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As in electrochemical cyclic voltammetry, time-periodic reverse voltage bias across a bipolar membrane is
shown to exhibit hysteresis due to transient effects. This is due to the incomplete depletion of mobile ions, at
the junction between the membranes, within two adjoining polarized layers; the layer thickness depends on the
applied voltage and the surface charge densities. Experiments show that the hysteresis consists of an Ohmic
linear rise in the total current with respect to the voltage, followed by a decay of the current. A limiting current is
established for a long period when all the mobile ions are depleted from the polarized layer. If the resulting high
field within the two polarized layers is sufficiently large, water dissociation occurs to produce proton and hydroxyl
traveling wave fronts which contribute to another large jump in the current. We use numerical simulation and
asymptotic analysis to interpret the experimental results and to estimate the amplitude of the transient hysteresis
and the water-dissociation current.
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I. INTRODUCTION

Bipolar membranes formed by joining a cation and anion
exchange membrane to form a p-n (boundary between a p-type
and n-type material) junction are important for many industrial
applications. For example, if reverse bias is applied across the
bipolar membrane such that the mobile ions are depleted at
the junction, the field at the junction can exceed 10 MV/cm
such that water can be dissociated. The resulting proton and
hydroxyl ions are then separated by the reverse bias into
different membranes such that acidic and basic solutions are
generated at the external boundaries of the bipolar membrane.
If this can be achieved in a microfluidic chip, it would
allow on-chip pH control for microreactors [1] or molecular
separation [2], as demonstrated recently [3].

In this paper, we investigate a peculiar phenomenon first
uncovered in a microfluidic bipolar membrane cured by
photopolymerization [4]. When the reverse bias across the
bipolar membrane is varied cyclically in time, a curious
I-V hysteresis develops as in electrode cyclic voltammetry
[4]. The amplitude of this hysteresis is scan rate dependent
and disappears for very low scan rates. If the period is
sufficiently long, a large current spike occurs due to water
dissociation, quite analogous to the electron-transfer reaction
spikes in cyclic voltammetry. Classical semiconductor theories
for p-n junctions and Donnan theories for bipolar membranes
are equilibrium theories that cannot describe such transient
hysteresis [5,6]. For example, it is known that mobile ions
within two thin boundary layers at the junction are depleted
at equilibrium, thus producing two membrane regions with
opposite net charge. It is known that these polarized layers are
small, on the order of the Debye length, but are surface charge
density and bias voltage dependent. It is also known that, since
most of the voltage drop occurs within these two thin polarized
layers, where the membrane conductivity vanishes, the field
across these two polarized layers can exceed the threshold
10 MV/cm necessary to dissociate water due to the second
Wien effect [7]. We extend such classical equilibrium theories

here to study the transient hysteretic response under cyclic or
other reverse bias forcing.

Simons suggested a catalytic mechanism for water splitting
[8–11], where water loses a proton to the amino surface group
of an anion exchange membrane but the proton is soon released
from the functional group, resulting in a net generation of
both mobile hydroxyl and proton ions. Zabolotskii et al. [12]
have recently observed that phosphoric acid group cation
exchange membranes also intensely split water. If the catalytic
step is fast, our kinetic model is still valid and one can
simply change the activation energy of the field-dependent
Arrhenius rate expression for the forward reaction to include
this catalytic effect of surface protonation and deprotonation
steps, as was done in an earlier report [5]. Our model can
hence also capture catalyzed water-splitting mechanisms in
terms of a bulk conversion rate, although we are not able
to discern the various catalytic mechanisms that have been
proposed. However, since different mechanisms are sensitive
to different bivalent cation and amino acid concentrations [9],
a more detailed version of our model which includes other
reactants (including the surface groups) and a more complete
reaction network will likely be able to discriminate against
the different mechanisms. In this paper, however, we report a
model that can capture the effective water splitting reaction, the
resulting pH front propagation phenomena, and their “coarse”
cyclic voltammetry signatures due to overall pH generation
without the finer features unique to the specific catalytic
mechanism. We quantitatively characterize several regimes in
the hysteresis and relate them to diffusive depletion dynamics
and pH traveling shocks by analyzing the appropriate volume
averaged Poisson and Nernst-Planck equations, which are
time-dependent (and therefore nonequilibrium) extensions of
the classical Donnan theory.

The plan of the paper is as follows: we begin by formulating
the problem in Sec. II, identifying key nondimensional groups
and reducing the model to a form that encapsulates the essential
physics in Sec. II B. Section III gives an extensive experimental
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FIG. 1. Diagram of a bipolar membrane composed of a negatively
charged membrane (denoted 1) and a positively charged membrane
(denoted 2) joined at x̂ and ẑ = 0 to form a p-n junction. Two
electrolytes, Ĉ(±)

a and Ĉ
(±)
b , fill the pore space, and a time-dependent

electric field Ê(t̂) is applied normal to the junction.

study of the hysteresis phenomenon and follows that with
a numerical study of the model identified earlier. Finally
asymptotic techniques extract further details with concluding
remarks providing closure in Sec. IV.

II. GOVERNING EQUATIONS

We consider the setup shown in Fig. 1, where two ion
exchange membranes of length L and depth H are joined at
a junction located at x̂ = 0 and have charges �1 (x̂ < 0) and
�2 (x̂ > 0). Generally the bipolar membranes are held in an
electrolyte bath [3] with a salt species Ĉ

(+)
b ,Ĉ

(−)
b and water

of concentration Ĉa that is assumed to be constant. The salt is
added to the system to maintain electroneutrality so that the ion
charges balance the membrane surface charges at equilibrium.

To this system an electric field Ê is applied across the
bipolar membrane causing the water to dissociate into cationic
and ionic species Ĉ(+)

a ,Ĉ(−)
a . It is also common to assume that

the electric field is irrotational, which permits its expression
in terms of a voltage potential φ̂ through the relationship
Ê = −∇φ̂. Since the electric field is a maximum at the p-n
junction, most of the dissociated water ions are produced in
a thin region that is on the order of the Debye length. In
this thin layer ions are forced out by ion migration, forming
an ion depletion region. A mathematical model describing
the system will include the transport of ions with a water
dissociation reaction, which is coupled to an equation for the
charge dependent voltage potential, and the flow of bulk fluid
due to stresses in the system.

The flow of bulk fluid is governed by Darcy’s law with
conservation of mass [13]

∇P̂ = − μ

�
û + ρ̂e Ê, (1)

∇ · û = 0, (2)

where, here, û is the filtration rate, P̂ is the pressure, μ is
the viscosity, � is the permeability, and ρ̂e is the volumetric

charge density defined as

ρ̂e = F (Ĉ(+)
a − Ĉ(−)

a + Ĉ
(+)
b − Ĉ

(−)
b ). (3)

Here F = NAe is the Faraday constant, e is the charge on
an electron, and NA is Avagadro’s number. The term ρ̂e Ê on
the right-hand side of (1) is a Maxwell pressure that allows
for fluid motion by the presence of charged species in an
electric field. The ionic concentrations evolve according to the
Nernst-Planck equations [14]

n
∂Ĉ(±)

a

∂t̂
+ û · ∇Ĉ(±)

a

= ω(±)
a kBT ∇ ·

(
± e

kBT
Ĉ(±)

a ∇φ̂ + ∇Ĉ(±)
a

)
+ (mf Ĉa − mrĈ

(+)
a Ĉ(−)

a ), (4)

n
∂Ĉ

(±)
b

∂t̂
+ û · ∇Ĉ

(±)
b

= ω
(+)
b kBT ∇ ·

(
± e

kBT
Ĉ

(±)
b ∇φ̂ + ∇Ĉ

(±)
b

)
, (5)

where n, kB , T , and ω
(±)
a,b are the porosity, Boltzmann’s

constant, absolute temperature, and mobility of the species,
respectively. Equations (4) and (5) represent four equations
with the superscripts (±) representing the cations and anions
respectively.

In these equations the first term on the right-hand side
represents ion transport by ion migration and molecular
diffusion. The last term on the right-hand side of (4) is
the reaction rate that arises from a kinetic model of the
dissociation and association of the ions, with rates mf and mr ,
respectively. mf is a function of the potential from the Wien
effect [7] : mf = ka[1 + εr (e/kBT )|φ̂x |] (where |φ̂x | is the
absolute value), with constants ka and εr . Here εre/kBT is the
dissociation rate constant in units of m/V. In this expression εr

is a modified water dissociation rate constant obtained from [7]
but should not be confused with the notation in their paper.

The voltage potential is governed by the Poisson-
Boltzmann equation

ε0ε∇2φ̂ = −ρ̂e − F [�1H (−x̂) + �2H (x̂)], (6)

where ε0 is the permittivity of free space, ε is the relative
permittivity, and H (x̂) is a Heaviside step function, and we
include surface charges in the volume averaged equation to
obtain an effective homogeneous equation [15,16].

The usual no-flux and no-penetration conditions apply at
the walls of the membrane: φ̂ẑ(±H,x̂,t̂)=0, Ĉ

(±)
a,bẑ(±H,x̂,t̂) =

0, and û(±H,x̂,t̂) = 0, where ẑ subscripts denote partial
derivatives with respect to ẑ. At the ends of the domain
we fix the potential, φ̂(ẑ,±L,t̂) = ±β(t̂)L (where β is a
given function of time), and the horizontal concentration
gradients to be zero, Ĉ

(±)
a,bx̂(ẑ,±L,t̂) = 0. The latter condition

is appropriate if the reservoir joining the boundaries has
a uniform concentration or the channel is very long with
ion migration dominating molecular diffusion, as considered
here. Initially, the concentration of the products is set to
the equilibrium value in the absence of an electric field,
Ĉ(±)

a (ẑ,x̂,0) = Ceq =
√

mf Ĉa/mr , obtained from Eq. (4), and
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the salt concentration is set to achieve electroneutrality:

Ĉ
(+)
b = (|�1| + Ĉ

(−)
b (−L))H (−x̂) + C

(+)
b (L)H (x̂), (7)

Ĉ
(−)
b = Ĉ

(−)
b (−L)H (−x̂) + (|�2| + Ĉ

(+)
b (L))H (x̂). (8)

The condition on the salt is equivalent to the Donnan
equilibrium relationships. In our case we are investigating
large membrane charges relative to the bathing electrolyte
so the initial conditions reduce to Ĉ

(−)
b = |�2|H (x̂) and

Ĉ
(+)
b = |�1|H (−x̂).

A. Nondimensionalization

To make sense of the equations, and extract the essential
physics, we now nondimensionalize with the aim of arriving
at a simplified set of equations. We scale x̂ on the half-length
of the domain L, ẑ on the depth H , the potential φ̂ on the
maximum potential φc = max(β)L, time on the diffusive scale
nL2/kBT ω+

b , the concentrations on the membrane charge
|�1|, the horizontal filtration rate û on �|�1|kBT F/μeL,
the pressure P on |�1|kBT F/e, and the vertical filtration
rate ŵ on (H/L)�|�1|kBT F/μeL. From here we define
variables with hats as dimensional and variables without hats as
dimensionless. For Darcy’s law and continuity, the equations
are

∂P

∂x
= −u − ψρe ∂φ

∂x
, (9)

∂P

∂z
= −H 2

L2
w − ψρe ∂φ

∂z
, (10)

∂u

∂x
+ ∂w

∂z
= 0, (11)

where the dimensionless group ψ = φce/kBT represents the
strength of the electric field. The ion transport equations are

∂C(±)
a

∂t
+ Pe

(
u

∂C(±)
a

∂x
+ w

∂C(±)
a

∂z

)

= α(±)
a

∂

∂x

(
±ψC(±)

a

∂φ

∂x
+ ∂C(±)

a

∂x

)

+α(±)
a

L2

H 2

∂

∂z

(
±ψC(±)

a

∂φ

∂z
+ ∂C(±)

a

∂z

)
+ DaR, (12)

for the dissociated water ions, and

∂C
(±)
b

∂t
+ Pe

(
u

∂C
(±)
b

∂x
+ w

∂C
(±)
b

∂z

)

= α
(±)
b

∂

∂x

(
±ψC

(±)
b

∂φ

∂x
+ ∂C

(±)
b

∂x

)

+α
(±)
b

L2

H 2

∂

∂z

(
±ψC

(±)
b

∂φ

∂z
+ ∂C

(±)
b

∂z

)
, (13)

for the salt, where the dimensionless groups appearing above
are the mobility ratios, Peclet number, and Damkholer number:

αa,b = ω
(±)
a,b

ω
(+)
b

, Pe = �F |�1|
μe ω

(+)
b

, Da = LkaCaεr

kBT ω
(+)
b |�1|

. (14)

Here the Peclet and Damkholer numbers represent a ratio of
convection to diffusion of ions and water dissociation rate to

ion diffusion, respectively. Also the mobility ratios, relating
the mobility of cations to anions, is a small parameter. The
reaction rate is expressed as

R = (
ψ |φx | + ε̄−1

r − ε̄−1
r m̄−1C(+)

a C(−)
a

)
, (15)

where the Arrhenius dependence of the water-splitting re-
action, possibly with Simons’ catalytic step [5], has been
linearized by assuming weak activation. The constants are
defined as m̄ = kaĈa/(|�1|2mr ) and ε̄r = εr/L. The second
Wien effect is represented by the term ψ |φx | and the other
terms represent the equilibrium reaction. For large Da and
small ψ , the concentrations are at the equilibrium values
C(±)

a = √
m̄. The potential is determined from the Poisson-

Boltzmann equations, Eq. (6), expressed as

∂2φ

∂x2
+ L2

H 2

∂2φ

∂z2
= −χ2ρe − χ2�̄, (16)

ρe = (C(+)
a − C(−)

a + C
(+)
b − C

(−)
b ), (17)

with the dimensionless groups:

�̄i = �i

|�1| , χ2 = ψ−1 FL2|�1|e
εε0kBT

, (18)

for the charge ratio, with �̄ = −H (−x) + �̄2H (x), and the
inverse Debye length, respectively. The dimensionless inverse
Debye length χ represents the ratio of the ion depletion width
at the junction to the channel length.

The dimensionless boundary conditions are φz(±H,x,t) =
0, C

(±)
a,bz(±H,x,t) = 0, and u(±H,x,t) = 0 at the upper and

lower walls and φ(z,±L,t) = ±β̄ (where β̄ = βL/φc.) and
C

(±)
a,bx(z,±L,t) = 0 at the ends. Initially, C(±)

a = √
m̄, C

(−)
b =

|�̄2|H (x) and C
(+)
b = H (−x).

B. One-dimensional model

The next stage in the reduction is to assume that the
membrane is long and thin so that a small parameter ε is
introduced: ε = H/L � 1. This assumption is valid in many
cases, including the experiments presented in this paper. We
rewrite the potential by introducing a perturbation potential φ′
such that φ = φ′ + β̄(t)x. At leading order Pz = 0, φ′

z = 0,
C

(±)
iz = 0, and u = u(x,t). Therefore we expand as φ′ =

φ′
0(x,t) + ε2φ′

1(z,x,t) and C
(±)
iz = C

(±)
i0z (x,t) + ε2C

(±)
i1z (z,x,t)

and integrate the equations across the channel to obtain
depth-averaged equations:

∂P

∂x
= −u − ψρe ∂φ

∂x
, (19)

∂2φ′

∂x2
= −χ2(C(+)

a − C(−)
a + C

(+)
b − C

(−)
b + �̄), (20)

for Darcy’s law and the Poisson-Boltzmann equation, respec-
tively. For the dissociated water ions the equation reduces to

∂C(±)
a

∂t
+ Pe

∂C(±)
a

∂x
u

= α(±)
a

∂

∂x

(
±ψC(±)

a

(
∂φ′

∂x
+ β̄(t)

)
+ ∂Ca

∂x

(±))
+ DaR,

(21)
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and for the salt to

∂C
(±)
b

∂t
+ Pe

∂C
(±)
b

∂x
u

= α
(±)
b

∂

∂x

(
±ψC

(±)
b

(
∂φ′

∂x
+ β̄(t)

)
+ ∂Cb

∂x

(±))
, (22)

where the subscripts have been dropped. Further, we elim-
inate the convective term for Pe � 1 or force ∂P/∂x =
−ψρe∂φ/∂x, so that we can ignore hydrodynamic effects as
done by many authors [3,17]. Ignoring hydrodynamic effects
is also consistent with our previous assumption of a constant
water concentration so that junction drying is not a problem.
The boundary condition on the perturbed potential is now is
φ′(z,±L,t) = 0, and the others are the same as before.

In addition we define ion fluxes as follows: J (+)
a /α(+)

a =
ψC(+)

a (β̄ + φ′
x) + C(+)

ax and J (−)
a /α(−)

a = −ψC(−)
a (β̄ + φ′

x) +
C(−)

ax , and from these expressions the dimensionless current
is I = −(J (+)

a − J (−)
a + J

(+)
b − J

(−)
b ) with the negative sign

added because of the way we define the fluxes. The current
will be useful in Sec. III, where comparisons are made between
the experimental and numerical results.

III. RESULTS

Given the one-dimensional model we are now in a position
to generate simulations of hysteresis and compare them
qualitatively with experiments.

We solve Eqs. (20) to (22) numerically using the boundary
and initial conditions with variations in the parameters χ , ψ ,
β̄, Da, m̄, ε̄r , and �̄2. Given the rich parameter space it is
worth noting specifically what they each represent: χ2 is the
inverse Debye length, ψ is the strength of the electric field, β̄

is a scaled electric field, Da is the Damkholer number relating
the reaction rate to the species diffusion, m̄ is related to the
equilibrium concentration without an electric field, ε̄r is the
strength of the Wien effect, and �̄2 is the membrane charge of
region 2 (x � 0) relative to region 1.

In the simulations we use estimates of the size of
the dimensionless groups using data from the litera-
ture [7]: εr = 1.38 × 10−8 m at room temperature, mr =
1.5 × 1014 cm3 mol−1 s−1, and ka = 2 × 10−5 s−1. In ad-
dition, we take kBT /e = 25 mV and kBT ω(+)

a ∼ 1 ×
10−9 m2/s. Assuming experimental conditions with |�1| ∼
1 mol m−3 to 2 × 103 mol m−3, φc ∼ 1 to 100 V, and L ∼
1 × 10−4 to 1 × 10−3 m, we get the following estimates for the
dimensionless groups concerning the reaction: Da � 1, m̄ �
1, and ψ � 1. Also, in our experiments the salt mobilities are
approximately the same and small compared to the hydrogen
ions so we can define: α

(+)
b = α

(−)
b = 1 and α(+)

a � 1.
A useful estimate for the performance of the system is the

thermodynamic yield, which allows us to explicitly estimate
how much we have shifted the yield or conversion beyond the
thermodynamic limit. The thermodynamic yield is defined as
the product concentration, using the rates at the external field
before depletion, that is at thermodynamic equilibrium with
the initial reactant concentration. This is defined as

C(+)
a ∼

√
m̄ + m̄ε̄rψ |β|, (23)

and the nonequilibrium concentration of hydrogen ions, C(+)
a ,

relative to the thermodynamic yield is just 1/
√

m̄ + m̄ε̄rψ |β|.
Since we are removing products, we expect the bipolar
membrane to do better than the thermodynamic yield at
the enhanced field. From the concentration the current, with
no salt ions and membrane charges, is Itherm = ψβ̄(α(+)

a +
α(−)

a )
√

m̄ + m̄ε̄rψ |β|.

A. Hysteresis

Before embarking upon numerical simulations, we first
report a more extensive experimental study of the hystere-
sis phenomenon observed in [3,4,18] with piecewise linear
voltage scans. This is done by applying a ramp function
in time as follows: β̄ = (2 t/tp) (0 � t � tp/2) and β̄ =
1 − (t − tp/2)/(tp − tp/2) (tp/2 � t � tp), where tp is the
scanning rate. Below we present some experimental results
and numerical solutions.

1. Experiments

Here we show the pronounced hysteresis effect that is
observed in the I-V characteristics of a polymeric bipolar mem-
brane. Manufactured by photopolymerization of a negatively
charged poly(2-acrylamido-2-methyl-1-propanesulfonic acid)
(pAMPS) layer as a cation exchange membrane on the
right-hand side and a positively charged poly(diallyldimethyl-
ammonium chloride) (pDADMAC) layer as an anion exchange
membrane on the left-hand side, bridging two microfluidic
channels, the bipolar membrane containing a 2M fixed charge
concentration was precisely defined to be 500 μm long in
each side by photolithography in a 20-μm-thick microfluidic
channel: The materials and fabrication procedures were de-
tailed in [4]. The I-V characteristics were measured by an HP
4140 pA meter using a DC voltage source through a pair of Pt
electrodes.

The bipolar membrane exhibits unique hysteresis features
under reverse bias at which the cathode is connected to the
cationic side. Figure 2(a) shows the cyclic I-V curves measured
in a 10 mM KCl solution with three different voltage sweep
rates, 0.02, 0.1, and 0.4 V/s. The voltage sweeps linearly
back and forth between 0 and −2.5V. It has been reported
in our previous work [4] that the hysteresis loop results from
the transient response of the ion depletion at the membrane
junction. As shown in Fig. 2(a), when the voltage is swept
from zero to negative values, the current intensity increases
linearly in the beginning, then drops precipitously after a
turning point and finally reaches a saturation level. With
a reverse voltage sweep from negative to zero, the current
decreases monotonically at a low conductance. To further
understand the transient response of the bipolar membrane,
here we investigate the effect of the voltage scan rate on the
hysteresis phenomenon. It can be found that with a higher
voltage sweep rate the device has its turning point at greater
current intensity and reaches saturation at a larger voltage,
yielding a broader hysteresis loop. The time evolution of
current in Fig. 2 also shows that the high voltage scan rate
brings the system far away from equilibrium, resulting in
large maximum current (the peaks) and saturation current,
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FIG. 2. (Color) (a) Measured I-V hysteresis of a bipolar membrane under various voltage sweep rates. Linear voltage sweeps were applied
back and forth between 0 and −2.5V. The inset shows a bipolar membrane device fabricated by photopolymerization in a microfluidic channel.
Positive and negative symbols indicate the fixed charges in pDADMAC and pAMPS membranes, respectively. The scale bar is 300 μm.
(b) Time evolution of current at different voltage sweep rates. The dashed lines indicate the times the voltage scan reverses for different scan
rates. The inset shows the detail within 45 sec. (c) For large periods, a large increase in the negative current is observed, where the numbers 1,
2, and 3 represent the hysteresis, saturation, and water splitting regimes, respectively (image reproduced from [4]).

i.e., the current level around the region indicated by the
dashed line where the voltage scan starts reversing, as shown
Fig. 2(b). Based on the trend observed in the experiment,
the hysteresis loop is expected to disappear when the device
is measured under an infinitely slow sweep rate in which
the system remains in quasistatic equilibrium throughout the
measurement.

For larger reverse biases, shown in Fig. 2(c), the system is
in a water splitting regime with the production of protons and
hydroxide ions creating an elevated ion current. The size of the
current in this regime is a function of the water dissociation
rate and exhibits an increase when the voltage bias ramps up
and a decrease when the dissociation rate is alleviated by a
voltage scan from negative to zero.

2. Numerical solution

We now proceed to simulate the hysteresis numerically.
The current against potential and concentrations are plotted in
Figs. 3 to 5 for different scanning rates tp, corresponding to one
cycle, and different Da. For the early stages, the evolution of the
curve is due primarily to the salt ions since the concentration
of ions from water dissociation is negligible. As the potential
is swept from zero to negative values, the current amplitude
increases linearly in the negative direction since the electric
field is due to just β̄. When the potential is sufficiently large
an electroneutral region forms around the junction, causing
the electric field to increase and the current to decrease. As
the potential continues to be swept towards negative unity the
width of the electroneutral region surrounding the junction
continues to grow and the concentration of C(±)

a increases. At
this point, water dissociation becomes faster and the membrane
is in the water-splitting regime.

When β̄ = 1, the potential is swept back towards zero and
a hysteresis curve develops that increases in size as the period
decreases. At this point the salt has been swept away from the
measuring point so the current is due to only the dissociated
water ions. As the potential decreases from negative to zero the

ion migration strength decreases and the electroneutral region
thins.

We get hysteresis curves regardless of water dissociation,
as shown in Fig. 3(b). The effect of water dissociation is to
increase the current for large potentials. In these numerical
solutions the limiting current, defined as the current without
water dissociation and infinitely long scans, is zero because
the co-ion concentration at the boundaries is taken to be small.
The signature of the Wien effect is illustrated more clearly
by setting ψ |φx | = 0 in Eq. (15), as shown in Fig. 4. For
Da � 1 the current-voltage curve, without the Wien effect,
collapses onto the Da = 0 case with the Wien effect turned
on. In the absence of the Wien effect, Fig. 4, it is only for
extremely large values of Da that the current shows a noticeable
increase at high voltage. Clearly the Wien effect dominates the
current-voltage characteristic in the water splitting region but
not in the beginning stages for small φ.

3. Minimum current

From both the experiments and numerical solutions, we
find that the amplitude of the hysteresis can be characterized
by a minimum in the current, seen in Figs. 2 and 3, at low
voltage when the mobile ion depletion is incomplete and
the field at the junction is not sufficiently high to dissociate
water. The minimum current occurs at a time when the ion
depletion region first forms, causing the electric field far from
the junction,, φ′

x ∼ O( ¯β(t)). At early times we can make
the following approximation, φ′

x/
¯β(t) � 1, and expand about

this small value. Since this point on the curve is not in the
water splitting regime (the electric field at the junction is
small), we can ignore the water and investigate the model
associated with the ion transport of salt species. In addition, the
current can be approximated as I = −ψβ̄(t)[φ′

x/β̄(t) + 1],
since diffusion is small far from the junction. The traveling
wave speed of the salt ions is then time dependent and
equal to ṡ

(±)
b = I . Considering only the left-hand membrane,

we can ignore the negative ions and solve the following
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χ = 5, �̄2 = 1, and ψ = 5 × 103.

equations:

∂2φ′

∂x2
= −χ2(C(+)

b − 1), (24)

∂C
(+)
b

∂t
= ∂

∂x

(
ψβ̄(t)C(+)

b (O(δ) + 1) + ∂Cb

∂x

(+))
, (25)

with φ′(0,t) = 0 since the membrane charges have the same
magnitude and δ is a small parameter. From here on, we only
look at the solution for negative potentials (in this case β̄ =
2t/tp) since concentration of salt ions at the junction makes a
solution more difficult to obtain in closed form.

Assuming that the diffusion of ions is small (true provided
ψ � 1), the solution is C

(+)
b = H (−ξ ) with the characteristic

coordinate ξ = x + ψ
∫ t

0 β̄dt . Integrating Poisson’s equation
[Eq. (24)] twice, the potential is φ′/χ2 = ξ 2H (ξ )/2 − (1 +
x)(ψ

∫
β̄dt)2/2. The current at small voltage is then to leading

order

I = −ψ

(
β̄ − χ2ψ2

2

(∫
β̄dt

)2
)

. (26)

We hence see that the low-voltage current first decays linearly
with respect to voltage in an Ohmic manner, followed by a
rise from a minimum for a linear voltage scan. Other ramping
voltage functions would produce a different rise in the I-V
curve.

For the linear ramp at a small voltage of β̄ = 2t/tp, where
tp is the final time, the minimum current can be estimated by
setting dI/dt = 0 to yield

Imin = −ψ

((
8

χ2ψ2

)1/3

− 1

2
χ2ψ2

(
1

χ2ψ2

)4/3
)

t−2/3
p .

(27)

A plot comparing the asymptotic solution to the numerical
one is shown in Fig. 5 along with the ion concentrations at
different points along the hysteresis curve. In panel (a), the
current initially follows the curve I ∼ −ψβ̄, but as the ion
free region at the junction opens up, φ′

x becomes significantly
large to decrease the magnitude of the current. Our asymptotic
solution is able to capture the approximate point where the
current turns around by solving for the potential with the salt
being flushed out of the junction. The asymptotic solution does
a good job in approximating the trend for Imin as a function
of tp (the inverse of the rate of voltage change), showing the
slope of t

−2/3
p .

In the limit tp � 1 and Da � 1, the system approaches
the equilibrium limiting current. Here an ion-free region will
form near the junction and from the initial conditions, positive
salt ions will be exclusively on the left-hand and negative salt
ions on the right-hand membrane. This configuration yields
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a current of I = 0, as found in [3] for the initial conditions
studied here.

B. Weak Water Dissociation Current

The reaction current spike at large bias voltage, as seen in
the experimental data and numerical solutions of Figs. 2 to 5,
correspond to incremental currents due to water dissociation.
We estimate this reaction current spike here for weak reactions.
The solution will apply for long scans so that the system is
quasisteady and we can take β̄ to be a constant. Here the
governing equations can be broken up into inner and outer
solutions for large χ . Further, from the expected parameter
values the reaction is small relative to ion transport, and we
can seek an asymptotic solution for δ = Da � 1. We will also
require m̄ � 1 separately so that the equilibrium concentration
is small.

1. Inner region

For large χ we can define an “inner” region, where the
reaction is the strongest, that is of the order χ−1. We argue,
using insight from the numerics, that the salt C

(±)
b has been

swept away from this region and that to the leading order
the positive ions are on the left-hand and negative ions on the
right-hand membrane. Here we rescale as x = η/χ , and ignore

time for large χ . The steady equations for the inner region are

∂2φ′

∂η2
= −(C(+)

a − C(−)
a + �), (28)

for the potential, and

α(+)
a

∂

∂η

(
ψC(+)

a

(
χ

∂φ′

∂η
+ β̄(0)

)
+ χ

∂Ca

∂η

(+))
= −δR,

(29)

α(−)
a

∂

∂η

(
−ψC(−)

a

(
χ

∂φ′

∂η
+ β̄(0)

)
+ χ

∂Ca

∂η

(−))
= −δR,

(30)

for the ions created from water dissociation. Here R is the
reaction defined as

R = 1

χ

(
1

ε̄r

+ ψ |φ′
ηχ + β̄| − C(+)

a C(−)
a

ε̄r m̄

)
. (31)

Since the inner region is at quasi-steady-state, the follow-
ing boundary conditions for the concentration are appro-
priate: C(+)

a (−∞) = 1, C(−)
a (−∞) = 0, C(+)

a (∞) = 0, and
C(−)

a (∞) = �2, which comes from the equilibrium result
ρe = −�̄ and φ′

ηη = 0 far from the junction.
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Expressing Eqs. (29) and (30) in terms of ion fluxes and
integrating from a to b yields the following:

[J (+)
a ]|ba = [J (−)

a ]|ba = −2δ

∫ b

a

Rdη. (32)

Also, by subtracting Eqs. (29) and (30) we find that the current
I is constant.

For δ � 1 we expand the above equations in powers of δ;
φ′ = φ′

0 + δφ′
1 + · · · and similarly for the other variables. To

the leading order the reaction is negligible and the flux of ions is
constant in space, which is only possible if J

(−)
a0 = J

(+)
a0 = 0.

This implies that an equilibrium has been established with
an ion free region near the junction and electroneutrality in
the rest of the membrane. Integrating Eqs. (29) and (30)
with the boundary conditions at the ends of the domain,
the concentration has a Boltzmann distribution. Inserting this
solution into the equation for the potential, and converting
back to x and φ:

C
(+)
a0 = exp ( − ψ(φ0 + β̄)), (33)

C
(−)
a0 = �̄2 exp (ψ(φ0 − β̄)), (34)

φ0xx = −χ2(C(+)
a0 − C

(−)
a0 + �̄(x)). (35)

We can simplify Eq. (35) by separating the left-hand
and right-hand membranes and matching the solutions at
the junction with the conditions: φ0(0−) = φ0(0+) = φj and
φ0x(0−) = φ0x(0+). Considering the region −1 � x � 0 first,
(35) is integrable [19,20] and we can reduce the order by
multiplying both sides by dφ/dx and integrating to get

dφ

dx
=

√
2χ2ψ−1{(β̄ + φ)ψ − 1 + exp[−ψ(φ + β̄)]}1/2.

(36)

In deriving this equation the constant of integration was deter-
mined using the boundary condition φ0(−1) = −β̄. Evaluating

this equation at x = 0, the magnitude of the electric field is
dφ/dx =

√
2χ2(β̄ + φj ). Integrating this equation again

x = 1√
2χ2ψ−1

∫ φ

0

dy

{(β̄ + y)ψ − 1 + exp[−ψ(y + β̄)]}1/2
.

(37)

For large ψ the exponential is small in the ion free region, and
we can approximate the integral near x = 0 as

φ = −β̄ +
(

(β̄ + φj )1/2 +
√

χ2

2
x

)2

, (38)

which is valid from x = 0 to x ≈ λL, the thickness of the ion
free region. Similarly, in the region 0 � x � λR the potential
is

φ = β̄ −
⎛
⎝(β̄ − φj )1/2 −

√
χ2�̄2

2
x

⎞
⎠

2

. (39)

From the jump condition for the electric field at the interface
the potential at the junction is φj = β(�̄2 − 1)/(1 + �̄2).

Applying Eqs. (38) and (39) at λL and λR , respectively,
the thickness of the polarized layers as a function of applied
voltage and surface charge density in dimensionless form is

λL = 2

χ

√
β̄

�̄2

1 + �̄2
, λR = 2

χ

√
β̄

�̄−1
2

1 + �̄2
, (40)

λ = λL + λR = 2

χ

√
β̄

1 + �̄2

�̄2
. (41)

This estimate of the thickness of the polarized region without
mobile ions is consistent with classical bipolar membrane or
p-n junction theories [5,6].

Representative solutions are displayed in Fig. 6, showing
the potential φ, concentration C(±)

a , and the asymptotic result
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for two different values of the inverse Debye length χ . For
δ � 1 the ion concentration given by (33) and (34) and the
potential, given by (38), show excellent agreement with the
numerical solutions.

Here the gradient of the potential peaks at the junction and
decays to zero outside the ion free region of size λ. Since
we have chosen parameter values such that the reaction is
small relative to ion migration, this ion free region survives
indefinitely. The width of this region is shown to decrease as
χ increases as found from the analytical result. Further from
the ion free region a traveling wave propagates outward with
positive ions moving to the left (negative membrane charge)
and negative ions moving to the right (positive membrane
charge). The concentration of species C(±)

a upstream of
the front is equal to the membrane charge, and the salt
concentration ahead of the front is also equal to the membrane
charge.

At the next order, the leading order potential is used to
determine the ion flux as

J
(+)
a1 =

∫ λR

λL

(
1

ε̄r

− C
(+)
a0 C

(−)
a0

ε̄r m̄

)
dx + ψ

∫ λR

λL

|φ0x |dx.

(42)

Since ψ � 1, the first term on the right-hand side is relatively
small. The above integral can then be evaluated by noting that
φ(λL) = −β̄, φ(λR) = β̄, and dφ/dx is always positive to get

−Iasym = J (+)
a ≈ 2δψβ̄. (43)

This result shows that, at weak reaction, the I-V spike due
to water dissociation is Ohmic with a linear I-V curve. This is
verified in Fig. 7, which shows the numerically determined
current relative to the asymptotic value of Eq. (43) for β̄

ramping up. In the figure the curves indicate that the asymptotic
solution is approached for long scans such that system is in
a quasi-steady-state and for sufficiently small values of δ,
indicating a slow reaction relative to ion migration. The water
dissociation current for a p-n junction relative to the thermo-
dynamic value (23) without charged membranes fully captures

the effect of ramping and bipolar membrane field enhancement
on the yield, Iasym/Itherm = 2δ/(α(+)

a + α(−)
a )

√
m̄ + m̄ε̄rψ |β|.

2. Outer region: Traveling wave solution

The reaction current is controlled by the inner region, where
the dissociation reaction occurs, and the reaction current also
controls the propagation speeds of the proton and hydroxyl
ion fronts observed in Fig. 6. From the numerical solution
the wave speed looks roughly constant, but more so for the
negative ion since the diffusivity is smaller. In the outer region
far from the junction the ionic charge is in equilibrium with the
membrane so that ρe ≈ −�̄, but positive ions are only present
in the left-hand membrane, that is negatively charged and the
opposite on the right-hand membrane. Considering only the
region (−∞,0), we seek a constant wave speed solution by
shifting as x → x − ṡ(+)t to move our reference frame with
the traveling wave. Combining the ion equations we have the
following condition on the current:

∂ρe

∂t
= ṡ(+) ∂ρ

e

∂x
− ∂I

∂x
. (44)

For δ � 1, we can ignore the time derivative and integrate
over the left-hand membrane to obtain the speed as

ṡ(+) = I

ρe
≈ −J (+)

a ∼ −2δψβ̄, (45)

since I = −J (+)
a in the left-hand membrane. Similarly in the

other membrane the front speed of the negative ion is ṡ(−) =
J (−)

a /�̄2.
In Fig. 8 we have plotted the concentration C(+)

a on the
left-hand side and in the shifted domain. For small Da (and
thus small δ) the wave speed is roughly constant and the
traveling-wave-like solution is appropriate. However for large
δ the current decreases in time as the front moves across the
membrane and a constant wave speed solution does not exist.
In panel (c) the front speed found numerically is plotted against
the asymptotic result, showing good agreement in the limit of
small δ.
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IV. CONCLUSION

We have quantified the nonequilibrium I-V hysteresis of
ion currents through the bipolar membrane, when forced by
cyclic reverse voltage bias, due to incomplete ion depletion
in the polarized layers of thickness λ at the junction. The
hysteresis consists of a linear I-V drop followed by a rise
from the minimum current. The water dissociation current
of I = −2δψβ̄ is approached for long scans and small
reaction relative to ion migration. For even longer scans
or large biases, a reaction current spike with linear Ohmic
I-V dependence is found that signifies the onset of water
dissociation. Insomuch as reaction in the polarized region of
a bipolar membrane is quite analogous to electron-transfer
reactions at the Stern layer of an electrode—the electrode is
electron selective and the electrolyte ion selective—we believe
the same theory we have advanced here can also be used to
analyze cyclic voltammetry of electron-transfer reactions at
electrodes.

Several interesting features are already apparent from the
current analysis. The decay at the minimum current in cyclic

voltammetry is traditionally described as a diffusive process
with an inverse square root time dependence [21]. Our Eq. (26)
shows that its scaling with respect to time is governed by the
particular forcing function. The water-dissociation signature
of (43), however, is approximately a shifted Ohmic line with
an activation voltage, as is consistent with the measurements
in Fig. 2(c) [4], where regime (3) is likely to be the shifted
Ohmic line from regime (1).
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