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When a viscous liquid is displaced by a long air bubble in a capillary, it leaves behind 
a wetting liquid film. A lubrication analysis by Bretherton (1961), which assumes a 
mobile surface, underpredicts the film thickness at low bubble speeds. In this 
investigation, the Marangoni effect of small amounts of impurities is shown to be 
capable of explaining this discrepancy. We carry out an asymptotic analysis for 
different convective, diffusive and kinetic timescales and show that, if transport in 
the film is mass-transfer limited such that a bulk concentration gradient exists in the 
film, the film thickness increases by a maximum factor of 4i over Bretherton’s mobile 
result at low bubble speeds. Moreover, at  large bubble speeds, Bretherton’s mobile 
prediction is approached for all ranges of timescales. For intermediate bubble speeds, 
the film thickness varies with respect to the bubble speed with an exponent smaller 
than of the mobile theory. These results are favourably compared to literature data 
on film thickness. 

1. Introduction 
The displacement of a viscous wetting fluid by an inviscid fluid in circular 

capillaries and between closely spaced flat plates has been studied extensively both 
theoretically and experimentally. Fairbrother & Stubbs (1935) noted that a wetting 
film is deposited on the wall of a capillary as a wetting viscous fluid is displaced by 
a gas bubble. Dimensional analysis indicates that the wetting film thickness at  low 
bubble speeds is only a function of capillary number Ca = p U / y  where p is the 
wetting phase viscosity, U the bubble velocity, and y the surface tension. The 
capillary number is the ratio of viscous to capillary effects. The experimental results 
of Fairbrother & Stubbs for air displacing water in circular tubes indicated that, in 
the range of Cu of 7.5 x to 0.014, the wetting film thickness was proportional to 
Cai. Subsequent experimental work of Taylor (1961) confirmed this finding and 
extended it to higher Ca. For very large Ca, Taylor found that the wetting film 
thickness no longer followed the t power law but asymptotically approached a 
constant value near 0.55 of the capillary radius. Wetting film thickness in an 
air-water system measured experimentally with a technique based on electrical 
conductivity by Marchessault & Mason (1960) for capillary numbers from 
to approximately were somewhat larger than those predicted by the 
Fairbro ther-S tubbs correlation. 

Bretherton (1961) first used elements of asymptotic matching to predict wetting 
film thickness and the pressure drop across a long bubble moving in a circular 
capillary. The approach of Bretherton was similar to that used by Landau & Levich 
(1942) for the coating of a flat plate by the withdrawal of the plate from a stagnant 
pool of liquid. A set of equations valid in the thin film region obtained through 



304 J .  Ratulowski and H.-C. Chung 

lubrication arguments was matched to a region of static curvature a t  the front of the 
bubble. In  the limit of low capillary number, the theory predicted that the wetting 
film thickness was proportional to Cat. Bretherton measured film thickness for the 
displacement of two polar organic liquids, aniline and benzene, over a large range of 
capillary numbers, lom6 to by measuring the decrease in volume of the liquid 
slug preceding the bubble front. The change in volume of the slug could be directly 
related to the film thickness by assuming that a stagnant film was deposited. Good 
agreement between theory and experiment was found above Ca of However, 
below the measured film thickness was significantly larger than the theoretical 
predictions (see figure 8). Because an asymptotic theory for low Ca should become 
better as Ca decreases, this surprising experimental result placed the validity of the 
model in doubt. Bretherton offered several explanations for the discrepancy between 
theory and experiment. These include surface roughness, instability of the meniscus, 
intermolecular forces, and adsorbed impurities. 

Park & Homsy (1984) used formal perturbation techniques to  confirm and extend 
the Bretherton results for the displacement of a viscous fluid between flat plates. 
Goldsmith &, Mason (1963) first considered both theoretically and experimentally 
drops with non-zero dispersed phase viscosity. However, as we shall demonstrate 
subsequently, they incorrectly proposed that the effect of surfactants could be 
modelled simply with a finite shear at the bubble interface. Teletzke (1983) and 
Schwartz, Princen & Kiss (1986) formally modified the Bretherton approach to 
include the effects of a finite dispersed phase viscosity and intermolecular forces 
(London dispersion and electrostatic repulsion). Neither effect could explain the 
magnitude of the deviation between experiment and theory at low Ca. The viscosity 
of gas is certainly much smaller (by a factor of 50) than that of the liquid and is not 
a function of Ca. Consequently, the assumption of an inviscid bubble is valid and the 
inclusion of a finite dispersed phase viscosity cannot explain why the deviation 
occurs only at low Ca. I n  the case of intermolecular forces, calculations carried out 
by Teletzke (1983) for reasonable estimates of the London dispersion forces indicate 
that the film thickness in the Bretherton experiments is at least an order of 
magnitude larger than the thickness at which intermolecular forces should become 
significant. Recently, Chen (1986) has experimentally measured the film thickness of 
long and short bubbles in very small circular capillaries with a technique similar to 
Taylor’s measurements. Again, a significant deviation at low Ca from the Bretherton 
theory was observed. Chen attributed this effect to  surface roughness and supported 
his assumption with photographs of the capillary walls. I n  Chen’s experiments, wall 
roughness can indeed explain the low Cu behaviour of the film thickness. However, 
this is not true of the original Bretherton experiments. Bretherton observed that 
different wetting liquids had different low Ca behaviour (see figure 8). If surface 
roughness caused the film thickness to approach a constant value as Ca decreased, 
the asymptotic value should be independent of the wetting liquid used in the 
experiments. Schwartz et al. (1986) have repeated Bretherton’s experiments for long 
and short bubbles. Their measured film thickness for long bubbles is more closely 
modelled by the Fairbrother-Stubbs correlation than the Bretherton theory. The 
measured film thickness is always larger than the Bretherton prediction and the 
deviation is more pronounced at  lower Ca. Schwartz et al. reject Chen’s argument 
that surface roughness is the cause of their observed film thickness. Because the 
capillaries in their experiments were larger than those in Chen’s experiments, the 
measured film thicknesses were larger. Consequently, the size of the surface 
irregularities required to explain the deviation of the measured film thickness from 
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the Bretherton result must also be proportionally larger. Such large surface 
irregularities were not found. Schwartz et al.’s arguments are supported by the data 
presented in figure 8. Only Chen’s data exhibit the unusual constant tail a t  relatively 
large Ca. 

Both Bretherton and Teletzke have suggested that the cause of the discrepancy 
between theory and experiment is a small amount of adsorbed surface-active 
contaminants on the interface. Bretherton terms this effect surface hardening and 
likens it to the retarding effect of adsorbed surfactants on the motion of spherical 
drops and bubbles in an infinite viscous medium. This problem has been studied by 
several investigators (Levich 1962 ; Davis & Acrivos 1966 ; Sadhal & Johnson 1983). 
Here, the surfactant is swept to the back of an advancing bubble and accumulates 
near the rear. I n  regions of low surfactant concentration the interface is mobile. That 
is, the stress-free condition is approximately obeyed. However, in regions of high 
surfactant concentration, the interface becomes nearly rigid and is more closely 
described by a no-slip condition. Bretherton conjectured that thc maximum 
retarding effect of the surfactants would be to cause the entire interface to behave 
rigidly. Integration of a new set of lubrication equations in which the no-slip 
condition is imposed everywhere in the transition region resulted in an increase in 
film thickness by a constant factor of 2;. This increase in theoretical film thickness 
was not sufficient to explain the low Cu benzcne film thickness and did not provide 
a reason for the apparent Cu dependence of the error in the asymptotic theory. In 
fact, a long moving rigid bubble with constant surface tension cannot lay down a flat 
film. A flat and rigid interface translating a t  a constant velocity induces a linear 
Couette flow field within the film. This implies that a finite net tangential shear exists 
on the interface which violates the jump stress balance on a free surface. This can 
only be balanced by a gradient in the surface tension which is not included in the 
rigid bubble model of Bretherton (1961) and Goldsmith & Mason (1963). If the 
tangential stress boundary condition is omitted, the interface cannot be viewed as a 
free surface and the interface profile should then be specified and not computed. In 
fact, in the studies of spherical drops and bubbles in an infinite fluid (Levich 1962; 
Davis & Acrivos 1966; Sadhal & Johnson 1983), the free surface is specified to be a 
sphere and the net drag force is then computed. In  the present problem, the film 
profile is the solution sought and the tangential stress balance must be satisfied. 
Recently, Herbolzheimer (1987) reported a simplc limiting model to overcome this 
shortcoming of the constant-shear rigid bubble model. In his model, the rigid bubble 
interface is completely stationary in the laboratory frame such that there is no flow 
(or shear) a t  all in the flat film. He showed that the film thickness is increased by a 
maximum factor of 4;. This indeed bounds most data although, since the correction 
is independent of Ca, this limiting model is incapable of explaining the smaller 
exponent of the film thickness dependence on Ca, such as the 0.5 of Fairbrother & 
Stubbs’ correlation instead of $ of Bretherton’s theory and it does not explain 
why Bretherton’s mobile result is approached a t  high Cu in all experiments. 
Herbolzheimer’s model is our stationary-surface model in figure 3 which we 
derived independently and reported at the same meeting (Chang & Ratulowski 
1987). 

If the effect of surface-active contaminant is to be correctly assessed, the variation 
of surface tension along the interface must be modelled. Surface tension is a function 
of surfactant conccntration at the interface, owing to the Marangoni effect (Lcvich 
1962). Consequently, when a bubble moves and gradients in surfactant result from 
transport of surfactant along the interface, there exists a gradient in surface tension 
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which balances the tangential shear a t  the interface. The ability of the interface to 
support a tangential stress in the surfactant system is the surface hardening 
phenomenon described by Bretherton. However, the degree of surface hardening is 
a function not only of the relation between surface tension and surfactant 
concentration but also of the transport of surfactants both in the bulk phase and on 
the interface. Teletzke (1983) and Schwartz et al. (1986) have modified the original 
Bretherton lubrication equation by including the surface tension gradient via the 
tangential stress balance a t  the interface. However, no attempt was made to model 
this term by addressing the surfactant transport problem. In both cases, a constant 
value was assigned to the gradient. Schwartz et al. argued that the film thickness 
measured by the Bretherton method would actually be smaller than in a pure system 
because of liquid flow in the thin film induced by the non-zero surface traction. The 
opposite was observed experimentally. Therefore, the surfactant effect was 
discounted by Schwartz et al. as the cause of the error in Bretherton’s theory. In  their 
model, surface tension is assumed to  be higher at the nose of the bubble and lower 
in the flat-film region. While this is consistent with the model for bubbles moving in 
an infinite viscous fluid (Levich 1962; Davis & Acrivos 1966), we shall show that the 
opposite is true for the present problem of bubbles in capillaries under certain 
limiting conditions. Hirasaki & Lawson (1985) have attempted to  include the 
interfacial transport of surfactant in a solution of the lubrication equations in the 
uniform film region. The bulk phase surfactant concentration was assumed to be 
constant, thus removing the need to  solve the bulk phase transport problem. In their 
analysis, the film thickness was assumed to be a constant and was not obtained 
through a matching to the front cap region. Instead, i t  was left as a parameter to be 
fitted empirically. Ginley & Radke (1989) have improved Hirasaki & Lawson’s model 
by including surface transport of the surfactants while still neglecting all 
concentration gradients in the bulk. With their formulation, the film profile can be 
determined. They find by perturbing about infinite adsorption rate that there is a 
decrease in the film thickness due to surface tension gradient. Ginley & Radke’s 
model is our bulk equilibrium model in figure 3. We shall show that an increase in film 
thickness occurs if surfactant transport in the bulk is mass-transfer limited such that 
a Concentration gradient exists. 

In this paper, we carry out an asymptotic analysis of the transport of surfactants 
in both the bulk liquid and the interface. We show that, to explain the increased film 
thickness due to the Marangoni effect of trace impurities, a concentration gradient 
must exist in the bulk liquid to overcome the negative effects of surface convection. 
Through the adsorption kinetics, this bulk gradient causes the surface concentration 
to decrease downstream from the bubble cap to the thin film. The surface tension in 
the film is then larger than its value at the cap and a surface traction in the direction 
of the film is created (see figure 1). This, in turn, induces more liquid to  flow into the 
film than the mobile case, thus producing a thicker film. At large Ca, however, the 
horizontal velocity becomes so large that the surface concentration gradient does not 
cause enough traction to  yield a noticeable alteration of the flow field. Hence, the 
observed discrepancy of the film thickness at low Ca is because the Marangoni effect 
is most significant in that limit. I n  the next section, we present the full governing 
equations for momentum and surfactant transport for this problem. A perturbation 
analysis of the equation of motion is presented in 93. In  $4, a lubrication analysis of 
the bulk and interface surfactant transport equations is carried out for various 
convective, diffusive and kinetic timescales. It is shown that, if bulk concentration 
gradient exists and adsorption kinetics is fast, the traction is negative throughout 
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FIGURE 1.  Schematic of an air bubble travelling in the positive %-direction in a circular capillary. 
Depicted is the negative traction caused by a decreasing surface concentration into the film in our 
convective-equilibrium model. 

the film and the maximum correction at low Ca is 4;. In $5, two of the models with 
bulk gradient are solved numerically to obtain the film thickness and the pressure 
drop across the frong cap. These are favourably compared to experimental data. 

2. Governing equations 
Consider a semi-infinite bubble moving a t  a constant velocity U in a circular 

capillary of radius R as shown in figure 1. We employ a coordinate system moving 
at the same speed U relative to the stationary laboratory frame in the axial direction 
x. The bubble interface is stationary in this coordinate with a spherical cap at  the 
bubble front and a flat film region at  x + - 00. We shall not consider the back half 
of the bubble since the film thickness can be obtained from just the front half 
(Bretherton 1961 ; Lu & Chang 1988; Ratulowski & Chang 1989). The upstream far 
field (x+ C O )  bulk concentration of the surfactant is C,. Since the surface tension 
varies along the interface S, we choose the reference surface tension yo to be the value 
at the bubble tip. Using R, U,  C,, RC, and y,/R to scale length, velocity, bulk 
concentration, interfacial concentration and pressure, the dimensionless momentum 
and mass transport equations become 

CaV2u = V p ,  (2.1) 

V * u  = 0, (2.2) 

1 
Pe 

v * (CU) = - v2c, 

1 
V,.(ru') = ---n.VC on S ,  

Pe 

(2.3) 

(2.4) 

where inertial, buoyancy and surface diffusion terms have been neglected. (In typical 
experiments with air and water in capillaries of approximately 1 mm diameter, the 
Reynolds number is less than 1.0 x lo-* and the Bond number ApR2/y, is 
approximately 5.0 x lo-*.) The bulk and surface concentrations are denoted by C and 
r, respectively. The operator Q, is the surface gradient on the interface S. The 
velocity field ua is the interfacial velocity and n is the unit normal vector of the 
interface 8. The dimensionless parameters are the capillary number Cu = yU/ yo and 
PBclet number Pe = UR/D where D is the bulk diffusivity. 
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The radial boundary conditions for the momentum transport equations are the no- 
slip condition on the capillary wall W 

u = - e ,  on W ,  (2.5) 

(2.6) 

t - P = O  on 8. (2.7) 

The vector P is P = V,y+Kyn+pn-Car-n, (2.8) 

where e, is the unit vector in the axial direction and the tangential and normal stress 
balances on X, 

n . P = O  on S ,  

where y is the dimensionless surface tension scaled with respect to  yo, K is the 
dimensionless surface curvature scaled by 1/R and r is the dimensionless stress 
tensor. I n  (2.6) and (2.7), the gas pressure is chosen to  be zero and the gas phase is 
inviscid. The remaining interfacial condition is the kinematic condition which 
requires that u . n = O  on 8. 

The momentum boundary conditions in the axial x-direction are that a Poiseuille 
profile exists at x = + 00 and a flat profile, corresponding to  a stationary film in 
laboratory coordinates, exists in the flat-film region x = - 00, 

u- t -e ,  as x+--co. (2.10) 

This limiting velocity boundary condition must be complemented by compatible 
limiting conditions for the interface and bulk surfactant concentrations since a flat 
velocity profile can only exist in a flat film if surface tension gradient, which is caused 
by surfactant concentration gradient, is absent. I n  a stationary film, both the 
interface and bulk surfactants are not convected and the only resistance arises from 
the rate of adsorption/desorption onto the interface. (As we shall show in $4, radial 
diffusion is extremely rapid in the thin film and is hence not a rate-limiting step.) 
This then requires the flat film region to be sufficiently long such that the surfactants 
have sufficient time to adsorb and equilibrate as they are swept into the flat-film 
region. We note that Schwartz et al. (1986) have discovered experimentally that a t  
Ca = 3.0 x low5 short bubbles with bubble lengths shorter than 20 capillary radii 
show behaviour approaching the Bretherton theory for mobile interfaces while the 
positive correction scrutinized here only exists for long bubbles. Short bubbles do not 
provide the surfactants with sufficient length to adsorb and equilibrate and hence 
violate the boundary conditions imposed here for semi-infinite bubbles. A simple 
estimate yields that the dimensionless bubble length scaled by the capillary radius 
must be greatly in excess of the dimensionless adsorption parameter, the Stanton 
number St = k / U ,  for boundary condition (2.10) to be valid. Some values of StCa = 
k,u/y, have been measured by Whitaker & Pierson (1976) and Hedge & Slattery to 
be StCa z lop6. Although their conditions are different from the experiments of 
Schwartz et al. (1986), it is still very plausible that, a t  low Ca, the semi-infinite 
problem studied here is only valid when the bubble length is many times the capillary 
radius. In  a separate paper (Ratulowski & Chang 1989), we have studied the 
transport of finite bubbles in capillaries in the absence of Marangoni effects. 

For the bulk surfactant transport equations (2.3), the transverse radial boundary 
conditions are 

(2.9) 

n + V C = O  on W ,  (2.11) 

(2.12) 
1 

-n .VC=- j  on S ,  
Ye 



Marangoni effects on long gas bubbles in capillaries 

Cap 
Capillary region 

axis 1 
---- ~ 

309 

Flat film 
region 

Transition 
region for mass balance 

FIQIJRE 2. Local Cartesian and arciength-angle coordinates travelling at the same speed as the 
bubble. The control volume shown extends to x = co where the bulk concentration is unity and 
ends to the left a t  an arbitrary position with liquid flow area 52. It is bounded by the interface S ,  
the capillary wall W and the capillary axis in the other directions. 

where j is the dimensionless flux (scaled by UC,) to the interface. We shall assume a 
linear adsorption kinetics of the form 

j = St(C- f ' /K) ,  (2.13) 

where the Stanton number St = k / U  is the adsorption rate constant k scaled by the 
bubble velocity U and K is the dimensionless adsorption equilibrium constant with 
proper scaling by the capillary radius R. The axial boundary conditions for C are, 
assuming the bulk surfactants have equilibrated at x = - co , 

C + 1  as x++co, (2.14) 

as x+--oo. 
ac 
ax - + O  (2.15) 

Equation (2.15) indicates that C approaches an unknown equilibrium value C, in the 
flat-film region. This is consistent with the physical model that this uniform film 
region is stagnant in the fixed laboratory coordinate and an equilibrium exists 
between the interfacial and bulk surfactants, 

r,-tKC, as x+--oo. (2.16) 

An additional equation is provided by an overall mass balance as shown in figure 
2. Applying the Gauss divergence theorem to the bulk transport equation in the 
closed volume shown in figure 2 and imposing boundary conditions (2.11) and (2.14), 
one obtains for every arbitrary transverse cross-section 52, 

(2.17) 

where u is the axial velocity component and q is the liquid axial flow rate relative to 
the moving coordinate in figure 1 

r 
q =  J u-n.  

n 
(2.18) 
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The quantity q is a constant at every axial position and i t  is a negativc number since 
the net flow is in the negative x-direction in our moving coordinate. A constant q, 
however, does not imply a constant flow rate q‘ in the fixed laboratory frame. I n  fact, 

q’ = q+CaA,  (2.19) the two are related by 

where A is the area of liquid flow cross-section 0. The quantity A varies with the 
axial coordinate x. A similar application of the divcrgence theorcm to the interfacial 
transport equation (2.4) in the same closed volume yields 

which when combined with (2.16) provides the desired condition for r, 
(2.20) 

(2.21) 

a t  every x position. 
The only remaining equation is the relationship between the surface tension y and 

the interfacial surfactant concentration r. This equation of state is implicitly defined 
as Y ( U -  

3. Perturbation analysis of the equations of motion 
The govcrning equations with the free surface S presented in the previous section 

are too complicated for numerical solution. Numerical attempts on the much simpler 
surfactant-free problem by finite-difference (Reinelt & Saffman 1985), finite-element 
(Shen & Udell 1985) and boundary integral (Lu & Chang 1988) techniques have only 
succeeded in resolving the thin film down to Ca = 0.5 x lop3 (Lu & Chang 1988). This 
resolution is certainly inadequate since deviation from Bretherton’s t,heory occurs 
below Ca = lop3 as seen in figure 8. Consequently, we shall apply a perturbation 
analysis, similar to  that of Park & Homsy (1984) for the surfactant-free problem, to  
reduce the governing partial differential equations to a more tractable set of 
lubrication equations which are ordinary differential equations in the axial 
coordinate x. We begin with the equations of motion in this section and analyse the 
surfactant transport equations in the next one. 

At low Ca, the bubble cap is nearly a static sphere. I n  the region where the film 
joins the capillary wall and becomes a flat film, both viscous and capillary forces are 
important in the momentum transport equations. Since this transition region is very 
thin, the characteristic length 6 in the axial direction is much larger than the 
characteristic film thickness E in the radial direction. The ratio of these two 
characteristic lengths is the film number 

f = E / S < l .  (3.1) 

The dimensionless axial velocity u in the film is O( 1) and hence, from the continuity 
equation (2.2), the radial velocity is O(f). The dimensionless pressure p is also of O( 1) .  
Using these order assignments in (2.1), the equations of motion become, to leading 
order in f, the following lubrication equations 
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where y is a local Cartesian coordinate normal to the capillary wall. Because the film 
is thin and of O(E) ,  the cylindrical coordinate collapses into a Cartesian one to leading 
order in f. 

The no-slip condition (2.5) remains at  

u(y = 0) = -1 ,  (3.4) 

and assuming that the surface tension does not vary much from its reference value 
such that y = 1 +o(l) ,  the normal and tangential stress conditions on S of (2.6) and 
(2.7) also reduce to (see Ratulowski's thesis for details) 

p = - h , , - l  on S ,  (3.5) 

and 

where the interface 8 is now defined by the curve y = h(x). Equation (3.6) indicates 
that the direction of interfacial drag is determined by the direction of the surface 
tension gradient. Since p w 0(1), (3.2) and (3.5) stipulate that e2/6 w O(Cu) and 
e/d2 x 0(1) for these dominating terms to balance. If these two conditions are 
not satisfied, there is either no flow or viscous and capillary forces do not balance. 
These two stipulations then specify the order of 6 and E in Ca, 

8 w O(Cai), (3.7) 

E x O(CUi), (3.8) 

(3.9) j = e/d = O(Cai). 

Hence, for the lubrication equations to be valid, i.e. f Q 1, Ca must be small. The 
above order assignments are identical to those by Park & Homsy (1984) for the 
surfactant-free case because we assume y x 1. 

Solving for u in (3.2) with boundary condition (3.4) and the obvious condition 
u(y = h) = u', one obtains after imposing (3.3), 

1 dP 
2Ca dx 

u ( x , ~ )  = --((~'-hh(x)y)+y(~"+ l ) /h(x) - l .  (3.10) 

The constant axial flow rate q in the moving coordinate of (2.18) can then be 

(3.11) 

where h, is the thickness of the flat film at  x = - co. I t  is equal to - q  because of the 
flat velocity profile in the flat film as shown in (2.10). Note that the constant flow rate 
is always to the left while the interfacial velocity can be either positive or negative. 

Substituting the normal stress condition (3.5) into (3.11), one obtains the 
lubrication equation 

= 6Ca[( 1 - u") h- 2h,]/h3. dp d3h 
dx dx3 

-- - -- (3.12) 

This equation reduces to Bretherton's equation for the surfactant-free mobile case 
(Bretherton 1961) 

-- - 3Ca[h-h,]/h3, d3h 
dx3 

(3.13) 
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under the following two transformations 

U" = 4(1-3h,/h), (3.14 a )  

or u"+-l, ca++7a. (3.14b) 

We shall show that ( 3 . 1 4 ~ )  corresponds to the mobile limit of Bretherton's equation 
while (3.14b) actually corresponds to the limit of maximum surfactant effect. For 
finite surfactant effects, however, the surfactants affect the interfacial velocity u" 
through the Marangoni effect. This requires an expression for the tangential shear or 
drag 7 a t  the interface S which can be obtained from the lubrication approximation 
of the axial velocity in (3.10) and the condition (3.11) between q and dpldx, 

au 4 ~ " - 2  6h, 
-((y = h) = 7(h, u") = - 
aY [ h +PI' (3.15) 

For small variations in y ,  the equation of state relating r to surface tension y(Q can 
be linearized about the unknown tip interfacial concentration &. The surface tension 
corresponding to  is unity owing to our earlier choice of reference surface tension. 
Hence, 

?-i = - (r-c) = - M a ( r - c ) ,  (3.16) 

where Ma is the positive Marangoni number for surfactants. Note that the require- 
ment that y % 1 implies that Mu(T-<)  is small. For most surfactants, Mu x O(1) 
and r-c must then be small for the surface tension to vary only slightly and for 
the lengthscales of (3.7) to  (3.9) to  be correct. The precise Ca orders of r and & 
are dependent on the orders of Pe and St as we shall demonstrate in the next section. 
Substituting (3.16) into (3 .6)  and invoking (3.15), one obtains a relationship between 
the interfacial shear r and the surface concentration gradient 

(3 

dT Ca 
dx Ma 
- = --T(h, u"), (3.17) 

where 7 is given by (3.15). 
Substituting the transformation (3.14a) into (3.15) or (3.17), one sees that the 

interfacial stress 7 vanishes everywhere for this particular relationship between u" 
and h. This is also consistent with (3.17) for the limit of zero Marangoni effect 
Mu + 0. In  this mobile limit, the limiting interfacial velocity of the bubble cap region 
is u&, = 0.5 to  leading order since in ( 3 . 1 4 ~ )  h,/h % E x O(Cd) e 1 in the cap region. 
This mobile cap interfacial velocity is positive while the interfacial velocity in the flat 
film region is negative a t  - 1 from (2.10). The sign reversal occurs at a stagnation 
point in the moving frame a t  h = 3h, which has been confirmed by the numerical 
solutions of Reinelt & Saffman (1985) and Lu & Chang (1988) of the full Stokes 
problem. 

Another interesting result of (3.17) is that as Ca/Mu+ 00, the interfacial shear 7 

vanishes and one obtains the mobile expression for u" in ( 3 . 1 4 ~ ) .  Consequently, at 
sufficiently large Ca (but still small enough for the lubrication approximation to be 
valid), the traction 7 caused by the Marangoni effect of surface concentration 
gradient becomes negligible and the mobile results of Bretherton should be 
approached. As seen in figure 8, this is observed in all reported experiments. We shall 
obtain the proper parameter orders for this mobile limit in the next section. 

Equations (3.12) and (3.17) represent the lubrication approximations of the 
equations of motion and the interfacial conditions. They remain incomplete since 
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u‘(x) is still unknown and must be derived from a similar lubrication analysis of the 
surfactant transport equations. The corresponding perturbation analysis is more 
involved owing to the widely varying orders of Pe and St, representing the ratios of 
diffusion and adsorption timescales to  the axial convection timescale. I n  carrying out 
this analysis, we shall impose the conditions y z 1 and only trace amounts of 
surfactant exist on the interface, r x & 4 1, for consistency. 

Before we carry out a perturbation analysis of the surfactant equations, we shall 
examine the momentum equation in the static cap region. The solution h(s)  to the 
lubrication equations (3.12) and (3.17) must merge into this static cap. In  this region, 
viscous effects are negligible since both the axial and radial lengthscales are of 0(1)  
and hence, to leading order, the left-hand side of (2.1) vanishes and p is a constant. 
The tangential stress condition (2.7) and the linearized equation of state (3.16) also 
imply that r and y approach asymptotically their values a t  the tip, & and unity, 
respectively. (The quantity < is unknown and must be obtained from the 
computations.) Hence, the normal stress condition (2.6) implies that the surface in 
the cap region is governed by the constant curvature Laplace-Y oung equation 

p = - K ,  (3.18) 

where K is the full curvature expression 

h x x  + 1 
K=- 

(1 +hi)% (1  +hi);(  1 - h) ’ 
(3.19) 

and the first term is the axial curvature while the second the azimuthal curvature. 
In  the transition region K x hx,+ 1 x O(1) since I t ,  x O ( f )  = O(Ca4). This result is 
employed in (3.5). However, in the cap region, h,, x h, x O( 1)  and the full expression 
must be used. 

The profile h(z)  from the transition region must match into the constant curvature 
spherical surface in (3.18). This matching is classically done by the method of 
matched asymptotic expansion (Park & Homsy 1984). However, as Wilson (1982) 
has suggested for the plate drag-out problem, if one relates p to the full curvature 
(3.19) in the lubrication equation of (3.12) instead of the lubrication approximation 
of (3.5), all terms which are important in both the transition and static cap regions 
are included. Moreover, both (3.12) and (3.18) are approached in the proper 
lubrication limit of 2 x 6 x O(Ca4) and y x h x E x O(Caf) and the static limit of 
x x y x O(1).  This composite equation can be integrated through both the transition 
region and the cap region with the matching occurring internally. The numerical 
integration is made even simpler if one introduces the arclength-angle coordinate in 
figure 1 to  avoid the singularity of h(z )  at the tip. This technique has been applied 
by Goldshtik, Khanin & Ligai (1986) and Secomb & Skalak (1982) for other 
lubrication flows. The archlength-angle coordinates are 

dy = sin + ds, (3.20a, b)  

such that the composite form of the lubrication equations (3.12) and (3.17) become 

dx = cos I) ds, 

cos $ 
= -P-- (3.21a, b )  _ -  a$ dp - - 6 C ~ c o ~ $ [ ( l - u ~ ) h - 2 h , ] / h 3 ,  - 

ds ds 1 - h ’  

dh d r  Ca 
-=sin$, 

Ma ds ds -- - - cos I) -7(h, uV), (3.21c, d )  
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The term d$/ds in the normal stress condition (3.21b) is the axial curvature while 
cos $/( 1 - h)  is the azimuthal curvature in the arclength-angle coordinates. At the 
tip, both curvatures approach unity. Although one cannot scale away Ca and h, in 
(3.21) as in Bretherton's analysis for the mobile limit, we have shown that (3.21), 
which is an autonomous dynamical system, is much more amenable to a numerical 
shooting scheme from the flat film to the cap (Ratulowski & Chang 1989). In  the 
present surfactant case, only a few parameters can be scaled away in some limiting 
conditions and the above arclength-angle formulation of the composite equation 
seems to be the only feasible way of matching the lubrication solutions to the static 
cap. 

By stipulating that capillary forces balance viscous forces, the film is thin and 
r x 4 1 ,  we have obtained the order assignments of the axial and transversal 
characteristic lengths in (3.7) and (3.8) from the equations of motion. Surfactant 
effects on these lengthscales are removed by assuming that the surface tension does 
not vary significantly. However, since the film thickness is only of O(Ca%), this small 
variation in surface tension can cause the thickness to increase by factors of O(1).  
Larger-order increases by the Marangoni effect would violate the order assignments 
of (3.7) and (3.8). Fortunately, except for the low Ca data of Chen in figure 8, the 
observed increase is never more than a factor of 3. This confirms our low-surfactant- 
concentration assumption, r 4 1. 

4. Perturbation analysis of surfactant transport 
The lubrication equations of (3.12) and (3.17) or the composite equations of (3.21) 

must be complemented by the surface and bulk transport equations of the 
surfactants in (2.3), (2.4) and (2.17). These equations can also be simplified into 
ordinary differential equations in the axial coordinate x or the arclength s,  such as 
(3.21), if the bulk concentration C is independent of the transverse radial coordinate 
r or its local Cartesian counterpart y. I n  the local Cartesian coordinate, the bulk 
transport equation (2.3) becomes 

Imposing the x and y lengthscales of (3.7) and (3.8) in the transition region, which 
have been dictated by viscous and capillary forces, and the velocity scales from the 
continuity equation, one concludes that radial diffusion dominates over convection 
only if the transverse diffusive characteristic time R2s2/D is much smaller than the 
convective characteristic time R6/U. (Note that radial diffusion is always faster than 
axial diffusion because of the shorter transverse characteristic length s in the 
transition region as dictated by the balance of viscous and capillary forces in (3.7) 
and (3.8).) Hence, one obtains the following condition for radial diffusion to dominate 

P e  6 Ca-'. (4.2) 

Typical PBclet numbers of surfactants in 100 pm capillaries are about lo5 Ca 
(assuming a diffusivity of (4.2) is always 
satisfied. Condition (4.2) then stipulates that (4.1) reduces to a2C,/ay2 = 0 where C, 
is the leading-order expansion of C. The no-flux boundary condition a t  the wall of 
(2.1 1 )  then stipulates that C, is independent of the radial direction. Consequently, to 

cm2/s). Hence, a t  low Ca (< 
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leading order, bulk transport of surfactants is described by the overall balance of 
(2.21) which simplifies to 

dC, Pe Pe 
dx h h 
- = - [~"r-  q + qC0] = - [u"T+ h, - h, Co], (4.3) 

where (2.18) has been used. 
The order assignment of the interfacial concentration can now be made explicit 

from (4.3). Requiring that interfacial flux must balance bulk flux and noting that C, 
and u" are both order unity, one concludes that r is the same order as h,, 

r x O(Cat). (4.4) 

Hence, for all our order assignments to be valid, including the ones involved in the 
momentum lubrication analysis, we are restricted to trace amounts of impurities. 
This is the case in all experiments in figure 8 where an O(Cai) variation in r and 
surface tension gradient dyldx cause an order unity correction to the O(Cag) film 
thickness h,. Some experiments (Hirasaki & Lawson 1985), however, introduce large 
amounts of surfactants a t  concentrations above the critical micelle concentration. 
Our analysis would not apply to these experiments. 

The bulk balance equation of (4.3) includes both axial diffusion and convection. 
We can now assign the relative importance of these two mechanisms while still 
requiring (4.2) such that radial diffusion is faster than both, 

Pe x O(Cao) or smaller axial diffusion % convection, ( 4 . 5 ~ )  

Pe M o(c~-$ axial diffusion x convection, (4.5b) 

Pe M O(Ca-i) axial diffusion Q convection. (4.5c) 

These assignments allow further simplification of (4.3). 

equilibrium conditions of (2.15) and (2.16) on (4.3) then yields 
In the flat-film region, imposing the flat velocity profile of (2.10) and the 

c, = h,/(i + ~ h , ) ,  r, = KC,, (4.6a, b )  

which shall be used as boundary conditions at  - co for our transport equations. 
Although there is only a trace amount of surfactants on the interface according to 

(4.4), they must still satisfy the surface transport equations of (2.4) and (2.12). To 
leading order in the transition region, these equations become 

a 
- (u"r) = St (C, - r / K ) .  
dx (4.7) 

Imposing the appropriate orders for each variable in (4.7), we see that convection on 
the left-hand side balances adsorption on the right-hand side if 

St x O(Ca%). (4.8) 

If St is lower order than Cai, then there is no adsorption and one returns to 
Bretherton's mobile theory. However, if St is larger order than Cai, indicating fast 
adsorption, a local equilibrium exists between the bulk and surface surfactants, 

r = KC,. (4-9) 

Typical values of St Ca = kp/yo  can be estimated from the work of Whitaker & 
Pierson (1976) and Hedge & Slattery (1971) to be St Ca x Consequently, St is 
O(1) at  low Ca. 

11 FLM 210 
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Based on the above order estimates on Pe and St, we have constructed the 
following models with different degrees of axial diffusion, convection and adsorption 
resistance, 

Pe z Ca-f St z 1 convective-equilibrium model, ( 4 . 1 0 ~ )  

Pe M Ca-f St M 1 diffusive-equilibrium model, (4.10b) 

Pe. x Ca-f St z Cab convective-adsorption model, ( 4 . 1 0 ~ )  

Pe x Ca-1 St x Cai diffusive-adsorption model, (4.10d) 

Pe M Cao Xt w Cai bulk equilibrium model. (4.10e) 

The first part of each title indicates whether bulk convection is as important as bulk 
axial diffusion while the second part indicates whether adsorption is fast enough for 
interfacial convection to be neglected and a local equilibrium established. The bulk 
equilibrium model represents the limit of fast diffusion in the bulk such that the bulk 
concentration is gradientless. Interfacial convection, however, remains important in 
this model. Otherwise there would be no surfactant concentration gradient at all. 
Within these ranges of P e  and St, the bulk balance equation of (4.3) and the 
interfacial transport equation of (4.7) reduce to the following forms : 
(a) convective-equilibrium 

C, = 1 + (u"I'/h,), C, = T / K ,  (4.11 a, b)  

( b )  diffusive-equilibrium 

- dcO=qu"f+h,-h,c,],  C , = T / K ,  
dx h 

(c) convective-absorption 

d 
dx 

c, = l+(u"f/h,) ,  - ( ( u " f )  = st 

(4.12a, b )  

(4.13a, b)  

( d )  diffusive-adsorption 

dC, Pe d 
- = -[u"f+h,-h,C,], -((u"r) = S t (c0 - r /K) ,  (4.14a, b )  
dx h dx 

(e) bulk equilibrium 

d 
-(u"T) = S t ( l - r / K ) .  
dx C, = 1, (4.15u, b)  

All the models can be derived from the diffusive-adsorption model of (4.14) by taking 
limits of zero Pe, infinite Pe or infinite St according to  the hierarchy in figure 3. 

From (4.11)-(4.15), one can obtain two equations, which may be algebraic 
equations or first-order differential equations, for C, and u'. (Some manipulation is 
necessary for models (c)-(e).) These two surfactant transport equations can then be 
coupled to the momentum lubrication equations of (3.12) and (3.17) to form a 
complete set of equations. This set of equations can also be formulated as composite 
equations for numerical matching to  the constant curvature cap region. It would be 
extremely difficult to  carry out the matching with the lubrication equations of (3.12) 
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Stationary surface - ca --f ,, Convective-equilibrium 

FIGURE 3. Hierarchy of the models for various order of I'Bclet and Stariton numbers. All models 
can be reduced from the diffusive-adsorption model. All but the bulk equilibrium tnodel reduce to  
the convective-equilibrium model. 

and (3.17) as Bretherton has done for the mobile case. As an example, the diffusive- 
adsorption model equations in the arclength-angle formulation are 

- dp = -6Cacos$[(1-u")h-2h,]/h3, 
ds 

-- d' - -p-cos$/(l-h), 
ds 

dh 
- = sin $, 
ds 

du" 
ds 
-- 

dC, = Pe{u"T- h,(C, - l)} cos $ / h ,  
ds 

= -Car cos $/Ma,  
d T  
ds 
- 

(4.16a) 

(4.16b) 

( 4 . 1 6 ~ )  

(4.16d) 

where the interfacial shear expression r(h, u") is given by (3.15). Equations (4.16) is 
a sixth-order autonomous system of ordinary differential equations with the 
arclength s as the independent variable. The parameters are Ca, Ma,  St and Pe. The 
unknown film thickness h, is determined by matching the solutions to certain 
boundary conditions at the tip which will be clarified in the next section. Note that 
u", C,, r a n d  p all approach asympt,otic limits near the tip ($ = in). While there are 
no stipulations on the limiting values of u", r and p at the cap, boundary condition 
(2.14) stipulates a far-field concentration for C upstream. The limiting value C, at the 
tip, C,, will be different from unity in general and to trace the bulk concentrate 
profile beyond the bubble tip, one simply integrates an equivalent form of (4.4) 
without the interface S, 

I - q(C,-I) = h,(1-Co), 
P e  ax 

(4.17) 

from the tip to x+ 00. The concentration is then ensured to approach unity far 
upstream. Equation (4.17) requires that radial diffusion remains dominant over axial 
diffusion and convection in front of the tip such that C x C,(x). It ,  however, does not 

11-2 
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require the flow field to be approximately unidirectional ncar thc tip sincc (2.17) and 
(4.3) are applicable to two-dimensional flow ficlds if C is independent of y. 

Whether the models in (4.11)-(4.15) will lead to a thicker film is governed by the 
surfactant transport equations. If the traction r is negative throughout the entire 
transition region as indicated in figure I ,  then the net flow rate into the film will be 
larger than the mobile case and a thicker film is produced. A negative r along the 
interface, from the interfacial shear expression of (3.17), implies a monotonically 
increasing interface concentration from the film to the cap d r / d x  > 0. It is hence 
sufficient to show that the interface concentration gradient is positive for a positive 
correction to Bretherton's mobile film thickness. There are several mechanisms 
which determine the distribution of interfacial surfactants. Consider the general 
interfacial transport equation (4.7) of the diffusive-adsorption equation. It can be 
rewritten as 

(4.18) 

The first term on the right-hand side is due to surface dilation where du"/dx is 
positive as the cap moves away from the stationary film in the fixed laboratory 
frame. The second term describes the adsorption of surfactants from the bulk to the 
interface. Whether these terms will contribute to a positive surfactant gradient on 
the interface depends on the sign of u". Recall from ( 3 . 1 4 ~ ~ )  that for Bretherton's 
mobile case, a stagnation point in the moving frame, where u" vanishes, exists a t  
h = 3h,. Depending on the net effect of the traction 7, this stagnation point may move 
away or closer to the flat film. Consider first the left-hand side of the stagnation point 
where u' is negative and the adsorption term favours a negative interfacial gradient. 
Physically, the interface is picking up surfactants from the bulk as it moves to the 
left. The contribution of this mechanism can be diminished if the bulk concentration 
C, decreases downstream, hence reducing the adsorption rate. The same argument 
holds on the right-hand side of the stagnation point where the adsorption term 
favours a positive d r / d x  since U" is positive. In  this case, a positive dC,/dx also 
would favour a positive interfacial gradient. These physical arguments then indicate 
that a positive bulk concentration gradient favours a thicker film. Since this is not 
present in the bulk equilibrium model, a thinner film may result as there is no mass- 
transfer resistance in the bulk. Indeed, a perturbation analysis in St by Ginley & 
Radke (1989) indicates that  the bulk equilibrium model does predict a small 
reduction in film thickness, contrary to the data in figure 8. The above arguments, 
however, suggest that the convective-equilibrium model, where a bulk gradient 
exists and the unfavourable surface convection is negligible relative to adsorption, 
may produce a thicker film. This can indeed be rigorously shown. Eliminating C, 
from the two transport equations in (4.11) yields a relationship between interfacial 

(4.19) 

Substituting (4.19) into the interfacial shear-concentration relationship of (3.17) 
vields 

du" 
(4.20) 

This then implies that r is negative throughout the transition region because du"/dx 
is positive owing to the dilation of the surface as the cap moves away from the station 
film. Hence, the convective-equilibrium model predicts a thicker film. A simple 
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manipulation of (4.19) and (4.1lb) also confirms that both C,  and r increase 
monotonically from the flat film to the cap. 

From (4.20) of the convective-equilibrium model, an estimate of when Bretherton's 
mobile limit is approached (?-to) can be obtained. From (3.15), 7 is of order 
h-,l x Ca-g, Imposing this order and the appropriate orders of u' w O(1) and 
x w O(Cai) from the momentum equations, one concludes from (4.20) that the mobile 
limit is reached if Cu/MaK2 is O((7a-g) or larger. If K and Ma are fixed, then the 
mobile limit is reached when Ca is in excess of 

Ca* % Ma:Kt. (4.21) 

Hence, a higher K ,  implying a higher affinity for the surface species, requires a higher 
Ca* before the mobile limit can be achieved. This is consistent with the data of figure 
8 which show that water has a higher Ca* than benzene and aniline. Surfactants have 
a higher affinity for the air-water interface because their non-polar hydrocarbon tail 
is rejected by water and protrudes into the air phase. Benzene and aniline do not 
reject the hydrocarbon tail as much and the surfactants do not favour the interface 
with equal affinity. A larger Ma also implies that a higher Ca must be reached before 
the Marangoni effect becomes negligible. 

The opposite limiting case occurs when surface dilation du"/dx vanishes exactly 
and the interface approaches a stationary interface. By imposing the appropriate 
orders for the terms in (4.20), one concludes that this stationary surface limit occurs 
when Cu/MaK2 is of order unity. IfMa and K are fixed, then this limit is approached 
when Ca is less than 

Cu, w MaK2. (4.22) 

If surface dilation does not occur, boundary condition a t  the flat-film region requires 
that u" = - 1 everywhere, viz. the interface is stationary in the laboratory coordinate. 
This is not the constant-sheer rigid model of Bretherton and Goldsmith & Mason 
because the interface is not being dragged. Even though the interface is stationary, 
the fluid below it is still flowing owing to the pressure gradient except in the flat-film 
region. More importantly, the interfacial shear in this limit 

~ ( h )  = 6(h,/h- i)/h, (4.23) 

vanishes in the flat film h = h, which is not true of the rigid models. This limit is a 
singular one since the tip velocity cannot be - 1 .  However, we shall show in later 
integrations of the full equation that this stationary surface model does correctly 
predict the limiting film thickness for large K and at low Ca. In this limit, the 
surfactant equations are decoupled from the equations of motion since U" is known. 
Returning to  the momentum lubrication equations of (3.12) and replacing u' by - 1 
yield an equation that can be transformed to  the Bretherton equation of (3.13) by 
transformation (3.14 b) .  Consequently, the mobile results of Bretherton 

h, = 1.3375 Caf, Ap = 9.40 Caf, (4.24a, b)  

can be easily extended to  provide the maximum increase due to  Marangoni effect. I n  
(4.243), Ap is the pressure drop across the entire bubble. Using transformation 
(3.14b), the maximum increases in film thickness and pressure drop relative to 
Bretherton's mobile limit are then 

vh = vP = 44 = 2.52, (4.25) 

where v, and v p  refer to  the film thickness and pressure drop of the stationary surface 
model relative to  Bretherton's mobile result. These corrections of Bretherton's 
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mobile result in (4.25) for the stationary surface limit can be approached by lowering 
Ca or increasing Ma or K such that Ca/MaK2 is of O(1). As is evident in figure 8, they 
bound most measurements except the low Ca data of Chen. As Chen has indicated, 
longitudinal surface grooves on his capillaries are probably responsible for a constant 
low Ca tail of his data, which is the portion not bounded by (4.25). His constant tail 
corresponds to the average depth of the grooves which is much larger than the 
overlying film thickness a t  low Ca. Data of other experiments do not show these tails 
and they all approach the mobile limit a t  high Ca and the stationary surface limit a t  
low Ca. As sta.ted, the relative closeness to these two envelopes for different 
liquid-water systems is also consistent with their values of K and Mu. In between the 
two envelopes. which vary as Gag, the experimental curves have a smaller exponent 
dependence on Cu. Fairbrothcr & Stubbs have shown that the film thickness of their 
water-air system varies as Cai. I n  the next section, we investigate this intermediate 
behaviour between Cu, and Ca*. We shall also study the most sophisticated model, 
the diffusive-adsorption model to scrutinize the effect of bulk diffusion which is 
neglected in the convective-equilibrium model. 

5. Integration of the lubrication equations 
The composite equations for the convective-equilibrium model can be constructed 

by casting (4.20) in the arclength-angle coordinated and by coupling the resulting 
equations to  the composite momentum equations 

du" 
-=sin$) -- 
dh 
ds ds 

(5.1 c, d )  

This is a four-dimensional dynamical system with an unknown parameter h,. Five 
conditions are then necessary to specify the trajectory of (5.1) in the four- 
dimensional state space which corresponds to  the true solution. One condition is that 
the trajectory must begin from the flat-film region which is a fixed point to (5.1) (!)=(?). 1 

U" 
- 1  

(5.2) 

This corresponds to one and not four conditions because a t  (5.2) the system remains 
a t  the fixed point, which is a static cylinder, without initiating a trajectory. As is 
typically done in related problems (Bretherton 1961 ; Wilson 1982), one must perturb 
the dynamical system slightly away from the fixed point. In  the neighbourhood of 
the fixed point, the trajectory depart the fixed point along the unstable eigenvectors. 
I n  Bretherton's mobile problem, there is only one unstable eigenvector and there is 
no ambiguity about how the interface departs the flat-film region. The eigenvalue 
problem is different here. In  fact, an additional eigenvalue is introduced by surface- 
tension gradient. If there are multiple unstable eigenvectors, different initial 
conditions will then lead to different departures from the flat-film fixed point and an 
elaborate iteration procedure must be implemented to choose the correct direction of 
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departure. It is hence important to determine the number of unstable eigenvalues to 
fixed-point (5 .2) .  Linearizing (5 .1)  about ( 5 . 2 ) ,  one obtains the characteristic 
polynomial for the eigenvalues, 

yA4 + 4A3 - 12Ca(4 + yA)/h: + 36Ca/hL = 0, (5 .3)  

where q=Ma/Ca  (; -+- hy , (5 .4)  

In the limit of M a  or y approaching zero, we recover the three mobile eigenvalues of 
Bretherton 

(5 .5a,  b) 

where A, is real and unstable and A, and A, are a stable complex pair. A perturbation 
analysis of (5 .3)  a t  small 7 yields the additional eigenvalue due to  the Marangoni 

A,  = (3Ca)3/hm, A,,, = - (3Ca))[l  f 2/3i]/2hm, 

effect 

which is also real and stable. We have found numerically that A, remains real and 
negative for all values of 7 and Ca considered. Hence, the presence of surfactant adds 
a real and stable eigenvalue to the spectrum. The trajectory that leaves the fixed 
point must not have any contribution from the stable eigenvectors. This constitutes 
three extra conditions since there are three stable eigenvectors. Integration cannot 
be initiated with an arbitrary initial condition since any small perturbation away 
from the fixed point would rapidly converge to the only unstable eigenvector. The 
trajectory following this unstable eigenvector in the neighbourhood of the fixed point 
rapidly loses its linearity in the state space as it departs from the fixed point. It soon 
becomes a curved trajectory known as an unstable invariant manifold in dynamics 
system theory. This trajectory is required to be tangent to the plane 

$ = i n  h = l ,  (5 .7)  

in the four-dimensional phase space. Condition (5 .7)  is simply the symmetry 
condition for the bubble profile a t  the tip. This condition is the fifth condition 
required to fully specify the problem. 

Numerically, the construction of the unstable manifold for (5 .1)  from the fixed 
point (5.2) till tangency with the plane (5.7) is a one-dimensional shooting problem. 
The parameter h, can be iterated until tangency is achieved. We use a standard 
Newton iteration technique in conjunction with a fourth-order predictor-corrector 
method to integrate (5 .1) .  The computed film thickness and liquid pressure at the tip 
are shown as functions of Ca for two values of M a  and several values of K in figures 
4 and 5 .  The bottom curve is Bretherton’s mobile limit of (4.24) corresponding to 
K - t O .  Since surfactants are not adsorbed onto the interface in this limit, a surface 
traction does not exist. The top curve corresponds to the stationary surface limit as 
K approaches infinity. From the order assignment of r in (4.4) and the equilibrium 
relationships of (4.6b) or (4.9), this actually corresponds to K 9 O(Ca$. At this limit, 
maximum adsorption of the trace impurities occurs. As was predicted by the 
asymptotic analysis, all curves enveloped by these two limits approach the mobile 
limit as Ca exceeds Ca* of (4.21) and approach the stationary surface limit for Ca less 
than Cu, in (4.22).  At extremely low Ca values, the maximum correction of 41 in 
(4.25) is also obtained. This can also be achieved a t  relatively high Ca by increasing 
Ma as shown in figure 6 for Ca = 1.0 x l o p 4  and K = 0.1. I n  between the two limits, 
the curves vary approximately as aCub where b is less than 3 and the proportionality 
constant a varies with K .  Fairbrother & Stubbs have indicated that their air-water 
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FIGURE 4. Computed film thickness from the convective-equilibrium model for two Marangoni 
numbers, Mu = 0.1 and 1.0. Fairbrother & Stubbs' correlation is also overlayed on the Mu = 1.0 
curves. 

data can be described by h, = 0.5Cai for 7.5 x lop5 < Ca < 0.014. As shown in figure 
4(6), this correlation lies very close to our computed curve for Ma = 1.0 and 
K = Although data on Ma and K are difficult to obtain even for the air-water 
system, it is likely that these numbers are close to the actual values since two sets 
of air-water data measured by Schwartz et al. (1986) also lie close to this curve as 
shown in figure 8. 

We demonstrate that the interfacial shear T is always negative for this model by 
computing urirn, the limiting interfacial velocity as the stable bubble cap is 
approached. Recall that the mobile limit of Bretherton's theory in (3.14a) yields 
u;im z 0.5 to leading order in Ca. A negative traction would then reduce uYim from 0.5. 
Note that the tip velocity should be zero by symmetry. However, the lubrication 
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FIGURE 5. Computed liquid pressure at the bubble tip for Mu = 0.1 and 1.0. 
Ca 

analysis is not valid exactly a t  the tip and up,, is the limiting interfacial velocity as 
the static cap region is approached from the transition region. In figure 7,  the 
Bretherton result for up,, is the top curve with K = 0. As K increases, representing 
increasing Marangoni effect, u&,., decreases towards the lower envelope in figure 7 
with K = 00.  As Ma also increases, this lower envelope decreases towards - 1 for all 
Ca, indicating that maximum surfactant effect is felt when the interface in the 
transition region becomes stationary in the laboratory frame. For the mobile case, 
the interfacial velocity in the laboratory frame increases from zero in the flat film 
to 1.5 as the static cap region is approached at  low Ca. Clearly, more flow in the 
downstream direction occurs when the Marangoni effect becomes appreciable. 

Finally, we overlay theMu = 1.0 curves of figure 4(b)  on all available experimental 
data in figure 8. Although only the parameters Mu and K are free for adjustment 
and they are selected a t  convenient values without empirical fitting, surprising 
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I 

10-2 lo-' lo@ 10' 1 0 2  
Ma 

FIGURE 6. The ratio of film thickness u,, and cap liquid pressure up t o  the mobile values obtained 
by Bretherton. An asymptotic approach to  the maximum limit of 4; is observed at large Ma. The 
parameters are Ca = 1.0 x and K = 0.1. 

quantitative agreement is observed. For example, entire families of data for benzene 
by Bretherton and for water by Schwartz et al. lie on the computed curves for 
K = lop3 and respectively. That the data for water are better described by a 
higher value of K is also consistent with the fact that surfactants have a higher 
affinity for the water-air interface than the benzene-air interface. Unfortunately, 
accurate data for K and Mu are not available in the literature, even for the most, 
common interfaces and surfactants, for a more precise comparison. 

The diffusive-adsorption model is a six-dimensional system with two additional 
parameters Pe and St. For a given experimental system, Pe and St are dependent on 
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FIQURE 7 .  The retardation of the limiting cap interfacial velocity from the surfactant-free case of 
0.5 (at low Ca) by the Marangoni effect. Even in the limit of infinite adsorption ( K - f  co), the bubble 
does not behave like a rigid one since the interfacial velocity does not approach the bubble speed 
Ca. The Marangoni number is a t  Ma = 1.0. 
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FIQURE 8. Comparison of various film thickness measurements to the computed results from the 
convective-equilibrium model of figure 4 for Ma = 1.0 and K = 0, lov2, lo-' and co. The 
maximum limit of the stationary surface model is also shown. 
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the bubble velocity. To decouple the flow effects, we substituted typical literature 
values mentioned in 94 to yield 

(5.8a, b )  Pe = 1.0 x 105Ca, St = 1.0 x 10-6Cu-1. 

For this set of Pe and St, we have found that the spectrum of the fixed point 

contains one unstable real eigenvalue, three stable real eigenvalues and a stable 
complex pair for all Ca, Mu and K values considered. Hence, two additional stable 

FIGURE 9. The normalized film thickness and cap liquid pressure of the diffusive-adsorption model 
compared to  the convective equilibrium model. The parameters are Ma = 1.0, K = 0.1, 
Pe = 1.0 x lo5& and St = 1.0 x 10-eCu-l. 
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eigenvectors must be eliminated which constitute the two additional conditions 
required for the extra degrees of freedom introduced by C, and r. Consequently, the 
iteration process remains a one-dimensional problem involving iterating h, to satisfy 
(5.7). Figure 9 depicts the computed v,, and v p  for Ma = 1.0 and K = 1.0. The film 
thickness and tip liquid pressure both exceed the convective-equilibrium model. 
Apparently, bulk gradient caused by axial diffusion more than compensates for 
surface convection and induces an even larger increase in the film thickness. At low 
Ca, the stationary surface limit of 4; in (4.24) is approached from below indicating 
that 4f is still the maximum increase for this model. 

6. Conclusions and discussions 
O(Cag), can increase the 

thickness of a liquid film laid down by a bubble. The mechanism involves a larger 
surface tension and a lower surfactant concentration in the flat film region than the 
cap region. For this to occur, bulk diffusion cannot be much faster than bulk 
convection and adsorption (Pe > O(1)) such that a parallel decrease in bulk 
concentration also occurs into the film region. Surface convection, on the other hand, 
tends to  reduce film thickness. Its negative effect can be neglected if adsorption is 
faster than surface convection (St > Cai). This explains Ginley & Radke’s result that 
the bulk equilibrium model produces a thinner film while the convective-equilibrium 
model is shown here to yield a thicker film. We have obtained the precise order 
estimates of Pe and St for the various models. Unfortunately, insufficient data are 
available for surfactants to ensure that the systems in figure 8 satisfy the derived 
conditions for a thicker film. Nevertheless, the adsorption rate should slow down as 
the surface is saturated with a monolayer of surfactants at higher bulk concentrations 
above the critical micelle concentration. Hence, we expect the assignment St > Cai 
to be valid only for trace amounts of surfactants/contaminants. This is consistent 
with our order assignment for r in (4.4). 

We have only focused on the computation of the film thickness in this study. The 
pressure drop p in figure 5 corresponds to  the pressure drop across the front cap. To 
compute the pressure drop across the entire bubble, the back half of the bubble must 
be constructed. However, shooting towards the bubble rear reverses the sign on the 
eigenvalues in (5.5) and (5.6). Hence, unlike Bretherton’s mobile case where only the 
complex pair (5.5b) are unstable, our new models involve yet a third unstable 
eigenvector corresponding to (5.6). The back half of the bubble may then oscillate as 
it leaves the flat film as in Bretherton’s mobile case or it may feel only the real 
unstable eigenvalue of (5.6) and increase monotonically. It can also be a linear 
combination of all three unstable eigenvectors and exhibits both characteristics. I n  
fact, an elaborate numerical iteration scheme must be constructed to  choose the 
appropriate linear combination such that the final trajectory satisfies the symmetry 
condition a t  the back tip. It is hence extremely difficult to compute the pressure drop 
across the entire bubble without resorting to a perturbation analysis for limiting 
conditions like the one carried out by Ginley & Radke for the bulk equilibrium 
model. We will be content with the derivation of the film thickness here. 

We have shown that trace amounts of surfactants, 

This work was partially supported by NSF contract CBT 8451 116, and by ACS- 
PRF contract 20786-AC7. 
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