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Iterated stretching of viscoelastic jets
Hsueh-Chia Chang,a) Evgeny A. Demekhin, and Evgeny Kalaidin
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~Received 4 February 1998; accepted 23 March 1999!

We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of
FENE and Oldroyd-B jets of initial radiusr 0 , shear viscosityn, Weissenberg numberWe,
retardation numberS, and capillary numberCa. The usual Rayleigh instability stretches the local
uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius
@Ca(12S)/We#1/2r 0 between two beads. The strain-rate within the filament remains constant while
its radius~elastic stress! decreases~increases! exponentially in time with a long elastic relaxation
time 3We(r 0

2/n). Instabilities convected from the bead relieve the tension at the necks during this
slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from
the resulting stretching. This iterated stretching is predicted to occur successively to generate
high-generation filaments of radiusr n , (r n /r 0)5&(r n21 /r 0)3/2 until finite-extensibility effects set
in. © 1999 American Institute of Physics.@S1070-6631~99!01307-0#
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I. INTRODUCTION

There has been considerable recent progress in our
derstanding of Newtonian jet dynamics. Numerical simu
tion can now significantly extend the classical linear Ra
leigh theory for the initial small-amplitude evolution1

However, singular stresses that occur as the jet radius
proaches zero have prevented accurate numerical resol
of the final breakup dynamics. Instead, recent mathema
analysis of the self-similar, finite-time singularity formatio
near breakup has provided significant insight,2–7 including an
interesting study of observed iterated jet pinching leading
breakup.5 Universal scalings of the near-breakup evoluti
are now well understood, eventhough the longwave appr
mation invoked in the theory may prevent it from resolvi
the dynamics at or beyond breakup when drops begin
form. The hope is that one can ‘‘patch’’ the breakup analy
for the numerically inaccessible interval to numerical sim
lation of the evolution prior and beyond breakup. Since th
are only a few parameters in the governing equations, de
eation by numerical simulation can be readily carried
away from the breakup stage.

Such a luxury is lost in another classical jet break
problem—evolution of non-Newtonian jets. In addition
the usual capillary forces that drive the breakup, viscoe
ticity effects introduced by polymers are known to signi
cantly alter the breakup dynamics. However, viscoelasti
not only introduces additional rheological parameters
also renders the equations hyperbolic. Both factors excl
exhaustive numerical analysis even with modern-day co
puters. In any case, the myriad of physical effects introdu
by the polymers can probably be best elucidated with
analysis that can isolate each effect.

Linear stability analysis that amounts to an extension
the classical Rayleigh theory can be readily carried out

a!Electronic mail: hsueh-chia.chang.2@nd.edu
1711070-6631/99/11(7)/1717/21/$15.00
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viscoelastic jets. However, since viscoelastic effects can o
be triggered when the polymers are significantly stretched
the flow, viscoelasticity is not expected to be of significan
initially when the flow within the unperturbed jet of radiusr 0

is either zero or a uniform axial flow. Prior linear theories8,9

indeed confirm that viscoelasticity does not alter the class
Rayleigh wavelength 2&pr 0 significantly and only slightly
increases the growth rate.

However, as uniaxial extensional disturbance flows
created by the initial disturbance, the polymers are stretc
considerably at the stagnation points and the late-stage
namics are profoundly affected by viscoelasticit
Experiments8 show that the breakup is delayed by orders
magnitude. In some cases, the viscoelastic jet may not e
break up over the entire duration of the experiment. Inst
of pinching asymmetrically about the pinch point like
Newtonian jet to form satellites, a unique filament-bead c
figuration is observed. This configuration is extremely rob
and the drainage from the stretched filament to the co
pressed beads is extremely slow. If the viscoelastic jet d
break, it breaks at the necks joining the filament to the bea
This bead-filament configuration has also been observe
numerical simulation by Bousfield etc.10 for an Oldroyd-B
fluid. Due to the slow drainage from the filament, the sim
lation is unable to proceed beyond the bead-filament c
figuration and determine the final fate of the jet.

Instead, a number of theoretical analyses have focu
on the breakup dynamics of slender filaments.11–13 These
theories11,12 have uncovered the exponential drainage d
namics of an elastic filament. This drainage is driven by
capillary pressure difference between the bead and filam
A more detailed force and mass balance across this neck
be offered here but the scalings of earlier elastic drain
theories remain valid. Because the radii of both bead
filament vary very slowly, the constant capillary drivin
force approximation is valid quasi-steadily. The reason b
radii vary slowly, on the other hand, is because the ela
7 © 1999 American Institute of Physics
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1718 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin
axial stress, created by the stretched polymers during
ment drainage, exactly cancels the slowly varying capill
pressure. As a result, a linear uniaxial extensional flow ex
within the filament with a constant strain-rate. Due to t
drainage, the filament radius decreases and the axial s
increases but the strain-rate remains constant. This un
drainage mechanism yields a distinctive exponential
crease in time for the filament radius with a large elastic ti
scale. The exponential thinning implies that an Oldroyd
jet, in contrast to the Newtonian case, does not breaku
finite time. It is only when finite extensibility in a FENE
model is introduced that finite-time breakup is predicted.

However, these analyses omit inertial effects and fo
only on slender filaments. Since the Newtonian self-sim
breakup solution of Eggers3 involves inertia, it is not clear
that its omission is valid in late-stage filament dynamics w
fast axial flow. More importantly, experimental data f
Newtonian jets5 and non-Newtonian jets8 clearly show that
much of the late-stage jet dynamics, including breakup,
cur at the neck joining the filament to the bead. For exam
iterated pinching has been observed in Newtonian jets5 at the
necks. Such dynamics escape the analyses of Renardy11 and
Entov and Hinch12 for slender filaments without inertia. Im
portant dynamics at the neck of the jets have hence esc
our understanding thus far. In this report, we endeavo
delineate both the formation mechanism for the be
filament configuration and the dynamics at the necks.
shall examine both an Oldroyd-B jet and a FENE jet a
reveal an interesting recoil and iterated stretching dynam

II. LONGWAVE SIMPLIFICATION AND SIMULATION

We use the FENE-CR model of Chilcott and Rallison14

a simplification of the classical FENE dumbbell model,15 to
determine the stress tensor

t5msġ1G f~R!~A2I !, ~1!

whereR25traceA. The spring force law with

f ~R!5
1

12R2/L2 , ~2!

represents finite extensibility withL as the ratio of the length
a fully extended dumbell to its equilibriu length andA being
the ensemble average of the dyadic product of the end-to
vector of the dumbbell, normalized by the equilibrium sep
ration. The matrixA is taken to evolve by

]A

]t
1u•¹A5A•¹u1¹uT

•A2
f ~R!

D
~A2I !. ~3!

The parametersms , G, and D represent solvent viscosity
elastic modulus, and relaxation timeD, respectively. The
magnitude of non-Newtonian stresses is measured bc
5GD/ms such that the steady shear viscosityṅ5(1
1c)ms /r. The tensorġ5¹u1(¹u)T is the rate-of-strain
tensor.

The appropriate boundary conditions are the normal
tangential balances at the jet interface defined byr 5h(z).
There is also the kinematic condition for mass conservat
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
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]h2

]t
1

]

]z E0

h

2rudr50. ~4!

In the longwave limit whenh(z) varies slowly with re-
spect toz, the axial velocity, pressure, and the stress com
nentstzz andt rr are almost uniform with respect tor while
the radial velocityy and the off-diagonal stress componen
t rz and tzr are nearly zero. Hence, the proper ansatz
slender jets is a Taylor expansion inr

u;u01u2r 2
¯ , ~5a!

v;2
1

2

]u0

]z
r 2

1

4

]u2

]z
r 3
¯ , ~5b!

p;p01p2r 21¯ , ~5c!

tzz;tzz
0 1¯ , ~5d!

t rz5tzr;Tr1¯ , ~5e!

t rr ;t rr
0 1¯ , ~5f!

Azz;Azz
0 , ~5g!

Arz5Azr;Arz
0 r , ~5h!

Arr ;Arr
0 , ~5i!

where all the coefficients of expansion are only function ot
andz.

Upon substituting this ansatz into the equations of m
tion and boundary conditions, nondimensionalizing with t
initial undisturbed radiusr 0 as the characteristic lengthr 0

2/n
as the characteristic time, wheren5ms(11c)/r is the shear
viscosity due to both solvent and polymer, andn/r 0 as the
characteristic velocity, one gets to leading order inr, with
uniform pressure and axial flow and negligible off-diagon
stresses, the following dimensionless longwave equation

]u

]t
1u

]u

]z
5

1

Ca

]k

]z
1

1

h2

]

]z
@h2~tzz2t rr !#, ~6a!

]h2

]t
1

]

]z
~h2u!50, ~6b!

]A

]t
1

]

]z
~uA!23A

]u

]z
1

f ~R!

We
~A21!50, ~6c!

]B

]t
1

]

]z
~uB!1

f ~R!

We
~B21!50, ~6d!

tzz52S
]u

]z
1

12S

We
f ~R!~A21!, ~6e!

t rr 52S
]u

]z
1

12S

We
f ~R!~B21!, ~6f!

whereu denotesu0 , k the jet curvature, the radially uniform
axial velocity, A and B represent the polymer stretching
the axial and radial directions,Azz

0 andArr
0 , respectively, and

tzz and t rr the dimensionless versions of their counterpa
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1719Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets
in Eq. ~5! with a superscript 0. All these quantities are fun
tions of the dimensionlessz and t only. The spring law Eq.
~2! now becomes

f ~R!5
L2

L22~A1B!
, ~7!

and the other parameters are the usual capillary, Weissen
and retardation numbersCa5rn2/sr 0 , We5Dn/r 0

2 and S
51/(11c).

The parameterWe measures the elasticity of the poly
mers related to the relaxation timeD. We are interested in
the strongly elastic limit withWe@1. The retardation param
eter S, on the other hand, is associated with the ratio
retardation time scale due to non-Newtonian stress to
relaxation time scaleD. It is bounded between zero~New-
tonian limit! and unity. The capillary number is also a un
order parameter relative toWe. We shall be exploiting the
smallness ofWe21 in subsequent asymptotic analyses. T
extensibility parameterL, on the other hand, can range fro
unit order toO(We), depending on the molecular weight,16

with L→` being the Oldroyd-B limit.
To render the hyperbolicity of the stress constituti

equations more apparent, it is convenient to separate
polymer elastic stress from the quasi-viscous retarda
stress by defining the excess stresses

t̂zz5tzz22S
]u

]z
and t̂ rr 5t rr 1S

]u

]z
, ~8!

to remove the velocity derivative in time in the stress eq
tions that result when Eqs.~6c!–~6f! are combined. The re
sulting equations are

]u

]t
1u

]u

]z
5

1

Ca

]k

]z
1

1

h2

]

]z
@h2~ t̂zz2 t̂ rr !#

1
3S

h2

]

]z S h2
]u

]z D , ~9a!

]h2

]t
1u

]h2

]z
1

]u

]z
h250, ~9b!

]A

]t
1u

]A

]z
22A

]u

]z
1

f ~R!

We
~A21!50, ~9c!

]B

]t
1u

]B

]z
1B

]u

]z
1

f ~R!

We
~B21!50, ~9d!

t̂zz5
12S

We
f ~R!~A21!, ~9e!

t̂ rr 5
12S

We
f ~R!~B21!. ~9f!

The inertial terms lie to the left of the equation of motio
@Eq. ~9a!# and they are balanced by the capillary press
gradient, the gradient of the normal stress difference and
polymer retardation stress terms on the right. The cons
tive equations@Eqs.~9c!–~9e!#, capture the convection of th
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
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stresses along the streamline, the stretching due to the ve
ity gradient (]u/]z), finite extensibility in f (R) and the re-
laxation of the stretched polymers.

Several limits of Eq.~9! can be readily derived. The
extensibilityL is practically infinite when (A1B)!L2 in Eq.
~7!. In this limit, Eqs.~9e! and~9f! yield the Hookean spring
laws

A511 t̂zz

We

~12S!
and B511 t̂ rr

We

~12S!
, ~10!

and, upon substitution into Eqs.~9c! and~9d!, the stress evo-
lution of an Oldroyd- B fluid results

]

]t
t̂zz1u

]

]z
t̂zz22t̂zz

]u

]z
1

1

WeH t̂ rr 12~S21!
]u

]zJ 50,

~11a!

]

]t
t̂ rr 1u

]

]z
t̂ rr 1 t̂ rr

]u

]z
1

1

WeH t̂ rr 2~S21!
]u

]zJ 50.

~11b!

The Oldroyd-B limit is hence not a singular limit.
If one further neglects elastic and retardation effec

We50 and S50, a Newtonian limit is obtained witht̂zz

52(2]u/]z) and t̂ rr 52(]u/]z);22(]v/]r ).
It is far simpler to integrate the longwave equation E

~9! or Eq. ~11! than the full equations of motion. Howeve
strictly speaking, the longwave equation is only valid f
filaments whose radii vary gradually. This is not true at t
observed beads which are spherical. Nevertheless, the sp
cal beads should obey the axisymmetric Laplace–You
equation with constant curvature to leading order. Hence
we retain the full curvature in Eq.~9a!

k5
hzz

~11hz
2!3/22

1

h~11hz
2!1/2, ~12!

the spherical beads would also be captured to leading o
by Eq. ~9!. We have successfully applied this composite a
proach to capture both the bead and annular film during d
formation when a vertical fiber is coated17 and to capture
both the finger tip and the thin wetting films in the Brethe
ton problem of air fingers replacing liquid in capillaries an
channels.18 It is nevertheless anad hocapproach that is only
valid to leading order. It must be verified against numeri
simulation of the full equations to examine if there is a
discrepancy due to higher order effects.

To this end, we compare in Fig. 1 our computed profi
from Eq. ~11! for the Oldroyd-B fluid (L→`) at Ca510,
We5300, andS50.25 in a domain of sizel 520 to the
computation of the full equations by Bousfieldet al.10 Due to
a different scaling, their dimensionless timeu corresponds to
t/Ca and their length corresponds toz/ l of the present nota-
tion. The results are presented inu andz/ l . As is evident, the
evolution is faithfully captured by the longwave equatio
even after the bead-filament configuration is established.
simulation of the Newtonian jet (We50) is also in agree-
ment with earlier simulations by Eggers,2,3 Papageorgiou,4

and Brenneret al.6

As is consistent with the experiments, the longer sim
lations allowed by the longwave simplification reveal impo
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. Simulation of the jet radius
h(z,t) of the Oldroyd-B jet from the
long-wave equation on the right an
from the full equations of motion on
the left by Bousfieldet al. ~Ref. 10!.
The parameters areCa510, S50.25,
We5300, and a domain size ofl
520. The graphs are plotted in an
axial scale ofz/ l and a time scale of
t/Ca.
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tant jet dynamics at the necks joining the beads to the
ment. Such late-stage dynamics develop long after
formation of the bead-filament configuration and is miss
by earlier numerical studies. An extreme case ofWe
510 000 is shown in Fig. 2. When the retardation numbeS
is not near its two limits of zero and unity, a distinctive rec
of the filament develops at the necks. The simulated ev
tion begins with the formation of a minimum in the jet radi
due to the usual Rayleigh capillary instability. This create
stagnation point at the minimum and an uniaxial extensio
flow near it. The extensional flow stretches the polymers
generates elastic stresses of positivet̂zz and negativet̂ rr .
The profiles oft̂zz during the evolution are seen in Fig.
This axial elastic stress develops a symmetric maximum
the first stagnation point. As the jet profile near this point
stretched into a filament bounded by two beads att56.5, the
stress profile evolves into a constant value within the fi

FIG. 2. Evolution of a highly elastic Oldroyd-B jet from the Rayleigh i
stability, to the formation of a filament by stretching and to the beginning
recoil at the necks of the draining filament. The nodes during the Rayl
instability, which bound the jet interval that is stretched into a filament,
marked. (We510,000,S50.25,Ca510, andl 54p).
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ment. As pinching begins symmetrically at the two nec
near t57.0, two additional uniaxial extensional flows a
created locally at the necks and the stress again exhibits
sharp maxima. The excess axial stress plays an impor
role in the recoil process.

The recoil that follows the pinching is shown in Figs.
and 5 for a different Oldroyd-B jet. It is evident that secon
ary filaments are created at the necks by the stretching
follows the recoil of the primary filament. The bead is una
fected during the recoil and the secondary filament joins i
a neck that is quite similar to the neck of the primary fil
ment. However, the secondary filament is much thinner t
the primary one and, as shown in Fig. 4~b!, has a much larger
elastic stress. The simulated elastic stress evolution sh
that the stress actually drops at the primary neck bef
forming a sharp maximum due to the stretching that crea
the secondary filament. This suggests the recoil of the

f
h
e
FIG. 3. The built-up of the axial elastic stresst̂zz in the stretched filament of
Fig. 2. The elastic stress is constant within the straight filament until re
at the necks triggers two sharp maxima.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1721Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets
mary filament is triggered by a relief of the tension at t
neck. The fully formed secondary filament, in the prese
of the bead and the primary filament, is shown in Fig. 5.

We are unable to numerically track the jet dynamics
ter the formation of the secondary filament. However, sin
its neck with the bead is quite similar to that of the prima
one, we expect another recoil to initiate there. Iterated re
and stretching dynamics can then proceed indefinitely at
necks of Oldroyd-B jets. In our subsequent analysis, we s
develop a theory for Oldroyd-B filaments and show that th
similarity allows us to relate their radii and elastic stress.
a result, with proper scalings ofWe, Ca, andS, the evolution
and recoil of the primary filament can be used to ded
those of higher-generation filaments. We shall also dem
strate preliminary experimental evidence of this self-sim
iterated stretching dynamics.

The evolution of the Oldroyd-B jet radius, the axi
stresst̂zz and the velocityumax at the neck of the first fila-
ment are shown in Fig. 6. There are two distinct slow sta

FIG. 4. Blow ups of the Oldroyd-B interface recoil and elastic stress e
lution at one of the necks. For clarity, snapshots at different time, meas
from the onset of pinching at the bottom figure, are taken in the two pl
Note that the elastic stress is first relieved at the neck before the s
maximum develops due to secondary stretching. (We5300, S50.25, Ca
510, andl 54p).
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
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prior to the first pinch recoil that define the lifetime of th
primary filament. The jet radius drops and the axial str
rises precipitously during the stretching stage neart5100 to
form the constant-radius filament. The profiles shown in F
7 indicate the transformation to an axisymmetric filame
with a constant stress and a linear axial velocity profile t
reaches6umax at the necks. However, this stretching sta
ends abruptly asumax approaches zero and both filament r
dius and its stress reach constant values. An even slo
elastic drainage then takes over after a short transient ft
.100. The radius continues to decrease and the stress
tinues to increase within the filament after this short hes
tion, but at distinctly slower rates than the stretching interv
The maximum axial velocity at the necks, however, rema
constant during this long interval. Due to the linear uniax
flow, this implies the strain rate in the filament remains co
stant during this interval.

In Fig. 8, the evolution of jet radius at the first neck
shown for a large range ofWe and Ca for an Oldroyd-B
fluid. The stretching, drainage and recoil stages show ap
ciable sensitivity to these values.

We examine the dynamics of the FENE jet in Fig. 9 a

-
ed
s.
rp

FIG. 5. The entire jet profiles before and after the recoil of the Oldroyd
jet in Fig. 4. A secondary filament is clearly visible.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1722 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin
function of extensibilityL. The formation dynamics of the
primary filament and the subsequent elastic drainage dyn
ics are insensitive toL for L in excess of 10. This sugges
that the stretchingA1B, is much smaller thenL2 in both the
initial jet and the primary filament under such condition
However, the recoil dynamics in Figs. 3 and 4 suggest
the secondary filament formed after the recoil will have
much higher axial elastic stress and hence highA1B is ex-

FIG. 6. Evolution of the jet~filament! radius, elastic stress~measured at the
middle of the filament!, and strain-rate~maximum axial velocity at the neck!
of an Oldroyd-B jet~filament! prior to recoil. Theoretical predictions ar
also shown. (We5300,S50.25,Ca510, andl 520).
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
m-

.
at

pected. Correspondingly, the low-L evolution in Fig. 9 may
well represent the dynamics of higher-generation filame
This will be further verified by an analysis that relates t
recoil dynamics of filaments of different generation.

As seen in Fig. 9, the low-L primary filament drains
much faster than the highly extensible filaments. In fact
does not recoil at the neck and seems to pinch off in fin
time. Entov and Hinch12 have predicted this outcome for
constant-radius filament. An insert of the low-L filament-
bead profile immediately before pinch off is shown in t
insert of Fig. 9. Instead of a recoil, the straight filament
mains during the final precipitous drop inh(t) of Fig. 9. A
much thinner filament drains rapidly at this stage and
mains stable to the instabilities that trigger recoil. This th
suggests that iterated stretching will eventually stop wh
A1B, the stretching, is the same order asL for high-
generation filaments.

Our analysis to establish the self-similarity of filamen
of different generation begins with the linear Rayleigh ins
bility and the ‘‘hyperbolic’’ stretching it creates that form
the primary filament. This formation dynamics can then
used to fully specify the slow exponential elastic draini
dynamics for the Oldryod-B jet shown in Fig. 6. The inst
bility that triggers the recoil at the neck is then scrutinize
In contrast to the Rayleigh instability that creates the prim
filament, the resulting recoil begins with Egger’s self-simil
pinching with negligible elastic effect and followed by th
same stretching and drainage dynamics of the primary
ment. We are then able to estimate the radius and stres
the secondary filament and, by induction, relate all hig
generation filaments to the previous generation. In the p
cess, we delineate the self-similarity of all high-generat
filaments until finite extensibility becomes important. Wh
extensibility comes into play, the drainage is too rapid for t
recoil instability to take effect and Fig. 9 indicates that pin
off will occur instead.

III. LINEAR STABILITY THEORY AND ONSET OF
STRETCHING DYNAMICS

We shall examine jets with largeWeandL. As seen in
Fig. 9, the initial instability, the filament formation dynamic
and the drainage dynamics are insensitive toL as long as it is
in excess of 10. We hence focus only on the Oldroyd-B
here. The stretching dynamics will be shown to be descri
by a coupled set of hyperbolic equations and, as such
evolution has a strong memory that remembers the in
condition and evolution. Fortunately, the initial evolution i
volves small-amplitude deviations from the initial jet and c
be captured by a standard linear analysis that is further s
plified by our longwave expansion. Consider a standard n
mal mode perturbation of the straight jet basic state

S h
u

t̂zz

t̂ rr

D ;S 1
0
0
0
D 1S h8

u8
tzz8

t rr8
D eiaz1lt. ~13!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



1723Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets
FIG. 7. Radius, velocity, and stress profiles of Fig. 6 at various times during the filament formation and drainage stages.
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In the limit of largeWe, one obtains the following rela
tionships between the stresses and the deviation radius
the linearized versions of Eqs.~9! and ~11!

tzz8 52
2ia~S21!

We
u852

4~12S!

We
h8, ~14!

t rr8 5
ia~S21!

lWe
u85

2~12S!

We
h8. ~15!

The growth ratel is determined from the dispersion relatio
ship

2Wel31~216a2SWe!l21a2F62
We

Ca
~12a2!Gl

2
a2~12a2!

Ca
50. ~16!

The simplest limit is that of a Newtonian jet (We50)
and it yields the classical longwave quadratic growth r
which vanishes ata50 and at the neutral wave numbera0

51. Its maximum growth rate and wave number are

lmax
Newt5

1

2A2Ca~113ACa/2!

and ~17!

amax
Newt5

1

&~113ACa/2!1/2
.

In the limit of large We, the elastic effect become
negligible—the relaxation time approaches infinity. This c
responds to a zero eigenvalue which can be factored ou
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
m

e

-
of

the cubic polynomial@Eq. ~16!#. The resulting quadratic cor
responds to a longwave growth rate with a neutral mode
a051 and a maximum-growing mode with

lmax5
1

2A2Ca~113SACa/2!

and ~18!

amax5
1

&@113SACa/2#1/2
.

The extra mode whose growth rate vanishes atWe→` can
be determined by standard expansion to be stable

l3;2
1

WeS 11
6Ca

We~12a2!
1¯ D . ~19!

These results are consistent with earlier linear stabi
analysis of the full equations for the Oldroyd-B jet, the Ma
well jet (S50) at largeWe, and the Newtonian jet atWe
50.8,9 Since the retardation number must be less than un
highly elastic jets yield slightly longer waves and slight
larger growth rates than Newtonian jets, as seen from E
~17! and~18!. The limiting Maxwell jet is the most unstabl
with the longest disturbances. Nevertheless, elasticity
little effect in the initial evolution.

Despite the negligibly small elastic stresses, we are a
to decipher its creation mechanism at inception from t
linear theory. The phase difference betweenh8 andu8 in Eq.
~14!, h8;2( ia/2l)u8, implies that a node inu with a posi-
tive slope appears at the minimum inh511h8. This corre-
sponds locally to an axisymmetric extensional flow with
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Evolution of the neck radius of an Oldroyd-B jet forS50.25 and
l 520 but for the indicated ranges ofWeandCa. All exhibit the stretching,
drainage, and recoil stages.
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
stagnation point at the jet minimum. The next relationsh
~15! indicatestzz8 and t rr8 are in phase with2h8 and h8,
respectively. This reflects the result that the uniaxial ext
sional flow at the stagnation point has stretched the polym
and induces a maximum intzz and a minimum int rr at the
stagnation point in the middle of the computation domain

t̂zz1
12S

We
;

~12S!

We
~124h8!;

~12S!

We~11h8!4 ;
~12S!

Weh4 ,

~20a!

t̂ rr 1
12S

We
;

~12S!

We
h2, ~20b!

during the initial evolution with small-amplitude waves. Th
set of invariance between the stresses and the jet radius i
relationship that will be propagated along the characteris
during the hyperbolic stretching stage.

IV. FILAMENT FORMATION BY STRETCHING

The axisymmetric extensional flow revealed in the line
analysis will trigger a stretching evolution that enlarges
small region near the jet minimum, with a locally consta
radius, a linear axial velocity and a constant positivet̂zz,
until a straight filament is formed. There are, of course, t
additional converging stagnation points at the two
maxima bounding the extensional stagnation point at
minimum. These regions will be compressed into bea
Hence, the stretching of the filament at the minima is acco
panied by compression at the maxima. We shall focus o
on the extensional flow near the minima and conseque
only on filament stretching.

The scalings from the linear theory in Eqs.~14!, ~15!,
and ~20! suggest thatt̂zz and t̂ rr at the above stagnatio
point are a factor ofWe21 smaller thanh and (]u/]z),
which are of unit order, in the stretching evolution that fo
lows. This is consistent with our numerical results in Fig.
FIG. 9. The effect of extensibilityL on the jet evolution
for a FENE jet (We5300, S50.25, Ca510, and l
520). There is little sensitivity toL until L.10. The
insert is the filament-bead profile att5243 for L52.
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Also, anticipating the length of stretching stage to be g
erned mostly by the slow extension flow near the slender
minimum at the stagnation point, we expect fluid inertia
be negligible in the stretching filament and the curvaturek in
Eq. ~12! to be well approximated by the azimuthal curvatu
only, k521/h.

Hence, the dominant terms in Eqs.~9! and ~11! during
the filament stretching stage are

1

h2

]

]z S h

Ca
1h2~ t̂zz2 t̂ rr !13Sh2

]u

]z D50, ~21a!

S ]

]t
1u

]

]zDh252
]u

]z
h2, ~21b!

S ]

]t
1u

]

]zD t̂zz52
]u

]z S t̂zz1
12S

We D , ~21c!

S ]

]t
1u

]

]zD t̂ rr 52
]u

]z S t̂zz1
12S

We D . ~21d!

The hyperbolic nature of the kinematic and stress eq
tions in Eqs.~21b!–~21d! is quite apparent. It originates from
the fact that both the liquid mass and the polymers are c
vected by the nearlyr-independent axial velocity. Hence, th
evolution of h2, t̂zz, and t̂ rr are along characteristic line
defined by

dx

dt
5u, ~22!

on which they behave as

dh2

dt
52

]u

]z
h2, ~23a!

d

dt
t̂zz52

]u

]z S t̂zz1
12S

We D , ~23b!

d

dt
t̂ rr 52

]u

]z S t̂ rr 1
12S

We D . ~23c!

Since the equation of motion@Eq. ~21a!# becomes a
steady force balance among capillary, elastic and visc
forces, a simple integration yields az-independent forcef (t)
that can only be a function of time

h

Ca
1h2~ t̂zz2 t̂ rr !13Sh2

]u

]z
5 f ~ t !. ~24!

This quasi-steady balance then yields how the local fl
~actually flow gradient! is determined by the local azimutha
capillary pressure and elastic stress difference.

The forcef (t) evolves in time during the stretching in
terval between the small-amplitude evolution described
the last section and the slow elastic drainage of next sec
During this interval~aroundt;100 in Figs. 6 and 8!, t̂zz

increases dramatically andu drops precipitously while the je
evolves into a filament with constant radius. We are una
to obtain the force evolutionf (t) explicitly but our numeri-
cal results in Fig. 10~a! indicate that it does not vary muc
during this stretching interval. During the small-amplitu
evolution initially, the elastic stresses of Eq.~20! are small at
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
-
et

a-

n-

us

n
n.

le
O(We21) and the axial velocityu and its gradient (]u/]z)
are both small at the order of the perturbation radiush8 from
the original straight filament of unit radius. As a result, t
initial value of the force during the stretching interval is

FIG. 10. ~a! Evolution of the forcef (t) at the jet minimum in Eq.~24!
showing a decrease from 1/Ca to 0.6/Ca during the stretching interval a
0,t,70 for the same Oldroyd-B jet of Fig. 6.~b! Simulated value of
Caht̂zz for the Oldroyd-B jet of Fig. 6, showing convergence to a
asymptotic value 1.6 close to the estimated value 2 during the elastic d
age stage fort.100. ~c! Comparison of the simulated jet radiush* at the
end of the stretching interval to estimate Eq.~30!.
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f ~ t !;
1

Ca
. ~25!

We shall use this value throughout the entire interval—
force is assumed to be also time independent. A more rig
ous treatment would be to expand the evolution in b
We21 andt to discern the full evolutionf (t). This would be
a tedious endeavor and we will numerically verify that E
~25! is a valid approximation. With this estimate, the qua
steady force balance becomes

3S
]u

]z
5

1

Ca

~12h!

h2 2~ t̂zz2 t̂ rr !, ~26!

that is valid at every point within the stretched filament. T
capillary pressure and normal stress difference are bala
by polymer viscous dissipation.

We now focus on the jet minimum with a stagnatio
point (u50). Its vanishing axial velocity implies that th
corresponding characteristics line is vertical in thet-x plane
while neighboring characteristic lines diverge from it. As
result, the linear axisymmetric extensional flow region is e
panded throughout the region bounded by the jet nod
Moreover, a simple analysis of Eqs.~23a! and ~23c! reveals
the following invariance along the characteristics during fi
ment stretching:

S t̂zz1
12S

We Dh45const1

and ~27!

S t̂ rr 1
12S

We Dh225const2 .

Hence, applying this to the characteristic at the stagna
point of the jet minimum where the initial condition is pro
vided by Eq.~20! after the small-amplitude evolution, on
obtains

t̂zz2 t̂ rr 5S 12S

We D S 1

h42h2D , ~28!

at the stagnation point.
Hence, at this minimum where (]u/]z).0, h and t̂ rr

decrease monotonically whilet̂zz increases monotonically a
the filament is stretched. Combining Eqs.~23a!, ~26!, and
~28!, we acquire the thinning rate at the minimum

6S
dh

dt
52

1

Ca

12h

h
1

~12S!

We S 1

h32h3D , ~29!

where the right side represents the flow gradient between
jet minimum and the jet node as driven by the azimut
curvature difference and retarded by the elastic stresses a
minimum. This stretching ceases when the capillary press
increases sufficiently ash decreases to balance the elas
stress in Eq.~29!. This occurs when the thinning jet radiush
approaches

h* 5FCa~12S!

We G1/2

, ~30!
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when ]u/]z and u approach zero as seen in Fig. 6. Phy
cally, the elastic stress, which scales as@(12S)/We#h24, as
seen in Eq.~20!, has reached such a high value within t
filament that the liquid cannot continue to drain towards
node due to the gradient in the azimuthal curvature, wh
scales only as (1/Ca)h22. That the stretched filamen
reached an intermediate asymptote with constant radiu
evident in all simulations seen in Fig. 8. An ‘‘inflectio
point’’ when the evolution ‘‘hesitates’’ is seen after the rap
decrease during the stretching stage and before the slow
tic drainage stage. The precipitous drop in the strain rat
this intermediate stage between stretching and drainag
also evident in the velocity evolution depicted in Figs. 6 a
7.

Despite the approximation made onf (t) in Eq. ~25!, Eq.
~30! is seen in Fig. 10~b! to be in good agreement with th
simulated filament radius at the inflection point, prior to t
slow elastic drainage stage, for a wide range of conditio
Some scatter is observed but the measured values are m
bounded betweenh* and 2h* .

Note that this intermediate stretching interval only exi
when S is not zero or unity. Since we have carried out
expansion inWe21, S, and 12S must actually be larger than
We21. When polymer retardation is absent (S50), the
quasi-steady force balance cannot be assumed and
drainage described by Eq.~29! breaks down. The singula
limit of S51 corresponds to the coincidence of polymer
laxation and retardation times. At this condition, the exc
elastic stresses are never triggered and the azimuthal pre
gradient drives the jet to pinch off without stretching, as
Papageorgiou’s viscous jet breakup.

V. ELASTIC DRAINAGE

At the end of the stretching interval, the filament radi
has reached a small constant valueh* ;O(We21/2), the ra-
dial stresst̂ rr remains small but the axial stresst̂zz is large at
O(h

*
24/We);O(We) by Eq. ~27! and the strain rate

(]u/]z) has dropped from unit order at the beginning
stretching to negligibly small values by Eq.~26! such that
there is no flow out of the filament due to stretching. Ho
ever, at this point, the bead-filament configuration is est
lished and a new capillary driving force between the filam
and the bead replaces that of the initial jet in Eq.~25! during
stretching. This different driving force changes the qua
steady force balance and the magnitude oft̂zz. It also per-
mits a small but finite drainage from the filament to t
bounding beads. This is the elastic drainage stage that
lows the stretching stage.

Instead of carrying out detailed matched asymptotics
match these two stages, we adopt a lead-order ‘‘patchin
scheme to resolve the relaxation dynamics during this sl
est intermediate drainage stage. We begin by determining
proper scalings. During this interval, the filament has alrea
been stretched to a jet with a uniform radiush(t) of order
We21/2 as stipulated by Eq.~28!. For relaxation to be in-
cluded in the stress dynamics as the polymer is be
stretched,We21t̂zz, (]t̂zz/]t), and (]u/]z) t̂zz must all bal-
ance in Eq.~11a!. Since the filament length is unit order,z
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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;O(1) and this yields the scalingu;O(We21) and t
;O(We) for the draining filament. Relaxation must be i
cluded to effect the pull of the stretched polymers a
counter the capillary driving force such that a slow draina
into the beads can now proceed. This slow drainage is
longest process in the jet dynamics and its duration is a g
estimate of the drainage time. The remaining unknown s
ing is for t̂zz which will be determined through a quas
steady force and mass balance at the neck.

Once the straight filament is formed, the hyperbolic n
ture of the evolution is lost. During the stretching stage,
dynamics on each characteristic line are not affected by
evolution on the other characteristics. However, with the
tablishment of a straight filament, the linear uniaxial exte
sion flow permeates the entire filament and the drainage
namics over the entire filament is in unison. The drivi
force has also changed. During the stretching stage, there
quasi-steady force balance governed by Eq.~24! which stipu-
lates that the stretching flow is driven by the local azimut
pressure gradient and countered by local elastic stress g
ent and viscous dissipation. When a straight filament
formed, Eq.~25! becomes invalid as there is zero local gr
dient within the filament. The driving force for drainage
now provided by the azimuthal pressure drop across the n
joining the filament to the bead. To quantify this drivin
capillary force, a more detailed order assignment at the n
region is required. This analysis of the quasi-steady nec
absent in earlier slender filament theories.

In lieu of the quasi-steady, slender jet force balance t
yields Eq.~24!, we return to Eq.~9a! with the full curvature
k. Within the neck,k varies fromh21;We1/2 at the filament
to O(1) at the bead. We shall hence assign it the hig
We1/2 order in our dominant balance as it corresponds to
capillary pressure difference across the neck. Using the s
ing u;O(We21), t;O(We), k;O(We1/2) and still an un-
known scaling forz, the width of the small neck region, w
can already conclude from Eq.~9a! that the inertial terms on
the left are negligible compared to the curvature gradi
(1/Ca)(]k/]z), regardless of the scaling ofz. This leaves
the stress gradient with mostlyt̂zz contribution and the poly-
mer viscous dissipation on the right for possible domin
balance with the curvature gradient. Each or both can
ance the curvature gradient since both the elastic stress
viscous dissipation serve to reduce the flow from the filam
to the bead while the curvature gradient drives it. We he
first seek the scalings fort̂zz and z when all three terms
balance. This is possible whent̂zz;h21;O(We1/2) to bal-
ance capillary pressure and elastic stress andz
;O(We23/2) to balance viscous dissipation to the earl
two.

Since the neck width decreases in time as fluid is drai
into the bead, the scalingz;O(We23/2) to match viscous
dissipation to capillary pressure is not established initia
As the neck width decreases with drainage, viscous diss
tion increases. However, the initial width is larger at sayz
;O(We21/4), to ensure the longwave approximationO(h)
!O(z) remains valid, and elastic stress balances capil
pressure at the neck.

Using the scalingsh;O(We21/2), t̂zz;O(We1/2), z
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;O(We21/4), u;O(We21), andt;O(We) from the above
scaling arguments, we obtain the following equations for
neck region from Eqs.~9! and ~11!

1

Ca

]k

]z
1

1

h2

]

]z
~h2t̂zz!50, ~31a!

]

]z
~uh2!50, ~31b!

u
]

]z
t̂zz22

]u

]z
t̂zz50, ~31c!

where we have omitted the negligiblet̂ rr at the end of the
stretching stage. As long as the longwave approximation
mains valid in the neck such that the neck width does
exceedO(We21/2), the radial stress remains negligible du
ing the drainage stage and all subsequent dynamics. Du
the relatively small width of the neck compared to the fi
ment, the force and mass balances are both quasi-ste
Simple integration of Eqs.~31b! and ~31c! from the end of
the filament, where the linear extensional axial veloc
reaches its maximum valueu0 and where the filament radiu
and elastic stress retain the same values throughout
straight filament ath0 and t̂0 , to any location within the
neck, yields

t̂zz5t0~u/u0!2 and u5u0~h0 /h!2. ~32a!

The filament quantities with subscript 0 actually vary wi
time as the drainage proceeds. However, the neck stress
velocity are slaved to them according to Eq.~32! due to the
narrow width of the neck. These invariances can be co
bined to yield a simple relationship between the neck str
and the neck radius any where within the neck

t̂zz5t0h0
4h24, ~32b!

wheret0h0
4 is a slowly varying function of time only.

This invariance allows us to simplify the force balan
across the neck@Eq. ~31a!#. It can be converted into an inte
grable form by Eq.~32b!

1

Ca

]k

]z
1

1

2

]

]z
t̂zz50. ~33!

We now integrate Eq.~33! again but now completely acros
the neck from the filament to the bead. The curvature and
stress at the filament are large compared to those at the
and neglecting the subscript 0 in Eq.~32!, we obtain an
important invariance between the curvature and the ela
stress of the straight filament

Caht̂zz52. ~34!

The unique factor of 2 again arises from the force and m
balance across the neck. This predicted invariance is c
firmed by our numerical simulation shown in Fig. 10~c!
where an asymptotic limit ofCaht̂zz51.6 is reached soon
after the stretching interval att5100. The invariance~34! is
distinct from earlier drainage theories which assume a s
der filament without necks. A reanalysis of Renardy
result,11 for example, yields a constant of1

2 instead of 2 in
Eq. ~34!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



n

ct

io

e
na

an
-
va
na
o-
ai

-

e
ue

-
o

ing

re
i

r-

s
th
E

y
-

the

. 4.
h-

er
ce,
age
and
on,
oil
q.
ni-
the
ion

ad
s.

si-

er-
e

1728 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin
Respecting the constant radius and linear extensio
flow, the proper dimensionless variables are

u~z,t !5zU~ t !Wi21, Q5tWi21, ~35!

wherez is now O(1) as we return to the filament. The fa
that t̂zz(Q) and h(Q) are only functions ofQ and notz
allows us to construct the leading-order filament equat
from Eqs.~9b! and ~11a!

dh

dQ
52

1

2
hU and t̂zz1

d

dQ
t̂zz22U t̂zz50. ~36!

We have neglected to scalet̂zz;O(We1/2) and h
;O(We21/2) explicitly for simplicity.

The kinematic equation@Eq. ~36!# is simply a mass bal-
ance for a straight filament while the stress equation@Eq.
~36!# represents stress relaxation within the filament. Th
both evolve exponentially for a constant uniaxial extensio
flow, as shown by earlier straight-filament theories,11,12

h(t);exp(2Ut/2) and t̂zz(t);exp@(2U21)t#. However, the
new force balance across the neck@Eq. ~34!# stipulate they
are correlated in time such that their product is a const
This is only possible ifU5 2

3, the maximum filament veloc
ity at the neck remains constant during this drainage inter
This implies that the strain-rate of the uniaxial extensio
flow within the draining filament remains constant at tw
thirds the rate at which the stress would relax at fixed str
Although Entov and Hinch’s straight-filament theory uses
different correlation constant betweenh and t̂zz, it still cap-
tures this unique constant strain rate.12 After inserting the
initial conditionh* of Eq. ~30! for matching with the stretch
ing stage, we obtain the large-time asymptotic behavior

u~z,t !5
2

3We
z, ~37a!

h~ t !5h* exp~2t/3We!, ~37b!

t̂zz~ t !5
2

h* Ca
exp~ t/3We!, ~37c!

for the draining filament in the original variables. Th
uniaxial extensional flow is clearly evident but the uniq
feature is the correlated exponential decay ofh(t) and expo-
nential growth oft̂zz(t) due to matching of the filament so
lution to the bead. These asymptotic predictions are fav
ably compared to the simulated evolution in Fig. 6. Match
with the final radius of the stretching stage in Eq.~30! and
the proper capture of thet̂zz and h correlation in Eq.~35!
from the neck analysis are essential to obtain the cor
description of the draining filament. They are not available
earlier slender or straight filament theories.11,12

In both the neck analysis of Eq.~31!, which yields cor-
relations~32! for the neck, and the derivation of the impo
tant stress-radius correlation of Eq.~34! for the filament, the
beads are never explicitly included. So long as their radiu
much larger than the filament, the beads do not affect
leading-order filament drainage dynamics captured in
~37!. This also suggests that Eq.~37! is a universal drainage
dynamics valid for all Oldroyd-B filaments bounded b
beads. We had used the initial jet radiusr 0 as the character
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istic length scale but one can use the actual value of
initial jet radiush* . We also expect Eq.~37! to describe the
drainage of the secondary filament after the recoil in Fig
However, the recoil dynamics are different from the stretc
ing dynamics of the filament in Sec. IV since the form
begins at the neck while the latter at a jet minimum. Hen
the radius of the secondary filament at the onset of drain
cannot be described by the stretching analysis of Sec. IV
will, instead, be addressed in Sec. VII. In the next secti
we shall determine the instability that triggers the neck rec
by analyzing the stability of the drainage dynamics in E
~37!. Since it describes all draining filaments except the i
tial jet, which is not bounded by beads, we also expect
same recoil mechanism to apply for all higher generat
filaments.

VI. STABILITY OF A FILAMENT DRAINING INTO
BEADS

Due to the slow elastic drainage with time scale 3We,
one can analyze the stability of the draining filament-be
configuration at any given instant in time by linearizing Eq
~9! and ~11! about the draining state as if the jet is qua
stationary

AS u8
h8
t8
D 5lS u8

h8
t8
D , ~38!

where the differential operatorA is

A1152
d

dz
~u• !1

3S

h2

d

dz S h2
d

dz
• D ,

A125
1

Ca S d3

dz3 •1
1

h2

d

dz
•2

2

h3

dh

dz
• D2

2

h3

d

dz
~h2t̂zz!•

2
6S

h3

d

dz S h2
du

dz D •1
1

h2

d

dz
~2ht̂zz• !

1
3S

h2

d

dz S 2h
du

dz
• D ,

A135
1

h2

d

dz
~h2

• !,

A2152
1

2h

d

dz
~h2

• !,

A2252
1

h

d

dz
~hu• !,

A235A3250,

A3152
d

dz
~ t̂zz• !13t̂zzS d

dz
• D2

2~S21!

We S d

dz
• D ,

A3352
d

dz
~u• !13

du

dz
•2

1

We
•.

The dynamics oft̂ rr have been neglected due to the slend
ness of the neck andt8 represents the disturbance to th
excess axial elastic stress.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



nt

on
res

1729Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets
FIG. 11. The spectrum of the Oldroyd-B bead-filame
configuration with a draining filament in Fig. 6 att
5500. The dominant structures are the stable bands
the ellipse and the negative real axis. The fine structu
near the origin are shown in Fig. 12.
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Assuming the same periodicity, over the domain
length l, for the disturbance and the evolving jet, the co
puted spectrum with a spectral numerical method att5500
for the draining filament in Fig. 6 is shown in Fig. 11 with
blow-up of the origin in Fig. 12. Most of the spectrum
stable and the stable eigenvalues form a nearly continu
band of ellipse and a nearly continuous line on the nega
real axis, as is evident in Fig. 11. Continuous spectrum
obviously impossible with a finite domain sizel but both
stable bands do approach continuum asl becomes large. The
stable ellipse terminates on the negative real axis near
origin, as seen in Fig. 12.~Discrete eigenvalue 1 is an exte

FIG. 12. Blow-up of the fine structures of the spectrum near the origin
the complex plane. The vertical branch to the right of the ellipse in Fig.
is branch 3 here. Mode 1 is part of the ellipse and branch 2 is a stable
branch. The most unstable branch 4 is opposite branch 2 on the positive
axis. The radius eigenfunctions of branches 1, 3, and 4 are shown in in
The former two are confined to the filament in the middle and decay into
beads at the two ends. The eigenfunction of branch 4 is confined to the
in the middle of that insert.
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is
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sion of the ellipse.! Several additional branches~2 and 3!
bifurcate from the ellipse near the origin. Complex branch
tends to approach the imaginary axis while branch 2 exte
slightly into the stable region on the negative real axis. T
member of the eigenfunction corresponding to radius dis
bance is also shown in Fig. 12 for some typical members
the more unstable branches 1 and 3. The disturbances of
branches are confined to the filament and decay expo
tially into the beads. The disturbances of branch 3, howe
also decay towards the middle of the filament.

The most unstable branch 4, however, protrudes into
left half of the complex plane on the positive real axis.
t5500, the most unstable mode of this branch is atl r

.0.019 and this value is nearly constant up tot51000. Its
eigenfunction is also shown in Fig. 12 which suggests tha
the disturbances of this branch 4 are confined to the bea

There are hence two classes of disturbances, one
fined to the filament and one to the beads. Although the la
seems more unstable, both decay towards the neck wher
recoil initiates. We can better understand why the recoil i
tiates at the neck with a deeper analysis of the spectral p
lem ~38!. If we omit the beads and use the estimated filam
solution of Eq.~37! over an unbounded domain, the com
puted spectrum shown in Figs. 13 and 14 yields both
stable ellipse in Fig. 13 and branches 1, 2 and 3 near
origin in Fig. 14 att5500. Other than some details near t
origin, due to mode interaction with the beads, the branc
are all quantitatively reproduced. Even the eigenfunctio
including the odd branch 3, are captured correctly if o
allows for the fact that they do not decay into the missi
beads.

In fact, analytical expressions can be derived from E
~38! in the limit of infinite We. In this limit, thez-dependent
uniaxial velocity profileu(z,t) in Eq. ~37a! vanishes and
hence the coefficients of the operatorA become constant
This allows the usual normal mode expansion to yield
simple dispersion relationship. Due to the omission of
uniaxial extensional velocity field,l50 is always a solution

f
2
al

eal
rts.
e
ad
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



-
m

1730 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin
FIG. 13. Spectrum of an infinitely long draining fila
ment. The computed values are indistinguishable fro
the analytical result withh5h* exp(2t/3We) at t
5500.
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with no velocity fluctuationu850. Omitting this neutral
mode, the other two modes are determined by the disper
relationship

l213Sa2l2a2S 1

2Cah
2 t̂zzD1

a4h

2Ca
50. ~39!

Comparing this to the Rayleigh dispersion relationship for
unstretched filament of unit radius (h21) in Eq. ~18!, one
can easily see that the positive elastic stresst̂zz has a stabi-
lizing effect.

If one further introduces the derived correlation~34! of a
stretched filament under drainage into beads, the spec
can be estimated explicitly as a function of the filament
dius h
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
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l52
3

2
Sa26A9

4
S2a41

h

2Ca
a2~12a2!2

2a2

Cah
.

~40!

This analytical dispersion relationship for an highly elas
(We→`) stretched filament quantitatively captures t
stable ellipse and stable real branch of Figs. 11 and 13, if
uses the estimate~37b! for the filament radiush(t) at t
5500.

The ellipse corresponds to smalla and is well approxi-
mated by

l52
3

2
Sa26 iaA 2

Cah
. ~41!
g
c-
FIG. 14. The spectrum of the infinitely long drainin
filament near the origin and representative eigenfun
tions.
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The stable real mode is at largea, corresponding to23Sa2.
Obviously, the actual filament lengthl imposes an uppe
bound ofa5(2p/ l ).

The bead branch 4 can likewise be estimated by link
it with the Rayleigh instability of a cylinder. We insert in th
middle of the bead a cylinder of lengthL and a radius iden-
tical to that of the bead. We than remove the filaments fr
the elongated bead such that the structure has a le
roughly equal to the sum of the diameter of the original be
andL. The results are insensitive to the exact location wh
the filaments are removed. We then impose periodic bou
ary condition for the disturbance over this structure and so
the full eigenvalue problem with the prescribedh and with
negligible elastic stresst̂zz. At infinite L, we obtain the con-
tinuous Rayleigh spectrum of an infinitely long cylinder
Eq. ~18!, after correcting for the new cylinder radius:

lRayleigh52
3

2
Sa26A9

4
S2a41

a2

2Cah
2

a4

2Ca
. ~42!

As L becomes finite, this continuous spectrum breaks up
discrete modes. But as is evident in Fig. 15, the discr
modes lie approximately at the same location as the cont
ous modes of Eq.~42! and approach those on branch 4
Fig. 12 at L50. Branch 4 can hence be attributed to t
Rayleigh instability of a bead with openings to filaments.

The relative dominance of the unstable bead branc
and the unstable filament branch 1 at the neck must be
termined by a different spectral theory. The continuous fi
ment spectrum Figs. 13 and 14 and the continuous bead

FIG. 15. The spectra of the bead with a cylindrical insert of lengthL. The
L5` limit is the Rayleigh instability and theL50 limit is the bead mode of
branch 4 in Fig. 12.
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leigh spectrum of Fig. 15 atL5` correspond to norma
modes in unbounded domains. However, if one introduce
generic localized disturbance, the local effect of the result
wave packet is not determined by the spectruml~a! of the
normal modes. Specifically, consider a generic disturba
of the form

h8~z,t !5E
2`

`

A~a!eiaz1l~a!tda, ~43!

whereA(a) is the Fourier coefficient of the initial localize
disturbance and the evolution in time is specified by the
earized equations of Eq.~38!.

At a specific location,z50 say, the dynamics~43! are
dominated by a single complex modea* derivable by
Wentzel–Kramers–Brillouin~WKB! theory19

dl

da
~a* !50, ~44!

wherea5a r1 ia i is complex and so isl5l r1 il i . Hence,
the contribution of all modes at the neck~and any other
location! is determined by the growth rate at the abo
saddle pointa* in the complex plane. An unstable spectru
in an unbounded domain is ‘‘absolutely’’ unstable ifl r(a* )
is positive. Otherwise, it is convectively unstable—
disturbances will connect pass the neck without trigger
any local instability. The growth would then occur only in
moving frame and would not be felt at any specific locatio
This classification of an unstable spectrum is most pertin
to instabilities which possess a specific sensitive spot—
neck in the present example.

We determine the absolute and convective stability
both the filament and bead continuous spectra by exploi
the Cauchy–Riemann condition. Since bothl and a are
complex in Eq. ~44!, a* can be determined from
(]l r)/(]a r)5(]l r)/(]a i)50 only. We optimize with re-
spect toa r anda i sequentially to locate the saddle pointa* .
In Fig. 16, we fixa i for both the filament and bead spect
and plot the spectral(a r1 ia i) as parameterized bya r from
zero to infinity. We then seek the maximuml r with respect
to a r on these spectra,lmax(ar

max,ai). For all a i in both
cases, this optimum is located on the real axis,a r

max50. We
then varya i to optimizelmax with respect toa i along the
real axis. As seen in Fig. 16, the filament spectrum at
5500 is convectively unstable witha* 52.2i and l(a* )
520.6 while the bead spectrum is absolutely unstable w
a* 51.15i and l(a* )50.466. The unstable filament spe
trum of Fig. 14 hence does not contribute to local growth
any location, including the neck. Its growth is in a movin
frame. The unstable bead spectrum of Fig. 15, on the o
hand, contributes to a local growth rate of 0.466 that is fa
excess of its maximum value 0.019 on the original spectru
It is the ability of Rayleigh modes to accumulate at the ne
that accounts for the absolute instability which triggers
recoil.

The same conclusion that the bead mode is absolu
unstable has also been verified at largert during the drainage
interval. Although our analysis is carried out for the contin
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 16. The spectral(a r1 ia i) parameterized bya i . The solid spectra
correspond to those whosel r

max decrease witha i and the dashed lines ar
those that increase.~a! The filament spectrum witha* 52.2i and l(a* )
520.6. ~b! The bead spectrum, as approximated by the Rayleigh spec
with a* 51.15i andl(a* )50.466.
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
ous band atL5`, we expect the discrete modes atL50 to
behave likewise due to their similarity in Fig. 15.

To verify that it is the disturbances from the bead a
not the filament that trigger neck recoil, we have performe
large number of numerical simulations. If localized distu
bances are placed on the draining filament, they are obse
to convect pass the necks and vanish within the beads
they are placed on the beads, they expand into the neck
quickly trigger a recoil. To show that the recoil is indeed
result of this instability, we place the same disturban
within the bead att5400, 600, and 800 in Fig. 17. Eac
disturbance triggers a recoil as seen in the figure. Without
disturbance, the drainage would continue undisturbed by
predicted dynamics of Eq.~37!. The simulation in Fig. 17 is
carried out with a FENE model with extensibilityL5100. It
is clear that, forL in excess of 10, the above recoil initiatio
due to absolutely unstable disturbances from the bead is
dependent ofL. For smallerL, however, Fig. 9 indicates the
filament drainage is much faster than the Oldroyd-B ex
nential drainage of Eq.~37!. Earlier theory12 suggestsh(t)
decreases linearly until breakup. The linear thinning is c
sistent with Fig. 9 but the predicted rate does not agree w
our simulation. Nevertheless, this fast thinning invalida
the quasi-steady assumption in the current filament stab
analysis. From the simulations, a low-L filament seems
‘‘outrun’’ the convective instability from the bead such that
recoil is never triggered. We are unable to determine
critical L that separates unstable filaments from stable on

VII. FORMATION OF HIGH-GENERATION FILAMENTS

The absolutely unstable Rayleigh disturbances from
beads relieve the tension at the necks and quickly trigge
recoil of the primary high-extensibility filament. As seen
Fig. 4, the relieved tension is almost immediately replac
by a sharp maximum in the axial elastic stress at the ne
This elastic stress grows very rapidly as the stretching c

m

r-

el
FIG. 17. Recoil triggered by small localized distu
bances placed in the beads att5400, 600, and 800.
This simulation was actually done with a FENE mod
with all conditions identical to those of Fig. 6 but with
extonsibility L5100.
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ates a much finer secondary filament near the neck wi
much larger azimuthal curvature. The small spike int̂zz of
Fig. 4 rapidly grows into a large maximum, much larger th
t̂zz of the primary filament, as seen in Fig. 18~a!.

FIG. 18. Rescaling of the stress evolution near the neck beyond the rec
Fig. 4 by~a! Newtonian pinching scaling and~b! viscoelastic pinching scal-
ing. (We510,000,S50.25,Ca510, andl 512.5.)

FIG. 19. Normalization of the interface evolution near the neck bey
recoil. Conditions same as those in Fig. 18.
Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AI
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The secondary filament formed must still obey the sa
quasi-steady force balance~26! and the kinematic condition
~23a! of the primary filament before its drainage due to po
mer relaxation. Combining these equations, we get

6S
dh

dt
5 t̂zz2

1

Cah
, ~45!

where we have neglected 1/h relative to 1/h2 in the capillary
term and have omittedt̂ rr . We hence expect the elast
stress to again balance the azimuthal capillary pressur
form a secondary filament of radius

h* 5S 1

t̂zzCaD 1/2

. ~46!

However, since the stretching here arises from the re
and not the elastic stretching of the Rayleigh instability
Sec. III, we cannot use the stress-radius correlation of
~28! in Eq. ~46! to obtain an explicit prediction for the sec
ondary filament radius. Instead, we need to resolve
pinching dynamics during the recoil. We shall associate s
dynamics with a self-similar solution that evolves from t
primary filament, after being triggered by the Rayleigh ins
bility from the beads.

The pinching dynamics triggered by the bead dist
bances push fluid rapidly from the neck into the filament a
the bead. This relieves the stretching and reduces the el
stresst̂zz at the neck. As a result, inertia terms are importa
for the first time in the jet evolution while elastic effect
negligible at the beginning of a recoil. The recoil dynami
are hence similar to that of a Newtonian jet. However, unl
inertia pinching of a Newtonian jet,2,3,5 the extensional flow
about a newly created stagnation point near the neck a
creates a large local maximum int̂zz seen in Figs. 4 and 18
This elastic stress mediates the subsequent pinching dyn
ics considerably. Since the neck profile is asymmetric ab
the minimum during pinching, asymmetric stretching occu
initially that evolves later into a straight filament, as seen
Fig. 4.

We first attempt to simplify the force balance and kin
matic conditions with the Oldroyd-B model of Eq.~11! by
the self-similar transform of a Newtonian jet7

j5
x2x0

S1/2At02t
, t5

t02t

S2 ,

h5SH~j!t/Ca, u5S21/2t21/2V, ~47!

t̂zz5
X~j,t!

St
, t̂ rr 5

Y

St
,

where t0 is a nominal ‘‘pinchoff’’ time when the filament
radiush vanishes atx5x0 . Although this pinchoff is never
completed due to elastic effects that form the secondary
ment in Eq.~45!, scaling Eq.~47! is still appropriate in an
intermediate interval beyond the initiation of the recoil a
before the secondary filament is established. This is q
analogous to the termination of the hyperbolic stretch
stage in Eq.~23! when the jet nodes have been convec
into the beads. After that, a straight filament is formed a

of

d
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begins to drain by the elastic time scale 3We, as described
by Eq. ~37!. Unlike the self-similar pinching solutions stud
ied earlier, the current one at the neck in Eq.~47! will even-
tually evolve into the beads and terminate the self-sim
behavior. Nevertheless, as the hyperbolic stretching yie
the initial filament radiush* in Eq. ~30! prior to the drainage
of the primary filament, transformation~47! yields an impor-
tant intermediate pinching solution that links the recoil to t
straight secondary filament.

Under transformation~47!, the Oldroyd-B jet of Eqs.~9!
and ~11! becomes, in the limit oft→0

~V1j/2!
dV

dj
1

V

2
5

1

H2 H dH

dj
1

d

dj
H2~X2Y!

13
d

dj
H2VjJ , ~48a!

~V1j/2!
dH

dj
52~Vj/221!H, ~48b!

2t
]X

]t
1

1

2
~2V1j!

]X

]j
5~2Vj21!X, ~48c!

2t
]Y

]t
1

1

2
~2V1j!

]Y

]j
52~Vj11!Y. ~48d!

Without the normal stress difference, Eqs.~48a! and
~48b! are just the inertial self-similar equations of motio
and kinematic operation of a Newtonian jet. There are
scribed by an ode. However, the hyperbolic nature of
stress equations must be retained to propagate the in
stress profiles. Hence, one cannot omit thet~]/]t! terms in
Eqs. ~48c! and ~48d!. Otherwise,X andY vanish exactly as
the system has no memory of the past—it collapses into
Newtonian self-similar pinchoff. Hence, the Newtonian sc
ing Eq. ~47! is not the self-similar transform for a viscoela
tic jet.

Nevertheless, the hyperbolic nature of Eqs.~48c! and
~48d! renders them amenable to another self-similar tra
form by the methods of characteristics. DefiningT52 ln t,
one obtains along each characteristic defined by

dj

dT
5

1

2
~2V1j!, ~49!

the stress evolution

dX

dT
5~2Vj21!X and

dY

dT
52~Vj11!Y. ~50!

We shall carry out Taylor expansion inj about the
pinch-off stagnation pointj5j0 to facilitate numerical solu-
tion of Eqs.~48a! and ~48b!. However, as in the Newtonia
case, the coefficients in the kinematic equation@Eq. ~48b!#
stipulate that the expansion is only possible~a smooth self-
similar solution only exists! if

Vj~j0!52, V1j0/250. ~51!

Hence, the leading-order expansion of the velocity is sp
fied

V;2j0/212~j2j0!. ~52!
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The axial velocity is again a uniaxial extensional flow whi
flows to the right and left from the stagnation pointj0 . How-
ever, unlike a straight-filament extensional flow, its stren
increases in time,u;2t23/2(x2x0).

Substituting Eq.~52! into Eq. ~50!, one again concludes
that the radial excess stress approaches zero as the pin
progresses,T→` and t→0. The axial excess stress, how
ever, increases monotonically as described by

dX

dT
53X. ~53!

As for the characteristic lines during initial stretchin
the characteristic lines on the plane of the self-similar va
ables j and T also fan out from the stagnation pointj0 .
Hence, the elastic stress near the pinching point is domin
by the evolution on the characteristic lines nearj5j0 . Sub-
stituting the expansion of the velocity nearj08 in Eq. ~52!
into Eq. ~49!, we get

dj

dT
5

5

2
~j2j0!. ~54!

Combining Eqs.~54! and~53!, it is clear that any initial
stress profileF( ĵ) nearj0 at T50 would be propagated by
the characteristics to produce a stress fieldX(j,T)
5F( ĵe25T/2)e3T where ĵ5j2j0 is the distance from the
stagnation point. ExpandingX(j,t) in powers ofĵ, we ob-
tain

X~j,t!5F~ ĵe25T/2!e3T;F0~t!1F2~t!ĵ2, ~55!

where F0(t)5F(0)t23 and F2(t)5 1
2F9(0)t2. Hence,

knowing the initial profileF(j) for X, we can derive the
time-dependent coefficientsFi(t).

The dominant stress behavior nearj0 from Eq.~55! sug-
gests the invariant scalingt̂zz(t02t)4 is the true self-similar
transform for the pinching dynamics of the current viscoel
tic jet. This is distinctly different from thet̂zz(t02t) scaling
of a Newtonian jet from Eq.~47!. The deviation originates
from thee3T factor of Eq.~55! which, in turn, arises from the
hyperbolic stress convection and elastic stretching enha
ment. The universal stress scaling during self-similar pin
ing of a viscoelastic jet is hence quite distinct from that o
Newtonian jet eventhough the radius and velocity scalings
Eq. ~47! are identical.

In Figs. 18 and 19, we verify these universal scalings
the pinching dynamics in a viscoelastic jet by collapsing b
the stress evolution and the interface evolution at neck
demonstrating that, at the neck

t̂zz5
t̂zz~0!t0

4

~ t02t !4 , h5
Hmin

SCa
~ t02t !, ~56!

whereHmin is a universal constant. The neck radius scaling
identical to that of a Newtonian jet for which Brenneret al.6

have determinedHmin to be 0.0304. The stress scaling, how
ever, is unique to viscoelastic jets. In fact, the Newton
scalingt̂zz5 t̂zz(0)t0 /(t02t) fails to collapse the stress evo
lution in Fig. 18~a!.

It would be difficult to solve Eq.~48! with expansion
~55! to obtain the actual radius and stress profiles. Fo
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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nately, scalings~56! are already sufficient for our purpos
Consider a primary filament in drainage, with stresst̂zz(0)
and radiush(0), when its neck recoils due to bead distu
bances. We do not know the values oft̂zz(0) andh(0) pre-
cisely, as they are determined by the disturbances as sh
in Fig. 17. However, we do know they are related throu
the stretched filament correlation~34! from the neck analysis
~that specifies the driving force during drainag!
Cah(0)t̂zz(0)52. We have sett50 to be the onset of recoi
and hence to be consistent, Eq.~56! must yield t0

5@h(0)SCa#/Hmin . The scalings~56! can now be inserted
with these matching conditions into the force balance~45! to
determine the radius of the secondary filament. Consis
with our earlier leading-order matching in time, we use t
self-similar recoil stress and radius of Eq.~56! in the subse-
quent quasi-steady force balance of the secondary filame
Eq. ~46! during its stretching interval. AlthoughHmin is not
known exactly, the power-law expressions allow us to elim
nateHmin , t0 , SCa, t̂zz and t̂zz(0), to yield an explicit rela-
tionship betweenh* , the radius of the secondary filame
after the recoil and stretching stages but prior to elastic dr
age, andh(0), theradius of the primary filament when th
recoil initiates

h* 5&~h~0!!3/2. ~57!

This simple correlation is verified numerically in Fig. 20 b
triggering the recoil in Fig. 17 at different radiush(0) of the
primary filament during drainage. The recoil is initiated
placing localized disturbances at the bead.

VIII. DISCUSSION

The beads do not participate actively during the stret
ing and drainage stages. They act as sources of noise
accumulators and transmitters of noise from the surround
fluid, that trigger the recoil dynamics. However, they a
unaffected by the recoil and the subsequent formation of
secondary filament. We hence expect this secondary filam
to drain like the primary one as described by Eq.~37!, but

FIG. 20. Comparison of the predicted filament radius iterationh*
5&@h(0)#3/2 from various experiments with varying conditions by trigge
ing the recoil in Fig. 17 at different radius of the primary filament.
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with h* replaced by Eq.~57!. We also expect it to suffer the
same instability at the neck as the primary one, as captu
in Sec. VI. An iterated stretching sequence is hence p
dicted, creating finer and finer filaments, even though we
unable to capture the higher-generation filaments num
cally. If the disturbances are large, such that the recoil
tiates before significant drainage has taken place, the
ment radius is a constant andh(0) in Eq.~57! corresponds to
the undrained filament. From the drainage history of Figs
and 17, this requires very little disturbance at the bead an
quite reasonable for a jet in the presence of constant n
from the environment. In this realistic limit, Eq.~57! yields a
recursive relationship for filaments of successive genera

~r n /r 0!5&~r n21 /r 0!3/2, ~58!

in dimensional filament radiusr and the original jet radius
r 0 . Equivalently, if we allow the first iterate to be given b
Eq. ~30! and all subsequent ones by Eq.~58!, one obtains

~r n /r 0!5FCa~12S!

We G3~n21!/4

, ~59!

and the axial elastic stress of thenth filament, from Eq.~34!,

t̂zz~n!5
2

Ca FCa~12S!

We G23~n21!/4

. ~60!

The elastic stress hence increases very rapidly with e
successive filament, as we have observed in Fig. 18 for
one iteration. As the elastic stress increases, so does the
mer stretchingA is the axial direction, as described by th
Oldroyd-B model. Eventually,A;L2 in the spring law~2!
and extensibility becomes important. As seen in Fig. 9
low-L primary filament, analogous to a high-generation fi
ment, will no longer recoil and the iteration ceases. Break
is expected at that point.

The above universal scalings arise from the asymme
self-similar pinching after recoil. This particular self-simila
solution necessarily involves inertia, as does Egger’s
Newtonian jets.2 In fact, it is the ony stage where inertia
important. We have carried out simulations by artificia
removing the inertial terms. Only the pinching dynamics
ter recoil differ from those with inertia. The recoil still ini
tiates at the neck as the Rayleigh instability responsible
triggering it is independent of inertia. A secondary filame
still forms but it does not obey correlation~57!. The pinching
is also asymmetric, unlike the inertialess pinching of Pa
georgiou’s solution4 for Newtonian jets without inertia. We
are hence unable to predict the radius of the secondary
ment if inertia is omitted. However, as is evident from t
naturally scaled governing equations@Eq. ~9!#, inertia is neg-
ligible for a jet surrounded by an inviscid fluid only for ex
cessively smallCa and S in the limit of largeWe. This is
impractical and we expect inertia to enter during the pin
ing and recoil at the neck, as we have observed in our si
lations. In fact, to obtain Papageorgiou’s symmetric pinch
solution, one must introduce large-amplitude disturbance
the middle of the filament that will transform the linea
uniaxial extensional flow into a uniform axial flow with van
ishing (]u)/(]z). Only then would the inertial term
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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u(]u)/(]z) in Eq. ~9a! be negligible. Hence, we expect in
ertia to be important for recoil and pinching at the neck
most practical values ofCa and S of a highly elastic jet
(We@1) in an inviscid surrounding. Since we have show
the neck is the most unstable portion of the stretched
ment, we expect inertia to play an important role in the rec
and stretching iterations. In our simulations, we have o
seen symmetric pinching for the singular limit ofS51. A
consequence of this argument is that recoil may not occur
jets in a viscous fluid where inertia can be independently
artificially suppressed. However, such jets can trigger ot

FIG. 21. Photographs taken from a primitive experiment in which a v
coelastic bead-filament configuration is created in a Newtonian fluid of
same density. The photographs are taken with about 20 s intervals.
primary filament clearly stretches, recoils, and restretches to form a sec
ary filament.
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viscoelastic effects as their axial velocity has a radial gra
ent even in a straight filament. This scenario is beyond
current theory.

All prior experimental studies of the viscoelastic bea
filament configuration involve flying jets instead of stat
ones confined within finite domains. In a long flying jet, th
beads can slide along the filaments8 and disrupt the recoil
dynamics. The jet also bends and twists when the be
filament configuration appears. Not surprisingly, there is
reported observation of recoil and high-generation filame
To remedy this, we have performed a primitive experime
by squeezing a viscoelastic fluid of uncharacterized rheolo
cal properties through a tube into a Newtonian fluid of ab
the same density but much lower viscosity. We ha
squeezed an excess of fluid initially to create a bead-
head followed by a narrower filament, as seen in Fig.
Despite the crudeness of the experiment, the filam
stretches immediately by draining into the bead and und
goes a distinct recoil to generate a secondary filament. N
the recoiled primary filament forms another bead-like str
ture that bounds the other end of the secondary filament. T
suggests that recoils and stretchings to form high-genera
filaments are to be expected from viscoelastic jets. M
careful experiments are underway to verify the univer
scalings of Eq.~58!.
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