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Abstract. We formulate a general theory, based on a Lyapunov–Schmidt expansion, for aver-
aging thermal and solutal dispersion phenomena in multiphase reactors, with specific attention to
the important Taylor mechanism due to transverse intraphase and interphase capacitance-weighted
velocity gradients. We show that the classical Taylor dispersion phenomena are better described in
terms of low dimensional models that are hyperbolic and contain an effective local time or length
scale in place of the traditional Taylor dispersion coefficient. This description eliminates the use
of an artificial exit boundary condition associated with parabolic homogenized equations as well
as the classical upstream-feedback and infinite propagation speed anomalies. Our approach is also
applicable for describing steady dispersion in the presence of reaction and thermal generation or
consumption. For two-phase systems, maximum dispersion is found to exist at an optimum fraction
εf of the lower-capacitance phase. For the disparate phase capacities of most reactors, thermal or

solutal dispersion is shown to have the scaling
εfp2

(1−εf )Γ
αf , where αf is the thermal diffusivity of the

low-capacitance phase, Γ is the capacitance ratio, and p is the transverse Peclet number.
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1. Introduction. A major goal of the discipline of chemical engineering known
as reaction engineering is to combine the complex kinetics, flow fields, and geometries
of multiphase reacting systems (such as a packed bed) into accurate low dimensional
homogenized convection-diffusion-reaction models that contain all the pertinent trans-
port and kinetic effects of the above complications. It was realized very early that flow
turbulence, tortuosity of the interstitial streamlines, velocity gradient of the flowing
phase, adsorption onto a stationary phase (as in a chromatograph), and accumulation
near stagnation points or stagnant dead zones can give rise to anomalously high solutal
dispersion, orders of magnitude higher than molecular diffusion, that must somehow

be modeled and included in the homogenized model as a dispersion term Deff
∂2c
∂z2

with the dispersion coefficient Deff . That such a term stipulates that two boundary
conditions be provided for the parabolic homogenized model has also introduced con-
siderable confusion. The classical Danckwerts boundary conditions and many other
inconsistent ones provide one boundary condition at each end of the reactor (Danck-
werts (1953), Choi and Perlmutter (1976), Wehner and Wilhelm (1956)) and have
recently been “justified” by Roberts (1989) using center manifold theory. There are,
however, fundamental difficulties with this parabolic equation and the Danckwerts
boundary conditions. This model introduces infinitely fast diffusive spreading of a
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localized concentration perturbation and upstream diffusive propagation (Hinduja,
Sundaresan, and Jackson (1980), Sundaresan, Anderson, and Aris (1980)). Both phe-
nomena are not observed experimentally as the flow-induced dispersion mechanisms
are hyperbolic in nature (Hiby (1962), Chang (1982)). As a result, the homogenized
parabolic equation and Danckwerts boundary conditions cannot describe the observed
dispersion phenomena in finite length reactors.

Local turbulent dispersion can be estimated using classical homogeneous turbu-
lent mixing theory. Dispersion in periodic as well as random velocity fields has been
reviewed by Majda and Kramer (1999). These authors also present an excellent re-
view of homogenization methods for the convective diffusion equation with periodic
velocity fields.

In many applications such as chromatographs and reactors involving packed beds,
the flow is laminar, and the more important larger scale dispersion effects that occur
over several reactor radii are mostly due to a Taylor–Aris dispersion mechanism (Tay-
lor (1953), Aris (1959), Brenner and Edwards (1993)). This mechanism occurs when a
macroscopic transverse velocity gradient, like Poiseuille flow in a tube or macroscopic
flow nonuniformity in a packed bed, induces longitudinal dispersion as transverse
diffusion lands molecules onto streamlines or flow channels of different velocity. Ad-
sorption onto a stationary solid phase also can trigger this effect as the solid phase
has a velocity (zero) different from the flowing phase. Adsorption-induced Taylor–Aris
dispersion is responsible for the dispersion of chromatograph signals (Balakotaiah and
Chang (1995)). It is also a main problem in biochemical assays on chip-scale labora-
tories and reactors using microfluidics (Culbertson, Jacobson, and Ramsey (1998)).

Several theories have been developed to predict solutal Taylor–Aris dispersion
in packed beds. In the limit of extremely high Peclet number p in an unbounded
medium when diffusion is unimportant in the bulk of the flowing phase, Koch and
Brady used a diffusive boundary layer cutoff to show that Deff scales as p ln p (Koch
and Brady (1985)). Roberts (1989) and Balakotaiah and Chang (1995) used center
manifold theory to show that reaction can affect the dispersion coefficient in a long
reactor whose length is much longer than its transverse dimension (radius) such that
diffusion dominates in the transverse direction.

Another confusion concerning dispersion is whether a homogenized model remains
valid at steady state and whether Deff and its underlying dispersion mechanism are
still in play at steady state. While Taylor’s classical theory (Taylor, 1953), Koch
and Brady’s high-p dispersion mechanism in an unbounded medium, and Roberts’s
and Balakotaiah and Chang’s reactive dispersion theory in a long reactor are clearly
for transient dispersion, it seems physically intuitive that the same transverse gradi-
ent in longitudinal velocity can affect steady-state reactor conversion or performance
(Chang, 1982). In fact, it is common practice to use the homogenized model for both
steady and transient reactors (Westerterp, Dilman, and Kronberg (1995)). Steady
dispersion, however, lacks theoretical justification. An apparent steady dispersion
will be shown here to exist, but its description is fundamentally different from that
of the transient one.

Even more important than solutal dispersion is thermal dispersion, a subject that
is only recently being scrutinized in detail. It is well known in the reaction engineer-
ing literature (Balakotaiah (1996), Subramanian and Balakotaiah (1996)) that reactor
dynamics and steady-state multiplicity are extremely sensitive to thermal dispersion.
Empirical studies and recent analyses have shown that reactor ignition, extinction,
hot spot formation, and thermal runaways of most important (and difficult to control)
reactors for exothermic reactions are also extremely sensitive to thermal dispersion
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(Balakotaiah, Kodra, and Nyugen (1995), Leighton and Chang (1995), and Keith,
Leighton, and Chang (1999)). To compound the problem, thermal dispersion is more
sensitive to packing and flow geometries and is far more difficult to estimate than
solutal dispersion. Two major difficulties are that the thermal penetration depth into
the solid phase is deeper than the solutal one, and that the stationary and mobile
capacitances are more disparate. As a result, interphase dispersion due to discrep-
ancies in the phase-averaged thermal velocities can enhance and even dominate the
intraphase dispersion mechanism in the flowing phase due to transverse flow velocity
gradient. The addition of interphase dispersion, distinct from Taylor’s intraphase dis-
persion, renders the analysis more difficult. Vortmeyer and Schaefer (1974), Leighton
and Chang (1995), and Balakotaiah and Dommeti (1999) obtained interphase disper-
sion coefficients based on lumped models with heat transfer coefficients. Leighton and
Chang (1995) showed that the ignition location and light-off time of a catalytic con-
verter is determined mostly by this thermal dispersion mechanism. Keith, Leighton,
and Chang (1999) used metal inserts to enhance thermal dispersion of a reverse-flow
reactor to prevent thermal runaway. Without including the intraphase dispersion
mechanism due to flow nonuniformity, they found that an optimum void fraction of
intermediate value and with maximum dispersion exists when the heat capacity ratio
Γ is near unity, but none exists for realistic void fractions for disparate capacities.
In fact, for the more common case of disparate capacities, a generic scaling seems
to exist. This would be a significant general result as most reactors have disparate
capacities and complex flow fields. It would be desirable to obtain general dispersion
scalings insensitive to the flow fields. However, the omission of intraphase dispersion
will be shown here to be valid only for disparate capacities. Greatly enhanced disper-
sion still exists near unit Γ and at an optimum flowing-phase fraction, but the actual
dispersion coefficient must include intraphase dispersion and a detailed description of
the macroscopic flow fields.

A general solutal/thermal Taylor–Aris dispersion theory will be formulated here to
clearly delineate the intraphase and interphase contributions. The proper limit when
the former can be omitted and the simpler lumped-phase models can be utilized is
also defined. The theory also shows that dispersion phenomena are better described
in terms of reduced (low dimensional) models that are hyperbolic in the longitudinal
coordinate and time, and with an effective transfer or exchange time constant between
the master (slowly varying) mode and slave (local) modes, in contrast to the tradi-
tional parabolic models with an effective dispersion coefficient. The reduced models
derived based on the present theory eliminate the classical problems of upstream
diffusion and infinite propagation speed associated with the parabolic-type averaged
equations derived in the prior literature. The theory utilizes the Lyapunov–Schmidt
reduction technique of classical bifurcation theory and is based on a perturbation
expansion near zero eigenvalue(s).

2. Packed-bed heat transfer. To illustrate the concept of interphase disper-
sion (due to transfer or exchange between the phases) and some key ideas in our
approach, we first consider a very simple model of a packed bed in which the solid is
stationary and the fluid moves (Figure 1). The classical heat transfer model of this
system ignores the (transverse) gradients within each phase as well as conduction in
the axial direction in each phase. The model is described by the following pair of
hyperbolic equations for the solid and fluid temperatures:

εf (ρcp)f

[
∂Tf
∂t′

+ u0
∂Tf
∂z′

]
= hav(Ts − Tf ),(2.1a)
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Fig. 1. Schematic diagram of a packed-bed reactor in which solid and fluid phases interact.

(1 − εf )(ρcp)s
∂Ts
∂t′

= −hav(Ts − Tf ),(2.1b)

with initial and boundary conditions

Tf = f0(t
′), z′ = 0, t′ > 0,(2.1c)

Tf = T 0
f (z′), t′ = 0, z′ > 0,(2.1d)

Ts = T 0
s (z′), t′ = 0, z′ > 0.(2.1e)

Here, u0 (assumed to be a constant) is the interstitial fluid velocity, εf is the void
fraction of the bed (available for flow), (ρcp)s ((ρcp)f ) is the solid (fluid) heat capacity
per unit volume, h is the interphase heat transfer coefficient, and av is the (interphase)
transfer area per unit bed volume. Assuming that the bed has a length L, we define

z =
z′

L
, t =

u0t
′

L
, Γ =

(ρcp)s
(ρcp)f

, Pe =
(ρcp)fu0

Lhav
,(2.2)

and write (2.1a) and (2.1b) in dimensionless form as

A


 Tf

Ts


 = Pe


 ∂Tf

∂t +
∂Tf

∂z

∂Ts

∂t


 ,(2.3a)

where the matrix operator A is defined by

A =

(
− 1

εf
1
εf

1
Γ(1−εf ) − 1

Γ(1−εf )

)
.(2.3b)

(As shown later, A can be made symmetric by defining an inner product weighted
with respect to the relative capacitances of the phases.) We note that the Peclet

number Pe is the ratio of interphase transfer time (
(ρcp)f
hav

) to the convection time

( L
u0

), Γ is the ratio of solid to fluid heat capacities, and time is nondimensionalized
with respect to the convection time. It is assumed that the Peclet number is small,
or equivalently, that the interphase transfer time is much smaller compared to the
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convection time. The matrix A is singular with the following null eigenvector and
slave eigenvector (with eigenvalue − 1

εf
− 1

Γ(1−εf ) ):

φ0 =

(
1
1

)
, φ1 =

(
Γ(1 − εf )

−εf
)
.(2.4)

Writing (
Tf
Ts

)
=

(
1 Γ(1 − εf )
1 −εf

)(
Tm
Td

)
(2.5a)

or (
Tm
Td

)
=

(
εf

[εf+Γ(1−εf )]
Γ(1−εf )

[εf+Γ(1−εf )]
1

[εf+Γ(1−εf )]
−1

[εf+Γ(1−εf )]

)(
Tf
Ts

)
,(2.5b)

we observe that Tm is the capacitance-weighted (average) temperature, while Td is the
local temperature difference. In terms of these variables, the model may be written
as

[εf + Γ(1 − εf )]∂Tm
∂t

+ εf
∂Tm
∂z

= −εf (1 − εf )Γ∂Td
∂z
,(2.6a)

Td = − Peεf (1 − εf )Γ
[εf + Γ(1 − εf )]2

[
∂Tm
∂z

+ εf
∂Td
∂t

+ Γ(1 − εf )
(
∂Td
∂t

+
∂Td
∂z

)]
.(2.6b)

For Pe = 0, the solid and fluid temperatures are in equilibrium, and the average
temperature evolves according to (2.6a) with its right-hand side set to zero. For small
values of the Peclet number, we have from (2.6b)

Td = − Peεf (1 − εf )Γ
[εf + Γ(1 − εf )]2

(
∂Tm
∂z

)
+O(Pe2).(2.7)

Thus, the temperature difference Td is slaved to the average temperature. Substituting
(2.7) into (2.6a) and writing the resulting averaged equation in dimensional form, we
obtain

∂Tm
∂t′

+ 〈u〉 ∂Tm
∂z′

= αeff
∂2Tm
∂z′2

,(2.8a)

〈u〉 = u0
εf

[εf + Γ(1 − εf )] , αeff =
u2

0(ρcp)f Γ2 ε2f (1 − εf )2
hav[εf + Γ(1 − εf )]3 .(2.8b)

Here, 〈u〉 and αeff are the capacitance-weighted velocity and effective thermal diffu-
sivity of the bed, respectively. From the above derivation, it is clear that the reduced

model is valid only when t′ � (ρcp)f
hav

and z′ � u0
(ρcp)f
hav

, i.e., when there is a short
transient that escapes the effective equation. During this transient, the two phases
equilibrate, and the appropriate initial condition for Tm is simply the capacitance-
weighted average of the initial conditions of Ts and Tf ,

Tm(t′ = 0) =
εf Tf (t

′ = 0) + Γ(1 − εf )Ts(t′ = 0)

[εf + Γ(1 − εf )] .(2.8c)
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This is valid even though t′ = 0 on the two sides of (2.8c) corresponds to slightly
different instants in time. The two boundary conditions for (2.8a) are more problem-
atic, as the original equation only offers one boundary condition at z′ = 0. Thus, one
obvious one (from (2.1b) and (2.1c)) is that

Tm(z′ = 0, t′) = f0(t
′) +

(ρcp)s Γ(1 − εf )2
hav[εf + Γ(1 − εf )]

(
∂f0(t

′)
∂t′

)
.(2.8d)

In the engineering and the Taylor dispersion theory literature (Danckwerts (1953),
Vortmeyer and Schaeffer (1974), Roberts (1992)), the other boundary condition is
imposed at the exit z′ = L, and the often-used exit (Danckwerts) boundary condition
is

∂Tm
∂z′

(z′ = L, t′) = 0.(2.8e)

This is clearly not acceptable since the original problem does not possess any boundary
condition at the exit. There is also a more fundamental problem associated with the
form of the reduced model given by (2.8a). In this form, the reduced model is a
parabolic equation, and imposing an artificial exit boundary condition leads to infinite
propagation speed for inlet signals. Again, this is certainly not true for the original
equations (2.1a) and (2.1b), which may be combined to obtain a single hyperbolic
equation for Tf , Ts, or any linear combination of these. For example, without any
assumptions on the length or time scales, it is easily seen that the temperature Ti
(i = f, s, or m) satisfies the hyperbolic equation

∂Ti
∂t′

+ 〈u〉 ∂Ti
∂z′

+
(ρcp)s εf (1 − εf )
hav[εf + Γ(1 − εf )]

∂

∂t′

[
∂Ti
∂t′

+ u0
∂Ti
∂z′

]
= 0.(2.9)

For i = m, the initial and boundary conditions for (2.9) are the same as those defined
by (2.8c) and (2.8d), respectively. Thus, the parabolic form of the reduced equation
given by (2.8a) is not preferable as it leads to nonphysical phenomena such as upstream
diffusion and infinite speed of propagation. This is certainly not true for the initial
model, (2.9), which predicts finite propagation speed for all inlet and initial signals
and no upstream diffusion. (This can be seen more clearly by comparing the analytical
solutions of the exact and reduced equations for a unit step or impulse inputs. These
analytical solutions can be expressed in terms of modified Bessel functions.) The origin
of the second spatial derivative term in the reduced equation and the interpretation of
the coefficient αeff as an effective (Taylor) diffusivity can be traced back to the paper
of Taylor on shear dispersion (Taylor (1953)). We present here an alternate form of
the reduced equation (and interpretation of the local coefficients) that eliminates the
above-mentioned inconsistencies of the classical Taylor dispersion theory.

We note that, when the interphase transfer time is small, the leading order ap-
proximation

∂Tm
∂t′

= −〈u〉 ∂Tm
∂z′

+O

(
(ρcp)f
hav

)
(2.10)

may be used to write the reduced equation in three different forms: as a parabolic
equation in z′ (i.e., (2.8a)), a parabolic equation in t′, or a hyperbolic equation in z′

and t′. We also note that the local (2.7) written in terms of either ∂Tm

∂t′ or ∂Tm

∂z′ defines

a characteristic time (that is proportional to
(ρcp)f
hav

) for heat exchange between the
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slowly varying mode Tm and the slave (local) mode Td. Thus, we write the averaged
model as

∂Tm
∂t′

+ 〈u〉 ∂Tm
∂z′

+ 〈u〉 tH ∂
2Tm
∂z′∂t′

= 0,(2.11)

where tH is the characteristic local exchange time (between the two modes) defined
by

tH =
(ρcp)s (1 − εf )2Γ
hav[εf + Γ(1 − εf )] .(2.12)

We also define a local length scale as �H = 〈u〉 tH and note that the reduced model
is valid for z′ � �H and t′ � tH . In this form, the reduced model defines both the
local length and time scales (their ratio being 〈u〉), and the local effective diffusivity

is given by αeff =
�2H
tH

= 〈u〉2 tH .
This hyperbolic form of the reduced equation is favored for the following reasons:

(i) Since the initial model is hyperbolic, the reduced model should also be hyperbolic;
(ii) writing the reduced model as a parabolic equation either in z′ or t′ requires an
artificial boundary or initial condition; (iii) the hyperbolic (2.11) defines a character-
istic initial value problem for Tm and hence only Tm needs to be specified along the
characteristic curves z′ = constant and t′ = constant. (In contrast, for the general
Cauchy problem, both the function and the normal derivative should be specified
along a noncharacteristic curve.) The initial and boundary conditions for (2.11) are
the same as those defined by (2.8c) and (2.8d), respectively. Now, no artificial bound-
ary or initial conditions are required, and the reduced model does not lead to any
nonphysical phenomena. This hyperbolic form of the reduced model also replaces the
concept of an effective (Taylor) diffusivity by that of an effective local time or length
scale.

The perturbation expansion can be carried out to higher orders in Pe, and the
reduced model (with appropriate initial and boundary conditions) can be expressed
in hyperbolic form, but we do not pursue this calculation here. The conditions under
which the perturbation expansion converges may also be obtained (for this specific
example) in terms of the spatial or time scales appearing in the initial and boundary
conditions. We consider it only briefly here and refer to Balakotaiah and Dommeti
(1999) for more details.

We note that the local equation (2.6b) may be written as[
1 +

Pe εf (1 − εf )Γ
[εf + Γ(1 − εf )]

(
∂

∂t

)]
Td =

Pe (1 − εf )Γ
[εf + Γ(1 − εf )]

(
∂Tm
∂t

)
.(2.13)

Thus, if we consider the special case in which only the inlet conditions are varied, then
by taking a Laplace transform, we can reduce the local equation to a linear algebraic
equation in terms of the forcing frequency. This equation has a convergent power
series expansion in Pe, provided the dimensionless forcing frequency (ω) satisfies the
criterion

Pe εf (1 − εf )Γω
[εf + Γ(1 − εf )] < 1.(2.14)

In dimensional terms, (2.14) may be written as

ω′tH <
(1 − εf )Γ

εf
.(2.15)
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Fig. 2. Schematic diagram illustrating the classical Taylor solutal dispersion in laminar flow
in a circular tube.

This convergence criterion has a simple physical meaning for the special case in which
the volumetric heat capacities of the phases are equal (when the right-hand side of
(2.15) is equal to unity): the reduced model exists only if the forcing frequency is less
than that defined by the characteristic local exchange time (ω′ < 1

tH
).

3. Taylor’s solutal dispersion theory revisited. In this section, we consider
the classical Taylor problem that illustrates intraphase dispersion due to transverse
velocity gradients and show that the inconsistencies associated with the parabolic
form of the reduced model can be removed by expressing the reduced model in a
hyperbolic form. Our approach also shows the similarity between the inter- and
intraphase dispersion and the superiority of the hyperbolic models for describing these
phenomena.

The dispersion of a nonreactive solute in a circular tube of constant cross section
(see Figure 2 for notation) in which the flow is laminar is described by the convective-
diffusion equation

∂C

∂t′
+ 2 〈u〉

(
1 − r2

R2

)
∂C

∂z′
=
D

r

∂

∂r

(
r
∂C

∂r

)
, 0 < r < R, z′ > 0, t′ > 0,(3.1a)

∂C

∂r
= 0@r = 0, R,(3.1b)

I.C : C(z′, r, 0) = f(z′, r),(3.1c)

B.C : C(0, r, t′) = g(r, t′).(3.1d)

In writing (3.1a), it is assumed that longitudinal diffusion can be neglected (this
assumption is relaxed later on). Here, 〈u〉 is the average velocity in the pipe, R is the
radius, and D is the diffusivity of the species. Defining dimensionless variables

z =
z′

L
, t =

〈u〉 t′
L

, ξ =
r

R
, Pe =

R2 〈u〉
LD

,(3.2)

we can write (3.1a) and (3.1b) as

£C ≡ 1

ξ

∂

∂ξ

(
ξ
∂C

∂ξ

)
= Pe

[
∂C

∂t
+ 2

(
1 − ξ2) ∂C

∂z

]
,

∂C

∂ξ
= 0@ξ = 0, 1.(3.3)
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We note that the transverse operator £ is symmetric with respect to the inner product

(v, w) =

∫ 1

0

2ξv(ξ)w(ξ)dξ.

It has a zero eigenvalue with normalized eigenfunction φ0 = 1. We define the mixing-
cup (velocity weighted) and spatial average concentrations by

Cm =

∫ 1

0

4ξ(1 − ξ2)C(ξ, z, t)dξ,(3.4a)

〈C〉 =

∫ 1

0

2ξC(ξ, z, t)dξ.(3.4b)

Transverse averaging of (3.3) gives

∂ 〈C〉
∂t

+
∂Cm

∂z
= 0.(3.5)

We note that when Pe = 0, 〈C〉 = Cm, and substitution of this into (3.5) gives the
leading order evolution equation for the averaged concentration. Writing

C(ξ, z, t) = 〈C〉 (z, t) +W (ξ, z, t), W ∈ ker £,(3.6)

we can solve for the slave variable W (ξ, z, t) in terms of 〈C〉 (z, t) using a perturbation
expansion in Pe (and the Fredholm alternative):

£W − Pe
[
∂W

∂t
+ 2

(
1 − ξ2) ∂W

∂z

]
= Pe

[
∂ 〈C〉
∂t

+ 2
(
1 − ξ2) ∂ 〈C〉

∂z

]
,(3.7a)

∂W

∂ξ
= 0@ξ = 0, 1.(3.7b)

To leading order, we have

W (ξ, z, t) = Pe
∂ 〈C〉
∂t

[
1

12
− ξ2

4
+
ξ4

8

]
+O(Pe2).(3.8)

Substitution of this into (3.6) and transverse averaging (after multiplying by the
velocity profile) gives the local equation relating Cm and 〈C〉:

Cm − 〈C〉 =
Pe

48

∂ 〈C〉
∂t

+O(Pe2) =
Pe

48

∂Cm

∂t
+O(Pe2).(3.9)

As in the packed-bed problem, this local equation (when written in dimensional form)
defines a characteristic transfer time between the slowly evolving mode Cm(or 〈C〉)
and the slave mode Cm−〈C〉. Equations (3.5) and (3.9) complete the reduced model
to leading order. In this form, the reduced model for intraphase diffusion is similar
to the two-mode packed-bed model of interphase diffusion. We can combine the two
equations to obtain a single equation for either Cm or 〈C〉. Since the mixing-cup con-
centration (which is often measured in experiments) is more relevant in applications,
the reduced model in terms of Cm in dimensional form is given by

∂Cm

∂t′
+ 〈u〉 ∂Cm

∂z′
+ 〈u〉 tD ∂

2Cm

∂z′∂t′
= 0, t′ � tD, z

′ � �D,(3.10)
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where the local diffusion or mixing time is defined by

tD =
R2

48D
.(3.11)

The corresponding length scale and local diffusivity are given by �D = 〈u〉 tD, Deff =

〈u〉2 tD. As noted earlier, in the Taylor dispersion literature, (3.10) is written as a
parabolic equation with an effective dispersion coefficient Deff , which requires an
artificial boundary condition at the exit of the tube (Roberts (1992)). Below we
present a solution of (3.10) for general inlet and initial conditions and show that it
can describe dispersion for long times as well as the parabolic model. However, unlike
the classical parabolic equation over an infinite domain, (3.10) can accommodate an
inlet boundary condition. Once again, since (3.10) defines a characteristic initial value
problem, to complete the model, we need to specify Cm only along the characteristic
curves z′ = 0 and t′ = 0. Thus, the initial and boundary conditions for the reduced
model are obtained by taking the mixing-cup averages of (13.c) and (13.d):

Cm(z′, t′ = 0) =

∫ 1

0

4ξ(1 − ξ2) f(z′, Rξ)dξ ≡ fm(z′),(3.12a)

Cm(z′ = 0, t′) =

∫ 1

0

4ξ(1 − ξ2) g(Rξ, t′)dξ ≡ gm(t′).(3.12b)

Equations (3.10) and (3.12) complete the hyperbolic model to order Pe. As in the
packed-bed example, the perturbation expansion can be carried out to higher orders,
and it can be shown that it converges, provided tDω

′
t < 0.858 and �Dω

′
z < 0.288, where

ω′
t(ω

′
z) is the temporal (spatial) frequency contained in the inlet or initial conditions.

(For details, see Chakraborty and Balakotaiah (2002), Balakotaiah and Chang (1995),
and Mercer and Roberts (1990).)

The above analysis can be extended to the general case in which axial diffusion
is included in (13.a). In this case, the reduced model may be shown to be

∂ 〈C〉
∂t′

+ 〈u〉 ∂Cm

∂z′
= D

∂2 〈C〉
∂z′2

,(3.13a)

〈C〉 − Cm = − tD
∂ 〈C〉
∂t′

.(3.13b)

We can combine these equations to obtain a single hyperbolic equation for 〈C〉:

∂ 〈C〉
∂t′

+ 〈u〉 ∂ 〈C〉
∂z′

+ 〈u〉 tD ∂
2 〈C〉
∂z′∂t′

= D
∂2 〈C〉
∂z′2

.(3.14)

(We note that Cm or any other weighted average concentration also satisfies the same
equation (3.14). This is due to the fact that the original conservation equation is

linear in the concentration.) We note that when D � 〈u〉2 tD, or equivalently, the

radial Peclet number p = 〈u〉 R
D � 6.93, axial diffusion can be neglected. (Note that

the perturbation Peclet number Pe, which is equal to p times the aspect ratio
(
R
L

)
,

can be small even when p� 6.93, provided that the aspect ratio is sufficiently small.
The conditions p � 6.93 and Pe � 1 are usually satisfied for well-designed reactors
or chromatographic columns.)
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3.1. Solution of the hyperbolic model. In this section, we present the solu-
tion of the hyperbolic model defined by (3.10) and (3.12) and compare these solutions
to those of the classical parabolic model. We use the local time and length scales to
nondimensionalize the variables and write the hyperbolic model in the following form:

∂Cm

∂t
+
∂Cm

∂z
+
∂2Cm

∂z∂t
= 0, t� 1, z � 1,(3.15a)

Cm(z, t = 0) = f(z),(3.15b)

Cm(z = 0, t) = g(t).(3.15c)

(With this scaling, the reciprocal of the nondimensional time is the Peclet number.)
The substitution

Cm = W exp(−z − t)(3.16a)

reduces (3.15a) to the canonical form

∂2W

∂z∂t
−W = 0.(3.16b)

The fundamental solution (Riemann function) of (3.16b) is given by (see Garabedian
(1964))

Wg(z, t, ξ, η) = I0

(
2
√

(z − ξ)(t− η)
)
,(3.16c)

where I0 is the modified Bessel function of order zero. Using this fundamental solution,
we may express the solution of (3.15) as

Cm(z, t) = e−z−t

{
c0I0(2

√
zt) +

∫ z

0

dF (ξ)

dξ
I0

(
2
√
t(z − ξ)

)
dξ

+

∫ t

0

dG(η)

dη
I0

(
2
√
z(t− η)

)
dη)

}
,

(3.17a)

where

F (z) = ezf(z),(3.17b)

G(t) = etg(t),(3.17c)

c0 =
f(0) + g(0)

2
.(3.17d)

Below, we use this analytical solution to show that the solution of the hyperbolic
model, (3.15a)–(3.15c), remains positive for arbitrary but positive inlet and initial
conditions. We also compare the solutions of the hyperbolic model with those of the
parabolic model for some special cases.
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3.2. Positivity of the solutions to the hyperbolic model. We note that
(3.15) as well as the general solution given by (3.17) have the permutational symmetry
in z and t; i.e., they are invariant to the transformation (z, t, f) → (t, z, g). Thus,
to prove the positivity of the solution of (3.15), it is sufficient to consider the case of
g(t) = 0 and f(z) 
= 0. Now, for the special case of f(z) = δ(z− z0) and g(t) = 0, the
general solution given by (3.17) simplifies to

Cmg(z, z0, t) =

{
I1

(
2
√
t(z − z0)

)
ez0−z−t

√
t

z−z0
, z > z0,

0, z < z0.
(3.18)

Since this Green’s function is positive, the solution given by (3.17) remains positive
for all positive inlet and initial conditions. In fact, an alternate form of the analytical
solution to (3.15) makes this obvious:

Cm(z, t) =




∫ z
0
I1

(
2
√
t(z − z0)

)
ez0−z−t

√
t

z−z0
f(z0)dz0

+
∫ t
0
I1

(
2
√
z(t− t0)

)
et0−t−z

√
z

t−t0
g(t0)dt0, z > 0, t > 0,

0, z < 0 or t < 0.
(3.19)

3.3. Comparison of the dispersion curves for parabolic and hyperbolic
models. As stated earlier, it is of interest to determine how the solution of the
hyperbolic model differs from that of the parabolic models used in the literature to
describe solutal dispersion in nonreacting systems. In the engineering literature, the
solution of the averaged model to a unit impulse (Delta function) input is known as
the dispersion curve. For the parabolic model, this is the standard Gaussian curve
given by

Ep(z, t) =
1√
4πt

exp

{
− (z − t)2

4t

}
.(3.20)

Thus, the parabolic model predicts a peak in the dispersion curve at z = t and a
variance that increases linearly with time. The dispersion curve for the hyperbolic
model is obtained by taking z0 = 0 in (3.18):

Eh(z, t) =

{
e−z−t

√
t
z I1(2

√
tz), z > 0,

0, z < 0.
(3.21)

Examination of this curve shows that it has a peak at z = 0 for t ≤ 2. This is
consistent with physical observation that, for short times, transverse diffusion has not
acted on the initial delta function input and hence the peak should be at the injection
point. For t� 1, (3.21) may be written as

Eh(z, t) ≈
(
t

z

) 3
4 1√

4πt
exp

{
− (z − t)2

(
√
t+

√
z)2

}
.(3.22)

Thus, the dispersion curves predicted by the two models are close to each other near
t = z (and t � 1), but the hyperbolic model predicts an asymmetric curve with a
slightly higher peak at z = t − 3

2 . In addition, as noted earlier, the parabolic model
predicts upstream diffusion (since Ep(z, t) is not zero for z < 0) and infinite propa-
gation speed. Neither of these nonphysical phenomena is present in the hyperbolic
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Fig. 3. Comparison of the dispersion curves predicted by the parabolic and hyperbolic models
at t = 5 and 20. The symmetric curve with peak at t = z is for the parabolic model, while the
asymmetric curve with peak at z ≈ t− 3

2
is for the hyperbolic model.

model. Figure 3 compares the two solutions at two different times, t = 5 and t = 20.
While the two curves are extraordinarily close for large times, they intersect three
times (for all t > 4.84), and the dispersion curve predicted by the hyperbolic model
has a nonzero skewness at all finite times. We note that this skewness can also be
predicted by the parabolic-type models as done by Chatwin (1970), but higher order

terms (like ∂3Cm

∂z3 ) have to be included in the perturbation expansion. The hyperbolic
model captures the asymmetry at the lowest order.

4. General thermal/solutal dispersion theory. We now extend the theory
to the general case of a multiphase system in which the individual phases may be
stationary or moving and the capacitance varies with transverse coordinates; i.e.,
dispersion is due to combined inter- and intraphase mechanisms. We assume a long
reactor with weak longitudinal variation of temperature or concentration (due to
the small aspect ratio) and strong longitudinal (laminar) flow w(x, y). We retain
only transverse molecular solutal or thermal diffusion in x and y. Conversely, only
longitudinal convection is appreciable to balance transverse diffusion. The general
governing equation for the reactor temperature or concentration in dimensionless form
is then

F (θ, Pe) ≡ 1

ρcp
∇ · k∇θ − Pe

(
∂θ

∂t
+ w

∂θ

∂z

)
= 0,(4.1)
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where the ∇ operator is only for the transverse direction ∇ = ( ∂
∂x ,

∂
∂y , 0)T and both

the dimensionless conductivity k and the heat or solutal capacity ρcp are functions
of the transverse coordinates x and y within the transverse cross section Ω. The
Peclet number in (4.1) is again defined as the ratio of the transverse diffusion or local

exchange time (R
2

α0
) to the convection time ( L

u0
). (We note here that the thermal con-

ductivity, heat capacitance per unit volume, and the velocity are nondimensionalized
using some reference values k0, (ρcp)0, and u0, which can be chosen conveniently for

each application. Here, Pe = R2u0

Lα0
, where α0 = k0

(ρcp)0
.) When ρcp = 1 is uniform

throughout Ω, the transport problem (4.1) reduces to mass transport with uniform
capacitance. However, the solutal diffusivity can vary from phase to phase and is
hence a function of (x, y). Similarly, the transport coefficients w and k do not have
to be constant within each phase but can vary continuously with respect to (x, y).

Equation (4.1) must be solved in the transverse direction with continuity in θ and
k ∂θ
∂n at the phase boundaries. We shall also impose a no-flux boundary condition at

the transverse reactor boundary ∂Ω,

∂θ

∂n

∣∣∣∣
∂Ω

= 0.(4.2)

It is then clear that, at Pe = 0, a particular solution to (4.1) is θ = 〈θ〉, the
capacitance-weighted transverse average of θ, independent of the transverse coor-
dinates x and y. We then seek correction to 〈θ〉 for small Pe. To leading order, one
obtains the linear operator in Ω,

DθF (〈θ〉 , 0) · v =
1

ρcp
∇ · k∇v ≡ £v,(4.3)

with Neumann boundary conditions on the outer boundary ∂Ω, ∂v
∂n |∂Ω = 0. This

transverse diffusion operator contains a transverse-dependent conductivity k and ca-
pacitance ρcp that change from phase to phase. The operator is self-adjoint with
respect to the inner product

[u, v] =
1

Ωcp

∫
Ω

ρcp u v dΩ,(4.4a)

Ωcp =

∫
Ω

ρcp dΩ.(4.4b)

It has a zero eigenvalue with a constant null eigenfunction φ0, which can be chosen
as unity. The other eigenfunctions φn(x, y) all have zero integral (transverse average)
from a simple application of divergence theorem to £φn = −λnφn with the Neumann
boundary condition to ∂Ω:

[φn, φ0] = 〈φn〉 =
1

Ωcp

∫
Ω

ρcpφndΩ = 0.(4.5)

(We point out that (4.5) defines the capacitance-weighted transverse average of any
function. We also define 〈ρcp〉 =Ωcp/ |Ω|.)

We expand θ in terms of {φn}∞n=0,

θ = 〈θ〉 + θ′(x, y, z, t),(4.6)

where 〈θ〉 represents the null eigenfunction φ0 component without (x, y)-dependence,
while θ′ ⊥ ker£ represents the complement spanned by the other eigenfunctions.
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Since £ is self-adjoint with respect to the Hilbert inner product and θ′ ⊥ ker£, we
have

〈θ′〉 = 0.(4.7)

In the terminology of bifurcation theory, the equation satisfied by 〈θ〉 is the so-called
branching equation at a simple zero eigenvalue. (In the engineering literature, this
is often referred to as the homogenized equation, reduced model, averaged equation,
pseudohomogeneous model, etc.) This reduced equation can be obtained by applying
the implicit function theorem to eliminate θ′ from the equation EF (〈θ〉+ θ′, Pe) = 0.
(Here, E is the projection operator onto range £.) This Lyapunov–Schmidt reduction
can be done by expanding θ′ in terms of the small parameter Pe and solving a linear
equation at each order by using the Fredholm alternative. Writing

θ′ = Peθ1 + Pe2θ2 + · · · ,(4.8)

the leading order equation is given by

£θ1 −
(
∂ 〈θ〉
∂t

+ w
∂ 〈θ〉
∂z

)
= 0.(4.9)

Before we solve for θ′ in terms of 〈θ〉 to obtain the reduced model, we invoke a unique
relationship between the capacitance-weighted average 〈θ〉 and the mixing-cup average
defined by

θm =
1

Ωcp

∫
Ω

ρcp w θ dΩ =
[wθ, φ0]

[w, φ0]
=

〈wθ〉
〈w〉 ,(4.10a)

where 〈w〉 is the capacitance-weighted average dimensionless velocity, i.e.,

〈w〉 =
1

Ωcp

∫
Ω

ρcp w dΩ.(4.10b)

We note that, only in the degenerate case in which w is uniform over Ω, θm = 〈θ〉.
In all other cases, θm 
= 〈θ〉. Integrating (4.1) over the transverse cross-section Ω and
invoking the Neumann condition (4.2), one obtains

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

= 0.(4.11)

This relationship is exact and is valid for all orders in Pe. A second relation between
〈θ〉 and θm may be obtained by multiplying (4.6) by w and taking the inner product
with the null eigenfunction φ0:

θm = 〈θ〉 + Pe
[wθ1, φ0]

〈w〉 +O(Pe2).(4.12)

Thus, to leading order, the mixing-cup and capacitance-weighted average tempera-
tures are equal, and the evolution equation (4.11) for 〈θ〉 reduces to

∂ 〈θ〉
∂t

+ 〈w〉 ∂ 〈θ〉
∂z

+O(Pe) = 0.(4.13)
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To obtain the evolution equation to order Pe, we insert (4.13) into (4.9) and
define η as

θ1 ∼ η
∂ 〈θ〉
∂z

(4.14)

to reduce (4.9) to the following convenient form:

£η = w − 〈w〉 ,(4.15a)

with no-flux condition at ∂Ω

∂η

∂n

∣∣∣∣
∂Ω

= 0(4.15b)

and the usual continuity of η and k dηdn at the phase boundaries within Ω. Substitution
of (4.14) into (4.11) and (4.12) gives the reduced model

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ PeΛ
∂2θm
∂z∂t

= 0,(4.16)

where the numerical coefficient Λ is given by

Λ = − [wη, φ0]

〈w〉 = −〈wη〉
〈w〉 .(4.17)

In dimensional form, (4.16) becomes

∂θm
∂t′

+ 〈u〉 ∂θm
∂z

+ �H
∂2θm
∂z′∂t′

= 0,(4.18)

where 〈u〉 is the capacitance-weighted average velocity and the effective local length
scale �H is defined by

�H = Λ
R2u0

α0
.(4.19)

The corresponding time scale and the dimensional effective dispersion coefficient are

given by tH = �H
〈u〉 and αeff =

�2H
tH

= Λ R2u0〈u〉
α0

, respectively. Again, we note that

(4.18) is valid only for t′ � tH and z′ � �H . Dispersion can still occur for 0 < t′ < tH
or 0 < z′ < �H or even when w is uniform in Ω. However, in these higher order cases,
the expansion must be carried to higher orders in Pe so that the averaged model can
capture this early dispersion. Similarly, as pointed out by Mercer and Roberts (1990)
and Young and Jones (1991), early dispersion effects due to point sources or sinks
can be captured at order Pe2 and higher. We shall not discuss these higher order
special cases here as they are not very common in reactors and are also specific to
each problem.

The initial and boundary conditions for the general equation (4.18) may be derived
in the same manner as for the two specific examples illustrated earlier. We now
consider the local equation and various special cases of thermal and solutal dispersion.
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4.1. The local equation. As noted above, the local equation (4.15) must be
solved before we can determine the numerical coefficient Λ and hence the effective
local length or time scales. It is clear that the inhomogeneous term on the right-hand
side of (4.15a) satisfies the solvability condition for the singular operator. Also, since
η ⊥ ker £,

〈η〉 = 0,(4.20)

which can be used to solve for η uniquely.
Multiplying (4.15a) by η, taking the inner product with the null eigenfunction,

and using (4.20), one obtains

Λ = −[ηw, φ0]
= −[η£η, φ0]
= − 1

Ωcp

∫
Ω
η∇ · k∇η dΩ.

(4.21)

Using (4.15b) and the divergence theorem (integration by parts), (4.21) then yields

Λ =
1

Ωcp

∫
Ω

k∇η · ∇η dΩ,(4.22)

which is always positive. This quadratic form for Λ is more convenient for some of
our derivations and could possibly be used in a variational numerical scheme for η.

In the case of single-phase thermal transport or multiphase solutal transport when
ρcp is uniform throughout Ω, (4.22) simplifies to

Λ =
1

|Ω|
∫

Ω

α∇η · ∇η dΩ,(4.23)

where α is the dimensionless local diffusivity. If, in addition, α is independent of
the transverse coordinates (x, y) and is normalized to unity, then Λ depends on only
the velocity profile and the geometry of Ω. This clearly shows that, for the single-
phase limit and for uniform-capacitance solutal transport, dispersion occurs when a
transverse gradient in the longitudinal velocity exists.

The interphase dispersion seen in the packed-bed example arises from the different
thermal or capacitance-weighted velocities of each phase and hence contributes to
dispersion even if the longitudinal velocity wj is gradientless within each phase j.
This limit is particularly interesting, as the local equation has the following algebraic
form for each phase Ωj in Ω: ∑

j

Aij ηj = (wi − 〈w〉),(4.24a)

where A is the matrix defining the coupling between the phases. The numerical
coefficient Λ takes the simple and explicit form

Λ =

∑
j wjηj (ρcp)j εj∑

j (ρcp)j εj
,(4.24b)

where εi is the volume fraction of phase i. For the two-phase example of section 2,
with A defined by (2.3b) and w1 = 1, w2 = 0, we have

η =
εf (1 − εf )Γ

[εf + (1 − εf )Γ]
2

( −(1 − εf )Γ
εf

)
,

Λ =
−w1η1εf

[εf + (1 − εf )Γ]
=

ε2f (1 − εf )2Γ2

[εf + (1 − εf )Γ]
3 .(4.25)
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This interphase dispersion mechanism arises as solutal or heat “molecules” are trans-
ported to different phases through transverse thermal random walks. Once arrived,
molecules at each phase are caused to propagate longitudinally by different thermal
or capacitance-weighted velocities. The proportion of molecules in each phase is de-
termined by the local diffusivity and the size of Ωi. Hence, the capacitance-weighted
longitudinal phase thermal velocities (as defined by (4.24)) simply yield the thermal
dispersion.

4.2. Thermal/solutal dispersion with diffusion into the wall. We next
examine thermal and solutal dispersion in a cylindrical pipe of radius R with a solid
wall of thickness λR (λ > 0); see Figure 2. The diffusivity in the wall (αs) is assumed
to be distinct from that in the fluid phase. Here, we take the pipe radius (R), the
average fluid velocity (〈uf 〉), the fluid heat capacitance (ρcp)f , and fluid thermal

diffusivity (αf ) to nondimensionalize the variables. The velocity field is now

w(ξ) =




2
[
1 − ξ2] in Ωf , 0 < ξ < 1,

0 in Ωs, 1 < ξ < 1 + λ,
(4.26)

with

〈w〉 =
εf

εf + Γ(1 − εf ) ,

εf =
1

(1 + λ)2
.

The local equation is now

1

ξ

∂

∂ξ

(
ξ
∂ηf
∂ξ

)
= w − 〈w〉 in Ωf ,(4.27a)

1

µ

1

ξ

∂

∂ξ

(
ξ
∂ηs
∂ξ

)
= w − 〈w〉 in Ωs,(4.27b)

with boundary conditions

∂ηf
∂ξ

= 0, ξ = 0,(4.28a)

∂ηs
∂ξ

= 0, ξ = (1 + λ),(4.28b)

ηf = ηs, ξ = 1,(4.28c)

Γ

µ

∂ηs
∂ξ

=
∂ηf
∂ξ
, ξ = 1,(4.28d)

where µ = αf/αs is the ratio between the diffusivities.
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Some algebraic manipulation immediately yields

ηf =

{
1

2
ξ2 − 1

8
ξ4 − 〈w〉

4
ξ2 + sf

}
,(4.29a)

sf = − 5

24
εf − 3

8
(1 − εf ) − 〈w〉

{
(µ− 1)

(1 − εf )
4

− εf
8

+
µ

2
f(εf )

}
,(4.29b)

f(εf ) =
ε2f + 2εf − 3 − 2lnεf

4εf
,(4.29c)

ηs =
(µ

2

)
〈w〉

{
(1 + λ)2 ln (ξ) − 1

2
ξ2 + ss

}
,(4.29d)

ss =
1

2
+
sf + 3

8 − 1
4 〈w〉

µ
2 〈w〉 .(4.29e)

Substituting into (4.17), we obtain

Λ =
β1εf

εf + Γ(1 − εf ) +
(Γ − 1)β2ε

2
f (1 − εf )

[εf + Γ(1 − εf )]2 ,(4.30)

β1 =
11 − 8εf

48
+

(
εf

εf + Γ(1 − εf )
)(

6εf − 8

48

)

+
µ

4

(
εf

εf + Γ(1 − εf )
)

(2f(εf ) + 1 − εf ),
(4.31a)

β2 =
1

6
+

−εf (1 − εf ) + µ(4εf − ε2f − 3 − 2lnεf )

8(1 − εf )(εf + Γ(1 − εf )) .(4.31b)

Several limits are of interest. As εf → 1, we obtain Taylor’s result Λ = 1
48 for solutal

dispersion. In the limit of Γ(1− εf ) � εf , for intermediate εf values away from unity
we obtain

Λ =
αeff
p2αf

=
11

48

εf
Γ(1 − εf ) ,(4.32)

where p = 〈uf 〉R/αf is the transverse Peclet number. The coefficient 11/48 is also
consistent with Leighton and Chang (1995), using the lumped-phase approach. (Note
that 48

11 is the asymptotic Nusselt number, Nu∞, for laminar flow in a tube with a
constant flux boundary condition on the tube wall.) In Figure 4 we plot the product
of Γ and the normalized dispersion coefficient Λ given by (4.30) for Γ values of 100 and
1000, with µ varying from 10−1 to 102. It is obvious that all of them are independent of
µ and collapse nicely into the specific scaling of (4.32) except near εf = 1, where (4.32)
is singular. Thus, the high-Γ limit yields a scaling that is insensitive to geometric and
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Fig. 4. High-Γ dispersion for various values of diffusivity (µ) and capacitance ratio (Γ). The
curves for various µ and Γ collapse nicely into the µ-independent limit of (4.32).

flow details and is independent of αs. The dispersion is small in this limit at O(Γ−1)
and increases sharply with εf .

For εf � 1 and Γ of unit order, one can deduce from (4.30) that the flowfield-
sensitive intraphase term with the β1 coefficient dominates over the other interphase
term. A simple calculation then yields

αeff
p2αf

=
( µ

4Γ2

)
εf ln

(
1

εf

)
,(4.33)

with a different Γ scaling from (4.32).
For εf close to unity, the interphase term becomes equally important as the in-

traphase term. The high effective dispersion near Γ(1− εf ) ∼ εf is verified in Table 1,
where we have used (4.30) to determine the optimum εf for various µ and Γ values.
Figure 5 shows a plot of the maximum value of the normalized dispersion coefficient
that can be obtained for the optimum volume fraction εf of the low capacitance phase.
All these curves approach an asymptotic value for Γ > 10. This asymptote may be
found from (4.30) in the limit of Γ � 1 and δ = Γ(1 − εf ) finite. This simplification
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Table 1
Optimum fraction of the low capacitance phase at which the dispersion coefficient is maximum.

Γ εmax

µ = 0.1 µ = 1 µ = 10
1 0.45 0.31 0.16
2 0.63 0.59 0.30
5 0.81 0.81 0.74
10 0.90 0.90 0.89
20 0.95 0.95 0.94
50 0.98 0.98 0.98

Fig. 5. Maximum dispersion coefficient obtained at an optimum εf as a function of Γ for
various µ values.

gives

Λ =
1 + 6δ + 11δ2

48(1 + δ)3
.(4.34)

This is the expression derived by Golay (1958) for capillary chromatography with
a retentive layer. It follows from (4.34) that Λmax = 0.047 at δ = 1.15. As is
evident from Figure 5, the optimum normalized dispersion Λmax relative to εf becomes
independent of Γ and µ for Γ beyond 10, as is consistent with (4.30). However, this
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optimum dispersion is highest for Γ below 10, near unit order Γ. Hence, the largest
dispersion occurs near unit order Γ with a dispersion magnitude that is 3 to 4 times
the high Γ limit. Unfortunately, we cannot use the lumped model approach with heat
transfer coefficients for these high dispersion reactors. Their dispersion coefficient is
highly sensitive to flow distribution/packing, in contrast to the generic limit at high
Γ.

Finally, we consider the case of Γ = 1, which corresponds to the solutal dispersion
in a pipe and into the porous wall or particles as in a catalytic monolith or packed-bed
reactor, respectively. Here, the phases have equal capacities and, as reasoned above,
Deff should be sensitive to details in geometry and flow. For Γ = 1, (4.30) simplifies
to

Λ =
1

48
g1(εf ) +

µ

8
g2(εf ),(4.35a)

g1(εf ) = εf (6ε
2
f − 16εf + 11),(4.35b)

g2(εf ) = εf (4εf − ε2f − 3 − 2 ln(εf )).

We note that the function g1(εf ) has a maximum value of 2.26 at εf = 0.465, while
g2(εf ) has a maximum value of 0.206 at εf = 0.15. As µ increases from 0 to ∞, the
optimum εf decreases from 0.465 to 0.206. This is verified in Figure 6, where we have
plotted Λ as a function of εf for different µ values. As expected, Λ is sensitive to both
µ and εf .

5. Reactive and steady dispersion. It is clear from (4.18) that, at steady
state, the mixing-cup temperature θm remains constant along the reactor—dispersion
disappears at steady state. However, steady dispersion can exist under reactive con-
ditions. As transverse diffusion and a longitudinal velocity gradient can produce tran-
sient longitudinal dispersion, steady reactive conversion differences across streamlines
due to the transverse velocity gradient can also trigger transverse steady diffusive flux.
The latter can, in turn, alter the overall conversion and produce an apparent steady
dispersion. We shall examine this case here for the simplest scalar case—a single
step irreversible reaction for solutal transport or a zeroth order reaction (with excess
reactants) for thermal transport valid under thermal ignition conditions (Zeldovich et
al. (1985)). Equation (4.1) can then be modified to

F (θ, Pe) ≡ 1

ρcp
∇ · k∇θ − Pe

(
∂θ

∂t
+ w

∂θ

∂z

)
− PeKf(θ) = 0,(5.1)

where the Damköhler number K(x, y, z, t) reflects the different activity in different
phases (e.g., due to varying catalytic activity caused by nonuniform distribution of the
catalytic agent and catalyst decay in time), and the nonlinear function f(θ) captures
the temperature or concentration dependence of the reaction rate. (Note also that,
unlike the previous cases, F (θ, Pe) is now nonlinear in θ.) Both K(x, y, z, t) and f(θ)
are of unit order with respect to Pe. The function f(θ) can be positive or negative,
corresponding to solutal/thermal consumption or generation, respectively.

With this scaling, the transverse diffusion operator £ remains the dominant linear
operator. Moreover, the decomposition into a capacitance-weighted transverse average
〈θ〉 and a θ′ component, with 〈θ′〉 = 0, remains valid. However, the overall transverse
balance now becomes

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

+ 〈Kf(θ)〉 = 0.(5.2)
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Fig. 6. Unit order Γ dispersion as a function of εf for various µ values.

To leading order, (5.2) reduces to

∂ 〈θ〉
∂t

+ 〈w〉 ∂ 〈θ〉
∂z

+ 〈K〉 f(〈θ〉) +O(Pe) = 0.(5.3)

The equation for θ′ then becomes, to leading order in Pe,

£ θ′ = Pe(w − 〈w〉)∂ 〈θ〉
∂z

+ Pe(K − 〈K〉)f(〈θ〉).(5.4)

We then require the decomposition of θ′ into two components

θ′ = Pe

[
η
∂ 〈θ〉
∂z

+ χf(〈θ〉)
]

+O(Pe2);(5.5)

the first term containing η is the transient dispersion contribution considered earlier.
The reactive (source or sink) contribution is captured by χ as defined by

£ χ = K − 〈K〉 ,(5.6)
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where 〈χ〉 = 0 as for η. The other boundary conditions are ∂χ
∂n = 0 on ∂Ω and

continuity of χ and k ∂χ∂n across the phase boundaries ∂Ωi.
The homogenized model then becomes

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

+ 〈K〉 f(〈θ〉) + Pe f ′(〈θ〉)
(
δ
∂ 〈θ〉
∂z

+ κf(〈θ〉)
)

= 0,(5.7a)

θm = 〈θ〉 − Pe
[
Λ
∂ 〈θ〉
∂z

+ γf(〈θ〉)
]
,(5.7b)

where Λ is defined earlier by (4.17) and the new constants are

γ = −〈wχ〉
〈w〉 , δ = 〈Kη〉 , κ = 〈Kχ〉 .

We can combine (5.7a) and (5.7b) into a single equation for either 〈θ〉 or θm. How-
ever, the coefficients that appear in the resulting equation are no longer constants
but depend on the source function. As in the nonreactive case, representing the dis-
persion terms as second derivatives in z and interpretation of their coefficients as
Taylor dispersion coefficients leads to further conceptual difficulties (in addition to
the upstream diffusion, infinite propagation speed anomalies, and extra boundary or
initial condition needed). Now, the capacitance-weighted average velocity and the
dispersion coefficient are no longer constants but depend on the source function and
its derivative. (They can be negative and hence lose their physical meaning!) Our
approach based on the local length or times scales is still applicable here, the only
difference being the additional length or time scales that appear due to the source or
sink terms. Thus, in this case, it is preferable to leave the model in the two-mode form,
the two modes being the mixing-cup and capacitance-weighted average temperature
or concentration. The model is still hyperbolic as in the nonreactive case and reduces
to (4.16) when the Damköhler number K ≡ 0. The initial and boundary conditions
on (5.7) may also be derived in the same manner as in the nonreactive case.

We note that the reduced model now contains four effective local constants that
are of the same order of magnitude. It can be seen that the two terms in (5.7b) (con-
taining the constants Λ and γ) represent dispersion effects due to velocity gradients,
while the two terms in (5.7a) (containing the constants δ and κ) represent disper-
sion effects due to a nonuniform reaction rate. The three new terms with coefficients
γ, δ, and κ represent reactive dispersion effects (commonly known as mixing effects in
the engineering literature), where as the nonreactive term with coefficient Λ may be
interpreted as the traditional velocity gradient-induced dispersion. (This term may
be interpreted as the so-called micromixing effect; see Chakraborty and Balakotaiah
(2002) for more details.) We now examine various special cases.

The first case we consider is that in which f(θ) is a constant (say, f(θ) = −1). This
corresponds to the nonreactive situation, with a source term added to the classical
Taylor problem or the thermal dispersion problem. For this case, three of the source-
induced dispersion terms vanish, and (5.7) reduces to

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ ΛPe
∂2θm
∂z∂t

= 〈K〉 .(5.8)

Thus, the addition of a slowly varying source term simply adds its capacitance-
weighted transverse average to the reduced model.
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Next, we consider the case in which the Damköhler number K is constant (inde-
pendent of transverse coordinates and time). Again, the three constants γ, δ, and κ
vanish, and the model reduces to

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ ΛPe
∂2θm
∂z∂∂t

= K f

(
θm + ΛPe

∂θm
∂z

)
.(5.9)

In this case, in addition to the transient dispersion term, we also have a source cor-
rection term, and the reduced model is different from the standard models used in the
literature. These earlier literature models were obtained by just adding the source
term to the nonreactive reduced model. Such models are clearly invalid as they ex-
clude the correction term which appears in (5.9). (This was first noted by Balakotaiah
and Dommeti (1999) using lumped resistance models. This correction term is also
missing in the averaged models of Westerterp, Dilman, and Kronberg (1995) and
Westerterp et al. (1995) using a heuristic approach.)

The third case we consider is that of a two-phase system in which the low capac-
itance fluid phase is moving and the solid phase is stationary. We also assume that
K = 0 in the fluid phase and K = 1 in the solid phase. (This is a generalization
of the packed-bed model with heat generation in the solid phase.) For this case, it
may be seen that γ > 0, κ > 0, and δ < 0. If f ′(〈θ〉) > 0 (exothermic reaction),
this corresponds to a decrease in the capacitance-weighted average velocity and an
increase in the source strength in the reduced model.

The last case we consider is that of steady-state dispersion under reactive condi-
tions. Now, since K is independent of t and since the time derivative in (5.2) is zero,
we redo the Liapunov–Schmidt reduction. The reduced model is now given by the
pair of equations

〈w〉 dθm
dz

+ 〈K〉 f(〈θ〉) + Pe 〈Kχ〉 f ′(〈θ〉)f(〈θ〉) = 0,(5.10a)

θm = 〈θ〉 + Pe
〈wχ〉
〈w〉 f(〈θ〉),(5.10b)

where χ is distinct from the transient version (5.6) and is now defined by

£χ = K − w

〈w〉 〈K〉 ,(5.11a)

∂χ

∂n
= 0 on ∂Ω.(5.11b)

The boundary condition to be used on (5.10) is

θ = θm0 at z = 0.(5.12)

The reduced model is a differential-algebraic system, and there is no second deriva-
tive term. (We note that the reduced model is not an initial value problem in z!
For the case of an exothermic reaction, it is an index infinity differential-algebraic
system and can have multiple (in fact, an infinite number of) solutions whenever the
local equation (5.10b) has multiple solutions. This can happen when the kinetics
is autocatalytic. For more details, see Chakraborty and Balakotaiah (2002).) The
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steady-state reactive correction/dispersion term −〈wχ〉 is different from the transient
reactive and nonreactive dispersion coefficient −〈wη〉. For the special case of uniform
activity (K is independent of transverse coordinates) it is easily seen that

χ = − K

〈w〉η,(5.13)

where η is as defined in the nonreactive case. For this special case, the steady-state
model (5.10) simplifies to

〈w〉 dθm
dz

+K f(〈θ〉) = 0,(5.14a)

θm = 〈θ〉 − Pe
KΛ

〈w〉2 f(〈θ〉),(5.14b)

with initial/boundary condition (5.12). This reduced model is very different from
the standard pseudohomogeneous model with Danckwerts boundary conditions. We
note that while the numerical coefficient Λ that appears in the above steady-state
model is the same as that in the Taylor’s transient solutal dispersion problem, there
is also a correction to the source term containing the same coefficient (see also (5.9)).
In addition, it should be emphasized again that the reduced model is a differential-
algebraic system rather than a two-point boundary value problem as in the following
classical Danckwerts model:

Λ
d2θm
dz2

− 〈w〉 dθm
dz

−K f(θm) = 0,(5.15a)

〈w〉 θm0 = 〈w〉 θm − Λ
dθm
dz

at z = 0,(5.15b)

dθm
dz

= 0 at z = L.(5.15c)

In this model, the exit boundary condition (5.15c) is imposed rather than derived
from the original two-dimensional model.

6. Discussion. We have shown in this work that dispersion caused by transverse
gradients can be described by reduced models that are hyperbolic in the longitudinal
coordinate and time and that contain an effective local length or time scale. Our
method also overcomes the main deficiencies of the previous approaches to averaging
based on the moments method and the center manifold theorem. The former is
applicable only to linear problems, while the latter describes the asymptotic behavior
close to a fixed point (such as a trivial solution θ(x, y, z, t) = 0). In contrast, our
method is based on expansion around a state 〈θ〉 (z, t) that is only independent of
the transverse coordinates and can be applied to both steady-state and transient
problems.

We have presented here the averaged models to only the lowest order in Pe.
However, the extension to obtain higher order averaged models is straightforward.
For example, for the solutal/thermal dispersion problem, it is easily seen that the
reduced model to all orders (in Pe or tH) is of the form

∂ 〈θ〉
∂t′

+ 〈u〉 ∂θm
∂z′

= 0,(6.1a)
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〈θ〉 − θm +

∞∑
i=1

βi(tH)i
∂i 〈θ〉
∂ti

= 0,(6.1b)

where tH is the local time scale and βi are numerical constants that depend on the
velocity profile w(x, y) and the geometry of Ω. Appropriate inlet and initial conditions
may also be derived for (6.1).

The present approach may also be extended in many ways. Instead of the no-flux
outer wall, we can allow an isothermal wall or a mixed boundary condition with a
wall heat transfer coefficient. In such cases, the operator £ is no longer singular and
〈θ〉 does not strictly correspond to the null eigenfunction. However, if the transverse
gradient remains small (and £ has a discrete spectrum), the invariant manifold ap-
proach of Roberts (1989) and Balakotaiah and Chang (1995) can be used to extend
the Lyapunov–Schmidt technique presented here.
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