
Annu. Rev. Fluid Mech. 1994.26: 103-36 
Copyright © 1994 by Annual Reviews Inc. All rights reserved 
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INTRODUCTION 

Since the pioneering experiment by the father-son team of the Kapitza 
family during their house arrest in the late forties (Kapitza & Kapitza 
1949), wave evolution on a falling film has intrigued many researchers. One 
of its main attractions is its simplicity-it is an open-flow hydrodynamic 
instability that occurs at very low flow rates. It can hence be studied with 
the simplest experimental apparatus, an obviously important factor for 
the Kapitzas. Yet, it yields a rich spectrum of fascinating wave dynamics, 
including a very unique and experimentally well-characterized sequence of 
nonlinear secondary transitions that begins with a selected monochromatic 
disturbance and leads eventually to nonstationary and broad-banded (in 
both frequency and wave number) "turbulent" wave dynamics. (Turbu­
lence here is used interchangeably with irregular spatio-temporal fluc­
tuations.) While this transition to "interfacial turbulence" or "spatio­
temporal chaos" seems to be quite analogous to other classical instabilities 
at first glance, there are subtle but important differences that have recently 
come to light. The pertinent nonlinear mechanisms behind these secondary 
transitions are the focus of the present review. 

We shall be mostly concerned with transitions on a free-falling vertical 
film. Wave dynamics on an inclined plane is quite analogous to the vertical 
limit and most experiments and theories have focused on the latter. For 
the vertical film, the problem is defined by two independent dimensionless 
parameters and we prefer the Russian convention of using the Reynolds 
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104 CHANG 

number R = (U)hN/V and the Kapitza number y = (J/pV4!3g1/3 where (u) 
is the average velocity, hN is the Nusselt flat-film film thickness such that 
hN<U) is the flow rate per unit width and <u) = ghM3v, v the kinematic 
viscosity, p the density, (J the interfacial tension and 9 the gravitational 
acceleration. If one uses the "natural" sealings on the full Navier-Stokes 
equation, the resulting two parameters would be R and the Weber number 
W = (J/p<u)2hN which are the ones used in some literature. However, the 
Kapitza number offers the advantage that it is only a function of the 
physical properties of the liquid and not the flow rate. (For water, y = 2850 
at 15°C.) The two conventions are interchangeable by y = WR5/3j31/3. 

At very large Reynolds numbers (R > 1000), the waves observed on the 
falling film are of the shear-wave variety with wavelengths comparable to 
or shorter than hN• [See the linear stability analysis of Floryan et al (1987) 
and the experiment of Bertschy et al (1983) for inclined films.] Such high­
flow-rate conditions typically yield turbulent films (turbulent in the classi­
cal sense) dominated by internal Tollmien-Schlichting disturbances. The 
interfacial dynamics is simply enslaved by the internal turbulence. At 
moderately high R (300 < R < 1000), long interfacial waves characteristic 
of gravity-capillary instabilities begin to appear (Chu & Dukler 1974). 
However, the wave dynamics is extremely nonstationary, especially for thc 
persisting short waves which seem to be generated by a vortex shedding 
mechanism from the long waves. At extremely low flow rates (R« 1), the 
film becomes so thin that intermolecular forces and contact line dynamics 
become important as the film ruptures. We are concerned with the inter­
mediate region ( 1  < R < 300) such that the instability consists of long 
interfacial waves dominated by gravity-capillary effects. 

Wave evolution by natural excitation in this region of Reynolds numbers 
is shown in the schematic of Figure l .  Four distinct wave regions have 
been observed. In the inception region (region I), infinitesimal disturbances 
at the inlet are amplified downstream to form a monochromatic wave at 
the end of the region, indicating that the instability is a convective one 
and not of the absolute variety. If the initial disturbance is sufficiently 
monochromatic in frequency, the emerging wave inherits the forcing fre­
quency. If the disturbance has a wide band of frequency, as is true with 
natural noise, a highly selective linear filtering process in region I yields 
a unique monochromatic wave field for all wide-band disturbances. In 
particular, transverse disturbances are selectively damped in this inception 
region. Within this region, the amplitude of the monochromatic wave 
grows exponentially downstream as in all linear excitation processes of 
convectively unstable systems. Beginning in region II, however, the expon­
ential growth is arrested by weakly nonlinear effects as the amplitude of 
the monochromatic wave saturates to a finite value dependent on the wave 
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FALLING FILM WAVES 1 05 

IV 

---�.� downstream 
Figure I Schematic of the four wave regimes in a naturally excited evolution on a falling 

film from a slit. The wave spectra from localized probes at the four regions are also shown. 
The parameter OJ is the wave frequency. For higher R values (R > 50), region III may not 
be present. 

number, R, and y. Due to this weakly nonlinear interaction between an 
unstable fundamental Fourier mode and a stable second harmonic, the 
monochromatic wave of region I begins to develop a finite overtone in 
region II as its sinusoidal shape steepens downstream. There is also a 
negative nonlinear correction to the wave speed of the inception region 
such that the waves actually slow down as they grow (Lin 1983). Some 
experimental evidence indicates that even the wave number of the saturated 
periodic wave exiting from region II, which is still a very uniform wave 
field, is different from that of the monochromatic wave emerging from 
region I due to a nonlinear selection mechanism. In a periodically forced 
experiment with a sufficiently large forcing amplitude, both region I and 
region II may be bypassed and the first uniform wave field that emerges 
contains large-amplitude waves whose wave frequencies are close to the 
forcing frequency except at very low values (Kapitza & Kapitza 1 949, 
Alekseenko et al 1985). The periodic finite-amplitude disturbances in a 
forced experiment can hence entrain waves that would not have been 
selected by the linear and nonlinear selection mechanisms of regions I and 
II. For small-amplitude and broad-banded natural or artificially intro­
duced disturbances, however, the uniform wave fields emerging from 
regions I and II are independent of the disturbances present. They are 
uniquely selected by the linear and nonlinear mechanisms in regions I 
and II. 

Both finite-amplitude wave fields generated by periodic forcing and 
naturally excited wave fields emerging from region II travel a long distance 
( '" 1 0  wavelengths) in a stationary manner, e.g. without visible changes in 
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1 06 CHANG 

their shape or speed, before they undergo another slow evolution in region 
III. Here, two dominant instabilities of the finite-amplitude waves have 
been observed. The best data are recorded by Liu & Gollub ( 1993) although 
they are taken for inclined films. Neighboring waves coalesce at inter­
mittent locations due to a subharmonic instability (Prokopiou et a1 1 99 1 )  
or  a long-wave modulation appears characteristic of sideband instabilities 
(Cheng & Chang 1 992a). These two instabilities create intermittent patches 
of defects to the otherwise uniform field of waves. Within these patches, 
the distorted waves grow in wavelength, amplitude, and speed and evolve 
into characteristic spatially localized teardrop humps. These humps have 
steep fronts which are relaxed by a series of front-running bow waves 
whose wavelength is close to the monochromatic waves at inception. These 
larger and faster humps begin to expand the patches in the downstream 
direction as they overtake the original slower waves, so much so that all 
of the latter may vanish eventually. The wave frequency or wave number 
spectrum now becomes very broad, in contrast to the monochromatic 
spectrum in region I and the fundamental-overtone pair in region II. This, 
however, does not imply that a continuous band of dispersive waves 
dominate the interface as in turbulent channel flow. Instead, a large portion 
of the band is locked into the characteristic hump of the evolved waves 
and travels in synchrony. The broad-banded spectrum is due mostly to the 
localized shape of the humps which is strikingly identical. These robust 
humps have a characteristic length that is much shorter than the typical 
separation between humps where the film is essentially flat. They are hence 
referred to as solitary waves, or more appropriately, solitary humps. The 
separation between the individual humps are typically nonuniform and 
time-varying, indicating nonstationary interaction among them and 
reflecting the spatio-temporal irregularity of their births. However, the 
humps themselves remain nearly identical and do not alter thcir shape 
significantly during the interaction within region III. 

Finally, in region IV, transverse variation begins to develop on the wave 
crests of the solitary humps. The dynamics of the transverse variation is 
nonstationary and these transverse variations grow to such amplitude (not 
in height but in the direction parallel to l:he wall) that adjacent crests merge 
at various points and pinch off. However, the wave shape in the flow 
direction (x in Figure I) retains the solitary shape except near the pinch 
points. For vertical water films at low R, regions I to III occupy 30 to 40 
inception wavelengths with each region spanning about 10 wavelengths. 
(The wavelength selected at inception is about I cm for water at the 
Reynolds number of interest.) Region IV seems to persist indefinitely 
downstream. If the introduced disturbance at the feed, or elsewhere in the 
channel, contains significant transverse variation such that it is not entirely 
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FALLING FILM WAVES 107 

filtered in the inception region I, then region III may be negligible in length 
or may be skipped entirely. 

MODEL EQUATIONS AND WAVE INCEPTION 

Although the wave transition sequence shown in Figure 1 seems to be 
quite similar to transitions in other classical hydrodynamic instabilities 
like free-convection boundary layer and shear instabilities in channel flow, 
there are several important factors that make this instability unique and 
also render it more amenable to analysis. It could well be the first transition 
sequence to be fully understood. The first factor is the difference in the 
streamwise and normal length scales. In all regions in Figure I and for 
R < 300, the film height at the wave crest never exceeds 1/10 of the 
characteristic wavelength or the characteristic length of the solitary humps. 
At low R, this long-wave characteristic of the interfacial disturbances 
motivates a lubrication-type expansion with respect to the "film param­
eter" e defined as the ratio between the characteristic wave height and the 
characteristic wavelength. This long-wave expansion yields the following 
evolution equation 

where the characteristic length and time used to nondimensionalize the 
variables are hN and hN/<U), respectively. In a more popular version 
of this equation, the interfacial velocity is used in the time scale. This 

-corresponds to multiplying all coefficients in (1) except the first one by a 
factor of 2/3. In this other version R W/3 is also replaced by a different 
Weber number W' = (J/ph�g. Roskes (1970) is responsible for the 0(82) 
version of (1) for strong surface-tension fluids [W � 0(e-2)]. Dispersion, 
which will be shown to be important in both the linear and nonlinear 
instability mechanisms, has been omitted in the equation. It was, however, 
included in a higher-order equation that Nakaya (1975) derived for both 
w", 0(8°) and W '" 0(C2). L9wer-order equations, for various relative 
orders of W with respect to e, have been derived by different investigators 
beginning with the work of Benney ( 1966). All these evolution equations, 
however, require the Reynolds number to be O(eO), corresponding to 
lubrication-flow conditions. 

Further simplification of ( I) is possible by carrying out an expansion in 
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108 CHANG 

the amplitude 1], where h = 1 +11. This weakly nonlinear expansion 
for strong surface-tension fluids was filst carried out by Lin (1974) and 
Nepomnyaschy (1974) independently for falling-film waves and it yields 
the following 0(1]2) equation for two-dimensional waves without z 
variation, known as the Kuramoto-Sivashinsky (KS) equation: 

(2) 

where both R and W have been conveniently absorbed by the moving­
coordinate, slow-time, long-wave, and small-amplitude expansion: 

and 

(5W)1/2 
X --+ 12 (x-3t). 

The parameter-independent property of the KS equation and its simplicity in 
retaining only the most dominant nonlinear term HHx, which arises from 
interfacial kinematics in the present problem, have made it a popular 
generic model for numerical and mathematical scrutiny. 

One should, however, be cognizant of the assumptions that have been 
made in deriving both (1) and (2). The former assumes a small wave height 
to wavelength ratio f. and R f'V O(RO) while the latter imposes the additional 
stipulation that the deviation amplitude: 1'/ = h - 1 must be small. Note that 
the small 11 approximation is much stronger than the small-e long-wave 
approximation since the wave height I;an be small relative to the wave­
length and still be the same order or larger than the Nusselt film thickness 
hN or the average film thickness. The observed waves typically obey the 
long-wave approximation but not necessarily the small-amplitude assump­
tion. Both equations are also strictly valid only for strong surface-tension 
fluids unless higher order terms are added to ( 1 ) .  Nevertheless, with careful 
consideration concerning their validity, they can be welcomed substitutes 
for the full Navier-Stokes equation since the latter is still beyond exhaustive 
numerical analysis. (See, however, the recent work of Kheshgi & Scriven 
1 987 and Ho & Patera 1990. There is also an ongoing effort at MIT.) 

Extensive numerical analysis of the "'strongly" nonlinear equation in (I) 
has been carried out by Pumir et al ( 1983) and by the Northwestern group 
(Joo et a1 1991; Joo & Davis 1992a,b). Pumir et al first demonstrated and 
Rosenau et al ( 1991) and Joo et al (1991) recently confirmed that finite­
time blow-up and wave breaking, which violate the small e long-wave 
expansion, are often encountered during the integration of (1). Since the 
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FALLING FILM WA YES 109 

actual film does not exhibit such behavior, the strongly nonlinear evolution 
equation in (I) must have omitted certain important nonlinear growth­
arresting mechanisms in its long-wave expansion. On the other hand, one 
can easily show by the energy method that the KS equation (2), with 
reasonable boundary conditions, always yields bounded solutions for all 
time. Since the small-amplitude evolution of ( I) is also described by (2), 
while the large-amplitude evolution of (I) quite often yields blow-up solu­
tions that are not consistent with the long-wave expansion, the advantage 
of the more complex evolution equation over the KS equation is rather 
limited. 

For R » 1, both ( 1 )  and (2) are definitely not valid and the only available 
simplification of the Navier-Stokes equation is offered by the boundary­
layer equation (BL) first studied by Shkadov et al ( 1970). Unlike the 
derivatio� that leads to (1) and (2), the BL equation is derived with only 
the long-wave expansion without overly restrictive stipulations on the 
order for R, W, and the deviation wave amplitude '1 (Chang et al 199 3a). 
Inertia-induced instability and dispersion are fully captured. The BL 
equation is 

au au au I ( I oZu ) 

at +
u 

ox +
v 

oy 
= 5b hxxx + hxzz + "3 

oyZ + I 

ow ow ow ow 1 ( 1 OZw) 

at +u 
ox +

v 
oy 

+w 
oz = 5b hxxz + hzzz + "3 

oy
2 

au av ow 
-+-+-=0 
ox oy oz 

ou ow 
y = h(x,z) hI = v-uhx-whz - = - = 0 

oy oy 

y = 0 u = v = w = O. 

(3) 

We have compared the linear stability result of (3) to the exact results of 
the full Orr-Sommerfeld equation and found it to be accurate for R < 300 
for most realistic fluids (Chang et aI 1993a). Unlike the KS equation which 
contains no explicit parameters, (3) yields a scaled Reynolds number 

b = Rll/9j5yl/337/9 
which introduces the destabilizing and dispersive effects of inertia at higher 
flow rates. Nevertheless, it is still more convenient to study than the full 
Navier-Stokes equation which contains two parameters. At vanishing b, 
it can be readily shown that (3) reduces to ( 1 )  and then to (2) if a proper 
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110 CHANG 

scaling for (j in terms of the film parameter is assigned. An ad hoc but 
convenient simplification of (3) can be made by arbitrarily assuming a self­
similar parabolic flow profile beneath the film (Shkadov 1 967, 1 968). This 
reduces (3) to the greatly simplified form of the "integral boundary-layer" 
equation (IBL) or averaged equation for two-dimensional waves, 

oq 6 a 2 1 2 at +"5 ax(q /h)- 5b(hhxxx+h-q/h )  = 0 

8h + 8q 
= 0 at ax 

where q = J� udy is the volumetric flow rate per unit span width. 

(4) 

In numerical simulations of (3) and (4) (Demekhin & Shkadov 1 985, 
Trifonov & Tsvelodub 1991, Chang et al 1993a), it is found that the 
boundary-layer or long-wave approximation is always obeyed, c.g. the 
blow-up behavior of (1) is never observed and e remains small. This is true 
even at low b conditions where ( 1) supposedly applies. We believe higher 
order e terms omitted in ( 1 )  are responsible for arresting the blow-up 
phenomenon. This is supported by our effort to reduce Equation (3) to 
Equation (I) (Chang et al 1993a). Since there are now two small 
parameters, the dispersion b and the "film" parameter e, relative order 
between the two must be established. It is found that b '" 0(1:2/3) for the 
reduction to (1). This is equivalent to assigning R and W orders in e in the 
derivation of (1) and (2). Since e is not really a free parameter but one 
determined by the solution, thc reduction essentially permits large-ampli­
tude solutions like blow-up solutions by artificially reducing the effect of 
b-related mechanisms like dispersion. Equivalently, a blow-up solution of 
(1) would trigger higher order e effects such as dispersion to suppress 
further growth. Since these terms are not included in (1), blow-up occurs. 
The weakly nonlinear version of the KS equation suppresses unbounded 
growth by limiting itself to small-amplitude evolutions of (1) that do not 
trigger blow up. Since dispersion and other higher order terms in I: are 
included in the BL equation-the order of 0 is not stipUlated to be arti­
ficially small at a specific order of e, it yields the proper description of 
wave evolution even at low o. (Quantitative agreement with measured 
wave tracings will be presented in the next section.) It should hence be 
considered the model equation of choice, short of the complete Navier­
Stokes equation, for long waves at R < 300. Equations (l) and (2) should 
be reserved for small-amplitude waves at low b. In this limit, the KS 
equation is a far simpler equation to study than Equation (1). Although 
the IBL equation is derived in an ad hoc manner, it yields the correct 
leading-order linear (Prokopiou et al 1991) and nonlinear (Trifonov & 
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FALLING FILM WAVES 11 1 

Tsvelodub 199 1 ,  Tsvelodub & Trifonov 1 992) behavior in the low-b limit 
(15 < 0.05). It is hence a good substitute for the KS equation to include 
dispersive waves and an excellent simplification of the BL equation at 
low b. 

The danger in a priori assigning relative orders of R, W, and IJ with 
respect to e in a long-wave expansion was recognized by Benney ( 1966). 
He found that his weakly nonlinear theories yield either the Burger 
equation, the KdV equation, or others depending on the specific assign­
ments made. Since R and W are independent parameters that specify the 
wave height and wavelength in e, these a priori assignments often yield 
equations that cannot describe the full range of waves. As a result, shock 
formation for the Burger equation and blow-up solutions for others occur 
when these equations are integrated as the waves attempt to evolve into 
ones beyond their description. One should only assume e is small without 
specifying the orders of R, W, and IJ as in the derivation of the BL equation. 

Another welcomed feature of wave evolution on a falling film at R < 300 
is the difference in time scale between the characteristic time of wave 
evolution and the wave period. This is seen in the locally stationary and 
uniform two-dimensional periodic waves in region II where the waves are 
nearly identical over 10  wavelengths and a particular crest can travel 
the same distance without changing its shape or speed appreciably. The 
evolution in region III is more localized in space, especially at the beginning 
of the region. Nevertheless, one can still see small patches of stationary 
waves that span one or two wavelengths. The solitary humps of regions 
III and IV are also stationary although the separation between them can 
often be time-varying. Even here, the fluctuations can probably be modeled 
as local dynamics near a periodic train of stationary solitary humps. It 
is hence quite reasonable to construct stationary periodic waves by a 
Lagrangian transformation x � x-ct and study the steady-state version 
of any of the model equations in the Lagrangian frame. This introduces 
an additional parameter, the wave speed c, but converts the initial value 
problem into a far simpler boundary value problem. Linear stability analy­
sis and weakly nonlinear theories for the dynamics near these stationary 
waves can then determine which wave will be selected in the various 
transitions. In a sense, these stationary waves, which include the Nusselt 
flat film as a stationary wave at all speeds c, are "fixed points" of the 
governing equations which are strictly unstable but the dynamics seem to 
approach them on a stable manifold and leave them rather reluctantly on 
an unstable manifold after a finite lifetime. The complete transition 
sequence then consists of evolution from one stationary-wave fixed point 
to another, possibly along a heteroclinic orbit. Such a scenario has also 
been envisioned for other instabilities. For example, stationary finite-
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1 1 2 CHANG 

amplitude traveling waves are speculated to be the intermediate between 
the primary instability and the 3D tertiary phase in the transition sequence 
to turbulence in plane Poiseuille flow (Pugh & Saffmann 1 988). The role 
of stationary waves is fully confirmed experimentally, however, on a falling 
film. This approach has spurred some recent activities to construct station­
ary wave families and analyze their stability. The latest results have already 
offered a good understanding of the evolution in regions II and III. 

The last unique feature of wave evolution on a falling film is the domi­
nance of the robust solitary-hump structure in the dynamics of regions III 
and IV. This feature promises to yield a very rational and quantitative 
description of the chaotic dynamics in these regions unavailable for tur­
bulence in other instabilities. The existence of identical coherent units 
during spatio-temporal chaos in regions III and IV motivates a "coherent 
structure" theory describing the weak interaction among a finite number 
of such indestructible units. The dime:nsion of the strange attractor in 
region IV, if the dynamics there is indeed governed by an attract or, can 
be relatively small. This is contrasted to the noise-like turbulence of high 
Reynolds number shear instabilities with continuous bands of length and 
time scales from unsynchronizcd waves and astronomical attractor dimen­
sions. In this respect, "interfacial turbulence" in region IV of a falling film 
may indeed be related to low-dimensional chaos. 

The next three sections summarize our current understanding of the 
transition scquence in Figure 1 and possible future development, especially 
along the line of "coherent structure" theory for the dynamics of regions 
III and IV. The dynamics of the inception region in I is well understood 
and we refer the readers to the earlier review of Lin ( 1983) and the latest 
computation of Floryan et al ( 1987). It should be mentioned, however, 
that although the linear dynamics at inception is clearly a convective 
instability, a complete confirmation of this has not been carried out. 
Pierson & Whitaker ( 1977) have computed the spatial amplification rate 
by presupposing thc instability is convl�ctive. Most of the other literature 
on linear instability, beginning with the classical long-wave results of Yih 
( 1963) and Benjamin ( 1957), actually pertain to the inappropriate temporal 
stability problem. The only attempts to ascertain convective instability are 
by Joo & Davis ( 1 992b) and Liu ct al ( 1 992) who used the simplified 
equations of ( 1 )  and (2). However, their results yield a prediction of 
absolute instability at a sufficiently large R which has never been observed. 
The inconsistency was attributed to the failure of ( 1 )  and (2) in the absol­
utely unstable region. More precisely, it may be due to the missing high 
order (in e) dispersion effect in these equations which becomes more 
pronounced at higher R. Since convective instability can be viewed as a 
competition between local growth and disturbance propagation, dispersion 
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FALLING FILM WAVES 1 1 3 

of wave speed should have a profound influence on it. The erroneously 
predicted absolute instability is perhaps the linear precursor to the aphysi­
cal nonlinear blow-up behavior of ( 1). Both can then be attributed to the 
absence of dispersion in the equation. The inconsistencies of ( 1 )  and (2) 
with experimental data in this respect again limit their application. The 
confirmation of convective instability can be easily addressed by tackling 
the full Orr-Sommerfeld equation for the linearized Navier-Stokes equa­
tion or the linearized BL equation and this remains a worthy open problem. 

We shall only cite a few important results from the linear study pertinent 
to subsequent discussion on nonlinear theories. These results remain valid 
in general despite their temporal stability formulation. Instability for the 
vertical film occurs beyond Rc = 0 and in an analog of Squire's theorem, 
the two-dimensional disturbances of the form/( y) exp (iIXx + At) are found 
to be more unstable than three-dimensional disturbances. The growth rate 
A" shown in Figure 2, is a parabolic one that encompasses the range 
IX E (0, IXo) where in the limit of low flow rate (D -+ 0), the neutral wave 
number IXo approaches �. Destabilization of long waves is due to 
gravity-driven inertia and stabilization of short waves is due to capiIlary 
effects. In the same limit of low 8, the fastest growing mode is am = 

IXo/j2 = j9a, which seems to agree with the wave number of the naturally 
excited monochromatic wave emerging from region I. Again, a complete 
analysis of this linear filtering mechanism due to convective instability is 
still lacking. Also at low D, the normalized phase velocity c = � Ai/IX is exactly 
3 for all wave numbers rx., e.g. all Fourier modes travel at three times the 

R=Rc 

a stable 

direction of 
bifurcation 

unstable 
�------------------��R-Rc 

Figure 2 Schematic of the growth rate A, as a function of streamwise wave number IX and 
the neutral curve for the neutral wave number 1X0 as a function of Reynolds number R. The 
critical Reynolds number is Re. The direction of bifurcation of the stationary periodic wave 
family is also indicated. 
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average velocity <u). With increasing ,5, dispersion sets in and a mode 
near IXm travels slower than any other mode and is significantly lower 
than 3 .  

STATIONARY WAVES 

Like other nonlinear theories for hydrodynamic instabilities, stationary 
waves and their stability can be studied with either a constant-flux or a 
constant-average thickness formulation. (These are analogous, but not 
identical, to constant-flux and constant-pressure-gradient formulations of 
other open-flow instabilities.) If a weakly nonlinear expansion about the 
flat-film is used, the latter formulation is usually implemented. For the full 
problem, however, either formulation can be used. The two results are 
qualitatively the same and quantitatively transformable (Chang et al 
1 993a). 

The earliest attempts to construct stationary waves were by Benney 
. ( 1966) for weak surface-tension fluids and Lin ( 1969) for strong ones. The 
constructed stationary waves are not necessarily the ones selected at the 
end of region II. Instead, they correspond to all possible stationary waves 
that are observed in a periodically forced experiment. Benney and Lin 
used the classical multi-scale formalism of Stuart-Watson to derive a 
Stuart-Landau (SL) equation 

ca 2 
- = Aa-ITlal a at (5) 

for the complex amplitude of a monochromatic wave with wave number 
a, a exp (iax). The complex coefficients A and IT are simply the linear growth 
rate and the Landau interaction coefficient due to cubic self-interaction 
and quadratic interaction between the fundamental IX and the overtone 21X. 
In the classical formalism, A is expanded to leading order with respect to 
a bifurcation parameter like R at the maximum ("nose") of the growth 
rate curve near criticality A '" (R - Rc) and IT is evaluated at the "nose." 
However, the growth rate of the falling··film problem in Figure 2 does not 
have a nose near criticality. More accurately, its nose at ex = 0 near criti­
cality is too complex to allow an expansion that yields (5). As a result, (5) 
actually corresponds to an expansion carried out at the neutral curve and 
not at criticality, i .e. A '" (IX -lXo) and IT is evaluated at IXI) for all values of 
Rand W. Hence, the solution of (5) is not limited to near-critical conditions 
as in other SL formulations. However, the most unstable waves near oem 

of Figure 2 are not well-resolved at large R since IXm « lXo at higher flow 
rates as the band of unstable waves grow with increasing inertia. This is 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
4.

26
:1

03
-1

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

11
/1

6/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FALLING FILM WAVES 1 1 5 

best clarified by a new derivation of (5) using modern Center Manifold 
theories (Cheng & Chang 1 990). In the limit of small R (or (5), (J is a 
real parameter since the system is nondispersive. We also note that, by 
definition, Ar vanishes at a = aD and is positive for a < ao. The real part 
of the Landau constant (Jr is found to be positive, corresponding to a 
supercritical bifurcation, by all studies to date. This then implies that, at 
a given R and (5, there is a one-parameter family of nearly monochromatic 
periodic stationary waves parameterized by rx with wave number decreasing 
continuously from rxo (see Figure 2). The amplitude of each member of this 
wave family is given by laI2(rx) = I Ar(a)/(Jrl which increases with increasing 
wavelength. The speed of each member is - [A/oco)/ao - (Jd a I2/ao] where 
the second term represents the nonlinear correction to the linear phase 
speed -Ada which is close to 3 at low R. Because the classical multi-scale 
formalism is extremely complex to apply, the computed speeds often 
deviated from investigator to investigator (Lin 1 983). However, it is gener­
ally agreed that the nonlinear correction to speed is negative and longer 
waves tend to travel slower even though they have larger amplitudes. There 
were also attempts to construct stationary waves with wave numbers near 
zero, which are presumably near the infinitely long wavelength limit of the 
same wave family that begins at rx = rxo. However, it is now known that 
the SL equation is only valid when the fundamental a is weakly unstable 
(i.e. just below oco) while the overtone 20c is stable (Cheng & Chang 1 990) 
and all prior results for oc near zero such that 2a < OCo are incorrect. Even 
the maximum growing linear mode at a = am is barely within this range 
and is hence poorly described by (5). Some investigators concluded cor­
rectly that whenever 20c lies within the unstable band of wave numbers in 
Figure 2, more than one amplitude equation must be considered because 
of the multiplicity of dominant Fourier modes. Lin ( 1 974) suggested 
instead to use the long-wave evolution equations of ( 1 )  and (2) which can 
accommodate a large band of Fourier modes. 

The first numerical studies of the stationary waves of the KS equation 
by Tsvelodub ( 1 980), Demekhin ( 1 983), Chen & Chang ( 1 986), and Deme­
khin & Shkadov ( 1986) reveal the fate of the wave family that bifurcates 
off the neutral wave number at OCo as predicted by the local analysis of the 
SL equation (5). As shown in the schematic of Figure 3, in the limits 
described by the KS equation, the wave family that bifurcates from ao is 
a standing wave family (5) with no nonlinear correction to the linear phase 
speed of 3. This is consistent with the local analysis of (5) since at low 15, 
(Jj vanishes and - Ai/oc approaches 3. The constructed amplitude is also 
in approximate agreement with the local theories of (5). However, at 
(a/aD) = 0.5547, this standing-wave family undergoes a pitchfork bifur­
cation and yields two traveling-wave (relative to the linear phase speed) 
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1.0 r-------9-----, 

(oJurY = 0.5547 

o L-�_�_J-_______ � 

Figure 3 Schematic of the wave families 
of the KS equation in the wave-number/ 
;peed ex-c parameter space (solid curves). 
There is symmetry across c = 3 which is 
broken by inertia at finite (j (broken curves). 
Each wave family ends with a solitary wave 

at ex = 0 with different numbers of humps. 

The S wave families contain standing 
waves and the C families contain traveling 

waves of the KS equation. The y families 
are the traveling waves at non-zero (j. 

c-3 + 

families C± I' This bifurcation is due to a "1-2 resonance" between the 
fundamental and its overtone which can be studied analytically if the 
amplitude equation of the now dominant overtone is added to the lone 
amplitude equation of the fundamental in (5) (Armbruster et al 1988). 
This bifurcation is hence beyond the desc:ription of the local Stuart-Landau 
equation (5). The two traveling-wave families are identical upon shape 
inversion (ry --+ -ry) and reflection in space across the maximum (x --+ -x) 
and in speed with respect to the linea.r phase speed [c- 3 --+ -(c-3»), 
transformations with respect to which the stationary KS equation with 
constant mean thickness 

(H) == 0 (6) 

remains invariant. The constant Q = (2H2) is the deviation flux and ( ) 
denotes a spatial average over one wavelength. The parameter j.t is related 
to the deviation speed, (c- 3) ..., (8Q+ j.t2)1/2. [A convenient representation 
of the stationary wave solutions of (6) can be obtained by transforming 
(6) into a dynamical system (XI' XZ,X3) := (H, Hx, Hxx), such that x = rex). 
In this formulation, the stationary waves become closed trajectories (limit 
cycles) in the three-dimensional phase space. Numerical construction is 
then achieved by using now-standard continuation routines to construct 
the limit-cycle branches and their bifurcations.] The two traveling-wave 
families, which possess stationary-wave members with a wide-band Fourier 
spectrum and speeds different from 3, then extend indefinitely to vanishing 
a without further bifurcations. The limiting wave member with an infinitely 
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FALLING FILM WAVES 1 17 

long wavelength on the faster traveling-wave branch C1 has a shape that 
has a striking resemblance to the solitary humps seen in regions III and 
IV of Figure 1 .  The limiting "negative" solitary wave on C_1 is inverted 
and reflected. Some members of these two families are shown in Figure 4. 

All stationary wave families of the KS equation have now been con­
structed (Kevrekidis et a1 1 990, Demekhin et a1 199 1 ,  Chang et aI1993a). 
There are actually an infinite number of such families. In the parameter 
space of J1 and a, additional standing-wave families bifurcate from 
rx. = rx.o/n, n = 2, 3, . . .  , as shown in Figure 5. Near the bifurcation points, 
they are identical to S and are, in fact, indistinguishable in the c - ex 

bifurcation diagram of Figure 3. This is because a periodic standing wave 
with wavelength 2n/ex is also one with wavelength 2nn/a. However, further 
from the bifurcation points, they begin to deviate from S as perturbations 
much longer than 2n/rx. are seen in the shapes (see the last wave family of 
Figure 4). Such distortions correspond to finite-amplitude manifestation 
of the classical subharrnonic instabilities (Cheng & Chang 1992b) of the 

wave members on S and period-doubling in the dynamical-systems for­
mulation. In the phase space, they correspond to a period-n limit cycle 
close to the period-l limit cycle of S. All these subharmonic branches will 
undergo bifurcations to yield two symmetric traveling-wave families each 
as seen in Figures 3 and 5. These traveling-wave families terminate in 
solitary-hump-like waves in the vanishing-a limit but these limiting waves, 
in contrast to the one on C" have multiple humps. The faster multi-hump 
solitary waves arc shown in Figure 6. (In Figure 3, the symmetry across 
c = 3 implies that whenever a family with speed slower than 3 exists, an 
inverted and reflected twin also exists with speed faster than 3. For clarity, 
only the slower twin is shown for some cases in Figure 3 .) The n-hump 
solitary wave originates from the standing wave branch that bifurcates 
from IX = lXo/n. It is convenient to use these solitary waves to represent the 
infinite number of traveling-wave families they head. They are not only 
physically important, as they resemble the humps seen in regions II and 
III, but also mathematically convenient since they allow the application 
of many new theories on homoclinic orbits. 

It was realized recently (Pumir et al 1983) that the solitary waves cor­
respond to homoclinic orbits in the phase-space formulation of any evo­
lution and that the approach towards the solitary wave limit by the 
traveling-wave families in Figures 3 to 5 corresponds to a homoclinic 
bifurcation of a limit-cycle solution. Such homo clinic bifurcations and the 
resulting homoclinic orbits can be resolved analytically if the linearized 
Jacobian at the origin possesses eigenvalues close to two zeros with a 
geometric index of one (a double-zero singularity) or a zero and a purely 
imaginary conjugate pair (a {a, ±i} singularity). We (Chang 1 986, 1 987) 
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Figure 4 Individual wave members (wave tracings and phase-space trajectory analogs) of the YI, Y2, and YJ families in Figure 3 from the BL 
equation at i5 = om. The scales are not identicaL The values of (rx/rxo) are marked, The phase-space trajectories are also shown, The stationary 
waves range from a closed trajectory to a homoclinic orbit 
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7 

Figure 5 Fast wave families (c> 3) of the KS equation in the parameter space of Il-IY. 
where 11 is related to the speed and amplitude. 

showed that for strong surface-tension fluids [W � 0(8-2)], both ( 1 )  and 
(2) have eigenvalues close to the latter singularity if the speedc is close to 
3. In this limit, the wave amplitude is small and both equations yield the 
samc results. We carried out the necessary nonlinear coordinate trans­
formation to convert the dynamical system into the normal form of that 
singularity. The lowest order nonlinear coordinate transformation smears 
the small differences in speed among the various small-amplitude solitary 
waves in Figure 5 and describes them as a continuous family of solitary 
waves parameterized by c. The resolution is also insufficient to distinguish 
the number of humps. Nevertheless, it yields the generic solitary wave 
shape shown in Figure 7. It corresponds to the homoclinic orbit shown in 
the same figure with a large loop followed by damped oscillations toward 
the fixed point connected to the loop. This corresponds to the gentle back 
and the steep front relaxed by the bow waves observed in the solitary 
humps of Figure 1 .  Since the bow waves correspond to local dynamics 
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Figure 6 Multi-hump solitary waves which tenninate the fast wave families (c > 3) of the 
KS equation at C( = O. The traveling-wave family that each solitary wave belongs to is also 
indicated. 

near the fixed point, a simple linear analysis shows that the bow waves 
have a wave number close to the neutral wave number (;(0 which is in 
excellent agreement with experimental observation. Another interesting 
result is that the amplitude-speed correlation of all solitary waves or nearly 
solitary waves should be close to 

c-3 = 3(h-l). (7) 

This simple prediction is consistent with the numerical result (Chang et al 
1 993a) and to the experimental speed and amplitude data of the solitary 
humps both in forced experiments and in regions III and IV of naturally 
excited waves as shown in Figure 7. 

Recently, we have carried out a high-order resolution of the solitary­
wave solutions (Chang et al 1 993b) by adding a fictitious dispersion term 
to the KS equation, 
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FALLING FILM WAVES 1 2 1  

• 

h-1 

Figure 7 A solitary wave and its phase-space analog of a homoclinic orbit. Comparison of 

Equation (7) to the measured data of solitary humps (Chang 1986). 

(8) 
(This equation can also be derived for inclined films with moderate surface 
tensions of a specific order.) With the unfolding provided by the additional 
dispersive parameter (j', the solitary-wave solutions indeed form a con­
tinuous family as shown in Figure 8. The limiting winding behavior near 
fJ' = 0 with a negligible distance between the speed C of individual solitary 
waves is the region we resolved earlier with our normal-form analysis 
which yielded Equation (7). For the KS equation with (j' = 0, the solitary-
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Figure 8 Unfolding of the solitary-wave solution branch of the extended KS equation of 
(8) with a fictitious dispersion parameter 0'. The solitary wave structure at each branch is 
also shown. The parameter). is the deviation speed A � c-3. Intersection$ with the;' axis 
correspond to solitary waves of the KS equation shown in Figure 6. The dotted lines and 
shaded areas are related to the global Silnikov bifurcation that generates these solitary waves 
(Chang et al 1993b). 

wave members are discrete with the wave speeds forming a geometric series 
with decreasing separation. Each member closer to c = 3 has an extra 

hump corresponding to an additional traverse of the major loop in the 
phase space of Figure 7. This sequence of solitary waves is also shown in 
the vanishing IX limit of Figure 3 and it corresponds to a peculiar bifurcation 
of the homoclinic orbits related to the Silnikov mechanism (Glendinning 
& Sparrow 1984). The primary solil:ary wave with one hump, cor­
responding to the limiting wave member of the traveling-wave family C 1, 

has the largest speed of all solitary waves. It has a negative twin with an 
inverted and reflected profile which is the slowest solitary wave. All other 
solitary waves in Figure 8 can be considered as derivatives which bifurcate 
off these two primary one-hump solitary waves. In fact, one can construct 
the genealogy of the infinite number of wave families in Figures 3 and 5 
by the following sequence of bifurcations. One begins with the one-hump 
solitary wave of Figures 7 and 8. The speed and its shape are known in 
detail (Toh 1987). Through a Silnikov bifurcation, unfolded by the fictional 
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dispersion term in Figure 8, it generates an infinite number of n-hump 
solitary waves. Each solitary wave then undergoes a reverse homoclinic 
bifurcation to generate a family of limit cycles (traveling waves). This 
sequence is followed in mirror image by the inverted twin of the primary 
one-hump solitary wave with the slowest speed. The one-hump twins are 
then the parents of all stationary traveling waves of the KS equation. 

That the addition of dispersion can allow a more detailed resolution of 
the solitary waves is consistent with the analysis of the 0(63) evolution 
equation of Nakaya for weak surface tension fluids (Chang 1989) which 
includes the higher-order dispersion effect in a rigorous manner. His equa­
tion was shown to be close to the double-zero singularity and the solitary 
waves form a continuous branch resolved by our analysis. It yields another 
amplitude-speed correlation for the near-solitary stationary waves which 
is also in favorable agreement with waves on glycerin or glycerin-water 
solutions. In general, the improved resolution of the stationary waves with 
the addition of either real dispersion or the artificial one in Equation (8) 
is consistent with our earlier discussions on the importance of higher-order 
terms like dispersion on linear instability and large-amplitude growth. To 
further support this, we point out that as � approaches zero, the small­
amplitude stationary-wave solutions of the BL equation collapse into the 
solutions of the KS equation and the small-amplitude waves of the evo­
lution equation ( 1 ). However, the large-amplitude solitary-wave solutions 
of the strongly nonlinear evolution equation constructed by Pumir et al 
( 1983) are not approached by the solitary waves of the BL equation in 
the same limit. This underscores the argument that the large-amplitude 
solutions of ( 1 )  are not correct because of the omission of dispersion and 
other high-order terms. 

Most wave experiments for strong-surface-tension fluids like water are 
carried out in the intermediate-flow-rate region of 1 0  < R < 300 where 
the KS equation is invalid. In this region, the BL equation (3) must be 
used and the elegant analysis available to the KS equation must now be 
replaced by brute-force numerical construction of the stationary waves. 
Nevertheless, many of the analytical and numerical results for the KS 
equation, which can be very clearly classified (for example, slow-fast sym­
metry and Silnikov bifurcations of solitary waves), are still useful in 
deciphering and organizing the bifurcations of the wave families of the 
BL equation from the KS solutions at vanishing �. 

The first attempts to construct finite-� stationary waves focused on the ad 
hoc but simple IBL equation (Shkadov 1967, 1 968; Demekhin & Shkadov 
1985; Trifonov & Tsvelodub 1991; Tsvelodub & Trifonov 1992). The 
solutions are found to reduce to KS solutions at vanishing b. However, 
some of the constructed wave shapes are not in good agreement with the 
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measured ones even at small <5 values (<5 > 0.05). For the most common 
experimental conditions, only the IBL equation and the full Navier-Stokes 
equation are sufficiently accurate. While construction of stationary solu­
tion branches for the latter remain formidable, the former can now be 
analyzed completely to show good quantitative agreement with experi­
mental data. We (Chang et al 1 993c) have developed a spectral-element 
domain-decomposition numerical method for resolving the stationary 
waves of the BL equation. It is a routine specifically designed for the 
difficult free-surface problem of the falling film and we summarize below 
its resolution of the stationary waves. 

At finite <5, the symmetries of the KS equation are broken and the 
pitchfork bifurcation of the standing-wave branch S which gives rise to the 
twin traveling-wave families becomes the imperfect pitchfork bifurcation 
shown in Figure 3. The standing-wave family S is linked with the slow 
primary traveling-wave family C_ J to form a new family h The primary 
fast traveling-wave family is isolated from this branch and forms h This 
perturbation of the pitchfork is also shown in Figure 4. As a result, the Y J 
family becomes a traveling-wave family with speed less than 3 and with 
wave number ranging from c( o  to zero. The segment of this slow wave 

family Y 1 near lXo is the wave family resolved by the SL equation of (5). As 
shown in Figure 9, it is indeed slower than the linear phase speed due to 
nonlinear effects. The local resolution of the near-monochromatic waves 
by the Stuart-Landau equation is hence extended to the broad-banded 
stationary waves of Figure 1 1  at vanishing IX. The Y 2 family, as shown in 
Figure 1 0, is a fast traveling-wave family with speed in excess of 3. This 
family could never have been resolved by local theories like the SL equation 
since it does not bifurcate off the neutral curve. Its wave number begins 
at 1X/lXo � 0.5 and ends at (X = 0 in the positive one-hump solitary wave 
shown in Figure 7. The near-solitary waves (IX � 0) of both the Y l and Y2 
families are still described by the analytical amplitude-speed correlation 
of Equation (8) up to <5 = 0.3. This is also confirmed in Figure 7 where the 
data correspond mostly to finite-<5 values. Other pitchfork bifurcations of 
the subharmonic standing-wave branches are likewise broken to form an 
infinite number of traveling-wave families Yi' However, as <5 increases 
slightly from zero, these higher wave families begin to shift down in the 
(X - C  plane (as shown in Figure 9) and many of them actually coalesce and 
eliminate each other. By the moderate value of (j = 0. 1 ,  corresponding to 
R � 10 for water, only a handful remain for IX > 0.2, including the primary 
Y 1 and Y2 families. In fact, stability analysis described in the next section 
shows that the most stable (least unstable) waves of all branches lie only 
on the primary slow and fast families, Y l  and Y 2, and the other wave 
families are essentially invisible. In retrospect, the two primary traveling 
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Figure 9 Actual wave families of the BL equation of various J values. The top value of a 

in each figure corresponds to ao � .jl&5. At moderate b values, only the y ,  and Y2 families 
are important (See Figure 3 for the creation of these two families.) The narrow segments on 

these 2 families that are stable to two-dimensional disturbances are marked in the first figure. 

There is only one segment on y" but multiple segments which correspond to a geometric 

series in a appear on yz. The wave transitions in a natural evolution are also marked. For 

b > 0.09, the high-a end of the fast Y2 family degenerates into various families, none of which 

yield any stable segment. 

waves C ± 1 of the KS equation, which arise due to a 1 -2 resonance of the 
standing-wave family, and the two primary I -hump solitary waves that 
terminate C ± 1 are actually the key stationary-wave families and solitary 
humps of the falling-film problem. The other infinite number of wave 
families are never reached in reality. This is hence a considerable sim­
plification of the confusion of wave families shown in Figures 3 to 5. For 
(j > 0.09, the short-wave (high ct) end of the ')12 family also undergoes a 
sequence of bifurcations which give rise to new y1 families as shown in 
Figure 9. These new families are found to be extremely unstable, however. 
The long-wave end of the Y2 family persists even at large b and some 
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selected waves, including ones exhibiting the characteristic solitary humps, 
are always found on the surviving segment. 

The two primary families Y l  and Y2 are not only physically distinct in 
their speeds: In a constant-flux formulation, the slower y ,  family has a 
smaller average thickness than hN while the faster Y2 has a larger average 
film thickness (Chang et al 1 993a). (This is evident from the second y ,  
tracing and the first Y2 tracing of Figure 1 0  which have the same flow rate.) 
This conclusion would seem counterintuitive unless one remembers that 
the waves are not mass-carrying-they travel faster than the fluid elements. 
Since region II in Figure 1 will be shown to contain Y 1 waves, this would 
imply that the averaged film thickness in region II is smaller than hN if its 
flow rate is the same as in region I, i .e. the feed flow rate. 

In Figure 10, some nearly monochromatic waves on y ,  and some nearly 
solitary waves on Y 2 from our construction are compared to the classical 
photographs of Kapitza & Kapitza ( 1949) of the first waves generated by 
their periodically forced experiment. The waves are constructed to be the 

same wavelength as the observed ones. A slightly smaller amplitude is seen 
in the observed waves which can be attributed to the curvature effect of 
their cylindrical wall. Much better agreement is seen in Figure 1 1  where 
the forced-wave tracings from a more accurate measurement of Nal-

o 

EXPERIMENT 

1 1 3; 0.366 
- - - - - - --

(b) 

79; 0.327 

2 = 2. 1 6  
I T = 64.9 ms; c = 0.321 m/s 

(a) 
200 
1 00 

2 
x (em) 

3 o 

(c) 
300 
200 
1 00 

THEORY 

78; 0.332 

I T = 67.3 ms; c = 0.313  mts 

2 3 

Figure 11 Comparison of constructed Y2 waves to the ones recorded in the forced experiment 
of Nakoryakov et al (1985). 
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1 28 CHANG 

koryakov et al ( 1985) are used. Their waves are Y2 waves generated by 
periodic forcing. Excellent agreement has also been found with the natur­
ally excited waves measured by Stainthrop & Allen ( 1965). The inverted 
one-hump solitary waves on the vanishing rL limit of Yl have never been 
rccorded for a vertical film, but our constructed ones in Figure 4 resemble 
the waves measured by Liu et al ( 1993) for an inclined film. All measured 
stationary waves reported in the literature are in good agreement with the 
constructed ones from the BL equation (Chang et aI 1 993a). 

WAVE SELECTION 

P. Kapitza ( 1 948) suggested at the very beginning that only some of the 
stationary waves generated by periodic forcing will be selected in a natural 
setting. All waves are expected to be unstable but the least unstable ones are 
presumed to be the chosen ones. He suggested a wave with the maximum 
absolute energy dissipation rate as the observed one. If the competing 
periodic stationary waves all have the same average thickness, which can 
be experimentally imposed, the selected one by Kapitza's criterion can be 
shown to carry the highest flow rate at low R (Chang et al 1 993a). 
The earliest attempts to rigorize Kapitza's physical argument involved 
resolving the sideband stability of the near-neutral Y 1 waves estimated by 
the SL equation (5). The approach is to use the Ginzbury-Landau (GL) 
equation 

(9) 

by including the sideband effects in the complex coefficient p. However, as 
mentioned earlier, unlike other instabilities whose growth rate curve has 
a simple nose, the coefficients of the present SL equation are expanded 
about the neutral wave number rLo and not at the nose near criticality. This 
implies that the linear growth rate has a nonzero slope (oA/OrL) (rLo) and 
there should be a convective a/ax term absent in the classical GL equation. 
Perhaps due to this, the GL equation (9) yields the erroneous prediction 
that slow Y 1 stationary waves near rL o  are stable to sideband disturbances 
which contradicts the recent experimental results of Liu et al ( 1993). A 
reexamination of the problem (Cheng & Chang 1 992a), which uses center 
manifold techniques on the KS equation (2), reveals that, analogous to 
the Eckhaus bound for nondispersive GL equations, the near-neutral 
waves on the Yl (actually S) family are indeed unstable to sideband 
disturbances. The same waves have also been subjected to subharmonic 
instabilities by using the IBL equation for inclined films (Prokopiou et al 
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1 99 1 ). Here, one needs to analyze the coupled fundamental and subhar­
monic amplitude equations (Cheng & Chang 1 992b). The near-neutral 
waves on Y I are also found to be unstable to subharmonic disturbances. 
A more detailed analysis (Cheng & Chang 1 993) has recently allowed us 
to compare these two dominant instabilities of the Y I stationary waves. 
It is found that the sideband instability is dominant near ao while the 
subharmonic instability takes over at a critical wave number below ao. 
Our prediction agrees quantitatively with Liu & Gollub's experimental 
demarcation ( 1993) of these two instabilities. The boundary shifts down 
towards longer waves with increasing (j since the subharmonic instability 
is weakened by the detuning effect of dispersion (Cheng & Chang 1 992b) 
while the sideband instability can be enhanced by dispersion (Cheng & 
Chang 1 990). 

We have extended the above stability analysis of Y I  waves near ao 
by numerically imposing general two-dimensional and three-dimensional 
disturbances of arbitrary wavelengths in both the x and z direction to our 
constructed Y I waves (Chang et al 1 993a). The resulting Floquet calculation 
confirms all the predictions of the local theories. Moreover, it shows that 
there is a finite-amplitude wave with wavenumber as on Y I  (marked in 
Figure 9) that is the least unstable wave of the family. For small (j, this 
wave is actually stable to two-dimensional disturbances and only slightly 
unstable to three-dimensional ones. Beyond (j � 0 . 1 , however, it also 
becomes unstable to two-dimensional disturbances. Its growth rate never 
exceeds 30% of the dominant primary disturbance of the flat film at a = am 
for (j < 3 .0. This confirms the long lifetime of the stationary waves. The 
dominant instabilities of this selected Y I wave are either a sideband mode 
(as ± A) or a subharmonic (as/2) in the x direction and a long transverse 
sideband instability in the z direction. Amazingly, Kapitza's criterion 
yields an accurate estimate of as at small (j after the viscous dissipation 
rate of our constructed waves is determined. This selected wave at as has 
a very physical characteristic-it is the wave with the highest flow rate 
(maximum dissipation) among all Y I  waves in the constant-thickness for­
mulation. It is a continuation of the stable segment at (a/ao) E (0.77, 0.84) 
on the S family of the KS equation (Nepomnyaschy 1 974, Demekhin & 
Kaplan 1 989) which is actually stable to all disturbances. For all (j values, 
this selected wave has a wave number that is higher than the maximum 
growing linear mode am ' This immediately suggests that a naturally excited 
wave which emerges with wave number am and the corresponding linear 
phase speed at the end of the inception region T will evolve in region II 
into a slower wave on Y I with a higher wave number Cts' This transition 
(shown in Figure 9) corresponds to a nonlinear deceleration and com­
pression of the infinitesimally small wave field selected by the linear mech-
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anism. The deceleration is qualitatively consistent with many observations 
(Lin 1 983) and we (Chang et al 1993a)i have obtained some quantitative 
confirmation with Stainthrop & Allen's ( 1965) wave speed data. Wave 
number data are, however, scarce and we verify the above transition 
scenario from region I to region II with a numerical experiment shown in 
Figure 12 .  We solve the initial-value problem of the BL equation in a 
frame moving at the linear phase speed to minimize wave translation. To 
bypass the long (in both space and time) inception region and to avoid 
boundary effects in the small computation domain, a small-amplitude 
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Figure 12 Numerical experiment on the transient evolution of a small-amplitude wave 
packet by using the BL equation at Ii = 0.05. The time scale I is actually stretched, !Xl, and 
the length scale !Xx. 
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wave packet with wave number close to am i s  inserted at the middle of the 
domain at t = O. Our initial condition is hence spatially localized. The 
development of the overtone due to weakly nonlinear excitation is clearly 
visible at t = 0.2 and 0.4 as these waves form a lagging wave patch with 
more compressed waves. The wave number in this patch is close to as . If 
a uniform wave field could be used as the initial condition, one would see 
uniform compression and deceleration over a large domain. 

We have also extended the stability analysis to the fast Y2 waves and all 
other wave families. Here the Kapitza criterion is again found to be 
accurate at low b. Interestingly, there are now multiple segments of local 
stability to two-dimensional disturbances on the Y2 family as shown in 
Figure 9. These stable segments appear only at finite b since the C 1 branch 
of the KS equation in Figure 3 is always unstable to two-dimensional 
disturbances. Members within these segments are again weakly unstable 
to three-dimensional disturbances that are sidebands or subharmonic in 
the streamwise direction and long sideband disturbances in the transverse 
direction. All other wave families are unstable to two-dimensional dis­
turbances and hence are unlikely to be observed. The stable segments on 
Y2 possess unique structures. The segment with the shortest waves is located 
near the turning point of the isolated branch Y2 after the pitchfork is 
broken at (j = O. It hence possesses a wave number of about (a/ao) = 0.5, 
i.e.'the waves are twice as long as thc neutral ones. They are much larger, 
longer, and faster than the waves near as on the Y l  wave. Subsequent 
segments correspond to even longer and faster waves in the Y2 family. As 
sketched in Figure 9, these narrow segments center at the wave number an 
and l an+  I - an i  decreases geometrically as tl.n decreases. For example, for 
() = 0.062, an = (0.48, 0.38, 0.3 1 , 0.26, . . .  ). An accumulation point ar exists 
at about (a/ao) '" 0. 1 for b < 1 .0 below which the fiat film between the 
humps becomes too long for the weak interaction between them to stabilize 
the fiat-film primary instabilities of Figure 2. However, as shown in Figure 
4, by (a/ao) ,..., 0.2, the periodic stationary waves in the Y2 family have 
already taken on the shape of a solitary wave with the characteristic hump 
of Figure 7 .  

The important effect of dispersion is again seen here in the stability of 
Y2 waves. The C 1 traveling-wave family of the nondispersive KS equation 
is unstable to even two-dimensional disturbances and yet its derivative Y2 
exhibits multiple stable segments with respect to the same disturbances. 
This is due to two effects, both related to the increased inertia in the BL 
equation. The destabilizing mechanism of inertia yields larger solitary 
humps which, in turn, intensify the interaction between humps that sta­
bilizes the primary instability of the fiat-film region between them. This 
interaction can be described with a coherent structure theory (Chang et al 
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1 993a). However, the interaction between the solitary humps is stabilizing 
only if inertia-induced dispersion is present. This stabilizing effect of dis­
persion has been qualitatively confirmed by a recent study of the fictitious 
equation (8) (Chang et al 1 993b). It was shown that not only does dis­
persion stabilize the long stationary waves, it also enhances their domains 
of attraction such that as 15' increases, more initial conditions approach 
the stationary waves corresponding to periodic trains of solitary humps. 
In the limit of infinite 15', (8) approaches the integrable KdV equation and 
periodic trains of its cnoidal solitary wave are approached for all initial 
conditions. The wavelength of the solitary wave train or correspondingly, 
the particular stable stationary waves on ')' 2, is determined or selected by 
the initial condition. However, there is no question that, in the absence of 
transverse disturbances, stationary periodic trains of solitary humps will 
be selected if there is significant inertia·,induced dispersion. 

The stability analysis of the ')' I and ')'2 wave families also suggests some 
possible scenarios for the transition from region II to region III in Figure 
1 .  In essence, it corresponds to the system departing from the IXs wave on 
')' I to a stable one on ')' 2. If significant transverse disturbances are present, 
this transition would lead to a stable wave on ')'2 with a wave number 
close to rx./2 since the most unstable three-dimensional disturbance has a 
subharmonic streamwise component. However, departure from IX, can also 
be triggered by finite-amplitude two-dimensional disturbances even when 
it is stable to infinitesimal two-dimensional disturbances at low b. The 
most unstable (least stable) purely two-dimensional disturbance is often a 
sideband one and we would expect transition to a long wave in the ')' 2  
family. By the same token, if  the domains of attraction of the stable waves 
on ')'2 are small, almost continuous transitions from one stable wave to 
another can be expected in the presence of finite-amplitude two-dimen­
sional disturbances or three-dimensional disturbances. This is apparently 
the case but the observed transition in region III is not nearly as simple as 
the approach towards IY.s in region II. The transition is first triggered by 
an intermittent and localized instability of the IX, wave which renders it 
difficult to discern a large patch of distinct periodic ')' 2  waves. Consequently, 
the evolution along the ')'2 family toward.s the near-solitary wave at IY.f tends 
to occur locally over one or two wavdengths rather than as a uniform 
wave field. Even in our idealized numerical experiment of Figure 1 2, 
each individual fast wave that leads the entire packet for t > 0.6 lies 
approximately within a different stable segment on ')'2. The large solitary 
hump that is dramatically emitted at t ,= 0.6 is close to the IXf wave of the 
')'2 periodic stationary wave in Figure 4 ,  suggesting an eventual evolution 
towards the solitary limit of this branch. The distinct difference in speed, 
shape, amplitude, and wavelength between this hump and the lagging wave 
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field underscores the distinction between the short )I I waves near IXs and 
the long )12 waves near IXr. Although this hump travels in a stationary 
manner and subsequent humps that leave the field are all almost identical 
to the first one, the separation between the humps is not uniform due to 
the intermittent nature of their creation process. We are unable to follow 
the humps further downstream to examine if they interact weakly with each 
other to form a periodic train or if the interaction remains nonstationary. 

The more gradual and spatially uniform approach towards the IXs wave 
and the localized and intermittent departure from it are probably due to 
the different nonlinear mechanisms for the creation and destruction of the 
iX, wave. It is born by a short-range fundamental-overtone interaction 
involving only disturbances within one wavelength which are always 
present. Its death, on the other hand, requires long-range subharmonic 
and sideband streamwise disturbances which do not exist uniformly in 
space. Long-wave disturbances are definitely localized in our numerical 
experiment of Figure 12.  Hence, coalescence of adjacent waves and long 

modulations tend to occur intermittently as localized defects. As a result, 
uniform )l l  waves are observed during natural excitation while uniform )l2 
waves can only be observed with entrainment by periodic excitation. Even 
in the latter experiment, the primary instability of the flat film separating 
adjacent solitary humps prevents very long )12 waves to be sustained by 
periodic forcing (Alekseenko et a1 1985, Liu & Gollub 1 993). We (Chang 
et al 1 993a) have shown that iXr is a good estimate of the lower bound on 
the wave number of the excitable )l 2  waves. 

TU RBULENT WAVE DYNAMICS AND FUTURE 
DEVELOPMENT 

The only remaining wave dynamics that still escape understanding in this 
difficult but intriguing instability are the two-dimensional spatio-temporal 
chaos of region III and the three-dimensional interfacial turbulence of 
region IV. It is quite clear that the solitary-hump structures play an 
important role in these regions. It would be consistent with the underlying 
simple elegance of this difficult problem that the same solitary wave in 
Figure 7 that generates the infinite families of stationary waves via Silnikov 
and homoc1inic bifurcations is also responsible for the turbulent dynamics. 
There are some preliminary results supporting this view. The long periodic 
stationary waves on the )12 family that are stable to two-dimensional 
disturbances must arrest the primary instability on the flat film region 
through a weak interaction of the two bounding solitary humps. This 
interaction is dominated by the small-amplitude ends of the solitary humps, 
the front bow waves of the back hump, and the smooth slope of the front 
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one (Kawahara & Toh 1988). In the phase space analogy, these two 
regions are described by the linear dynamics near the fixed point that the 
homoclinic orbit is attached to, and are hence easily deciphered by linear 
analysis. A weakly interacting coherent structure theory has been able to 
use these resolved ends to faithfully reproduce the sequence of stable wave 
segments on Y 2, including the geometric series in r:t. (Chang et al 1 993a). 

These stable segments are unstable to three-dimensional disturbances. 
Consequently, transverse variation should be included in the coherent 
structure theory. The wavy crests seen in regions III and IV correspond 
to the classical "phase instability" of fronts described by a nonlinear 
diffusion equation. (In the more extreme cases, the phase evolution of the 
front is described by the KS equation!) One can hence envision a set of 
coupled nonlinear diffusion equations for the position of the wave crests 
as a function of t, x, and z. The coupling between the destabilizing 
transverse variation and the stabilizing stream wise interaction between the 
humps is responsible for the nonstationary dynamics. It is quite possible 
that a statistical theory with only nearest-neighbor interaction is sufficient 
to describe the dynamics of the entire interface in region IV. Dispersion will 
again play an important role here as it does in determining the convective 
instability of the inception region, in arresting blow-up behavior to form 
saturated two-dimensional stationary waves and in promoting the stability 
of stationary waves, especially periodic trains of solitary humps. The 
nonstationary dynamics is likely due to a competition between dispersion 
for the stabilizing streamwise interaction and Rayleigh capillary effects 
near the crest which cause the transverse instability. 

The construction of weakly interacting theory for the solitary humps is 
equivalent to a perturbation analysis of a homoclinic orbit. The homoclinic 
orbit corresponds to a single solitary hump and the perturbations come 
from neighboring humps and transverse variation. Such perturbations can 
be studied with the new technique from Dynamical Systems theory for 
bifurcations of a homo clinic orbit, such as the Melnikov and Silnikov 
theories. Bifurcations of a homoc1inic orbit are known to yield horseshoe 
maps and chaotic dynamics. It is hence very likely that the irregular spatio­
temporal dynamics of regions III and IV can be described by chaos theory. 
It would then offer a direct contact between hydrodynamic turbulence, 
albeit a low Reynolds number one, and low-dimensional chaos. Research 
in this direction should be very fruitful and exciting. 
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been privileged to work with a group of uniquely talented colleagues and 
students on this subject. Thc contributions of E. A. Demekhin, M. Cheng, 
S.-H. Hwang, M. Sangalli, and S. Kalliadasis have been especially impor­
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