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Noise-driven wave transitions on a vertically
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We decipher the rich and complex two-dimensional wave transition and evolution
dynamics on a falling film both theoretically and numerically. Small-amplitude white
noise at the inlet is filtered by the classical linear instability into a narrow Gaussian
band of primary frequency harmonics centred about ωm. Weakly nonlinear zero-
mode excitation and a secondary modulation instability then introduce a distinct
characteristic modulation frequency ∆� ωm. The primary wave field evolves into
trains of solitary pulses with an average wave period of 2π/ωm. Abnormally large
‘excited’ pulses appear within this train at a relative frequency of ∆/ωm due to the
modulation. The excited pulses travel faster than the equilibrium ones and eliminate
them via coalescence to coarsen the pulse field downstream. The linear coarsening
of wave period downstream is a universal (0.015/〈u〉) s cm−1 and the final wave
frequency is the modulation frequency ∆ for 0.1 < δ < 0.4 where 〈u〉 is the flat-film
average Nusselt velocity, δ = (3R2/W )1/3/15 is a normalized Reynolds number, R is
the flat-film Reynolds number and W the Weber number.

1. Introduction
The wave fields of an open-flow, convectively unstable system often exhibit a large

range of wave amplitude, wavelength and wave speed downstream. Typically, linear
Orr–Sommerfeld hydrodynamic theories can only capture the wave characteristics of
small-amplitude waves at inception near the inlet. This deficiency of linear theory is
especially acute for convectively unstable systems with a long-wave instability – whose
unstable band of wavenumbers extends to zero. Such longwave instabilities can
eventually produce pulse-like solitary waves, each pulse containing a large number
of phase-locked Fourier harmonics (Chang 1994; Cheng & Chang 1995). Hence,
not only do the wave statistics vary greatly, but the wave shape can also change
rapidly downstream in such systems. The normal-mode approximation made in Orr–
Sommerfeld theories, for one, cannot be applied to the pulse-like localized wave
structures. A completely different approach, necessarily involving nonlinear wave
theories, must then be utilized to decipher wave dynamics beyond their inception
region, which is often limited to within a few cm of the inlet. For a practical open-
flow system longer than 10 cm, much of the wave dynamics in the channel is hence
beyond linear theory.

A good prototype of a convectively unstable, open-flow system is the falling film.
Earlier experiments by Stainthorp & Allen (1965), Krantz & Goren (1971), Chu &
Dukler (1974) and Liu & Gollub (1993) have shown that small-amplitude sinusoidal
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waves at the inlet can evolve rapidly into solitary pulses within 20 cm for a vertical
film and longer for an inclined one. The wave speed, wave amplitude and wavelength
can then increase downstream by nearly one order of magnitude after the transition
to solitary pulses.

Significant effort has been devoted to the construction of the equilibrium pulses
and their interaction dynamics (Chang, Demekhin & Kopelevich 1993, 1995a; Chang,
Demekhin & Kalaidin 1995b; Salamon, Armstrong & Brown 1994). The pulses have
very large amplitudes – as large or larger than the thickness of the substrate they sit
on. They have an asymmetric shape with a steep front profile relieved by capillary
ripples (see the wave structures near the exit in figure 1). When excess liquid is
inserted into a pulse, it drains out gradually with very specific dynamics. Such an
‘excited’ pulse with extra liquid is larger and faster than the unperturbed equilibrium
ones. However, due to the drainage, both its amplitude and speed approach those of
an equilibrium pulse asymptotically in time. Moreover, the excess amplitude and the
excess speed (with respect to those of the equilibrium pulses) at any given time are
found experimentally to be linearly correlated (Alekseenko, Nakoryakov & Pokusaev
1994; Vlachogiannis & Bontozoglou 2001). Chang, Demekhin & Kalaidin (1998) have
studied the dynamics of ‘excited’ pulses by developing a spectral theory for the pulses.
The drainage rate of the excess mass, for example, can be captured by resonance
poles of the pulse spectrum. Both the excess amplitude and mass decay exponentially
in time as governed by the dominant resonance pole. Linear coupling between
this resonance pole governing pulse mass/amplitude and the usual translational
discrete mode governing pulse position/speed yields the linear correlation between
the speed and amplitude of the decaying excited pulse. This correlation, in turn,
dictates that both the excess amplitude and speed of a specific excited pulse decay
linearly downstream. Some excited pulses are always found in a noise-driven wave field
(Chang, Demekhin & Kalaidin 1996a; Chang, Demekhin & Ye 1996b). They travel
faster and capture their smaller front neighbours in irreversible coalescence cascades,
provided their excess speed does not decay to zero before the coalescence events.
The capture adds additional excess mass to the coalesced pulse and sustains both the
excited pulse and the cascade. Such excited pulse-driven events give rise to a linear
coarsening of the pulse field downstream (Chang et al. 1996a, b). The coalescence
events dominate the pulse dynamics and they stop when the pulse separation is so
large that the excess mass acquired after each coalescence drains out completely
before the next pulse can be captured or when all equilibrium pulses have been
captured. A key to this coalescence-driven wave coarsening dynamics is the density
of the excited pulses, which has remained undetermined. Curiously, this density seems
to produce a universal pulse coarsening rate that is insensitive to inlet noise and flow
conditions (Chang et al. 1996a, b).

It is shown here that this key excited pulse density is determined during the
transition from sinusoidal waves to pulses. As such, much of the subsequent wave
dynamics, the pulse coarsening rate, the final pulse separation etc., are fully specified
during this transition. This observation allows us to construct a general theory that
can predict all realistic wave dynamics on a falling film as functions of Reynolds
and Weber numbers and the inlet noise amplitude. The role of the noise amplitude is
mainly to specify the location of each wave transition. The generic transition sequence
and the dynamics within each regime remain insensitive to noise amplitude. Most
intriguingly, within a large range of pratically important Reynolds numbers (about 10
to 40 for water) the wave period coarsening rate with respect to downstream distance
is indeed a universal constant divided by the average flat-film velocity.
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2. Model equations and numerical simulation
We are as yet unable to carry out extensive simulations of the transient Navier–

Stokes equation in an extended domain (> 1 m) with persistent broad-banded noise
at the inlet. The major obstacle is the viscous dissipation term in the downstream
x-direction, which introduces upstream momentum feedback and necessitates exten-
sive iterations over the extended domain. As discussed earlier (Chang 1994), this
obstacle can be removed by carrying out a boundary layer long-wave expansion.
The key ∂2u/∂x2 term is omitted and the normal momentum balance is simply
a balance between hydrostatic and capillary pressures. The boundary layer equa-
tions also possesses certain symmetries, like those for the Blasius solution for
momentum boundary layers, that allow us to eliminate one parameter from the
problem.

For the vertical falling film considered here, a single parameter δ = (3R2/W )1/3/15
remains, where R = 〈u〉hN/ν and W = σ/ρ〈u〉2hN are the Reynolds and Weber num-
bers defined on the Nusselt flat-film thickness hN = (3ν2/g)1/3R1/3 and flat-film average
velocity 〈u〉 = (gh2

N/3ν). For water, these parameters can be expressed conveniently as
a function of R only: δ = R11/9/167.6, hN = 0.0074R1/3 cm and 〈u〉 = 1.55R2/3 cm s−1.
A rule of thumb is that R is about 100 times the normalized Reynolds number δ.

The transformation that exploits the symmetries of the boundary layer equation
to eliminate one parameter involves the stretching parameter κ = (WR/3)1/3 (see, for
example, Chang et al. 1993). For water, this parameter can conveniently be expressed
as a function of R only, κ = 11.17R−2/9. Using κhN to scale x, hN to scale y, 〈u〉 to
scale u, 〈u〉/κ to scale v and κhN/〈u〉 to scale time, the two-dimensional boundary
layer equations for the falling film become
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with boundary conditions at the interface and wall
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We require only inlet conditions for the flow field in this ‘parabolicized’ boundary
layer equation. They are chosen to be

x = 0 : h = 1, v = 0, u = uN(y)

[
1 +

ε

3

100∑
n=0

cos(nω1t+ φn)

]
, (5)

where ω1, the frequency unit, is usually taken to be 1/50 the neutral frequency
of the primary instability – half of the harmonics are unstable and the rest stable.
The velocity profile uN(y) is the parabolic one for a flat film. The constant Fourier
amplitude ε/3 and a random phase φn evenly distributed within [0, 2π] then constitute
white-noise forcing of the flow rate at the inlet. Soft boundary conditions are placed
at the exit to minimize upstream feedback (Chang et al. 1996a), ∂h/∂x = σ(h − 1)
and ∂2h/∂x2 = σ(∂h/∂x), where σ is a relaxation parameter taken to be between 0.1
and 2.
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One can conveniently expand u(x, y, t) of (1) in a self-similar manner such that the
appropriate boundary conditions at (3) and (4) are satisfied:

u(x, y, t) =

K∑
k=1

uk(x, t)ψk(η), (6)

where η = y/h(x, t) and

ψk(η) = ηk − k

k + 1
ηk+1. (7)

If a Galerkin projection is used to determine the equations for the coefficients uk , the
weighting function is ηk . The crudest approximation is with K = 1. With u1 = 3q/h,
where q is the flow rate, this crudest approximation reduces to Shkadov’s (1967)
model,

∂q

∂t
+

6

5

∂

∂x

(
q2

h

)
=

1

5δ

(
h
∂3h

∂x3
+ h− q

h2

)
, (8)

∂h

∂t
+
∂q

∂x
= 0. (9)

The inlet noise amplitude for the flow rate is now ε from (5).
Depending on the domain size and the magnitude of δ, we typically utilize K = 1

to 4 modes in the Galerkin expansion of the boundary layer equation. A convergence
study is carefully carried out to ensure the spatio-temporal dynamics do not change
significantly with respect to K (see Chang et al. 1996a). We find the required K to
increase with δ such that for δ in excess of 2, about R = 200 for water, we are unable
to reproduce accurate statistics of the wave dynamics of a 2 m long channel (for
water) within a practical computation duration (< 1 week) on a workstation. The
problem may not be numerical. The Shkadov model and the low-order boundary
layer equations are known to produce a poor description of the capillary ripples in
front of the pulses at high Reynolds number R (Ruyer-Quil & Manneville 1998).
They may be inadequate and may produce inaccurate spatio-temporal dynamics for
δ in excess of 2.

A severe limitation of equations (1) and (2) or (8) and (9) is the restriction to two-
dimensional waves. Fortunately, due to an extension of Squire’s theorem to falling-
film waves, two-dimensional waves at inception have been shown to be more unstable
than three-dimensional ones (Chang et al. 1993). Consequently, if the inlet noise
field is sufficiently small in amplitude, linear filtering during wave inception would
produce predominantly two-dimensional waves. Alternatively, properly designed wave
makers at the inlet can trigger large two-dimensional waves only. Three-dimensional
waves will eventually appear downstream even under these conditions. However, they
typically develop due to a transverse instability of the two-dimensional pulses. This
final transition occurs at a downstream distance that decreases with increasing δ
and increasing inclination angle (see the review by Chang 1994). For inclined planes,
three-dimensional waves may never appear in a short (< 1 m) channel, as is the case
for some of the experiments by Liu & Gollub (1994). Even for the vertical films
studied here, much of the pertinent wave coarsening dynamics involving pulses occur
prior to the onset of three-dimensional waves at about 40 cm from the inlet for most
flow conditions with mild noise (see Stainthorp & Allen 1965, and the review by
Chang 1994). This roughly corresponds to x = 600. We shall demonstrate that our
two-dimensional analysis captures real wave coarsening dynamics by comparing its
results to literature data on wave evolution.
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Figure 1. Snapshots of wave tracings for three values of δ. White noise of amplitude ε = 10−3 is
imposed on the flow rate at the inlet x = 0.

Snapshots of the waves for ε = 10−3 and various values of δ are shown in figure 1.
Wave tracings taken at various downstream stations of a typical run are shown in
figure 2 for δ = 0.1 and ε = 10−3. By x = 200, about 14 cm for water, the inlet white
noise has been filtered into a modulated wave field whose fundamental frequency
is limited to a narrow band around ω = ωm ∼ 1.7. This is evident in the Fourier
spectrum (square root of the power spectrum) of the corresponding wave tracing
in figure 3. Also seen in the Fourier spectrum at x = 200 are slight overtone 2ωm
and zero-frequency (zero-mode) peaks. These secondary peaks are absent prior to
x = 200 and hence result from weakly nonlinear interaction with the primary band.
The overtone reflects the steepening of the sinusoidal waves as they evolve into pulses.

The modulation frequency is specified by the secondary zero-frequency band. By
x = 280, this secondary band exhibits a distinct maximum at ω = ∆ ∼ 0.3 (see fig-
ure 3b). This is the characteristic modulation frequency that is a key to all subsequent
wave dynamics. Within a short interval between x = 225 and 300 (a 5 cm interval
for water), the sinusoidal waves at inception have evolved into solitary pulses (see
figure 1). The Fourier spectra of figure 3 reflect this evolution with significant in-
creases in the bandwidths of the fundamental and its overtone. In fact by x = 300,
these two bands have merged into one, reflecting the large harmonic content of a
pulse. As is evident from figure 2(b), abnormally large pulses, larger than the other
‘equilibrium’ pulses, appear at the nodes of the slow modulation with frequency ∆.
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Figure 2. Wave tracings measured at stations x = 200, 280, 300, 360 and 440 for the noise-driven
wave dynamics of figure 1 at δ = 0.1. The initial waves are modulated primary waves of frequency
ωm. Excited pulses form at the dominant modulation period 2π/∆ and the pulse separation 2π/ωs
increases downstream as the excited pulses eliminate pulses by coalescence. (The specific modulation
period shown in (b) for x = 280 is 2π/∆ = 60 but the average at the location shown in the power
spectra of figure 3 is 2π/∆ ∼ 20.)

A second peak ωs appears below ωm when the pulses are formed and becomes the
lone maximum beyond x = 440. This ωs represents the average pulse frequency. The
harmonics within this band do not contribute to the shape of individual pulses. As
the pulse density decreases downstream, the pulse frequency ωs decreases, as indicated
in figure 3(e).
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Figure 3. Power spectra of the wave tracings in figure 2 with characteristic frequencies ωm
(with standard deviation σ), ∆ and ωs.

The mechanism behind this downstream decrease in pulse density is apparent from
the loci shown in figure 4. We call these loci ‘world lines’ and they track the wave peaks
of all waves, both sinusoidal waves and pulses, in the (t, x)-plane. Various intersections
are evident as steeper world lines terminate at less steep ones. These correspond to
coalescence events that occur when slower pulses (steeper world lines) are captured by
faster ones (less steep world lines) from behind (Chang et al. 1995, 1996a, b). Nearly
periodic spacing for x < 200 corresponds to the filtered band of sinusoidal waves. A
dominant frequency ωm is selected and the resulting nearly monochromatic wave field
evolves into equally spaced equilibrium pulses. Some modulation of the primary wave
field is evident near x = 200 with modulation frequency ∆ and the modulation nodes
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Figure 4. World lines tracking the wave crests of noise-driven wave dynamics
in the (t, x)-plane for δ = 0.1.

are seen to produce the ‘excited’ pulses in figure 2(b). It is clear from figure 4 that these
excited pulses have more inclined world lines than the equilibrium ones, indicating
that they travel faster. They are observed to capture the equilibrium pulses, which
have steeper world lines, downstream. The excited pulses accelerate slowly after each
capture. They survive till the exit of the simulated channel, after all the equilibrium
pulses between the modulation nodes have been captured. A more explicit description
will be offered when wave dynamics driven by a structured inlet noise are presented
in figure 6.

By determining the average spacing in t of the world lines at a given x, we obtain
the average wave period 〈t〉 at various stations downstream, as shown in figure 5(a).
Except at the onset of coarsening and at the end when the wave period reaches a final
equilibrium value, the wave period is seen to increase downstream, with an almost
linear coarsening rate with respect to x. The noise amplitude ε merely determines the
onset location of the coarsening but not its rate nor the final wave period 〈t〉∞. As
is consistent with our earlier observations that the excited pulses are created at the
modulation nodes and that they are the only surviving pulses at the end of the wave
coarsening interval, we find the final wave period to be close to 2π/∆ ∼ 20. (The
value from our simulations in figure 5 is 18.)
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Figure 5. The average wave/pulse period at each station x for noise-driven wave dynamics for
(a) δ = 0.1 and noise amplitude between 10−3 and 10−8. (b) ε = 10−3 and five different values of δ.
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Figure 6. World lines with biperiodic forcing at the inlet with a fundamental of ωm = 1.744, δ = 0.1
and a modulation frequency ∆ of 0.1. The dominant excited pulses are clearly created at the
modulation minimum at a frequency of ∆.

In figure 5(b), we present the wave period coarsening dynamics for a range of δ at
the same noise amplitude ε. The wave periods within all coarsening intervals show
the same linear rate of increase for δ between 0.1 and 0.4. Higher δ values beyond
δ = 0.4 are more difficult to simulate and the entire 〈t〉 profiles cannot be captured.
Quite curiously, although δ varies over a large range (water Reynolds number from
10 to 40, the most important practical range) the coarsening rates are nearly constant
even though their final wave periods 〈t〉∞ are different. This universal coarsening rate
will be a focus of our theoretical and modelling efforts.

This constant coarsening rate breaks down below δ = 0.1 and beyond δ = 0.4. Our
visual examination of the simulation displays suggests that, at low δ, the excited pulses
do not drain the excess mass after coalescence. The excited pulses hence accelerate
downstream, yielding a power-law coarsening rate (with an algebraic power larger
than unity) instead of a linear one. This power-law coarsening behaviour is already
evident at δ = 0.05 in figure 5(b). For δ in excess of 0.4, inertial forces dominate
over capillary forces and the excited pulses not only drain their excess mass readily,
but they also often break up and form pulses smaller than the equilibrium ones. This
consumption of excited pulses reduces the coarsening rate below a linear scaling. As
discussed earlier, our model equation may not be valid at high δ and this inertia-
driven evolution may be an artifact of our model. It is in the range of 0.05 to 0.4
that the excited pulses remain constant in speed and number, giving rise to universal
coarsening dynamics. These invariant properties also render their modelling more
feasible. It is fortuitous that this range corresponds to the most practical conditions
for industrial falling-film units.

To further ascertain that the characteristic modulation frequency ∆ specifies the
density of the excited pulses, the coarsening rate and the final wave period, we
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introduce periodic forcing with two frequencies – a specific fundamental frequency ωm
and a specific modulation frequency ∆. The primary band and the secondary band
hence both become delta functions in the Fourier spectrum. The world lines shown
in figure 6 are almost perfectly periodic in time with period 2π/ωm for x < 200.
This occurs because there are only two frequencies to select during wave inception
and the more unstable ωm dominates over ∆. These primary waves then evolve
into equilibrium pulses with the same time spacing 2π/ωm. During this evolution of
individual wave peaks into pulses, however, the primary wave field also suffers from
a modulation instability. Since there is only one modulation frequency ∆ available in
the noise field, the modulation produces uniformly spaced excited pulses at x = 200,
in contrast to the irregularly spaced ones in figure 4. At any given station x, the
excited pulses arrive at almost the same time intervals of 2π/∆. The world lines of
these excited pulses have a lower slope, reflecting the higher speeds of the excited
pulses, than all pulses upstream of x = 200 and all equilibrium pulses between them
beyond x = 200. They are hence easy to identify. The world line of each excited pulse
is seen to extend continuously to the channel outlet but with progressively lower slope
(higher speed for the excited pulse) due to the coalescence events. In contrast, the
slope of the world lines of the equilibrium pulses remains the same. In fact, these
equilibrium world lines terminate when they intersect the world lines of the excited
pulses. This indicates that the equilibrium pulses disappear after coalescing with the
excited pulses. By the end of our simulation domain at x = 700, all the excited pulses
created at x = 200 still exist and most of the equilibrium pulses have disappeared.
There are still some surviving equilibrium pulses between the excited pulses (about
four on the average compared to the original 17). However, extrapolation of their
trajectories beyond x = 700 in figure 6 clearly indicates that they will soon coalesce
with the excited pulses. Hence, the excited pulses will be the only remaining pulses far
downstream due to these irreversible coalescence events that destroy the equilibrium
pulses. Even though considerable distortion of the steeper world lines occurs after
each coalescence, corresponding to readjustment of the equilibrium pulses between the
excited ones, the excited pulses remain oblivious to such adjustment. They propagate
at constant speed between coalescence events and eventually capture all equilibrium
pulses. Each surviving pulse at the end can be traced back to a node in the periodic
modulation.

In figure 7, we vary the modulation frequency ∆ of the biperiodic forcing. It is
evident that both the onset of linear coarsening and the rate of coarsening depend on
∆. Moreover, the asymptotic wave period, when coarsening ceases, is almost exactly
2π/∆. This is consistent with the observation in figure 6 that the excited pulses
with wave period 2π/∆ survive the coarsening intact and eventually absorb all the
equilibrium pulses. The observed universal coarsening rate in figure 5 for broad-
banded noise forcing, which is independent of the noise amplitude ε and the flow
conditions δ, must hence result when a specific ∆ is selected by the wave evolution.
The coalescence dynamics must also possess a certain invariance to account for the
universality. We seek these invariant features in our subsequent analyses.

Finally, it should be emphasized that the rich wave dynamics on the film are driven
by the pulse coherent structures. A naive interpretation of the last power spectrum,
shown in figure 3(e), measured at x = 440, is that it resembles a ‘turbulent’ spectrum
with a power-law ‘inertial’ tail. The implicit assumption is that the phases of the wave
Fourier harmonics are random and the power-law decay is due to a weakly nonlinear
energy cascade to higher wavenumbers. This interpretation would be incorrect. As
seen in the wave tracing of x = 440 in figure 2, the wave harmonics phase lock and
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Figure 8. Comparison of simulated wave speed evolution compared to values measured by
Stainthorp & Allen for water at (1) R = 15, (2) R = 14 and (3) R = 31.

synchronize to form individual solitary pulses. In fact, the power spectrum of each
pulse resembles that of the aggregate in figure 3 (omitting the pulse frequency band at
ωs). The absence of phase information in the wave spectrum can hence be misleading
and a turbulent spectral theory for thin-film wave dynamics would be misguided.
One needs to capture the pulse dynamics to decipher the rich wave dynamics. This
coherent structure approach is fundamental to all our work on falling-film waves.
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Unfortunately, recorded wave statistics are usually the average wave speed at
various downstream stations and not the wave period. To verify the accuracy of our
two-dimensional model in capturing the wave coarsening dynamics, we compare in
figure 8 our simulated average wave speeds in physical units to the measured ones by
Stainthorp & Allen (1965) for water at three Reynolds numbers. The noise Fourier
amplitude ε has been chosen such that the wave inception length is consistent with the
measured value (see Chang et al. 1996a for details). The pulses are formed at about
10 cm from the inlet (distributor). Their average speed then increases downstream
as the pulse density decreases due to coalescence. This reflects the larger fraction
of faster excited pulses downstream. It is evident that the simulations are in good
agreement with Stainthorp & Allen’s measurements. The agreement extends to 30 cm
from the inlet where the waves begin show transverse variations in the experiments.
Wave coarsening is hence due to two-dimensional wave dynamics even for vertical
films that are most susceptible to three-dimensional disturbances.

3. Linear evolution and excitation of low-frequency secondary band
Primary monochromatic waves on an inclined falling film, with frequencies close

to that of the maximum-growing one at ωm, have been shown to be unstable to a
modulation (side-band) instability experimentally (Liu & Gollub 1994), numerically
(Ramaswamy, Chippada & Joo 1996) and theoretically (Cheng & Chang 1995).
We have also carried out a numerical Floquet stability analysis of these dominant
monochromatic waves for a vertical film (Chang et al. 1993) and have found them to
be modulationally unstable.

What is surprising in the current simulation is the existence of a dominant modu-
lation frequency ∆ that specifies the density of excited pulses. Due to the translational
invariance of the periodic waves, the Floquet growth rate of a monochromatic wave
vanishes at zero frequency – it is neutrally stable to infinitely long modulations. Its
growth rate then grows as ω2 from zero frequency and then decays as ω4 to yield
a dominant Floquet mode, provided this is not suppressed by a subharmonic insta-
bility (Cheng & Chang 1995). However, the frequency of this dominant mode can
be more than three times the observed ∆, suggesting a different mechanism is at
play.

These earlier modulation and Floquet theories assume that the low-frequency
modulation modes are triggered only after the monochromatic waves have saturated
in amplitude. As is evident in figure 3(a), a secondary band around a low frequency
∆ is already evident at x = 200 before the primary band, corresponding to the
monochromatic primary wave field, saturates at x = 280 when its amplitude ceases
to grow. This initial modulation band has a maximum at zero frequency instead of a
finite ∆. It is clearly not due to the modulation instability of the saturated primary
band, whose dominant frequency is several times higher than ∆.

In our earlier computation of the Landau coefficients of weakly nonlinear inter-
actions responsible for primary wave saturation in a long-wave instability (Cheng &
Chang 1995), the zero mode has been shown to participate in the saturation dynamics
of the primary monochromatic wave. Comparison to experimentally measured satu-
rated amplitude is only consistent if this zero-mode contribution is included (Sangalli,
McCready & Chang 1997). By the slaving principle used in that analysis, this partici-
pation of the zero mode also implies that it is quadratically slaved to the primary
mode. Hence, a secondary band of low-frequency modes is excited during the growth
and saturation of the primary band.
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This then suggests that the available modulation modes, excited during the satu-
ration of the primary wave, trigger the subsequent modulation instability of the
saturated band, with a growth rate that grows quadratically with the modulation
frequency. However, the initial amplitudes of these low-frequency modes are deter-
mined by quadratic slaving during primary wave saturation. Moreover, such slaving
is expected to produce the largest amplitude at zero frequency where there is no
frequency mismatch (Cheng & Chang 1995). The competition between these two
opposing behaviours near zero frequency will be shown to produce the selected
modulation frequency ∆. We capture the slaved excitation of the secondary band here
and determine ∆ with a Floquet theory in the next section.

We shall formulate our theory with the simpler Shkadov model (8) and (9), which
is quantitatively consistent with the boundary layer equation for δ less than unity.
Linearization about the Nusselt basic state (q, h) = (1, 1) yields the dispersion re-
lationships

c2 − c
(

12

5
− i

5αδ

)
+

6

5
− α2

5δ
− 3i

5αδ
= 0, (10)

α4 − (ω2 − 12αω + 6α2)δ + i(3α− ω) = 0. (11)

The first dispersion relationship is for temporal evolution with a real wavenumber
α and two complex wave speeds c. The second one corresponds to spatial evolution
with a real wave frequency ω and four complex wavenumbers α. We shall focus on
spatial evolution and will hence utilize (11). There are, however, four spatial roots
α of (11). As shown by Cheng & Chang (1995), only those two spatial modes that
propagate downstream are pertinent. Each spatial mode is also associated with a
distinct wave speed c = ω/αr . We denote the two modes as c1,2 and α1,2 with mode 1
unstable (−α1

i > 0) and mode 2 stable (−α2
i < 0).

In fact, given the single-harmonic disturbance quantities

h− 1 = ĥ(x) exp(iαrx− iωt), (12)

q − 1 = q̂(x) exp(iαrx− iωt) (13)

for a given frequency ω, since ĥ(0) = 0 and q̂(0) = ε from (5), solution of the linearized
Shkadov model readily yields

ĥ(x) =
ε

c1 − c2

exp(−α1
i x)− ε

c1 − c2

exp(−α2
i x). (14)

As x→∞, the stable mode contribution vanishes and

ĥ(x) =
ε

c1 − c2

exp(−α1
i x). (15)

Hence, the inlet flow rate disturbance of amplitude ε excites an interfacial mode that
extrapolates to the amplitude ε/|c1 − c2| = ε′ at the inlet – even though there is no
interfacial disturbance at the inlet. Our computation of the damping factor 1/|c1 − c2|
shows that it is small for δ less than 0.2 but approaches a constant asymptote 0.25
beyond that value.

The downstream linear evolution of the entire spectrum of harmonics is then

ĥ = ε′
∫ ∞
−∞

exp(−i(ωt− αrx)− αix) dω, (16)

where only the unstable first mode is considered now. The interfacial Fourier spectrum
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Figure 9. The dominant primary frequency ωm, spatial growth rate αi and second derivaties of αr
and αi at ωm as functions of δ.

of this linear evolution is then

F(ω) = ε′ exp(−αi(ω)x). (17)

Given the parabolic spatial growth rate of the long-wave instability, this linear
evolution will soon filter the white-noise spectrum at x = 0 into a sharp Gaussian
band

F(ω) ∼ ε′ exp(ax− bx(ω − ωm)2), (18)

where a = −αi(ωm), b = 1
2
(∂2αi/∂ω

2)(ωm) and ωm corresponds to the maximum of the

growth rate, (∂αi/∂ω)(ωm) = 0. Dependence of ωm, −αi(ωm), 2b = (∂2α/∂ω2)(ωm) and
(∂2αr/∂ω

2)(ωm) of the unstable first mode on δ is shown in figure 9 and in table 1,
along with its group velocity cg = 1/(∂αr/∂ω)(ωm).

With proper normalization, this evolving band is described by the probability
density

p(ω) =

√
bx

π
exp(−bx(ω − ωm)2) (19)

with a standard deviation σ = 1/
√

2bx that decays downstream. Both the theoretical
Fourier spectrum (19) and the predicted standard deviation evolution are in quan-
titative agreement with the simulated spectra for x < 150 at δ = 0.1 and ε = 10−7,
as shown in figure 10. The Gaussian approximation becomes increasingly accurate
downstream as the broad-banded white noise at the inlet is filtered and focused into a
sharp peak in the Fourier spectrum. Beyond x = 170, however, nonlinear effects begin
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δ cg(ωm) α′′r (ωm) 2b = α′′i (ωm) ωm

0.02 2.983 −0.004 0.044 1.151
0.04 2.889 −0.017 0.085 1.539
0.06 2.730 −0.035 0.120 1.703
0.08 2.569 −0.053 0.149 1.748
0.10 2.432 −0.068 0.172 1.744
0.12 2.324 −0.081 0.190 1.720
0.14 2.238 −0.091 0.204 1.689
0.16 2.170 −0.100 0.213 1.658
0.18 2.116 −0.106 0.219 1.628
0.20 2.071 −0.112 0.223 1.599

Table 1. Dispersion coefficients of the primary mode.

to corrupt this linear filtering. Overtone and zero-frequency bands appear, as seen
in figure 3. The exponential growth downstream is also saturated by this nonlinear
interaction.

However, at the initial stage of this transition region, the primary band can still be
described by F(ω) of (18) and we use it to estimate the secondary band R(ω) at low
frequencies. At these low amplitudes, a low-frequency mode of frequency ω is excited
by a quadratic interaction between a harmonic of frequency β within the primary
band and its sideband of frequency ω − β (see Cheng & Chang 1995 and Sangalli et
al. 1997). As such the low-frequency secondary band can be approximated by

R(ω) =

∫ ∞
−∞
F(β)F(ω − β) dβ, (20)

where we have omitted the phase between the harmonics β and ω − β. A specific
phase relationship exists between the two but we assume that it is independent of ω
and β. Thus, (20) is off by a constant independent of ω. Carrying out the Gaussian
integral, we obtain an estimate of the secondary band

R(ω) = (ε′)2

√
π

2bx
exp(2αx− bxω2/2). (21)

An important prediction of (21) is that the secondary band near zero frequency has
a standard deviation that is

√
2 higher than the primary band. This is consistent with

our simulated spectra. In fact, by determining the missing constant (0.03) from the
height of the secondary spectra at x = 140, our estimate (21) is able to quantitatively
capture all zero-frequency secondary bands downstream, as seen in figure 11. The
agreement improves downstream as the stable linear modes have become negligible in
amplitude and no longer participate through quadratic interaction to the dynamics of
the primary band and as nonlinear excitation of the secondary band becomes more
pronounced with larger amplitudes in the primary band. This agreement empirically
verifies our phase approximations in (20). This low-frequency secondary band provides
the initial noise for the modulation instability of the saturated primary wave field
downstream, as is analysed in the next section.

4. A theory for the characteristic modulation frequency
As soon as the fundamental mode with frequency ωm and the small band of waves

around it saturate in amplitude, the excited secondary band of modes near zero
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downstream at δ = 0.1 and ε = 10−7.

frequency in (21) begins to destabilize the primary band by triggering pronounced
modulations (see figure 2). This saturation occurs at a distance x0 from the inlet:

x0 = − 1

αi(ωm)
log(r1/ε

′), (22)

where r1 = |A1| is the amplitude of the saturated fundamental that will be estimated
below.

We utilize the technique of Frisch, She & Thual (1986) to construct the saturated
periodic solutions of a long-wave instability, including the fundamental mode with r1,
and to examine their modulation instability via an analytical Floquet theory (see also
Chang et al. 1997, 1999). As primary waves saturate and become stationary travelling
waves, they can be described by the Shkadov model (8) and (9) after the moving
coordinate transformation ∂/∂t = −c∂/∂x,

−c∂q0

∂x
+

6

5

∂

∂x

(
q2

0

h0

)
=

1

5δ

(
h0

∂3h0

∂x3
+ h0 − q0

h2
0

)
, (23)

−c∂h0

∂x
+
∂q0

∂x
= 0. (24)
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Integrating the kinematic equation (24) over a patch of periodic travelling waves
and assigning the mean thickness for this wave train to be χ, one obtains

q0(x) = ch0(x)− cχ+ 〈q0〉. (25)

Due to the saturated periodic wave train, the mean thickness χ is different from the
flat-film Nusselt thickness (h = 1 from our scaling) and the average flow rate 〈q0〉
(over one wavelength of the periodic basic state) does not scale as χ3, as would be
the case for a flat film.

Substituting (25) into (23), we obtain the governing equation for the periodic
travelling wave:

h0

∂2h0

∂x3
+ δ

[
6(〈q0〉 − cχ)2 − c2h2

0

] dh0

dx
+ h3

0 − ch0 − 〈q0〉+ cχ = 0 (26)

with unknowns h0(x), c and 〈q0〉 at fixed χ, δ and the wavenumber α of the periodic
wave.

A closed-form estimate of the solution to (26) can be obtained with a two-harmonic
approximation for the profile h(x), where the wavenumber α is within the unstable
band,

h0 = χ+ r1 cos αx+ r2
1(A cos 2αx+ B sin 2αx). (27)

Balancing terms for each harmonic, one obtains c(α, χ, δ) and 〈q0〉(α, χ, δ) explicitly:

A =
3

15αδχ5 − 4α3χ2
, B = − 3α2χ+ 18δχ4

15δχ5 − 4α2χ2
,

cα = ω = 3αχ2 − 123
10
r2

1α, 〈q0〉 = χ3 + 6r2
1χ,

r2
1 =

α3χ3 − 15αδχ6

κ
, κ = − 621

50
χα3 +

18

30αδχ4 − 8α3χ
.


(28)

This estimate includes an estimate of the amplitude r1 for the fundamental when the
average thickness is unity (χ = 1) or when the average flow rate is unity (q = 1). The
former condition is closer to the saturated primary waves of our system. However, the
full χ dependence must be retained in (28). Unlike the classical modulation instability
of short-wave instabilities, the χ dynamics are crucial in the modulation of long-wave
instabilities (Frisch et al. 1986 and Chang et al. 1997). Hence, for the primary wave,
(25), (27) and (28) yield the wave field and local flow rate h0(x) and q0(x) as functions
of χ at fixed wavenumber α and normalized Reynolds number δ.

Consider small perturbations of the basic state, which is any periodic wave within
the unstable band:

h = h0(x) + Ĥ(x, t), (29)

q = q0(x) + Q̂(x, t). (30)

After substituting into (8) and (9) and linearizing, one obtains the system

∂Q̂

∂t
= b1

∂3Ĥ

∂x3
+ b2

∂Q̂

∂x
+ b3

∂Ĥ

∂x
+ b4Q̂+ b5Ĥ, (31)

∂Ĥ

∂t
= c

∂Ĥ

∂x
− ∂Q̂

∂x
, (32)
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where

b1 =
h0

5δ
, b2 = c− 12

5

q0

h0

, b3 =
6

5

q2
0

h2
0

,

b4 = −12

5

(
q2

0

h2
0

)′
− 1

5δh2
0

, b5 =
6

5

(
q2

0

h2
0

)′
+

1

5δ

(
h
′′′
0 + 1 +

2q0

h3
0

)
,

and prime denotes derivative with respect to x.
As first shown by Frisch et al. (1986) and extended by Chang et al. (1999), the

dynamics of the disturbances Q̂ and Ĥ , as determined by (31) and (32), are dominated
by two physical symmetries – the translational symmetry of the periodic wave basic
state and a peculiar ‘kinematic’ symmetry that relates the speed change of the periodic
wave to a change in the mean thickness χ. Due to these symmetries, disturbances with
long wavelengths are determined by two coupled neutral modes.

Due to the separation of time scales offered by the neutrality of these modes and
the separation of length scales offered by their long wavelengths relative to that of
the basic state, a two-scale expansion can be carried out for long disturbances by
using the ratio ν of the basic-state wavelength to the disturbance wavelength as a
parameter,

∂

∂x
→ ∂

∂x
+ ν

∂

∂x1

,
∂

∂t
→ ν

∂

∂τ1

+ ν2 ∂

∂τ2

. (33)

The solution to (31) and (32) can then be expressed as(
Q̂

Ĥ

)
= A(x1, τ1, τ2)

(
q′0
h′0

)
, (34)

where q′0 and h′0 are derivatives of q0 and h0 with respect to x and they represent the
translational mode.

Leading-order expansion then yields the dominant modulation equation (see Chang
et al. 1998 for a related calculation, and details can be obtained from the authors
upon request)

a11

∂2A

∂τ2
1

+ 2a12

∂2A

∂τ1∂x1

+ a22

∂2A

∂x2
1

= 0, (35)

where

a11 = −∂〈h0〉
∂χ

/
∂c

∂χ
,

2a12 = α
∂〈h0〉
∂α

+

[
−α∂c

∂α

∂〈h0〉
∂χ

+ c
∂〈h0〉
∂χ
− ∂〈q0〉

∂χ

]/
∂c

∂χ
,

a22 = α

(
∂〈q0〉
∂α
− c∂〈h0〉

∂α

)
− α∂c

∂α

(
∂〈q0〉
∂χ
− c∂〈h0〉

∂χ

)/
∂c

∂χ
,

and 〈. . .〉 denotes integration over one wavelength of the basic state. All derivatives
can be evaluated from (27) and (28) at the basic state values.

We are particularly interested in the frequencies and Floquet growth rates of the
modulation waves triggered by the dominant primary wave within the primary band.
This wave has a frequency ωm and a wavenumber αm = (ωm/c). These values are
inserted into (35). Using a normal mode exp(µτ1 + ix1) solution of (35), the Floquet
eigenvalues µ specifying the growth rates of the modulation modes are determined
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δ a1 a2 a3 a4

0.02 0.0182 0.130 0.0226 −0.190
0.04 0.1167 0.468 0.2074 −0.731
0.06 0.2076 0.857 0.5656 −1.714
0.08 0.2430 1.204 1.1311 −2.762
0.10 0.2413 1.501 1.6967 −4.135
0.15 0.1593 2.057 3.1860 −9.001
0.20 0.1110 3.154 5.1617 −14.06

Table 2. Secondary Floquet coefficients of the fundamental periodic wave.

by the characteristic polynomial

a11µ
2 + 2a12µ+ a22 = 0. (36)

Omitting the stable root µ and rescaling the other by the small modulation
wavenumber ν to obtain the Floquet growth rate in the original unscaled time
and spatial coordinates, after an even higher order expansion beyond (35), we obtain

µ̃ = νµ ∼ ia1ω + a2ω
2 + ia3ω

3 + a4ω
4, (37)

where ω = cgν is the modulation frequency and cg is the group velocity of the funda-
mental mode with frequency ωm. Strictly speaking, the slow modulation disturbance
of a primary periodic wave only travels with a group velocity at the frequency of
the primary wave if the primary wave is of small amplitude (Cheng & Chang 1995).
Although our primary periodic wave is of finite amplitude, the amplitude is small and
we find cg(ωm) to be a good approximation that is accurate within 10%. In table 2, we
tabulate the computed coefficients ai for the dominant (fundamental) primary wave
with frequency ωm of table 1.

The Floquet growth rate determines how the fully grown (saturated) primary wave
field drives the modulation waves. However, the initial amplitudes of these modulation
waves are determined by the secondary band of (21), which results due to weakly
nonlinear interaction of the evolving primary field upstream. Since the modulation
packet travels with the group velocity cg of table 1, the spatial evolution of the
secondary band (21), due to the modulation instability with Floquet growth rate (37),
is represented by

R(ω) = R0

√
π

2bx
exp(−bx0ω

2/2) exp[(a2ω
2 + a4ω

2)(x− x0)/cg], (38)

where R0 is a normalization constant and x0 is the location (22) where the primary
fundamental has saturated.

This spectrum begins with a maximum at ω = 0 for x below a critical value x1:

x− x0

x0

<
cgb

2a2

=
x1 − x0

x0

. (39)

This critical latent distance x1 is typically less that 1/10 of x0. Beyond this latent
distance, the maximum takes on a finite value in ω which increases downstream.
This dominant modulation frequency due to a competition between the initial slaving
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Figure 12. The normalized secondary band after the onset of modulation instability with the
saturation of the primary band. Both simulation and theory show a dominant modulation frequency
∆ for δ = 0.1 and ε = 10−7. The onset of modulation is estimated to be x0 = 180.

excitation and the subsequent Floquet instability of the primary wave is then

∆ =

[
bcg(x0/(x− x0))− 2a2

4a4

]1/2

. (40)

The theoretical prediction (38) of the secondary spectrum and the predicted maximum
modulation frequency (40) are seen to be in good agreement with the simulation
results in figure 12 for 190 < x < 210 beyond x0 = 180 for that case. We note that
the dominant modulation frequency predicted by the Floquet growth rate (37) is
(−a2/2a4)

1/2. Hence, the first term in (40) corresponds to the correction of the
dominant modulation frequency by the initial spectrum of the secondary modulation
band (21). At low δ, the correction is significant. For δ = 0.05, for example, the
prediction from the Floquet growth rate is larger than the observed value by a factor
of 4.

The transition to pulses occurs when the dominant modulation with frequency
∆ reaches an amplitude comparable to the amplitude of the fundamental wave
r1 in (22) and (28). It remains unclear how the modulation synchronizes all the
harmonics to form a pulse at its nodes but this process is quite apparent in figure 2(b).
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These first pulses are larger than those created later and hence become the excited
pulses. After their creation, very fast phase synchronization dynamics occur at the
wave field between them, eventually converting all remaining sinusoidal waves into
solitary pulses. These later pulses are almost identical in amplitude and constitute the
equilibrium pulses. The earlier excited pulses are larger and begin to overtake and
absorb the equilibrium pulses irreversibly, as seen in the last few frames of figure 2
and in the world lines of figure 4.

The density of the equilibrium pulses is approximately ωm, as each sinusoidal peak
at inception is converted to an equilibrium pulse. The density of the excited pulse,
however, is determined by the value of ∆ when they are first created. We estimate
this position x2 by assuming a linear growth of the dominant modulation until its
amplitude reaches the amplitude r1 of the fundamental

a0 exp

(∫ x2

x0

µr

cg
dx

)
= r1, (41)

where a0 is the initial amplitude of the modulation. Substitution of the Floquet growth
rate (37) into (41) yields the following transcendental equation for x2:

x2 − x0 =
Γ2

Γ1

x0 log

(
1 +

x2 − x0

x1 − x0

)
+

1

Γ1

log
r1

a0

, (42)

where

Γ1 =

(
− a2

2

2cga4

)
and Γ2 =

(
−ba2

4a4

)
.

In some cases, x2 − x0 is small compared to x1 − x0 and an explicit estimate can be
obtained:

x2 − x0

x1 − x0

=

√
2

Γ2x0

log

(
r1

a0

)
. (43)

We are unable to estimate the initial modulation amplitude a0 at x0 – the unknown
constant in (21) and (38) for the secondary band prevents an accurate estimate.
However, comparison to our numerical values of x1 and x2 suggest that a0 ranges
from 0.1r1 to 0.25r1. We use these two limits to estimate a bound for x2 from (42).
These bounds are then inserted into (40) to obtain ∆2, the dominant modulation
frequency at x2, when the pulses are created. From our simulations, 2π/∆2 also
represents the average time interval between excited pulses. As seen in figure 13,
these bounds are in good agreement with the simulated pulse frequency at inception
for a range of noise amplitude (ε′ = 10−8 to 10−5) and a range of δ up to unity. In
essence, the initial pulse density is almost independent of the white-noise amplitude
over this large range of ε′. This insensitivity only breaks down after ε′ exceeds 10−3.
We note that the ∆2 dependence on δ in figure 13(a) resembles that of ωm in figure 9.
As a result, when ∆2 is divided by ωm to produce the excited pulse fraction at
inception, figure 13(b) shows an almost constant fraction beyond δ = 0.10 that is in
good agreement with our simulation results. About one out of every four pulses is
excited for δ in excess of 0.1 and about one out of ten is excited for δ less than 0.1.
These seem to be robust, universal numbers that are insensitive to noise, provided
it is small, and independent of operating fluids/conditions. Not coincidentally, the
universal coarsening rate observed in figure 5(b) commences at δ = 0.1. For water,
flow conditions below δ = 0.1 correspond to very thin films at Reynolds numbers
less than 10. These conditions are dominated by capillary forces and seem to have
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Figure 13. (a) The predicted band of excited pulse frequency ∆2 compared to simulation results.
(b) The relative density of equilibrium to excited pulses from simulations compared to the theoretical
band ωm/∆2. The numerical results correspond to ε = 10−3, 10−4, 10−5, 10−6 and 10−7.

distinctively different dynamics. For the more practical conditions of δ > 0.1, the
constant asymptote of ∆2/ωm is one key to the universal coarsening rate seen in
figure 5.

5. Universal coarsening rate based on ∆
With an estimate for the excited pulse fraction and the average time interval between

excited pulses from ∆2, we are now in a position to quantify the dynamics of pulse
coarsening seen in figure 5 – the dominant dynamics of pulses on a falling film. In the
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Figure 14. (a, b) Schematic for the pulse coalescence model and (c) the equilibrium pulse amplitude
a and differential speed between excited and equilibrium pulses β as functions of δ. Since the
equilibrium pulse amplitude a reaches a constant asymptote at large δ, the differential speed β
between excited and equilibrium pulses also approaches a constant asymptote.

schematics of figure 14, the two thick envelope world lines in figure 14(a) correspond
to two excited pulses. On the average, these two excited pulses are separated by a
time interval of T = 2π/∆2 as shown. The thin world lines between these two thick
envelopes correspond to equilibrium pulses. Again, in the schematic of figure 14(a)
of an ‘average’ arrangement, there are N = ωm/∆2 such equilibrium pulses between
the excited ones. As seen by the parallel lines of the excited and equilibrium pulses
with different slopes, we neglect the adjustment dynamics of the equilibrium pulses
and the complex pulse coalescence and mass drainage dynamics at the excited
pulses. Instead, we assume the excited and equilibrium pulses all travel at speeds
that remain constant for the entire flow domain. This assumption is consistent with
the world lines of figures 4 and 6. This implies that the liquid acquired by an excited
pulse during a coalescence event is roughly equal to the mass it drains out before the
next event. Thus, the average speed of the excited pulse between events is constant
over the entire flow domain. This occurs only for relatively fast drainage. For drop
coalescence on a thin vertical wire, we find that the excited drops retain much of
the mass after each coalescence (Chang & Demekhin 1999). As a result, these drops
accelerate downstream and the coalescence frequency also increases monotonically.
This scenario seems to occur for δ < 0.1 and will not be modelled here.

Let c1 and c2 be the speeds of the excited and equilibrium pulses, respectively.
Consider a vertical line parallel to the t-axis shown in figure 14(b). An excited pulse
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and an equilibrium one pass this station in space at different times within an interval
∆t. If these two pulses coalesce at a different spatial station ∆x downstream, the
following must be true from simple geometric arguments obvious from figure 14(b):

∆t =
∆x

c2

− ∆x

c1

(44)

or in differential form
dt

dx
= −β = −c1 − c2

c1c2

. (45)

The negative sign of (dt/dx) indicates that all the equilibrium pulses within the time
interval dt have been eliminated over a distance of dx. The differential number of
equilibrium pulses within this differential period dt is

dn = dt
(ωm

2π

)
(46)

and hence

dn = −
(
βωm

2π

)
dx. (47)

Integrating from the pulse inception location x2, one obtains

n(x) = n0 +
βωm

2π
(x2 − x)

=
ωm

∆2

+
βωm

2π
(x2 − x). (48)

Since we have only considered one excited pulse, n(x) is the number of equilibrium
pulses between two excited pulses. The average pulse period is then

〈t〉 =
2π/∆2

n(x)
=

2π

ωm + (βωm∆2/2π)(x2 − x)

∼ 2π

ωm
+

(
∆2

ωm

)
β(x− x2). (49)

The coarsening rate is then

d〈t〉
dx
∼
(
∆2

ωm

)(
c1 − c2

c1c2

)
. (50)

The linear correlation between excess pulse speed and excess amplitude has been
verified experimentally (Alekseenko et al. 1994) and has been captured by our earlier
weighted spectral theory for pulses (Chang et al. 1995a) that utilizes resonance poles.
In the present variables, it appears as

c ' 3.0 + 2.0a, (51)

where a here is the total pulse amplitude instead of the excess one. At a = 0, one
obtains the phase velocity of low-δ sinusoidal waves at inception. Equilibrium pulse
amplitude a as a function of δ has been computed in (Chang et al. 1995a, 1996b) and
is shown in figure 14(c).

We have estimated the excited pulses to have roughly twice the mass of the
equilibrium ones owing to the coalescence events (Chang et al. 1995a, 1996b). Since
the pulse width remains the same, the excited pulse should also be twice as large
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Figure 15. The constant asymptote of β beyond δ = 0.1 produces a universal dimensionless
coarsening rate d〈t〉/dx = 0.015 that is consistent with our simulation results. The error bars
correspond to noise amplitudes 10−7 < ε < 10−3.

in amplitude. Using this assumption and correlation (51), the parameter β can be
expressed in terms of the amplitude of the equilibrium pulse a,

β =
c1 − c2

c1c2

=
2a

(3 + 2a)(3 + 4a)
. (52)

As shown in figure 14(c), for the large pulses beyond δ = 0.1 (a larger than 2), this
parameter approaches roughly a constant of about 0.05. Combining this universal
pulse differential speed with the generic excited pulse fraction of 1/4 for δ larger than
0.15 in figure 13(b), we obtain the universal dimensionless coarsening rate

d〈t〉
dx

= 0.015. (53)

This rough estimate is in agreement with all our numerical simulations of δ between
0.1 and 0.4 and a wide range of noise amplitudes, as seen in figure 15. In dimensional
form, this universal coarsening rate is simply 0.015 divided by the Nusselt average
flat-film velocity 〈u〉.

In figure 16, the final saturated wave period 〈t〉∞ from our simulation, after the
coalescence events have ceased, is favourably compared to the theoretical prediction
2π/∆2 from (40) and (43) and from figure 13(a). This confirms that only the excited
pulses remain at the end and all the equilibrium pulses have been eliminated. This was
also the case in figure 7 where the biperiodic forcing imposes a specific modulation
frequency ∆. For the broad-banded noise here, the asymptotic wave period far
downstream actually corresponds to the modulation frequency selected by the primary
and secondary instabilities of inception waves within x < 200 (less than 15 cm for
water) of the inlet! The dominance of pulse coherent structures and the creation
of excited pulses from secondary modulation instability lead to this simple unique
feature despite the complex noise-driven wave dynamics.
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Figure 16. The final equilibrium pulse period of figure 5 compared to the theoretical band 2π/∆2.

6. Summary and discussion
A universal coarsening rate of 0.015 independent of noise amplitude (ε′ < 10−3)

and flow conditions (0.1 < δ < 0.4) is a welcome generic conclusion to such a complex
hydrodynamic problem. Even more attractive is the observation that this coarsening
rate only depends on the dominant modulation frequency ∆ and the excited pulse
dynamics. The former quantity can be estimated from a relatively simple weakly
nonlinear theory, as we have done here, and the latter can also be readily estimated
numerically, experimentally or theoretically using resonance pole spectral theory. It is
conceivable that this scenario is common to many open-flow hydrodynamic systems
with a long-wave instability and localized coherent wave structures. As a result, their
wave dynamics can also be deciphered in the same manner. Application to short-wave
instabilities with a finite critical wavenumber may also be possible if solitary pulses
are possible wave structures in these instabilities. There is some indication that this
may be the case if the short waves interact with stable long waves as in two-layer
couette flow (Chang et al. 1999; Charru & Barthelet 1999).

In a subsequent paper, we shall examine the subcritical (δ < 0.1) and supercritical
(δ > 0.4) power-law coarsening rates with a more elaborate model than the Shkadov
model and the low-order Galerkin expansion of the boundary layer equation. The
remaining unsolved wave dynamics on a falling film would then be the breakup of
the solitary pulses into localized three-dimensional wave structures (scallop waves).
The spatial location for this transition and its dependence on noise amplitude ε
and flow conditions δ is currently being investigated by our group. The transverse
instability of pulses that triggers the onset of scallop waves is expected to be very
sensitive to the capillary ripples in front of the pulses. Once again, such ripples
may not be accurately described by the Shkadov model, (8) and (9), or a low-
order expansion of the boundary layer equation, (1) and (2). More advanced models,
like those offered by Ruyer-Quil & Manneville (1998), may be necessary. However,
due to their localized structure on a two-dimensional free surface, these scallop
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waves tend not to coalesce and change their density. Consequently, the onset of
scallop wave formation and their characteristic size at inception may complete the
quantification of all pertinent dynamics and length scales for wave evolution on the
falling film.

This work is supported by NASA and NSF grants.
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