 6(a) show the for-
mation of the spontaneous electrowetting film and its propagation ahead of the
macroscopic drop. This electrowetting film is absent when there is no electric field
present, as shown by the dashed lines in Fig. 6(a), thus suggesting that it is the
Maxwell stress, represented by the second term on the right-hand side of Eq. (37)
that is responsible for the spontaneous electrowetting film. More specifically, the
Maxwell Bond number

B =
8εoεlV 2L̃

επ2γR2
e

(38)

has a critical value of 10 below which no electrowetting film is formed.10
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Fig. 6. Transient drop and film evolution with Maxwell Bond number B = 100. (a) Interface
profiles for five equal time steps up to t/T = 0.5, where T = L̃/U is the characteristic time scale;
U = ε3γ/µ is the characteristic system velocity. The dotted line shows the initial profile at t/T = 0
and the dashed lines indicate the spreading drop due to pure capillary motion when no electric
field is applied (B = 0) at t/T = 1, 10. (b) Self-similar behavior of the advancing electrowetting
film is shown with the collapse of the interface profiles with time by replotting the data in (a) using
a similarity transform. (c) Position of the advancing front of the drop radius or the electrowetting
film xf/L with time.

At the three-phase contact line, a dominant force balance is given by the viscous
and Maxwell stresses (Fig. 5):

µŨ

H̃2
∼ pM

L̃
, (39)

where H̃ and L̃ are the characteristic height and length scales of the electrowetting
film (see Fig. 5), and, Ũ ∼ L̃/T ≡ γ/µ is its characteristic velocity; pM = εoεlE

2
tl
/2

is the Maxwell stress. It is possible to assume, consistent with the numerical results
in Yeo and Chang,10 that the slope of the capillary ridge at the advancing front of
the electrowetting film θf and the volume per unit width of the electrowetting film

V0 ∼ H̃L̃ , (40)

are constant. From Eq. (37), the Maxwell pressure gradient in Eq. (39) for constant
θf then scales as

∂pM

∂x
∼ pM

L̃
∼ εγB tan2 θf

R2
e

. (41)

It then follows from Eqs. (39)–(41) that

L̃ ∼
(
εγB tan2 θfV

2
0 T

µR2
e

)1/3

. (42)
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Given that θf is assumed constant, the Maxwell pressure gradient given by Eq. (41)
is constant for a specific electrode separation Re and hence Eq. (42) rendered di-
mensionless has the following scaling relation for constant V0:

x ∼ t1/3 , (43)

thus suggesting that the electrowetting film advances in a self-similar manner for
Maxwell-dominated spreading. This is confirmed by the results in Fig. 6(b) in which
the evolution interfacial height profiles in Fig. 6(a) are rescaled using the similarity
scaling in Eq. (43) above; the resulting transformed profiles are shown to collapse
in time t. A plot of the position of the electrowetting film advancing front xf with
time also shows that the front progresses as t1/3, much faster than the t1/7 pure
capillary spreading behavior when no electrical stresses are present.

From a detailed similarity analysis of the constant volume electrowetting film,
Yeo and Chang10 have derived a prediction for the position of the advancing film
as a function of time:

xf = 0.4
[
εoεlV

2Ret

µ

]1/3

, (44)

independent of the dimensions and dynamics of the bulk macroscopic drop. In terms
of an electrocapillary time scale,

Tcap ≡ µLcap

γ
≡ π2µRe

8εoεlV 2
, (45)

where Lcap ≡ π2γR2
e/8εoεlV 2 is the electrocapillary length scale (see Fig. 5),

Eq. (44) can be expressed as

xf = 0.43Re

(
t

Tcap

)1/3

. (46)

Figure 7 shows a comparison between the prediction given by Eq. (46) with data
from the spontaneous electrowetting experiments of Ahmed et al.28 for deionized
water in which plane parallel line electrodes [Fig. 2(d)] were adopted. The close
agreement obtained without the need for any empirical fitting parameters thus
inspires confidence in the proposed mechanism. We note that the t1/3 self-similar
Maxwell-dominated spreading is analogous to the self-similar gravity-driven fronts
first observed by Huppert.30 This is because the Maxwell pressure gradient, given by
Eq. (41), for a constant capillary ridge slope θf , acts as a constant body force term
similar to gravity. Akin to gravitational spreading, Maxwell-dominated spreading
is not dependent on capillarity or wettability. However, in contrast to gravitational
spreading, Maxwell-dominated spreading does not depend on the drop volume —
the macroscopic Maxwell pressure is due to interfacial dielectric polarization near
the contact line and is hence independent of the drop size.

Yeo and Chang10 have also derived a dynamic contact angle condition for the
bulk macroscopic drop. In the short initial transient before the formation of the
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Fig. 7. Position of the advancing electrowetting film front xf as a function of time t showing the
close agreement between the model prediction (solid line) and the experimental data of Ahmed
et al.28 for deionized water (µ = 1 cp, εl = 78, εg = 1, V = 200 V and Re = 40 µm).

spontaneous thin electrowetting, the macroscopic drop spreading dynamics is dom-
inated by pure capillary action driven by molecular wetting. Neglecting the Maxwell
stress, the matching region in the vicinity of the three-phase contact line, as shown
in Fig. 5, can be described by a dominant balance between the viscous and capil-
lary stresses. In the locally quasi-steady limit with respect to a moving coordinate
frame translating at a constant dimensionless speed Ca ≡ µU/γ, where U is the
characteristic velocity of the contact line, the spreading dynamics of the drop in
the limit L̂/L� 1 is governed by the Bretherton equation:31

3Ca
∂h

∂x
=

∂

∂x

(
h3 ∂

3h

∂x3

)
, (47)

where h is the dimensionless film thickness, scaled by H ; the x- and z-coordinates
are scaled by the macroscopic drop length scales, L and H , respectively. It can then
be shown10,32,33 that the film height, in dimensional form, has a weak logarithmic
asymptotic behavior away from the contact line:

h ∼ −xCa1/3

(
9 log

L̂

L

)1/3

. (48)

The dynamic contact angle condition for the spreading macroscopic drop can
then be derived as

tan θd ∼ −∂h
∂x

∼
(
−9 log

L̂

L

)1/3

Ca1/3, (49)

where θd is the apparent contact angle of the macroscopic drop. L̂/L � 1 is a
dimensionless molecular length scale, equivalent to the molecular precursor film
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thickness,

L̂

L
∼ b

H
, (50)

the Hamaker constant,

L̂

L
∼ 1
L

√
|α|
6πγ

, (51)

or the slip coefficient,

L̂

L
∼ λ

1/(1+i)
i , (52)

depending on the mechanism (molecular precursor film, disjoining pressure or slip
condition) adopted to remove the contact line singularity in perfectly or partially
wetting fluids.10 In the above, b is the molecular precursor film thickness, α the
Hamaker constant and λi = λhi (i = 0, 1) the slip coefficient; λ is the film thick-
ness dependent slip length, the dependence for which is given by the exponent i
and corresponds to the different slip models historically used.34 We note, however,
that the x log x behavior suggests that the macroscopic drop spreading dynam-
ics is universal and independent of the intermolecular interactions at the contact
line that give rise to slip or a microscopic molecular precursor film to leading order.
Equation (49) also shows that local quasi-steady spreading of a perfectly or partially
wetting fluid at constant speed Ca driven by viscous and capillary forces always
gives rise to a interfacial shape with a slope that scales as Ca1/3, in accordance to
Tanner’s law.35 Thus, for spontaneous electrowetting films the static change in the
macroscopic contact angle given by the Lippmann condition in Eq. (6) is no longer
relevant. Instead, the front of the advancing electrowetting film can be character-
ized by a constant capillary ridge slope θf and an apparent dynamic macroscopic
contact angle θd, the latter defined by Eq. (49) from a dominant balance between
viscous and capillary stresses at the three-phase contact line region.

4. Conclusion

The manipulation of drops and films using electric fields exhibits rich and var-
ied behavior depending on the nature and geometry of the system. As a result,
there have often been some overlap and confusion in the literature with regards
to the terminology used or the mechanisms ascribed to various observations. We
have therefore sought to clarify the different phenomena by re-emphasizing and
delineating the classical physical laws that govern electrocapillary phenomena and
electrowetting. In addition, we have also sought to distinguish static electrowetting
from spontaneous electrowetting. The latter occurs when a bulk Maxwell pressure
gradient exists to drive a flow towards the contact line. While bulk forces can only
be balanced by viscous dissipation due to a bulk flow, microscopic forces localized
at the contact line can be cancelled by opposing surface forces. This occurs for the
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Table 1. Comparisons between static and spontaneous electrowetting.

Static Electrowetting Spontaneous Electrowetting

Dielectric film-coated plate electrodes Planar parallel line electrodes

Normal vapor phase electric field Tangential liquid phase electric field

Singular electric field Non-singular electric field

• Confined to small region ∼ d • Vanishes when h ∼ Re

Localized Maxwell pressure gradient Macroscopic Maxwell pressure gradient

• Point force at contact line • Constant body force in contact line region

• Balances surface forces (no net force) • No balance with surface forces

• No flow into contact line region • Macroscopic bulk flow into contact line region

No spontaneous electrowetting film Spontaneous electrowetting film

• Static change in macroscopic contact angle • Analogous to self-similar gravity spreading

• Consistent with Lippmann condition • Constant electrowetting film capillary ridge slope

former electrowetting phenomenon, where a static contact angle dependence on the
field arises.

The main distinctions between static and spontaneous electrowetting are sum-
marized in Table 1. In particular, the weakly singular vapor phase electric field
that arises when dielectric film-coated planar plate electrodes are used, blow up
within a confined region which has a length scale of the same order as the dielectric
film thickness d. The Maxwell pressure gradient that arises is therefore localized
and microscopic. Integrating the microscopic Maxwell pressure gives rise to a point
force at the contact line, which balances the surface forces exactly such that there
is no net force and hence no bulk liquid motion. As a result, only a static change
in the macroscopic contact angle arises due to the Maxwell pressure, as described
by the Lippmann condition; no spontaneous electrowetting films occur in this case.
On the other hand, if planar parallel line electrodes are employed, the resultant
tangential liquid electric field at the contact line is not singular and decays linearly
away from the contact line along the interface. The Maxwell pressure gradient that
arises is therefore macroscopic and extends into the bulk region. The bulk forces
can no longer be balanced by the surface forces at the contact line and bulk liquid
motion is induced by the negative capillary pressure, thus pushing out a thin spon-
taneous electrowetting film that advances much faster than the macroscopic drop.
For an electrowetting film with constant volume and constant capillary ridge slope,
we show that the front of this electrowetting film advances in a self-similar manner
as t1/3, analogous to gravity spreading films.
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