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A lubrication analysis is presented for the spreading dynamics of a high permittivity polar dielectric liquid
drop due to an electric field sustained by parallel line electrode pairs separated by a distance Re. The normal
Maxwell stress, concentrated at the tip region near the apparent three-phase contact line, produces a negative
capillary pressure that is responsible for pulling out a thin finger of liquid film ahead of the macroscopic drop,
analogous to that obtained in self-similar gravity spreading. This front-running electrowetting film maintains a
constant contact angle and volume as its front position advances in time t by the universal law
0.43Re�t /Tcap�1/3, independent of the drop dimension, surface tension, and wettability. Tcap=�2�lRe /8�0�lV

2 is
the electrocapillary time scale where �l is the liquid viscosity, �0�l the liquid permittivity, and V the applied
voltage. This spreading dynamics for the electrowetting film is much faster than the rest of the drop; after a
short transient, the latter spreads over the electrowetting film by draining into it. By employing matched
asymptotics, we are able to elucidate this unique mechanism, justified by the reasonable agreement with
numerical and experimental results. Unlike the usual electrowetting-on-dielectric configuration where the field
singularity at the contact line produces a static change in the contact angle consistent with the Lippmann
equation, we show that the parallel electrode configuration produces a bulk negative Maxwell pressure within
the drop. This Maxwell pressure increases in magnitude toward the contact line due to field confinement and
is responsible for a bulk pressure gradient that gives rise to a front-running spontaneous electrowetting film.
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I. INTRODUCTION

The ability to control the wettability of a liquid, ideally
without mechanically moving parts, is paramount in the ac-
tuation of fluids in microfluidic devices. This has prompted a
recent resurgence in studies on electrowetting, which allows
a rapid, reversible, and precise means for manipulating small
liquid volumes with relatively low power consumption �1�.
The success in generating fluid velocities in excess of several
cm/s has also attracted significant interest in electrowetting
for other applications such as electrostatic-assist coating �2�
and miniature optical focusing devices �3�.

Attempts have been made to relate experimental observa-
tions of electrowetting on a wide variety of dielectric or
polymer substrates by correlating the measured change in the
contact angle � �4,5� against the Lippmann equation �6�

cos � = cos �0 +
�0�lV

2

2d�
, �1�

where �0 is the contact angle in the absence of an electric
field, �0 the permittivity of free space, �l the liquid dielectric
permittivity, V the applied potential, d the dielectric film
thickness, and � the vapor-liquid interfacial tension. Several
theoretical interpretations, based on molecular kinetic �4,7�,
electromechanic �8–10�, and static �11� analyses, have since
been proposed to describe the static change in the macro-
scopic contact angle under the influence of an applied elec-
tric field.

In electrowetting-on-dielectric configurations where the
drop is placed above a dielectric film coated planar electrode
�Fig. 1�a��, however, the weakly singular vapor phase electric
field that arises is confined to a small region with a length
scale comparable to d �12,13�. The Maxwell pressure gradi-
ent that results, therefore, is localized and microscopic, giv-
ing rise to a point force at the contact line. This point force
exactly balances the surface forces and hence there is no net
force that can result in bulk liquid motion. Consequently,
only a static change in the macroscopic contact angle is pos-
sible �14�. In contrast, we show in this paper that when a
parallel line electrode configuration is adopted, as shown in
Fig. 1�b� �15,16�, a nonsingular liquid phase electric field,
which decays linearly away from the contact line as the film
increases in height, can give rise to a macroscopic Maxwell
pressure gradient that extends into the bulk region. As a re-
sult, the bulk forces are no longer balanced by the surface
forces at the contact line and hence the negative Maxwell
pressure gradient induces bulk liquid motion by spontane-
ously pushing out a thin front-running electrowetting film
�14�. A formulation distinct from that developed for elec-
trowetting on dielectric film coated planar electrodes that
accounts for a hydrodynamic mechanism to predict the for-
mation and propagation of these spontaneous electrowetting
films is therefore required.

In this paper, we present a model that bridges the electro-
kinetic and wetting hydrodynamic theories to predict the
spreading dynamics of these spontaneous electrowetting
films for the parallel line electrode configuration. The wet-
ting dynamics is shown to be analogous to gravity spreading;
the Maxwell pressure term arising due to the applied electric
field appears as an extra body force term in the normal stress
balance. We observe, from our numerical simulations, that*Corresponding author. Electronic address: hchang@nd.edu
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this Maxwell stress rapidly pulls out a thin front-running
electrowetting film, whose thickness exceeds molecular di-
mensions. This electrowetting film advances more rapidly
than the bulk of the drop, similar to the fingers observed in
gravity and viscous spreading �17,18�.

The model is formulated in Sec. II. In Sec. III, the thin
electrowetting film front of approximately constant volume
that is pulled out by the Maxwell stress ahead of the macro-
scopic drop is shown to behave in a self-similar manner. We
then numerically validate the self-similar behavior of the
electrowetting film in Sec. IV. Matched asymptotics are sub-
sequently employed in Sec. V to elucidate the mechanisms
behind the spreading phenomenon where we obtain scaling
laws for the spreading dynamics of the liquid drop that are
consistent with numerical and experimental results.

II. BASIS AND FORMULATION

A. Governing equations

The spreading of a high permittivity polar dielectric New-
tonian liquid drop with volume V and of constant density �l
and viscosity �l, lying on a horizontal rigid and impermeable
solid substrate, under electrocapillary action is studied. The
electrode configuration used in Jones et al. �15�, in which the
electric field is predominantly tangential to the three-phase
contact line, as shown in Fig. 2, is considered. The two par-
allel line electrodes, separated by a distance Re, are placed
horizontally on the solid substrate in the direction of the flow
and orthogonal to the contact line.

The electrowetting film pulled out ahead of the macro-
scopic drop, assumed to be of constant width, is considered
sufficiently slender such that we can define a small parameter

��H̃ / L̃	1; H̃ and L̃ are the characteristic height and
length scales of the electrowetting film over which the Max-
well stress decays away from the contact line, to be defined
subsequently. The slender film then suggests that the usual
lubrication approximation holds in the long-wave limit
where �→0. In addition, the cross section of the film, as
depicted by the plane ABCD in the inset of Fig. 2, can be
approximated by a thin rectangular geometry where y�Re

� L̃. Ignoring boundary effects in the y direction, we thus
adopt a planar model with predominantly x-z dependent hy-
drodynamics.

The Maxwell force F due to a dc or ac electric field, also
known as the Korteweg-Helmholtz force density �19,20�, can
be expressed by

F = � fE −
�0

2
� �� − �� ��

��
	

T

E · E , �2�

where � is the dielectric permittivity, T the temperature, and
� the density of the body. The electric field vector E=−�

=Enn+Ett, where 
 is the electric potential, and En and Et
are the normal and tangential components of the electric
field; n and t are the unit normal and tangent vectors, respec-
tively. In dielectric liquids, the net free space charge density
� f and hence the Coulombic force term are typically negli-
gible. The incompressibility of the fluid also renders the elec-
trostriction term �� /�� negligible.

FIG. 1. Typical electrode configurations used in electrowetting experiments. �a� Static change in the macroscopic contact angle obtained
using dielectric film coated planar electrodes. �b� Spontaneous electrowetting film produced using a parallel line electrode configuration. The
inset shows a schematic representation of the cross section of the bulk drop and electrowetting film and the associated electric field lines
which are predominantly tangential at the interface, i.e., E=Ett, where E is the electric field vector, Et is the tangential field component, and
n and t are the unit normal and tangent vectors to the interface, respectively.

FIG. 2. Schematic representation of the spreading liquid drop
over a horizontal substrate layer for the case of parallel electrode
configurations. The inset depicts the wedgelike geometry of the
drop or the capillary ridge of the electrowetting film in the three-
phase contact line region. The plane ABCD is a y-z cross section of
this liquid wedge schematically depicting the field lines that arise in
the liquid, which are tangential to the contact line.

L. Y. YEO AND H.-C. CHANG PHYSICAL REVIEW E 73, 011605 �2006�

011605-2



Given the absence of free space charge, the electrostatic
potential 
 obeys the Laplace equation

�2
i = 0, �3�

where i=g , l describes the ambient and liquid phases, respec-
tively. The boundary conditions are stipulated by continuity
of the normal and tangential fields across the interface �:

��0�i
�
i

�n



g

l

= � �
i

�t



g

l

= 0 on � , �4�

where �i is the dielectric constant of phase i and the square
brackets �·�g

l indicate a jump in the inner quantity across the
interface. The liquid phase hydrodynamics, on the other
hand, are governed by the mass and momentum conservation
equations:

� · u = 0, �5�

�l�ut + u · �u� = � · T , �6�

where u is the liquid phase velocity field and t is the time.
Henceforth, the subscripts x, y, z, and t will be used to denote
partial differentials with respect to these spatial and temporal
variables. T is the total stress tensor, comprised of the devia-
toric stress tensor, the viscous stress tensor Tv=���u
+�uT�, � being the viscosity, and the Maxwell stress tensor
TM:

T = − pI + Tv + TM , �7�

where p is the pressure and I is the unit tensor. The Maxwell
stress tensor can be obtained from Eq. �2�, in which, for
incompressible fluids, the ponderomotive force term arises
solely due to inhomogeneity in the dielectric permeability:

TM = �0�EE −
�0�

2
�E · E�I . �8�

To satisfy irrotationality of the electric field � ·E=0, Eq.
�6� becomes

�l�ut + u · �u� = − �p + �l�
2u , �9�

with the velocities satisfying the no-slip boundary condition
on the solid substrate �s at z=0:

u = 0 . �10�

In addition, the kinematic boundary condition applies at the
interface �, where z=h, h being the thickness of the liquid
film:

ht + �hū�x + �hw̄�y = v; �11�

ū and w̄ are the streamwise and transverse velocities, respec-
tively, cross-sectional averaged across the height of the film,
and v is the velocity in the vertical direction. The following
normal and tangential stress boundary conditions also apply
on �:

�n · T · n�g
l = � �12�

and

�t · T · n�g
l = 0, �13�

where

� = �l � · n �14�

is twice the mean interfacial curvature of the flat electrowet-
ting film, �l being the interfacial tension at the gas-liquid
interface.

B. Dimensionless equations

We utilize the following transformations to render the
problem dimensionless:

x → L̃x, y → L̃y, and �z,h� → H̃�z,h� . �15�

The velocities, on the other hand, scale as

u → Uu, v → �Uv, and w → Uw , �16�

respectively, where U��3�l /�l is the characteristic velocity.

p is scaled as ��l / L̃ and t scales as L̃ /U. In addition, we
scale the electric potential 
 with the applied voltage V and
the electric field E by the characteristic potential drop across
the electrodes V /Re. This set of scalings was chosen in order
to demote the pressure to the same order as the capillary
stress such that the relative contributions of the Maxwell
stress to the capillary stress can be described by a single
parameter , to be defined below.

The dimensionless Laplace equation in Eq. �3� and the
associated boundary conditions given by Eq. �4� then read

�2
ixx
+ �2
iyy

+ 
izz
= 0 �17�

and

��0�i
�
i

�z



g

l

= � �
i

�y



g

l

= 0 on � , �18�

noting that n and t are defined in the transverse cross section
and point in the z and y directions, respectively, in the lubri-
cation limit. Due to the electrode configuration, the scaling in
Eq. �15� is actually inappropriate for the electric potential
and the Laplace equation despite being appropriate for the
hydrodynamics. We shall hence rescale Eq. �17� subse-
quently.

For the hydrodynamic problem, we shall assume the side
contact lines of the electrowetting film to be stationary and
hence there is no velocity or motion in the y direction. In
fact, the electrowetting film is assumed to be sufficiently flat
such that the film thickness h is independent of y. As such,
only the velocities �u ,v� in the x and z directions need to be
resolved and they obey the following mass and momentum
conservation equations when Eqs. �5� and �9� are rendered
dimensionless using the scalings defined above:

ux + vz = 0, �19�

�2Re�ut + uux + vuz� = − px + �2uxx + uzz, �20�

and
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�4Re�vt + uvx + vvz� = − pz + �4vxx + �2vzz, �21�

where Re��lUL̃ /�l is the Reynolds number, which is of
order unity or smaller with respect to �. In addition, the
boundary conditions given by Eqs. �10� and �11� can be ex-
pressed as

u = v = 0 on �s �22�

and

ht + �hū�x = v on � . �23�

As a consequence of Eqs. �12�–�14� together with Eq. �8�,
the dimensionless normal and tangential stress balances on �
become

p =
hxx

�1 + �2hx
2�3/2 − 2��2�vz − uzhx� + �4�uxhx − vx�hx�

+
�2

16
pM , �24�

and

�2�vz − ux�hx +
1 − �2hx

2

2
�uz + �2vx� = 0, �25�

respectively, where pM is the dimensionless Maxwell pres-
sure, to be defined subsequently. We observe that the above
equations introduce two small parameters: ���g /�l as a con-
sequence of Eqs. �12�, �13�, and �18� with Eq. �8� as the
permittivity ratio, and,

 �
8�0�lV

2L̃
��2�lRe

2 , �26�

in Eq. �24� is the Maxwell Bond number, which defines the
relative contributions between the Maxwell and capillary
stresses. For high permittivity polar dielectrics such as deion-
ized water which was used in the experiments of Jones et al.
�15� and Ahmed et al. �16�, �	1. Moreover, we note that
1 / is also small in the contact line region.

Noting that both ��O��� and 1/�O��� for most ex-
perimental conditions, it is then possible to assume a regular
perturbation expansion of all the variables in the asymptoti-
cally small � limit:

�u,v,p,pM,
i� = �u�0�,v�0�,p�0�,pM
�0�,
i

�0��

+ ��u�1�,v�1�,p�1�,pM
�1�,
i

�1�� + ¯ . �27�

Substitution into Eqs. �17�–�25� then yields the leading order
governing equations and associated boundary conditions. In
the slender body limit and for 1 /	1, the electrostatic and
hydrodynamic problems can be solved separately. However,
we will show that the Maxwell stress is still coupled to the
film thickness and hence the hydrodynamics of the film. We
now proceed to consider the leading order electrostatic and
hydrodynamic formulations in turn.

C. Leading order electrostatic model

Since �l��g for high permittivity polar dielectric liquids,
it can be seen from Eqs. �8�, �12�, and �13� that the liquid and

gas phase normal fields Enl
and Eng

at the interface are neg-
ligible. Moreover, since Etg

=Etl
=Et from continuity of the

tangential electric stresses in Eq. �18�, �lEtl
��gEtg

and hence
only the liquid phase tangential electric field contributes to
the Maxwell pressure. From Eqs. �8� and �12�, the leading
order dimensionless Maxwell pressure pM

�0� then becomes

pM
�0� = − Et

2. �28�

We note that a normal surface force results even in the ab-
sence of a finite normal field En at the interface. This is
because the ponderomotive force is a body force term that
arises due to induced polarization within the bulk of the liq-
uid and produces an internal normal force. The solution for
the gas phase field, which is extremely weak compared to the
liquid field, is then not required to obtain the desired Max-
well pressure in Eq. �28� to leading order.

The tangential field Et is not uniform along the interface.
However, if it is nearly uniform and if the interface cross
section is circular, as we shall assume subsequently, the re-
sulting Maxwell pressure will change the radius of curvature
of the circle. Under such limiting conditions, the change in
the curvature of the circle can be interpreted as an electro-
capillary effect, i.e. the Maxwell stress results in a change in
the surface tension. Such electrocapillary effects have indeed
been observed experimentally �6�. Strictly speaking, how-
ever, the Maxwell pressure given by Eq. �28� is unrelated to
the curvature and hence cannot be related to a change in the
surface tension.

A formal slender electrowetting film expansion in �, as
given by Eq. �27�, can be carried out for the scaled version of
the liquid phase Laplace equation in Eq. �17�. However, due
to the polarity of the electrodes, the transverse y dependence
is actually stronger than that in the x direction for the elec-
trostatic problem. A more appropriate scaling for y and Re is

such that H̃	 �y ,Re�	 L̃ or �y / L̃���Re / L̃���1/2 for the
slender electrowetting film. This more refined scaling was
unnecessary for the hydrodynamics because the electrowet-
ting film is flat and the transverse y dependence is hence
absent. This proper scaling also gives rise to a dimensionless
Laplace equation for the liquid phase of the form

�2
lxx
+ �
lyy

+ 
lzz
= 0, �29�

such that the longitudinal x dependence can be omitted.
However, instead of solving the planar Laplace equation in
the y-z coordinate given in Eq. �29� by a regular expansion in
�, we shall use the same length scale and scaling for the two
coordinates, derive a full two-dimensional solution, and then
simplify it with an expansion for the slender electrowetting
film.

Defining ỹ=y /�, Eqs. �17� and �18� for the liquid phase
become


lỹỹ
+ 
lzz

= 0, �30�

with
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�
l

�n
= 0 on � and �s. �31�

In addition, we impose a further boundary condition for the
constant potential line electrodes placed on the solid sub-

strate �s at ỹ= ± R̃e /2, where R̃e� R̃e /H̃ is the dimensionless
electrode separation which has been scaled by the character-
istic film height:


l = ± 1 at ỹ = � R̃e/2 and z = 0. �32�

We proceed by solving the leading order problem given
by Eq. �30� subject to the boundary conditions in Eqs. �31�
and �32� in the ỹ-z plane ABCD for the geometry shown in
the inset of Fig. 2. In this plane, the two line electrodes are
represented by two point charges placed on the solid sub-

strate and separated by a distance R̃e. We will concern our-
selves only with the region of the advancing electrowetting
film near the contact line. As such, the film height is much
smaller than the capillary length and hence gravity is unim-
portant. The cross section of the film hence obeys the static
Laplace-Young equation, i.e., it is a circular arc with two
ends pinned to the electrodes. Such a static circular arc de-
scription is consistent with experimental observations
�15,16� and has been employed in other lubrication theories
describing rivulet dynamics �21,22�. Assuming this geom-
etry, it is then possible to solve Eq. �30� with Eqs. �31� and
�32� using conformal mapping.

We shall first consider a semicircular arc geometry and
show that the more slender circular arc solutions for the field
lines are contained in this formulation. The semicircular
cross section geometry in which the boundaries of the semi-
circle and base are insulated and the electrodes can be rep-
resented by point charges at the equatorial ends of the semi-
circle can be mapped onto the right top quadrangle of the
rectangular w plane, as shown in Fig. 3. This is done by the
following linear fractional transformation �23�:

w = f�z�� =
R̃e/2 + z�

R̃e/2 − z�
. �33�

The notation z� corresponds to the original plane domain and
is to be distinguished from the vertical coordinate z. The

boundary �z��= R̃e /2 is then mapped onto the boundary u=0

which is the upper right quadrangle of the v axis. The com-
plex potential is then given by

F�z�� = ��x,y� + i��x,y� , �34�

where � is the potential in which �=const surfaces are equi-
potential surfaces and � is its conjugate harmonic, which
describes orthogonal trajectories to the constant potential
lines �i.e., field lines�; both � and � are uniquely related
through the Cauchy-Reimann equations. F�z�� for the map-
ping described above is then given by Kreyszig �23�, from
which we obtain

��x,y� = Re�F�z��� =
2

��tan−1� z

R̃e/2 + y
	

− tan−1� z

R̃e/2 − y
	
 . �35�

The tangential liquid electric field can then be determined
using the Cauchy-Reimann equations:

Et = −
2zR̃e

� � 1

�R̃e/2 + ỹ�2 + z2
+

1

�R̃e/2 − ỹ�2 + z2	 . �36�

We note from Fig. 3 that the solution for the semicircle
geometry given by Eq. �35� describes field lines that are
circular arcs and they correspond to cross sections with in-
terfacial height z=h smaller than the semicircle. Evaluating
Et at the center point between the electrodes ỹ=0 where the
field is purely tangential and at different interfacial heights h,
and expanding in the limit of laterally slender films where

h / R̃e→0 and �→0, we obtain, noting Et
2 is required,

Et
2 =

256h2

�2R̃e
2�1 −

8h2

R̃e
2	2

. �37�

The expansion in the small h / R̃e limit thus removes any
tangential field dependence in the ỹ direction. If � f is the
contact angle at the wedge tip at x=xf, then h=��xf

−x�tan � f, and, hence from Eq. �28�,

pM
�0� = −

256�xf − x�2tan2 � f

�2�2R̃e
2 �1 −

16 tan2 � f

�2R̃e
2

�xf − x�2	 ,

�38�

suggesting that the interfacial field decays linearly along the
interface away from the tip at x=xf. The Maxwell stress in
Eq. �38� is responsible for pulling out a thin front-running
electrowetting film ahead of the macroscopic drop. From Eq.
�38�, we observe the manner in which the Maxwell stress
decays from the electrowetting film front to be dependent on

tan2 � f or h2 and R̃e
2. This arises because the interfacial tan-

gential field at the contact line 2/ R̃e decreases by a factor

R̃e
2 / �R̃e

2+h2� as the interfacial field arc lines increase in
length with the increasing film thickness. It is then possible
to obtain a length scale over which the Maxwell stress de-
cays to zero; setting pM =0,

FIG. 3. �Color online� Mapping of the semicircular electrowet-
ting film cross section with insulated boundaries at the interface and
at the solid substrate in the z� plane onto the upper right quadrangle
of the rectangular w plane.
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xf − x �
�R̃e

4 tan � f
, �39�

such that Eq. �38� becomes

pM
�0� = −

16

�2�1 −
16 tan2 � f

R̃e
2

�xf − x�2	 . �40�

Returning to dimensional coordinates, Eq. �39� becomes

xf − x � L̃ =
Re

4 tan � f
, �41�

which is the characteristic length scale we have chosen over
the x direction. At a distance beyond L from the front, we
assume the Maxwell stress vanishes completely and we re-
move the linear expansion in Eq. �40� in our simulation and
theory.

We can also estimate the magnitude of the volume per
unit width of the initial mass of electrowetting film V0 pulled
out from the macroscopic drop. This initial mass should have

a length equal to the decay length scale L̃:

V0 � H̃L̃ � L̃2 tan � f �
Re

2

16 tan � f
, �42�

where

H̃ � L̃ tan � f . �43�

It will be shown that as the electrowetting film advances, its
volume remains relatively constant at V0 although a small
fraction of liquid does enter the electrowetting film due to
partial drainage from the bulk macroscopic drop. As the elec-
trowetting film spreads, the angle � f will be shown to remain
constant at the initial value when the initial volume of liquid
is pulled out of the drop.

D. Leading order hydrodynamic model

From the expansions given in Eq. �27�, Eqs. �19�–�22� and
Eq. �25� lead to the following dimensionless leading order
equations:

ux
�0� + vz

�0� = 0, �44�

px
�0� = uzz

�0�, �45�

and

pz
�0� = 0, �46�

together with the no slip boundary condition on �s:

u�0� = v�0� = 0 at z = 0, �47�

and the shear-free boundary condition on �:

uz
�0� = 0 at z = h . �48�

From Eq. �46�, p�0�= p�0��x�, consistent with the leading
order Maxwell pressure derived in Eq. �40� for a laterally

slender film where h / R̃e	1. Utilizing Eqs. �40� and �48� in

Eq. �24�, the leading order normal stress jump on � becomes

p�0� = hxx − �1 − ��xf − x�2� . �49�

Here,

� �
16 tan2 � fL̃2

Re
2 �50�

is the linear Maxwell stress decay factor controlling the dis-
tance from the tip xf over which the tangential electric field
at the interface linearly decays. Finally, the kinematic bound-
ary condition in Eq. �23� reads

ht + �hu�0��x = 0 at z = h . �51�

We integrate Eq. �45� twice with the boundary conditions
given by Eqs. �47� and �48� to yield a parabolic velocity
profile for the streamwise velocity:

u�0� = � z2

2
− zh	px

�0�. �52�

Equations �51� and �52� then result in the evolution equation
for the interfacial height of the drop:

ht = �h3px
�0��x/3. �53�

Details of the numerical solution of Eq. �53� with Eq. �49�
will be presented in Sec. IV. We first report the important
numerical finding that the apparent contact angle at the ad-
vancing electrowetting film front � f and the linear Maxwell
stress decay factor � are roughly constant with respect to
time by initially allowing � to vary with � f in the preliminary
simulations. Figure 4�a� shows that � f does not vary signfi-
cantly in time and has an average value of approximately
0.524, suggesting that variations in � as the film front propa-
gates are insignificant; we will therefore set � to be constant
in our simulations henceforth.

There are physical reasons why � f is time invariant for the
advancing electrowetting film. It will be apparent in the nu-
merical results that a sharp capillary ridge forms at the lead-
ing edge of the front-running electrowetting film, for which a
static limit exists where the Maxwell and capillary pressures
balance to yield a locally constant static contact angle � f.
This is the same angle as the linear wedge angle defined
above when the initial volume is pulled out. The dominant
balance between Maxwell pressure in Eq. �40� and capillarity
in this wedge region where x�xf then reads

�lHcap

Lcap
2 �

8�0�lV
2

�2Re
2 , �54�

where

Hcap � tan � fLcap �55�

is the height of the capillary ridge, and

Lcap �
�2�lRe

2

8�0�lV
2 �56�

is the electrocapillary length scale for the width of the ridge,
obtained by noting that the ridge curvature is 1 /Lcap and the
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capillary pressure �l /Lcap must balance the Maxwell pres-
sure 8�0�lV

2 /�2Re
2. The curvature at the slope on the left side

of Eq. �54� is, in essence, matched to a cylinder of radius
Lcap at the ridge, as in the Bretherton problem �24�. It then
follows from Eqs. �26�, �55�, and �56� that

 =
L̃

Lcap
, �57�

and tan � f �O�1�, consistent with the numerical value of
0.524. Equation �57� therefore relates the Maxwell stress de-
cay length scale to the electrocapillary length scale; a sche-
matic diagram showing the electrowetting film region as it
initially forms and indicating the various length scales is

shown in Fig. 5. From Eq. �57�, we note that Lcap	 L̃ since
�1.

III. CONSTANT VOLUME SELF-SIMILAR SPREADING

It is possible to obtain a self-similar solution for the front-
running electrowetting film by noting that � f and � are con-
stant. In this region, Maxwell stresses dominate and hence
the axial capillary term in Eq. �49� can be neglected. In ad-
dition, if we consider the localized region near the tip such
that xf −x�0 in Eq. �49�, and since the contact angle � f has
been shown to be locally constant, the Maxwell pressure
gradient px�−2� is constant, resembling a constant body
force similar to gravity. Equation �53� then reduces to a non-
linear hyperbolic equation given by

ht = − 2��h3�x/3. �58�

If we adopt the transformation h�x�t�, substitution into Eq.
�58� above gives �=−�=1/2 and 1/�2� for the coefficient
of proportionality. It then follows that

h = � x

2�t
	1/2

. �59�

Although it will be shown in Sec. V B that some liquid
drainage occurs from the bulk macroscopic drop into the
electrowetting film finger as it advances, this partial liquid
drainage is small and will be shown to have negligible effect
on the dynamics by which the film advances. As the Maxwell

stress is localized to a region of length L̃ at the tip near the
contact line region, it is expected that no additional mass is
extracted from the drop due to the Maxwell stress after the
initial volume V0 has been pulled out. We will therefore as-
sume a constant volume of V0 for the electrowetting film
here but will correct for the small partial liquid drainage later
in Sec. V B. Volume conservation then stipulates

V0 = 
0

xf

h dx , �60�

where V0 is the dimensionless version of the initial mass

extracted, given by Eq. �42�; we have scaled V0 by H̃L̃ so
that V0 is an order 1 quantity. The film volume is shown to be
a relatively constant value in the preliminary simulations
with an average of approximately V0=0.763, as depicted in

FIG. 4. Variation of �a� the contact angle at the electrowetting film front tan � f, and �b� the dimensionless volume of the electrowetting
film V0, as a function of the advancing film front xf /xfi which propagates forward with time; xfi is the initial front position.

FIG. 5. Schematic illustration of the various relevant length
scales describing the problem: H and L are the height and length

scales of the original drop before activation of the electric field, H̃
and L̃ are the height and length scales in the electrowetting film
over which the Maxwell stress decays, Hcap and Lcap are the elec-
trocapillary height and length scales at the capillary ridge, and, b

and L̂ are the Bretherton length scales describing the matching
region between the drop and the precursor film. We note that L
� L̃�Lcap� L̂.
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Fig. 4�b�, with the exception of some small fraction originat-
ing from the drop. Although V0 therefore has a slight depen-
dence on the initial drop volume Vd, this dependence can be
assumed negligible.

It is then possible to estimate the front shock position xf:

xf = �3V0

2
	2/3

�2�t�1/3. �61�

Substituting Eq. �61� into Eq. �59� gives the self-similar be-
havior for the film height:

hf = �3V0

2
	1/3 1

�2�t�1/3 . �62�

The t1/3 behavior of the advancing front is analogous to that
for planar gravity spreading obtained by Huppert �17� who
solved Eq. �59� using the method of characteristics.

Reexpressing Eq. �61� in terms of dimensional quantities
from the scalings adopted in Eq. �15�,  being defined by Eq.
�26�, we obtain

xf = 0.4� �0�lV
2Ret

�l
	1/3

, �63�

indicating that the position of the advancing front for the
electrowetting film is independent of the dimensions and dy-
namics of the bulk macroscopic drop from which the film
originates. xf in Eq. �63� can also be expressed in terms of
the electrocapillary time scale Tcap=�lLcap /�l
=�2�lRe /8�0�lV

2 using Eq. �56�:

xf = 0.43Re� t

Tcap
	1/3

. �64�

The independence of the electrowetting finger dynamics of
the drop dimension, capillarity, and wettability is a rather
surprising result. The universal � f and the decay length of Re
where Maxwell pressure exists at the front have endowed
this dynamics with insensitivity to the drop length scales.

Figure 6 shows a comparison of the advancing electrowet-
ting film front position between the model prediction given
in Eq. �64� with the planar electrowetting experiments of
Ahmed et al. �16� using deionized water. Our t1/3 predicted
scaling compares reasonably well with the experimental data
given the assumed planar film geometry and the absence of
empirical fitting parameters. The slight disparity could pos-
sibly be due to lateral flow within the film which pushes
liquid to the side contact lines thus further flattening the
electrowetting film profile, which was observed to be more
prevalent at low ac frequencies �15�; our one-dimensional
model, nevertheless, cannot capture these effects. We will
now proceed to validate this self-similar scaling with nu-
merical results obtained from the lubrication model formu-
lated that includes the macroscopic drop dynamics.

IV. NUMERICAL RESULTS

To include the dynamics of the macroscopic drop in our
simulation of the full problem, we now scale the governing
equations described by Eqs. �3�–�14� by the macroscopic
drop dimensions, i.e.,

x → Lx, y → Ly, and �z,h� → H�z,h� , �65�

where L is the initial lateral and transverse extent of the drop
in the x and y directions, and H is the initial height of the
drop, before the electric field is activated. The drop is con-
sidered to be sufficiently slender such that ��H /L
� tan �c	1, where �c is the static contact angle, in order for
the lubrication limit to hold. Moreover, the electrowetting
film finger that is extracted is assumed to be narrow com-
pared to the lateral dimension of the drop such that the radial
geometry of the drop can be neglected. This one-dimensional
planar model requires us to relate the true drop volume V to
the volume per unit width Vd; we assume that the drop ini-
tially forms a spherical segment with volume V��H�H2

+ �3L2 /4�� and volume per unit width Vd�HL�L2 tan �c

such that

Vd � � 6V

� tan �c�3

4
+ tan2 �c	�

2/3

. �66�

In addition, we also scale u by U� tan3 �c�l /�l, p by
tan �c�l /L, and t by L /U. These scalings together with the
asymptotic expansions in Eq. �27� in the limit �→0 render
the same dimensionless leading order governing equations in
Eqs. �49� and �53�, but with  and � redefined as

 �
8�0�lV

2L
tan �c�

2�lRe
2 =

8�0�l − V2

�2�lRe
2�tan �c�3/2� 3V

2�
	1/3

�67�

and

FIG. 6. Comparison of the theoretical prediction with the ex-
perimental data of Ahmed et al. �16� for the transient advancing
position of the electrowetting film front xf, indicating reasonable
agreement between the present theory in Eq. �63� and experimental
data without empirical fitting. The parameters used are �l=1 cP,
�l=78, �g=1, V=200 V, and Re=40 �m, corresponding to the ex-
perimental parameters used in �16�. We note that the spreading dy-
namics of the electrowetting film is independent of the drop volume
V.
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� �
16 tan2 � fL2

Re
2 , �68�

respectively.
Equation �53� with Eq. �49� is solved subject to the no

flux boundary conditions hx=0 at x=0 and x→� and hxxx
=0 at x=0. To remove the contact line stress singularity, we
assume the existence of a molecular front-running precursor
film. This microscopic molecular precursor film is to be dis-
tinguished from the macroscopic electrowetting film finger
that is formed due to the effects of the electric field. Justifi-
cation of such precursor films for wetting drops is given in
Appendix A. The remaining boundary condition is therefore
dictated by the molecular precursor film thickness b, i.e., h
→b as x→�. The results in Appendix A show that the bulk
wetting dynamics are insensitive to the precursor film thick-
ness b. The precursor film, however, allows and facilitates
the numerical resolution of the wetting dynamics.

The initial condition is specified by

h�x,0� = �1�1 − tanh� x − �2

�3
	
 + b , �69�

where �1, �2, and �3 are constants. In our numerical simula-
tions, we take �2=1 and �3=0.25; other choices of these
parameters that govern the slope of the profile only produced
quantitatively different results. �1 is varied to account for
different drop volumes Vd; from numerical integration, we
obtain �1�Vd /2. We adopt the method of lines �25� as our
numerical scheme: Fourth-order centered differences are
used to approximate the spatial derivatives, and Gear’s
method is used for the time integration �26�. Typically, 1000
grid points on a uniform grid for the spatial domain were
used; convergence was achieved upon mesh refinement. The
equations were also integrated using EPDCOL �27�, which is
based on finite element collocation for space and the method
of lines in time; a uniform grid of 2000 grid points was
typically used in the computations and perfect agreement
was achieved between the results obtained from the two nu-
merical procedures.

Typical spatiotemporal profiles for the spreading liquid
drop under the action of the Maxwell stress are shown by the
solid lines in Fig. 7�a�. Since the normal Maxwell stress is
localized in the tip region near the apparent contact line, a
front-running electrowetting film is pulled out from the bulk
of the drop and propagates faster than the drop itself. The
advancing electrowetting film front is observed to form a
capillary ridge, the height of which decreases in time as with
the thickness of the electrowetting film behind it. However,
the contact angle � f that the ridge makes with the solid sub-
strate is time independent, consistent with our theory pre-
sented earlier. The height of the ridge is also observed to
decrease with time as the total mass remains constant.

During a very short transient before the formation of the
electrowetting film, the bulk drop spreads and decreases in
height. This initial drop wetting dynamics is due to pure
capillary spreading driven by the usual molecular wetting
�28�, prior to the formation and development of the elec-
trowetting film. Once the electrowetting film is formed, the

decrease in the height of the bulk drop is predominantly due
to partial drainage of the liquid into the advancing elec-
trowetting film. These mechanisms will be further elucidated
in the next section when a matched asymptotic analysis be-
tween the bulk liquid drop and the electrowetting film is
carried out. In contrast, there is no electrowetting film for-
mation in the case when the Maxwell stress is absent, as
shown by the profiles for pure capillary spreading indicated
by the dashed lines in Fig. 7�a�.

The formation and propagation of the front-running elec-
trowetting film takes place rapidly. In the case shown in Fig.
7�a�, the film front advances by approximately 1.5 dimen-
sionless units after t=0.5. In comparison, the dashed lines in
Fig. 7�a� for the case =0 where there is no Maxwell stress
and the spreading of the bulk drop takes place by capillary
pressure alone indicate that the apparent three-phase contact
line only advances by approximately 0.25 dimensionless
units after t=10. In Fig. 7�b�, the evolution profiles for the
spreading drop in Fig. 7�a� are replotted in the transformed
coordinates given by Eqs. �61� and �62� showing the collapse
of the front and film height profiles at long times. The pro-
gression of the advancing front xf with time is captured in
Fig. 7�c�. It can be seen that the front spreads as t1/3 for
Maxwell-dominated spreading, consistent with the self-
similar scaling laws derived in Sec. III, and as t1/7 for pure
capillary spreading driven by molecular wetting. The t1/7

scaling is analogous to the classical t1/10 scaling for pure
capillary molecular driven spreading of axisymmetric drops
first observed by Ausserré et al. �29� and can be obtained
simply from the solution of the long-wave Laplace-Young

FIG. 7. �Color online� Numerical results of the wetting of a
liquid drop on a solid horizontal substrate with =100, �=0.75, b
=10−5, and �1=0.5. �a� Typical profiles of the wetting drop and
finger formation for five equal time steps up to t=0.5. �b� Replot of
the data in �a� using a similarity transformation indicating the self-
similar behavior of the advancing finger. �c� Position of the advanc-
ing front xf as a function of t for Maxwell-dominated and pure
capillary spreading. In �a� the dotted lines represent the initial drop
profile and the dashed lines represent the case for pure capillary
spreading where =0 at times t=1 and 10; the arrows indicate the
direction with increasing time. We note that the ridge height de-
creases in time but its intercept angle with the solid substrate � f is
time independent.
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equation h3hxxx=0, as will be shown in Sec. V. The appear-
ance of this t1/7 scaling in the initial spreading dynamics of
the bulk drop, as proposed in our subsequent asymptotic
matching in Sec. V, will thus suggest that it is pure capillary
spreading driven by molecular wetting that dominates the
bulk drop dynamics initially.

A sensitivity analysis of the numerical results on the vari-
ous parameters is shown in Fig. 8. We confirm that the re-
sults in Fig. 8�a� show a weak dependence on the molecular
precursor film thickness b, given that it is sufficiently thin. It
will be shown in the following section that the �−x�log�−x�
asymptotic precursor film behavior, x being the inner coor-
dinate from an arbitrary cusp tip position in the precursor
film, suggests a very weak dependence of the molecular pre-
cursor film thickness on the spreading dynamics of the mac-
roscopic drop. We also explore the sensitivity of the spread-
ing results to the linear Maxwell stress decay factor �. Figure
8�b� indicates that the larger the fraction of the interface from
the tip over which the Maxwell stress decays, the more rapid
the spreading dynamics. The front is seen to propagate faster,
giving rise to more slender films and a dilapidated drop. The
contact angle at the advancing electrowetting film front can
also be seen to be relatively independent of �, consistent
with our earlier findings in the preliminary simulations.

The effect of increasing  is shown in Fig. 8�c�. As 
increases, the Maxwell stress becomes increasingly dominant
over capillary stresses therefore giving rise to faster spread-
ing dynamics. We observe the critical Maxwell to capillary
stress ratio c�10 for the formation of the electrowetting
film ahead of the drop. Above this critical value, the qualita-
tive behavior of the spreading drop and the formation of the
electrowetting film is similar; only the dynamics of these
phenomena are affected by the value of . In the next sec-
tion, it will be shown that the spreading dynamics can be
collapsed by normalizing the time with  suggesting that the

Maxwell stress plays a role in stretching the electrowetting
film in a self-similar manner. Figure 8�d� shows the depen-
dence of the simulation results on the volume per unit width
of the liquid drop Vd. We shall show in the following section
that a generalized spreading condition can be derived by nor-
malizing the drop height h by some power of Vd.

V. MATCHED ASYMPTOTIC ANALYSIS

In this section, we perform a matched asymptotic analysis
to quantitatively model the electrocapillary spreading phe-
nomena observed in the numerical simulations above. From
our simulations, we note that there are two dynamics for the
decreasing height of the bulk drop. Initially, the rate of de-
crease is rapid due to capillary spreading prior to the forma-
tion and development of the electrowetting film. Subse-
quently, the bulk drop dynamics slows down once the film is
pulled out from the bulk. The decrease in the height of the
bulk drop is then attributed to some drainage into the elec-
trowetting film. We shall therefore perform a matched
asymptotic analysis for the capillary spreading in Sec. V A,
and, subsequently, a volumetric flow balance in Sec. V B.

A. Initial capillary spreading

For the initial molecular wetting driven spreading domi-
nated by capillary action prior to the formation of the elec-
trowetting film, the analysis is similar to the molecular pre-
cursor film model of Kalliadasis and Chang �28�. However,
as discussed in Appendix A, having allowed for the existence
of a precursor film, it is not necessary to include intermo-
lecular effects. Neglecting the Maxwell stress, the matching
region is governed by viscous and capillary forces alone and
hence Eq. �53� can be written as

ht = − �h3hxxx�x/3. �70�

We now consider a locally quasisteady approximation in the
bulk region with a constant dimensionless speed Ca, with
respect to a coordinate frame moving slowly with the contact
line by adopting the following transformation:

x* = x − Cat . �71�

Ca is the capillary number, defined as Ca��lU /�l, which
indicates the ratio of viscous to capillary stresses. The aster-
isk notation is dropped henceforth. In the locally quasisteady

limit where the length scale of the precursor film region L̂ is
much smaller than that of the macroscopic region L, i.e.,

L̂ /L	1, we then obtain the Bretherton equation �24�

3Cahx = �h3hxxx�x. �72�

Asymptotic matching between the inner molecular precur-
sor film region and the outer bulk region and redimensional-
izing subsequently yields

h � − xCa1/3�9 log ��1/3, �73�

from which a dynamic contact angle condition for the mac-
roscopic drop �d can be derived �28�:

FIG. 8. �Color online� Parametric variations in the drop profiles
for �a� the molecular precursor film thickness b at times t=0.025
and 0.05, �b� the Maxwell stress decay factor � at t=0.05, �c� the
Maxwell to capillary stress ratio  at t=0.05, and �d� the initial
volume of the drop defined by the parameter �1 at t=0.01. Unless
otherwise stated, the base parameters are =1000, �=0.75, �1

=0.5, and b=10−5.
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tan �d � − hx � �− 9 log ��1/3Ca1/3, �74�

the full derivation of which is given in Appendix B. In the

above, �= L̂ /L�b is a small parameter, b being the precur-
sor film thickness. The �−x�log�−x� asymptotic behavior in
Eq. �73� indicates a very weak dependence of the shape of
the molecular precursor film on the spreading dynamics of
the drop �28,30�, which we observe to be true in our numeri-
cal simulations as shown in Fig. 8�a�.

The outer solution describing the macroscopic dynamics
of the bulk drop is given by the long-wave Laplace-Young
equation h3hxxx=0 with boundary conditions hx=0 at x=0
and h=0 at x=xd, where xd is the radius of the macroscopic
drop. Imposing volume conservation on the drop, it is then
possible to show �see Appendix B� that the solution of the
long-wave Laplace-Young equation becomes

x̃d = 1.458��V0
2�log ���−1/7t̃1/7, �75�

where

x̃ =
x

Vd
1/2 �76�

and

t̃ = 2��3V0

2
	2

t , �77�

in which Vd is the drop volume. Equation �75�, which gov-
erns the dynamics of pure capillary spreading driven by mo-
lecular wetting, therefore gives rise to the t1/7 scaling ob-
tained in Fig. 7�d� in the absence of any Maxwell stresses
and hence electrowetting fingers.

We show in Appendix B that substitution of Eq. �75� into
the quasisteady speed 3Ca= x̃dt̃

yields an expression for the

drop height at x̃=0:

h�x̃ = 0� � �2��1/7Vd
1/2�3V0

2
	2/7

t̃−1/7. �78�

The relevant scaling for the height of the bulk drop can now
be determined:

h̃ =
h

1.24���1/7Vd
1/2V0

2/7 . �79�

Equations �77� and �79� provide a set of scalings by which
the data obtained in the numerical simulations can be col-
lapsed. It then remains to predict the decrease in the macro-
scopic drop height by accounting for liquid drainage from
the bulk into the electrowetting film.

B. Partial liquid drainage into the electrowetting film

Tracking the mass in the numerical results, we observe
that the volume of the electrowetting film is not entirely
conserved despite conservation of the overall volume. The
growth rate of the finger volume is however constant. This
therefore requires some small constant fraction � of the ini-
tial electrowetting film volume V0, taken to be constant �see
Eq. �60��, to originate from bulk drainage into the film from

the macroscopic liquid drop. For simplicity, we assume that
the bulk of the liquid drop forms a hemisphere such that a
volumetric flow balance reads

�

4

d

dt̃
�h̃2� = − �Cahf . �80�

Normalizing the self-similar transforms in Eqs. �61� and �62�
with Eq. �77�, and utilizing these to integrate Eq. �80�, we
then arrive at

xf = �4.5V0
2�t�1/3, �81�

which is simply the dimensionless version of Eq. �64�, and

h̃ = 0.804�1/2V0
13/42�log ��−1/14��t�−2/21, �82�

which is a dynamic condition for the decrease in the macro-
scopic drop height. In the above, � is determined empirically
from the numerical simulations and has a constant value of
approximately 0.2; we therefore take � to be a unit order
universal coefficient. It will be shown that the numerical data
can be collapsed using the set of scalings defined by Eqs.
�79�, �81�, and �82�.

The advancing front position xf and the normalized mac-

roscopic drop height h̃ are plotted as functions of the normal-
ized time t̃=4.5V0

2�t in Figs. 9 and 10. The plots show the
collapse of the numerical results for the variations in the
parameters  and Vd �parametrized by �1 in Eq. �69�� with
the scalings given by Eqs. �79�, �81�, and �82� from the
analysis above. We have also plotted the t1/7 behavior de-
rived in Eq. �78� in Fig. 10 showing that this capillary-
dominated scaling only applies in the initial transient spread-
ing dynamics of the macroscopic drop. The self-similar
scaling in Eq. �81� describes the behavior of the Maxwell-
dominated advancing front in Fig. 9 well for large values of
. For 	102, some deviation from the self-similarity be-
havior depicted in Fig. 9 occurs due to the increasing domi-

FIG. 9. Advancing front position of the electrowetting film xf as
a function of the normalized time t̃ for variations in  and �1, the
latter adjusting for the drop volume Vd. The solid line represents
xf = t̃1/3= �4.5V0

2�t�1/3 indicating the collapse of the data with the
normalized self-similar scaling in Eq. �81�.
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nance of capillary stresses. On the contrary, when �103,
the macroscopic drop height deviates from the normalization
used in Fig. 10. In these large  cases, the Maxwell stress
overwhelms the capillary stresses and hence the assumption
that capillary stresses dominate in the initial stages of the
spreading breaks down. In any case, the collapse of the nu-
merical data justify, over a moderate range of , the proposed
mechanism based on initial capillary-dominated spreading
followed by drainage of the bulk into the electrowetting film,
and indicate that it is possible to quantitatively model the
dynamic conditions of the advancing film and the spreading
drop. It is also possible to obtain the transient for the forma-
tion of the front-running electrowetting film. From Fig. 10,
we estimate the time for the electrowetting film to form to be
�1/��10−4–10−3, corresponding to approximately
10−3–10−2 s, which is negligible.

VI. CONCLUDING REMARKS

The spreading dynamics of a high permittivity polar di-
electric liquid drop under the influence of electrocapillarity is
studied both numerically and analytically. A pair of line elec-
trodes is placed parallel to the direction of the flow similar to
that used in the experiments of �15�. The liquid phase electric
field is thus predominantly tangential to the contact line but
without a longitudinal tangential field. Since the meniscus tip
resembles a wedge whose contact angle is time invariant, the
electric field decreases with increasing interfacial height,
therefore producing a linearly decaying tangential interfacial
field away from the tip defined by the apparent three-phase
contact line with a decay length of roughly the electrode
separation Re. The longitudinal gradient of the resulting nor-
mal interfacial Maxwell pressure therefore drives a strong
electrowetting flow. This Maxwell-stress-dominated spread-
ing is reminiscent of gravity spreading and pulls out a thread

of liquid film ahead of the bulk drop after a negligible tran-
sient time of approximately 10−3–10−2 s. The film is domi-
nated by a capillary ridge; the height of this capillary ridge
decreases with time but the intercept angle it subtends with
the solid substrate is independent of time. The liquid volume
per unit width within the electrowetting film also remains
constant at Re

2. The front of this electrowetting film, in fact,
advances as t1/3 consistent with the self-similar gravity-
driven fronts of Huppert �17�. Like gravity spreading, it is
independent of capillarity and wettability. On the other hand,
the finger dynamics is independent of the drop volume unlike
in gravity spreading. Our prediction for the position of the
electrowetting film front is also close to the finger advancing
dynamics observed in the electrowetting experiments of
Ahmed et al. �16�. The numerical results, obtained by solv-
ing for the mass and momentum conservation of the fluid
flow in the lubrication limit, together with the normal stress
jump containing the Maxwell stress contribution and the ap-
propriate initial and boundary conditions, demonstrate this
similarity behavior. This spreading dynamics is much faster
than the classical wetting scaling of t1/7 due to molecular
wetting.

By employing a matched asymptotic analysis between the
molecular precursor film and the macroscopic bulk of the
liquid drop, we were able to determine the relevant scalings
for the initial capillary-dominated molecular driven spread-
ing of the drop prior to the formation of the electrowetting
film, the bulk of the drop spreading as t1/7. The matching also
stipulated a contact angle condition for the slope that scales
as Ca1/3, in agreement with Tanner’s law. The numerical
simulations however indicated that the t1/7 spreading slowed
down once the film is pulled out ahead of the drop after a
transient time of 10−3–10−2 s and revealed a small constant
fraction ��0.2 of the electrowetting film finger originating
due to drainage from the bulk of the macroscopic drop. By
normalizing the data using the scalings obtained from the
matched asymptotics, the final condition for the drop height
which decreases as t−2/21 was obtained from a volumetric
balance, from which we obtain good agreement with the col-
lapsed numerical data from the normalization. The consis-
tency between the numerical and analytical results lends
credibility to our proposed mechanism: The initial spreading
of the drop prior to formation of the electrowetting film is
dominated by the capillary stresses; the normal Maxwell
stress plays a role in pulling out the electrowetting film
ahead of the drop. Once the film is developed, however, the
Maxwell stress dominates at the advancing front of the elec-
trowetting film and the bulk of the drop spreads due to partial
drainage into the film. This spreading is accelerated by the
formation of the electrowetting film which prewets the sub-
strate in a similar manner to the molecular precursor film. In
contrast to the molecular precursor film, however, this elec-
trowetting film is macroscopic whose front advances much
faster due to Maxwell-dominated spreading than for the case
of liquid spreading due to capillary pressure, thus suggesting
that the electrode configuration proposed produces a strong
electrowetting effect. We observe the position of the advanc-
ing film front to scale quadratically with respect to the ap-
plied voltage, consistent with the experimental data reported
in the literature.

FIG. 10. Macroscopic drop height h̃ as a function of time t̃
=4.5V0

2�t indicating the collapse of the normalized data obtained
from the numerical simulations for parametric variations in  and
�1, the latter responsible for adjusting the drop volume Vd, onto the
dynamic spreading condition given by Eq. �82�. The value of �
�b, where b is the precursor film thickness is taken to be 10−7,
although its value is unimportant, as seen in Fig. 8�a�.

L. Y. YEO AND H.-C. CHANG PHYSICAL REVIEW E 73, 011605 �2006�

011605-12



ACKNOWLEDGMENTS

This work was partially supported by the U.S. Army CE-
COM RDEC through Agreement DAAB07-03-3-K414. We
are grateful to T. B. Jones for helpful discussions on the
electrostatic formulation.

APPENDIX A: MOLECULAR PRECURSOR FILM MODEL
AND SLIP CONDITIONS

Wetting is driven by molecular forces at the contact line.
However, there is considerable evidence that for highly wet-
ting fluids with small dynamic contact angles �d, such mo-
lecular dynamics can be captured by macroscopic slip mod-
els using continuum descriptions �28,31–33�, in which the
slip coefficients and the exact form of the slip condition have
been thoroughly investigated. An alternative model for per-
fectly wetting fluids is to precoat the surface with a film
during the simulation of wetting dynamics �18�, as is done in
the present approach. Thin molecular precursor films, where
liquid from the bulk of the drop drains into due to the nega-
tive disjoining and capillary pressures, have indeed been ob-
served experimentally using ellipsometry for wetting fluids
�29�, as well as in molecular dynamic simulations �34�. Al-
though the precursor film is much thinner than the macro-
scopic precursor film used in most simulations, Kalliadasis
and Chang �28� have shown that the thickness of this precur-
sor film does not significantly affect the wetting dynamics.
The key parameter is the precursor film thickness. We show
in the arguments to follow that the precursor film model
produces the same bulk asymptotic dynamics as the slip
models and that the precursor film can be related to the slip
coefficient of a continuum slip model. More importantly, the
slip coefficient is insensitive to the precursor film thickness
and hence justifies the use of a macroscopic precursor film in
our simulations. Consequently, even if a precursor film does
not exist in reality, the precursor film model can be ad-
equately used to simulate wetting in a numerical study.

The arguments here follow from Kalliadasis and Chang
�28� where the disjoining pressure arising from long-range
intermolecular interactions were introduced into the Brether-
ton equation �Eq. �72�� for the film near the contact line:

3Cahx = �h3hxxx − h3� �

6��lh
3 −

�hx
4

�lh
3	

x



x

, �A1�

where � is the Hamaker constant and � is a parameter that
accounts for nonparallel effects �35�. Following Joanny �36�,
we omit the � term; scaling h and x with the characteristic

height and length scales of the precursor film, Ĥp and L̂p,

respectively, where Ĥp��−� /6��l / �3Ca�1/3 and L̂p

��−� /6��l / �3Ca�2/3, then yields

h3hxxx = h + 3�hx/h� , �A2�

where the second term on the right arises due to intermolecu-
lar forces.

In the asymptotic limit away from the inner contact line
region toward the bulk region where h→� as x→−�, the
hx /h term on the right side of Eq. �A2�, which arises due to

intermolecular forces, drops out and we obtain

hxxx = 1/h2, �A3�

for which there are two asymptotic solutions �37�:

hx�x → − �� � − �2�h − e� +
2

3h
+

2e

45h2 �A4�

and

h�x → − �� � 31/3�− x��log�− x� − c�1/3, �A5�

where c and e are constants of order 1. Given the quadratic
behavior of h as x→−� due to the singularity of Eq. �A4�
when hxx→0 at large x, we admit the logarithmic asymptotic
behavior in Eq. �A5� with c=1.026 as our solution of Eq.
�A3�; a further discussion of this choice and when Eq. �A4�
should be used can be found in Kalliadasis and Chang �28�.

On the other hand, a dominant balance between the inter-
molecular and viscous terms on the right side of Eq. �A2�
stipulates the asymptotic behavior of the inner contact line
region as x→�:

hx = − h2, �A6�

which yields the following hyperbolic behavior �28�:

h�x → �� �
3

x
+

6

5�x/3�1/7 + c1 exp� �x/3�3

3
	 , �A7�

where c1 is a constant. The first term was derived by Voinov
�38� and the exponential term was added by Hervet and de
Gennes �39�; the second term on the right, nevertheless,
dominates over this exponential term. Asymptotic matching
between the outer and inner solutions, given by Eqs. �A5�
and �A7�, respectively, and redimensionalizing, then yields

h � − xCa1/3�9 log� ���
6��l

	1/3

. �A8�

A comparison with the solution for the precursor film model
in Eq. �73� then shows that the small parameter in the dy-
namic contact angle condition �Eq. �74��,

� =
1

L� ���
6��l

, �A9�

is equivalent to the molecular precursor film thickness b.
This therefore suggests that the disjoining pressure can be
approximated by the precursor film thickness. In other
words, the precursor film model is a reasonable approxima-
tion to account for intermolecular effects.

We now proceed to show that the use of slip models also
give rise to similar asymptotic behavior away from the con-
tact line. Here, we adopt the Navier slip boundary condition
�33�

3u = ��h�uz at x = 0, �A10�

where u is the slip velocity and �=�i /hi is the slip length
that is dependent on the film thickness h. i=0,1 corresponds
to different slip models which have been used historically
�33�. The incorporation of Eq. �A10� then modifies the qua-
sisteady lubrication approximation in Eq. �72� to
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3Cahx = �h2�h +
�i

hi	hxxx

x
. �A11�

Adopting the transformations h→�i
1/�1+i�h and x

→�i
1/�1+i�x / �3Ca�1/3, Eq. �A11� becomes

hxxx =
1

h�h + h−1�
. �A12�

A further boundary condition at the contact line is required.
We will restrict our analysis to the case of perfectly wetting
liquids such that

hx = 0 at x = 0 �A13�

can be imposed. Analysis of partially wetting fluids as well
as other boundary conditions have been carried out by Kal-
liadasis �40�; these however were shown to result in the same
conclusions we present below.

For h	1, Eq. �A12� reduces to hi−1hxxx�1, which has the
following asymptotic solution as x→�:

h�x → �� � 31/3�− x��log�− x� + ci�1/3, �A14�

where ci is a constant obtained by satisfying the boundary
condition in Eq. �A13�. By matching Eq. �A14� to the
asymptotic solution of the outer region away from the slip
plane given by Eq. �A5�, and redimensionalizing, we obtain

h � − xCa1/3�9 log
�3Ca�1/3

�i
1/�1+i� + 9ci	 . �A15�

As �i and Ca approach zero, �i
1/�1+i� / �3Ca�1/3→0, and hence

the contact angle condition to leading order becomes

tan �d � − hx � �− 9 log �i
1/�1+i��1/3Ca1/3. �A16�

A comparison between Eqs. �74� and �A16� then suggests

�i � �1+i, �A17�

i.e., the slip coefficient is shown to be equivalent to molecu-
lar length scale. Kalliadasis �40� showed that the same result
is obtained for a more generalized boundary condition in-
volving a velocity dependent contact angle �41� as well as
for partially wetting liquids.

The analysis above therefore suggests that the asymptotic
behavior of the inner region where intermolecular forces are
dominant is universal and not dependent on any particular
mechanism utilized to remove the contact line stress singu-
larity. The intermolecular forces are shown to be solely de-
termined by the apparent dynamic contact angle and is inde-
pendent of slip to leading order. The precursor film and slip
models, while mathematically expedient for removing the
singularity, do not contribute to the apparent dynamic contact
angle. Because of the weak dependence of the coefficient
�−9 log ��1/3 on the asymptotic behavior of the height of the
bulk region, imposing one or the other does not contribute to
any significant error.

In summary, these findings indicate that for perfectly or
partially wetting fluids, the asymptotic behavior of the outer
region is universally independent of the specific model used
to remove the contact line discontinuity because viscous and
capillary stress balance in the vicinity where the outer region

approaches the solid substrate. The existence and location of
the tip of the molecular precursor film is therefore unimpor-
tant as far as the dynamic contact angle is concerned to lead-
ing order.

APPENDIX B: DERIVATION OF ASYMPTOTIC
EQUATIONS FOR CAPILLARY SPREADING AND

ELECTROWETTING FILM FORMATION

In the locally quasisteady limit with respect to the moving
coordinate frame described by the transformation in Eq. �71�,
the film height evolution equation in Eq. �70�, in which a
dominant balance between viscous and capillary forces oc-
curs in the matching region between the molecular precursor
film and the bulk drop, reduces to

ht − Cahx = − �h3hxxx�x/3. �B1�

The first term on the left, of order �lĤ /T, represents the
transient dynamics of the molecular precursor film during the

spreading whereas the second term, of order �lUĤ /�lL̂, rep-
resents the viscous effects due to steady translation of the

interface. Ĥ and L̂ are the characteristic height and length
scales in the contact angle matching region between the bulk
of the drop and the molecular precursor film, respectively,
and T represents the characteristic time scale for spreading.
We note that the quasisteady approximation breaks down
when the ratio of the first and second terms on the left hand
side of Eq. �B1�, which is equal to the ratio of the length

scales of the macroscopic and precursor film regions L / L̂,
becomes comparable. Considering the locally quasisteady

case where L̂ /L	1, we therefore obtain the Bretherton
equation in Eq. �72� from Eq. �B1�.

Rescaling h by the molecular precursor film thickness b

and x by L̂=b / �3Ca�1/3, and noting that the asymptotic be-
havior away from the inner molecular precursor film region
towards the outer bulk region blows up, i.e., h→� as x→
−�, we recover Eq. �A3� from Eq. �72�, which has an
asymptotic solution given by Eq. �A5�. Redimensionalizing,

and utilizing a small parameter �= L̂ /L�b, where b is the
precursor film thickness, yields

h � − xCa1/3�9 log ��1/3, �B2�

which yields a condition for the contact angle for the mac-
roscopic drop �d �28�

tan �d � − hx � �− 9 log ��1/3Ca1/3. �B3�

The outer solution describing the macroscopic dynamics
of the bulk drop is given by the long-wave Laplace-Young
equation h3hxxx=0 with boundary conditions hx=0 at x=0
and h=0 at x=xd, where xd is the radius of the macroscopic
drop. A further boundary condition for volume conservation
stipulates that

Vd = 
0

xd

h dx , �B4�

from which we obtain an expression describing the static
circular drop:
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h =
3Vd

2xd
3 �xd

2 − x2� . �B5�

It then follows that

hx�x = xd� = −
3Vd

xd
2 . �B6�

Normalizing the self-similar transforms in Eqs. �61� and �62�
with

t̃ = 2��3V0

2
	2

t , �B7�

we arrive at

xf = t̃1/3 �B8�

and

hf =
3V0

2
t̃−1/3. �B9�

We utilize the quasisteady speed

3Ca = x̃dt̃
, �B10�

where x̃=x /Vd
1/2, in the matching of the molecular precursor

film and the macroscopic liquid drop in Eqs. �B3� and �B6�
at x= x̃d. This leads to

27

x̃d
6 = 4.5�− 3 log ���V0

2dx̃d

dt̃
, �B11�

which can be integrated to give

x̃d = 1.458��V0
2�log ���−1/7t̃1/7. �B12�

Substitution of Eq. �B12� into Eq. �B10� then gives an
expression for the local quasisteady speed:

Ca = 0.086�log ��−1/7t̃6/7. �B13�

The relevant scaling for the height of the bulk drop can also
now be determined. From Eq. �B5� with x̃=0 and Eq. �B12�,

h�x̃ = 0� � �2��1/7Vd
1/2�3V0

2
	2/7

t̃−1/7, �B14�

so that

h̃ =
h

�2��1/7Vd
1/2�3V0/2�2/7 . �B15�

Substitution of Eqs. �B9� and �B13� into the film volumet-
ric flow balance in Eq. �80� and integrating then gives the
dynamic condition for the decrease in the drop height:

h̃ = 0.758�3�V0

2
	1/2

�log ��−1/14t̃−2/21. �B16�

More explicitly, Eqs. �B8�, �B15�, and �B16� can be written
as

xf = �4.5V0
2�t�1/3, �B17�

h̃ =
h

1.24���1/7Vd
1/2V0

2/7 , �B18�

and

h̃ = 0.804�1/2V0
13/42�log ��−1/14��t�−2/21, �B19�

respectively.
Reconverting Eqs. �B18� and �B19� to dimensional form,

and using Eq. �66� to relate the volume per unit width Vd in
our one-dimensional planar model to the true drop volume V,
we obtain

h̃ = 0.622h��l�3

4
+ tan2 �c	2

�0�lV
2V2tan2 �c

�
1/7

�B20�

and

h̃ = 0.104Re�log�0.873�1/3b�tan �c

V1/3 	�−1/14

�� �l�3

4
+ tan2 �c	17/6

�0�lV
2V17/6�tan �c�29/12t

�
2/21

. �B21�
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