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Iterated stretching of viscoelastic jets

Hsueh-Chia Chang,? Evgeny A. Demekhin, and Evgeny Kalaidin
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

(Received 4 February 1998; accepted 23 March 1999

We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of
FENE and Oldroyd-B jets of initial radius,, shear viscosityr, Weissenberg numbewe
retardation numbe8, and capillary numbe€a. The usual Rayleigh instability stretches the local
uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius
[Ca(1-S)/We]Y?r, between two beads. The strain-rate within the filament remains constant while
its radius(elastic stregsdecreasesincreasesexponentially in time with a long elastic relaxation
time 3We(r§/v). Instabilities convected from the bead relieve the tension at the necks during this
slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from
the resulting stretching. This iterated stretching is predicted to occur successively to generate
high-generation filaments of radiug, (r,/ro)=v2(r,_1/ro)%? until finite-extensibility effects set

in. © 1999 American Institute of Physid$$1070-663(99)01307-7

I. INTRODUCTION viscoelastic jets. However, since viscoelastic effects can only
be triggered when the polymers are significantly stretched by
There has been considerable recent progress in our ushe flow, viscoelasticity is not expected to be of significance
derstanding of Newtonian jet dynamics. Numerical simula-nitially when the flow within the unperturbed jet of radiug
tion can now significantly extend the classical linear Ray-is either zero or a uniform axial flow. Prior linear theofiés
leigh theory for the initial small-amplitude evolutidn. indeed confirm that viscoelasticity does not alter the classical
However, singular stresses that occur as the jet radius aRayleigh wavelength @t significantly and only slightly
proaches zero have prevented accurate numerical resolutigficreases the growth rate.
of the final breakup dynamics. Instead, recent mathematical However, as uniaxial extensional disturbance flows are
analysis of the self-similar, finite-time singularity formation created by the initial disturbance, the polymers are stretched
near breakup has provided significant insigitftincluding an  considerably at the stagnation points and the late-stage dy-
interesting study of observed iterated jet pinching leading thamics are profoundly affected by viscoelasticity.
breakup Universal scalings of the near-breakup evolutionexperiment& show that the breakup is delayed by orders of
are now well understood, eventhough the longwave approximagnitude. In some cases, the viscoelastic jet may not even
mation invoked in the theory may prevent it from resolving preak up over the entire duration of the experiment. Instead
the dynamics at or beyond breakup when drops begin t@f pinching asymmetrically about the pinch point like a
form. The hope is that one can “patch” the breakup analysisyewtonian jet to form satellites, a unique filament-bead con-
for the numerically inaccessible interval to numerical simu-figuration is observed. This configuration is extremely robust
lation of the evolution prior and beyond breakup. Since thergynd the drainage from the stretched filament to the com-
are only a few parameters in the governing equations, delinyressed beads is extremely slow. If the viscoelastic jet does
eation by numerical simulation can be readily carried outyrea, it breaks at the necks joining the filament to the beads.
away from the breakup stage. o This bead-filament configuration has also been observed in
Such a luxury is lost in another classical jet breakuppymerical simulation by Bousfield et®.for an Oldroyd-B
problem—evolution of non-Newtonian jets. In addition 10 f,ig. pue to the slow drainage from the filament, the simu-
the usual capillary forces that drive the breakup, viscoelasption is unable to proceed beyond the bead-filament con-
ticity effects introduced by polymers are known to signifi- figuration and determine the final fate of the jet.
cantly alter the breakup dynamics. However, viscoelasticity Instead, a number of theoretical analyses have focused
not only introduces additional rheological parameters bup the breakup dynamics of slender filameritd® These
also renders the equations hyperbolic. Both factors excludg,eoried 12 have uncovered the exponential drainage dy-
exhaustive numerical analysis even with modern-day compamics of an elastic filament. This drainage is driven by the
puters. In any case, the myriad of physical effects introducedapijlary pressure difference between the bead and filament.
by the polymers can probably be best elucidated with am\ more detailed force and mass balance across this neck will
analysis that can isolate each effect. _ be offered here but the scalings of earlier elastic drainage
Linear stability analysis that amounts to an extension ofneories remain valid. Because the radii of both bead and
the classical Rayleigh theory can be readily carried out fokjjament vary very slowly, the constant capillary driving
force approximation is valid quasi-steadily. The reason both
dElectronic mail: hsueh-chia.chang.2@nd.edu radii vary slowly, on the other hand, is because the elastic
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axial stress, created by the stretched polymers during fila- gh2

ment drainage, exactly cancels the slowly varying capillary  — + 7, fo 2rudr=0. 4
pressure. As a result, a linear uniaxial extensional flow exists

within the filament with a constant strain-rate. Due to the  In the longwave limit wherh(z) varies slowly with re-
drainage, the filament radius decreases and the axial stresgect toz, the axial velocity, pressure, and the stress compo-
increases but the strain-rate remains constant. This uniqugentsr,, and 7., are almost uniform with respect towhile
drainage mechanism yields a distinctive exponential dethe radial velocityv and the off-diagonal stress components
crease in time for the filament radius with a large elastic timer,, and 7,, are nearly zero. Hence, the proper ansatz for
scale. The exponential thinning implies that an Oldroyd-Bslender jets is a Taylor expansioniin

jet, in contrast to the Newtonian case, does not breakup in

2
finite time. It is only when finite extensibility in a FENE U~Up+Upr™ -, (5a)
model is introduced that finite-time breakup is predicted. 1
g . dug 1 4du,

However, these analyses omit inertial effects and focus y~— - —r— - —=¢3... (5b)
only on slender filaments. Since the Newtonian self-similar 2 dz 4 oz
brea_kup S(.)Iu_tlon. of Egg_e?snvolves |n.ert|a, it is not plear_ P~ Po+ Par 2+, (50)
that its omission is valid in late-stage filament dynamics with
fast axigl f!ow. More importantlly, gxperimental data for Tyy ng+..., (5d)
Newtonian jet3 and non-Newtonian jetsclearly show that
much of the late-stage jet dynamics, including breakup, oc- 7 ,=7;,~Tr+---, (58
cur at the neck joining the filament to the bead. For example, 0
iterated pinching has been observed in Newtonian ptthe Tre = Tt (5)
necks. Such dynamics escape the analyses of Refiamgt A,,~AC (59)
Entov and Hincl¥ for slender filaments without inertia. Im- zz 9

portant dynamics at the neck of the jets have hence escaped 5 _ A A0, (5h)
our understanding thus far. In this report, we endeavor to

delineate both the formation mechanism for the bead- A A?r, (5i)
filament configuration and the dynamics at the necks. We

shall examine both an Oldroyd-B jet and a FENE jet andwhere all the coefficients of expansion are only functior of

reveal an interesting recoil and iterated stretching dynamicsndz. o . _ .
Upon substituting this ansatz into the equations of mo-

tion and boundary conditions, nondimensionalizing with the

initial undisturbed radius, as the characteristic lengtly/ v

as the characteristic time, wherse= ug(1+c)/p is the shear
We use the FENE-CR model of Chilcott and Rallis8n, viscosity due to both solvent and polymer, antt, as the

a simplification of the classical FENE dumbbell modfetp  characteristic velocity, one gets to leading order irwith

determine the stress tensor uniform pressure and axial flow and negligible off-diagonal

stresses, the following dimensionless longwave equations:

Il. LONGWAVE SIMPLIFICATION AND SIMULATION

= usy+GHR)(A-1), (1)
2_ ; ; Ju u 1 <9;< 1
whereR —traciA. The spring force law with E+UE: Ca h2 az[h (1, 1)1, (63)
f(R):ﬁz/—Lz. 2 h2 g
—+ —(h?%u)=0, (6b)
represents finite extensibility with as the ratio of the length gt~ oz
a fully extended dumbell to its equilibriu length aAdbeing IA f(R)
the ensemble average of the dyadic product of the end-to-end — + —(uA) 3A— +——(A—1)=0, (60)
vector of the dumbbell, normalized by the equilibrium sepa- at We
ration. The matrixA is taken to evolve by B 9 f(R)
IA f(R) - —(uB)+—(B 1)=0, (6d
H+u.VA=A.Vu+VuT-A— (A-1). ©)
u _
The parameterg.s, G, and D represent solvent viscosity, T7=2S -+ Wf(R)(A—l), (6e)
elastic modulus, and relaxation tini®, respectively. The
magnitude of non-Newtonian stresses is measuredc by Ju 1-S
=GD/us such that the steady shear viscosiiy=(1 =S+ we [(R(B-1), (6f)
+c)us/p. The tensory=Vu+(Vu)' is the rate-of-strain
tensor. whereu denoteslg, « the jet curvature, the radially uniform

The appropriate boundary conditions are the normal ana@xial velocity, A and B represent the polymer stretching in
tangential balances at the jet interface defined Byh(z). the axial and radial dlrectloné,0 andA?r, respectively, and
There is also the kinematic condition for mass conservationr,, and 7,, the dimensionless versions of their counterparts
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in Eq. (5) with a superscript 0. All these quantities are func- stresses along the streamline, the stretching due to the veloc-
tions of the dimensionlessandt only. The spring law Eq. ity gradient @u/dz), finite extensibility inf(R) and the re-

(2) now becomes laxation of the stretched polymers.
5 Several limits of Eq.(9) can be readily derived. The
f(R)= L 7 extensibilityL is practically infinite when A+ B)<L? in Eq.
L>—(A+B)’ (7). In this limit, Eqgs.(9¢) and(9f) yield the Hookean spring

laws
and the other parameters are the usual capillary, Weissenberg

and retardation numbeGa=pv?/or,, WezDv/rS andS
=1/(1+c).

The parameteiVe measures the elasticity of the poly-
mers related to the relaxation tini2 We are interested in
the strongly elastic limit withV/e> 1. The retardation param-

We We
A=ltrgg—g and B=lit g, (10)

and, upon substitution into Eg&@c) and(9d), the stress evo-
lution of an Oldroyd- B fluid results

eter § on the other hand, is associated with the ratio of J . _ du R Jdu
retardation time scale due to non-Newtonian stress to the g 72zt U7 T2z~ 2Tz + iy T +2(S— 1)5 =0,
relaxation time scald®. It is bounded between zeidew- (11a

tonian limit) and unity. The capillary number is also a unit-

order parameter relative td/e We shall be exploiting the ﬁ} +ui} 5 ﬂ+ 5 (s 1)(9_u] -0
smallness ofWe ! in subsequent asymptotic analyses. The dt " "z "oz = We| " az)
extensibility parametel, on the other hand, can range from (11b
unit order toO(We), depending on the molecular weigfit, The Oldroyd-B limit is hence not a singular limit.

with L —< being the Oldroyd-B limit. If one further neglects elastic and retardation effects,

To render the hyperbolicity of the stress constitutivewe=0 and S=0, a Newtonian limit is obtained with,,
equations more apparent, it is convenient to separate the —(25u/gz) and 7,, = — (dul/dz) ~ — 2(dv/dr).

polymer elastic stress from the quasi-viscous retardation |t is far simpler to integrate the longwave equation Eq.

stress by defining the excess stresses (9) or Eq.(11) than the full equations of motion. However,
strictly speaking, the longwave equation is only valid for

- s ol fil ts wh dii dually. This i tt t th
Y= Tyy 23E and %, = T”+SE’ (8) ilaments whose radii vary gradually. This is not true at the

observed beads which are spherical. Nevertheless, the spheri-

to remove the velocity derivative in time in the stress equa—Cal beads should obey the axisymmetric Laplace—Young

tions that result when Eq$60)—(6f) are combined. The re- equatlo_n with constant curv_ature to leading order. Hence, if
; . we retain the full curvature in Eq9a)
sulting equations are

h,, 1
u o 1ak 149 K= NI 17 (12)
E+UE:C_aE+FE[h2(TZZ_Trr)] (1+h3) h(1+hy)

the spherical beads would also be captured to leading order
n 3_? i ( hzﬂ) (9a) by Eq. (9). We have successfully applied this gompo§ite ap-
h* 9z az ]’ proach to capture both the bead and annular film during drop
) ) formation when a vertical fiber is coafédand to capture
ﬁ+uﬂ+ a_uh2:o (@b both the finger tip and the thin wetting films in the Brether-
' ton problem of air fingers replacing liquid in capillaries and
channels?® It is nevertheless aad hocapproach that is only
dA A au  f(R) valid to leading order. It must be verified against numerical
ot Ve ZAE_" W_e(A_l)ZO’ 99 simulation of the full equations to examine if there is any
discrepancy due to higher order effects.
oB JB Ju f(R) To this end, we compare in Fig. 1 our computed profiles
St U Bt we (B-D=0, Od  from Eq. (12) for the Oldroyd-B fluid L —x) at Ca= 10,
We=300, andS=0.25 in a domain of sizé=20 to the
A -S computation of the full equations by Bousfigtlal 1’ Due to
227 \We f(R)(A-1), 99 4 different scaling, their dimensionless tirdieorresponds to
t/Ca and their length corresponds 28 of the present nota-
R -S tion. The results are presentedd@andz/1. As is evident, the
T =we (RN(B~1). (9f)  evolution is faithfully captured by the longwave equation
even after the bead-filament configuration is established. Our
The inertial terms lie to the left of the equation of motion simulation of the Newtonian jetWe=0) is also in agree-
[Eq. (9a)] and they are balanced by the capillary pressurement with earlier simulations by Eggers,Papageorgiof,
gradient, the gradient of the normal stress difference and thand Brenneet al®
polymer retardation stress terms on the right. The constitu- As is consistent with the experiments, the longer simu-
tive equationgEqgs.(90)—(9¢e)], capture the convection of the lations allowed by the longwave simplification reveal impor-
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FIG. 1. Simulation of the jet radius
h(z,t) of the Oldroyd-B jet from the
long-wave equation on the right and
from the full equations of motion on
the left by Bousfieldet al. (Ref. 10.
The parameters ar€a=10, S=0.25,
We=300, and a domain size of
=20. The graphs are plotted in and
axial scale ofz/l and a time scale of
t/Ca.

0 T R L1 0 L1 1 L1 1
0 02 04060810 0 02 0406 08 10 0 02 04060810 0 02 0406 08 1.0

tant jet dynamics at the necks joining the beads to the filament. As pinching begins symmetrically at the two necks
ment. Such late-stage dynamics develop long after theeart=7.0, two additional uniaxial extensional flows are
formation of the bead-filament configuration and is misseccreated locally at the necks and the stress again exhibits two
by earlier numerical studies. An extreme case Wfe  sharp maxima. The excess axial stress plays an important
=10000 is shown in Fig. 2. When the retardation numBer role in the recoil process.

is not near its two limits of zero and unity, a distinctive recoil The recoil that follows the pinching is shown in Figs. 4
of the filament develops at the necks. The simulated evoluand 5 for a different Oldroyd-B jet. It is evident that second-
tion begins with the formation of a minimum in the jet radius ary filaments are created at the necks by the stretching that
due to the usual Rayleigh capillary instability. This creates dollows the recoil of the primary filament. The bead is unaf-
stagnation point at the minimum and an uniaxial extensionalected during the recoil and the secondary filament joins it at
flow near it. The extensional flow stretches the polymers ané neck that is quite similar to the neck of the primary fila-
generates elastic stresses of positiye and negativer,, . ment. However, the secondary filament is much thinner than
The profiles of7,, during the evolution are seen in Fig. 3. the primary one and, as shown in Figb¥ has a much larger
This axial elastic stress develops a symmetric maximum atlastic stress. The simulated elastic stress evolution shows
the first stagnation point. As the jet profile near this point isthat the stress actually drops at the primary neck before
stretched into a filament bounded by two beads=e6.5, the  forming a sharp maximum due to the stretching that creates
stress profile evolves into a constant value within the filathe secondary filament. This suggests the recoil of the pri-

14

FIG. 2. Evolution of a highly elastic Oldroyd-B jet from the Rayleigh in- 0 2 4 6 , 8 10 12 14
stability, to the formation of a filament by stretching and to the beginning of

recoil at the necks of the draining filament. The nodes during the RayleighFIG. 3. The built-up of the axial elastic stregs in the stretched filament of
instability, which bound the jet interval that is stretched into a filament, areFig. 2. The elastic stress is constant within the straight filament until recoil
marked. We=10,000,S=0.25,Ca=10, andl =4). at the necks triggers two sharp maxima.
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FIG. 4. Blow ups of the Oldroyd-B interface recoil and elastic stress evo-FIG' 5. The entire jet profiles before and after the recoil of the Oldroyd-B

lution at one of the necks. For clarity, snapshots at different time, measure{?t In Fig. 4. A secondary filament is clearly visible.

from the onset of pinching at the bottom figure, are taken in the two plots.

Note that the elastic stress is first relieved at the neck before the sharp

maximum develops due to secondary stretchiny.e€ 300, S=0.25,Ca

=10, andl = 4). prior to the first pinch recoil that define the lifetime of the

primary filament. The jet radius drops and the axial stress
rises precipitously during the stretching stage rteat00 to

mary filament is triggered by a relief of the tension at theform the constant-radius filament. The profiles shown in Fig.
neck. The fully formed secondary filament, in the presence indicate the transformation to an axisymmetric filament
of the bead and the primary filament, is shown in Fig. 5. with a constant stress and a linear axial velocity profile that

We are unable to numerically track the jet dynamics af-reachest u,,,, at the necks. However, this stretching stage
ter the formation of the secondary filament. However, sinceends abruptly as,,x approaches zero and both filament ra-
its neck with the bead is quite similar to that of the primarydius and its stress reach constant values. An even slower
one, we expect another recoil to initiate there. Iterated recoilastic drainage then takes over after a short transient for
and stretching dynamics can then proceed indefinitely at the-100. The radius continues to decrease and the stress con-
necks of Oldroyd-B jets. In our subsequent analysis, we shatinues to increase within the filament after this short hesita-
develop a theory for Oldroyd-B filaments and show that theirtion, but at distinctly slower rates than the stretching interval.
similarity allows us to relate their radii and elastic stress. AsThe maximum axial velocity at the necks, however, remains
a result, with proper scalings d¥e, Ca andS the evolution  constant during this long interval. Due to the linear uniaxial
and recoil of the primary filament can be used to deducdlow, this implies the strain rate in the filament remains con-
those of higher-generation filaments. We shall also demonstant during this interval.
strate preliminary experimental evidence of this self-similar  In Fig. 8, the evolution of jet radius at the first neck is
iterated stretching dynamics. shown for a large range diVe and Ca for an Oldroyd-B

The evolution of the Oldroyd-B jet radius, the axial fluid. The stretching, drainage and recoil stages show appre-
stresst,, and the velocityu,,,,, at the neck of the first fila- ciable sensitivity to these values.
ment are shown in Fig. 6. There are two distinct slow stages We examine the dynamics of the FENE jet in Fig. 9 as a
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1 pected. Correspondingly, the lowevolution in Fig. 9 may
well represent the dynamics of higher-generation filaments.
This will be further verified by an analysis that relates the
recoil dynamics of filaments of different generation.

As seen in Fig. 9, the lov- primary filament drains
much faster than the highly extensible filaments. In fact, it
does not recoil at the neck and seems to pinch off in finite
time. Entov and Hinclf have predicted this outcome for a
constant-radius filament. An insert of the ldwfilament-
bead profile immediately before pinch off is shown in the
insert of Fig. 9. Instead of a recoil, the straight filament re-
mains during the final precipitous drop Ir(t) of Fig. 9. A
much thinner filament drains rapidly at this stage and re-
mains stable to the instabilities that trigger recoil. This then
suggests that iterated stretching will eventually stop when
A+B, the stretching, is the same order hsfor high-
generation filaments.

Our analysis to establish the self-similarity of filaments
of different generation begins with the linear Rayleigh insta-
bility and the “hyperbolic” stretching it creates that forms
the primary filament. This formation dynamics can then be
used to fully specify the slow exponential elastic draining
dynamics for the Oldryod-B jet shown in Fig. 6. The insta-
bility that triggers the recoil at the neck is then scrutinized.
In contrast to the Rayleigh instability that creates the primary
filament, the resulting recoil begins with Egger’s self-similar
pinching with negligible elastic effect and followed by the
same stretching and drainage dynamics of the primary fila-
ment. We are then able to estimate the radius and stress of
the secondary filament and, by induction, relate all high-
generation filaments to the previous generation. In the pro-
cess, we delineate the self-similarity of all high-generation
otr ) filaments until finite extensibility becomes important. When
N extensibility comes into play, the drainage is too rapid for the
recoil instability to take effect and Fig. 9 indicates that pinch
off will occur instead.

o>

zZ

0.12

0.08F
'
!
0.06F !
1
'
|

lll. LINEAR STABILITY THEORY AND ONSET OF
STRETCHING DYNAMICS

0.041

.02 We shall examine jets with larg&/eandL. As seen in

, \ o= Ea— Fig. 9, the initial instability, the filament formation dynamics
/! 1 1 1 1 1 1 1 . X . .. e
05 10'0 200 300 400 500 600 700 800 900 and the drainage dynamics are insensitive &s long as it is
in excess of 10. We hence focus only on the Oldroyd-B jet
here. The stretching dynamics will be shown to be described
FIG. 6. Evolution of the jetfilamen) radius, elastic stregsneasured at the by a coupled set of hyperbolic equations and, as such, its
middle of the filament and strain-ratémaximum axial velocity at the negk lution h t that b ' the i .’t. |
of an Oldroyd-B jet(filamenj prior to recoil. Theoretical predictions are evou_ !on asas rc_mg memory tha remem ers e m_' 1a
also shown. We= 2300, S=0.25,Ca= 10, andl = 20). condition and evolution. Fortunately, the initial evolution in-
volves small-amplitude deviations from the initial jet and can
be captured by a standard linear analysis that is further sim-
function of extensibilityL. The formation dynamics of the plified by our longwave expansion. Consider a standard nor-
primary filament and the subsequent elastic drainage dynammal mode perturbation of the straight jet basic state

ics are insensitive th for L in excess of 10. This suggests

!

that the stretching\+ B, is much smaller theh? in both the 1 h'
initial jet and the primary filament under such conditions. )
However, the recoil dynamics in Figs. 3 and 4 suggest that Au ~ 0 + u/ elaztAt (13
the secondary filament formed after the recoil will have a T2z 0 T2z
much higher axial elastic stress and hence WghB is ex- Trr 0 Tir

Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets 1723

\mw/ -

i) 5 10 15 20 25 “o 5 10 15 20 25

0.02
=250
0.015

0.01 +

0.005 |

h(z) of u(z) o©
-0.005 |

-0.01 |

-0.015 |

25 0025 5 10 15 20 25 g 5 10 15 20 25

FIG. 7. Radius, velocity, and stress profiles of Fig. 6 at various times during the filament formation and drainage stages.

In the limit of largeWe one obtains the following rela- the cubic polynomialEq. (16)]. The resulting quadratic cor-
tionships between the stresses and the deviation radius fromesponds to a longwave growth rate with a neutral mode at

the linearized versions of Eq&) and(11) ap=1 and a maximum-growing mode with
2ia(S—1 4(1-S
T %“’—‘ (Te)“" (149 Nmax= -
2y2Ca(1+3SyCal2)
ia(S—1) 2(1-9)
! = r— ' and 18
= we Y e h'. (15) (18
The growth rate\ is determined from the dispersion relation- A= 1 _
ship T V2[1+3S\/Car2]Y2
We The extra mode whose growth rate vanishe8Va— o can
3 2 24 2@ T4 2
2Wer"+(2+6a"SWeN "+ a”| 6 Ca(l @) |\ be determined by standard expansion to be stable
a?(1-a?) \ 1 1. 6Ca . 19
~ T ca % (16 T wel VT wei=ad ) (19
The simplest limit is that of a Newtonian je¥\(e=0) These results are consistent with earlier linear stability

and it yields the classical longwave quadratic growth rateanalysis of the full equations for the Oldroyd-B jet, the Max-
which vanishes atr=0 and at the neutral wave numbeg  well jet (S=0) at largeWe and the Newtonian jet at/e

=1. Its maximum growth rate and wave number are =029 Since the retardation number must be less than unity,
highly elastic jets yield slightly longer waves and slightly
Newt_ 1 larger growth rates than Newtonian jets, as seen from EQs.
¥ 2\2Ca(1+3+/Car2) (17) and(18). The limiting Maxwell jet is the most unstable
and 17) with the longest disturbances. Nevertheless, elasticity has
little effect in the initial evolution.
Newt 1 dDe;pfite the negligibly Smiri]” e'lastic styesses, W? are 1ple
Umax — 12" to decipher its creation mechanism at inception from this
v2(1+3yCai2) linear theory. The phase difference betwé&eérandu’ in Eq.
In the limit of large We the elastic effect becomes (14), h'~—(ia/2\)u’, implies that a node i with a posi-

negligible—the relaxation time approaches infinity. This cor-tive slope appears at the minimumhe=1+h’. This corre-
responds to a zero eigenvalue which can be factored out afponds locally to an axisymmetric extensional flow with a
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1 ~ ; ‘ ' ' v stagnation point at the jet minimum. The next relationship
ool | (15 indicates7,, and 7,, are in phase with—h' andh’,
respectively. This reflects the result that the uniaxial exten-
08r | sional flow at the stagnation point has stretched the polymers
o7t 4 and induces a maximum in,, and a minimum inr,, at the
o5 ] stagnation point in the middle of the computation domain
hmozg_ ) . 1-s (1-9) Lan (1-9) (1-9)
‘ 2t We T Twe M) T Wetand T Wer
04r E (203)
I | Gl 20b)
o2t . T We We ' (200
01r o T during the initial evolution with small-amplitude waves. This
, ' wisto 200 400 500 700 set of invariance between the stresses and the jet radius is the
0 200 400 600 800 1000 1200 1400 relationship that will be propagated along the characteristics

during the hyperbolic stretching stage.

IV. FILAMENT FORMATION BY STRETCHING

0.9 b

o8 | The axisymmetric extensional flow revealed in the linear
analysis will trigger a stretching evolution that enlarges the

o7f : small region near the jet minimum, with a locally constant

o8 | radius, a linear axial velocity and a constant positiye,

P until a straight filament is formed. There are, of course, two
05r 1 additional converging stagnation points at the two jet
04l | maxima bounding the extensional stagnation point at the

minimum. These regions will be compressed into beads.
03r ] Hence, the stretching of the filament at the minima is accom-
02 _ panied by compression at the maxima. We shall focus only

on the extensional flow near the minima and consequently
only on filament stretching.

~ : ; ; - The scalings from the linear theory in Eqd.4), (15),
0 200 400 600 800 1000 1200 ~ .

t and (20) suggest thatr,, and 7,, at the above stagnation
i ~1

FIG. 8. Evolution of the neck radius of an Oldroyd-B jet f6+0.25 and p0|.nt are a faCf[OI’ ONVQ smaller thanh and _(&U/O’)Z)’
| =20 but for the indicated ranges WeandCa. All exhibit the stretching, which are _Of unit qrder, in the stretchln_g eVOluuon_tha'_[ fol-
drainage, and recoil stages. lows. This is consistent with our numerical results in Fig. 6.
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FIG. 9. The effect of extensibilitiz on the jet evolution
b for a FENE jet We=300, S=0.25, Ca=10, and|
=20). There is little sensitivity td. until L>10. The
b insert is the filament-bead profile &t 243 forL=2.
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Also, anticipating the length of stretching stage to be gov- 1
erned mostly by the slow extension flow near the slender jet 09
minimum at the stagnation point, we expect fluid inertia to T
be negligible in the stretching filament and the curvatune osl
Eq. (12) to be well approximated by the azimuthal curvature -
only, k=—1/h. = o7y
Hence, the dominant terms in Eq®) and (11) during o
the filament stretching stage are 061
L s, 5+ 352 o 21 il
h2 9z\ Ca (T2z— Trr) a9z (2139 sl
J Ju
— 4+ y— 2__ _ " R2 03+F
ot uaz h ﬂzh ’ (21b)
(a) 02 i 1 | 1 1 1 1 1 1
&+ aA—2&U‘+1_S 21 2
at " Yaz) T 7| T e | (219 18}
AN P &uA+1—S 1 161
Atz G| T we | (21d raf

The hyperbolic nature of the kinematic and stress equa- 5'5 tar
tions in Eqs(21b—(210d is quite apparent. It originates from g 4t
the fact that both the liquid mass and the polymers are con- g

vected by the nearly-independent axial velocity. Hence, the 08
evolution of h?, 7,,, and#%,, are along characteristic lines 061
defined by 04+
dx 02r
a—u, (22 ] ] 1 I 1 1 1 1 ]
0 100 200 300 400 500 600 700 800 900
on which they behave as (b) ' t
dh2 Ju +
. __ TR +
dt 0z h% (233
2+ + X *
[}
A, 2, 1S 23b . . ’ %
—_ ] JR— + _ *
dt 7 “oz\ ™" we |’ @b X o
v\—: 15F o
d_ au (A 1—S> (230 2
—T=— =\ Tyt =] 0 A
dt az We § 1k +-Ca=38=025
Since the equation of motiofEq. (218] becomes a 2 . - Caz10 §20.25
steady force balance among capillary, elastic and viscous <
forces, a simple integration yieldszandependent forcé(t) 051 °-Ca=105-05
that can only be a function of time x- Ca=10 $=0.75
h (9u 0 ] 1 ! 1 1 1
A h%(5—% )+ ), 0 200 300 400 500 600 700
Ca h*(7,,—7¢/) 3Shzaz f(t) (24 © We

This quasi-steady balance then yields how the local flowriG. 10. (a) Evolution of the forcef(t) at the jet minimum in Eq(24)

(actually flow gradier)tis determined by the local azimuthal showing a decrease fromQa to 0.6Ca during the stretching interval at

capillary pressure and elastic stress difference. 0<t§70 for the same OIdr_oyd-B jgt of Fig. Gb_) Simulated value of
The forcef(t) evolves in time during the stretching in- canr, for the Oldroyd-B jet of Fig. 6, showing convergence to an )

. - . . asymptotic value 1.6 close to the estimated value 2 during the elastic drain

terval between the small-amplitude evolution described imge stage fot>100. (c) Comparison of the simulated jet radibg at the

the last section and the slow elastic drainage of next sectiormnd of the stretching interval to estimate Eg0).

During this interval(around 7~100 in Figs. 6 and 8 7,,

increases dramatically anddrops precipitously while the jet

evolves into a filament with constant radius. We are unable

to obtain the force evolutiof(t) explicitly but our numeri- O(We™?) and the axial velocityi and its gradient {u/Jz)

cal results in Fig. 1®) indicate that it does not vary much are both small at the order of the perturbation raditgrom

during this stretching interval. During the small-amplitude the original straight filament of unit radius. As a result, the

evolution initially, the elastic stresses of Eg0) are small at initial value of the force during the stretching interval is
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1 when du/dz and u approach zero as seen in Fig. 6. Physi-
fO~ 5 (25 cally, the elastic stress, which scaleq é5— S)/Welh™*, as
seen in Eq.20), has reached such a high value within the
We shall use this value throughout the entire interval—thefilament that the liquid cannot continue to drain towards the
force is assumed to be also time independent. A more rigomode due to the gradient in the azimuthal curvature, which
ous treatment would be to expand the evolution in bothscales only as (Da)h 2. That the stretched filament
We ™! andt to discern the full evolutiori(t). This would be reached an intermediate asymptote with constant radius is
a tedious endeavor and we will numerically verify that Eg.evident in all simulations seen in Fig. 8. An “inflection
(25) is a valid approximation. With this estimate, the quasi-point” when the evolution “hesitates” is seen after the rapid
steady force balance becomes decrease during the stretching stage and before the slow elas-
tic drainage stage. The precipitous drop in the strain rate at
du 1 (1-h) . : ; ; ;
3S—=—— o (FyT1r), (26) this mt_ermeo_llate stage _between_ stretch_lng a_nd _dralnage is
gz Ca h also evident in the velocity evolution depicted in Figs. 6 and

that is valid at every point within the stretched filament. The'"
capillary pressure and normal stress difference are balance(go)
by polymer viscous dissipation.

We now focus on the jet minimum with a stagnation
point (u=0). Its vanishing axial velocity implies that the
corresponding characteristics line is vertical in the plane
while neighboring characteristic lines diverge from it. As a
result, the linear axisymmetric extensional flow region is ex- _ ) . .
panded throughout the region bounded by the jet nodegyhen S_'S r_10t Zf‘[o or unity. Since we have carried out an
Moreover, a simple analysis of EqR3a and (230 reveals expansion itWe™", S and 1-S must actually be larger than

_l . .
the following invariance along the characteristics during fila-V€ .' When polymer retardation is absen§<0), the
ment stretching: quasi-steady force balance cannot be assumed and slow

drainage described by Eq29) breaks down. The singular

Despite the approximation made 6¢t) in Eq. (25), Eq.

is seen in Fig. 1() to be in good agreement with the
simulated filament radius at the inflection point, prior to the
slow elastic drainage stage, for a wide range of conditions.
Some scatter is observed but the measured values are mostly
bounded betweeh, and 2, .

Note that this intermediate stretching interval only exists

R — 4 limit of S=1 corresponds to the coincidence of polymer re-
T2t e | = const laxation and retardation times. At this condition, the excess
elastic stresses are never triggered and the azimuthal pressure
and (27) gradient drives the jet to pinch off without stretching, as in
1-5 Papageorgiou’s viscous jet breakup.
Tt m) h~2=conss.

V. ELASTIC DRAINAGE
Hence, applying this to the characteristic at the stagnation

. \ . &Y
vided by Eq.(20) after the small-amplitude evolution, one has reached a small constant valye~O(We *?), the ra-
obtains dial stressr,, remains small but the axial stress, is large at

O(h;4/We)~O(We) by Eqg. (270 and the strain rate
. . [1=51 (du/9z) has dropped from unit order at the beginning of
T2z~ T”_(W)(F_h ) (28) stretching to negligibly small values by E6) such that
there is no flow out of the filament due to stretching. How-
ever, at this point, the bead-filament configuration is estab-
lished and a new capillary driving force between the filament
and the bead replaces that of the initial jet in EZp) during
stretching. This different driving force changes the quasi-
steady force balance and the magnitudergf It also per-
dh 1 1-h (1-9)/1 mits a small but finite drainage from the filament to the
S—=———"+ —( —h3), (29 bounding beads. This is the elastic drainage stage that fol-
dt Ca h We | :
ows the stretching stage.
where the right side represents the flow gradient between the Instead of carrying out detailed matched asymptotics to
jet minimum and the jet node as driven by the azimuthamatch these two stages, we adopt a lead-order “patching”
curvature difference and retarded by the elastic stresses at tReheme to resolve the relaxation dynamics during this slow-
minimum. This stretching ceases when the capillary pressurést intermediate drainage stage. We begin by determining the
increases sufficiently ab decreases to balance the elasticProper scalings. During this interval, the filament has already
stress in Eq(29). This occurs when the thinning jet radihs been stretched to a jet with a uniform rading) of order
approaches We 12 as stipulated by Eq(28). For relaxation to be in-
cluded in the stress dynamics as the polymer is being
stretchedWe 7,,, (97,,/dt), and (u/dz)T,, must all bal-
ance in Eq.(119. Since the filament length is unit order,

at the stagnation point.

Hence, at this minimum wherej@/9z)>0, h and 7,
decrease monotonically whilg,, increases monotonically as
the filament is stretched. Combining Eq233a), (26), and
(28), we acquire the thinning rate at the minimum

hS

1/2

Ca(l-95) 30

We

x =
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~0O(1) and this yields the scalingi~O(We %) andt ~O(We ¥4, u~O(We 1), andt~O(We) from the above
~0O(We) for the draining filament. Relaxation must be in- scaling arguments, we obtain the following equations for the
cluded to effect the pull of the stretched polymers andneck region from Eqs(9) and(11)

counter the capillary driving force such that a slow drainage

into the beads can now proceed. This slow drainage is the i&_KJr _12 i(hZ%ZZ):o, (313
longest process in the jet dynamics and its duration is a good €& 92 h* 9z
estimate of the drainage time. The remaining unknown scal-
ing is for 7,, which will be determined through a quasi- E(uh2)=0, (31b
steady force and mass balance at the neck.

Once the straight filament is formed, the hyperbolic na- J au
ture of the evolution is lost. During the stretching stage, the U7, 722~ 25 722~ 0, (319

dynamics on each characteristic line are not affected by the

evolution on the other characteristics. However, with the eswhere we have omitted the negligibie, at the end of the
tablishment of a straight filament, the linear uniaxial exten-Stretching stage. As long as the longwave approximation re-
sion flow permeates the entire filament and the drainage dynains valid in the neck such that the neck width does not
namics over the entire filament is in unison. The driving@xceedO(We™*?), the radial stress remains negligible dur-
force has also changed. During the stretching stage, there igfg the drainage stage and all subsequent dynamics. Due to
quasi-steady force balance governed by @4) which stipu- the relatively small width of the neck compared to the fila-
lates that the stretching flow is driven by the local azimuthament, the force and mass balances are both quasi-steady.
pressure gradient and countered by local elastic stress gradfimple integration of Eqs(31b) and (31¢) from the end of

ent and viscous dissipation. When a straight filament idhe filament, where the linear extensional axial velocity
formed, Eq.(25) becomes invalid as there is zero local gra- reaches its maximum valug, and where the filament radius
dient within the filament. The driving force for drainage is @nd elastic stress retain the same values throughout the
now provided by the azimuthal pressure drop across the nedkraight filament ah, and 7o, to any location within the
joining the filament to the bead. To quantify this driving N€ck, yields

capillar_y forcez amore detailed_order assignr_nent at the negk ,=1o(UlUg)? and u=ug(he/h)2. (329
region is required. This analysis of the quasi-steady neck is » ] ) )
absent in earlier slender filament theories. The filament quantities with subscript 0 actually vary with

In lieu of the quasi-steady, slender jet force balance thatMme as the drainage proceeds. However, the neck stress and
yields Eq.(24), we return to Eq(9a) with the full curvature velocity are slaved to them according to E§2) due to the
«. Within the neckx varies fromh~1~We'2 at the filament narrow width of the neck. These invariances can be com-
to O(1) at the bead. We shall hence assign it the highepined to yield a sjmple relationshilp petween the neck stress
WeY2 order in our dominant balance as it corresponds to thé@nd the neck radius any where within the neck
capillary pressure difference across the neck. Using the scal- = Tohgh—zl, (32b)
ingu~0O(We™ 1), t~0O(We), k~O(We"?) and still an un-
known scaling forz, the width of the small neck region, we Whereroh is a slowly varying function of time only.
can already conclude from E¢Qa) that the inertial terms on This invariance allows us to simplify the force balance
the left are negligible compared to the curvature gradienfcross the neckEg. (31a]. It can be converted into an inte-
(1/Ca)(9«/dz), regardless of the scaling af This leaves grable form by Eq(32b)
the str_ess grad_ient Wi_th mosthy, C(_)ntribution an_d the poly- 1 9k 109
mer viscous dissipation on the right for possible dominant aEwL > E%Zf
balance with the curvature gradient. Each or both can bal-
ance the curvature gradient since both the elastic stress aide now integrate Eq.33) again but now completely across
viscous dissipation serve to reduce the flow from the filamenthe neck from the filament to the bead. The curvature and the
to the bead while the curvature gradient drives it. We hencatress at the filament are large compared to those at the bead
first seek the scalings fo¥,, and z when all three terms and neglecting the subscript 0 in E(B2), we obtain an
balance. This is possible whén,~h~1~0O(We'?) to bal-  important invariance between the curvature and the elastic
ance casp/)illary pressure and elastic stress amd stress of the straight filament
~0O(We *?) to balance viscous dissipation to the earlier Cahi, 2. (34)

two.

Since the neck width decreases in time as fluid is drained’he unique factor of 2 again arises from the force and mass
into the bead, the scaling~O(We ®?) to match viscous balance across the neck. This predicted invariance is con-
dissipation to capillary pressure is not established initially.firmed by our numerical simulation shown in Fig. (&0
As the neck width decreases with drainage, viscous dissipavhere an asymptotic limit o€ah7,,=1.6 is reached soon
tion increases. However, the initial width is larger at gay after the stretching interval &&= 100. The invariancé34) is
~0O(We ¥, to ensure the longwave approximatir{h) distinct from earlier drainage theories which assume a slen-
<0O(2) remains valid, and elastic stress balances capillargler filament without necks. A reanalysis of Renardy’s
pressure at the neck. result!! for example, yields a constant éfinstead of 2 in

Using the scalingsh~O(We ¥?), 7,~0O(We'?d), z  Eq.(34).

0. (33
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Respecting the constant radius and linear extensionastic length scale but one can use the actual value of the
flow, the proper dimensionless variables are initial jet radiush, . We also expect Eq37) to describe the
_ . U drainage of the secondary filament after the recoil in Fig. 4.
u(zh=zUOWi O =twi, (35 However, the recoil dynamics are different from the stretch-
wherez is now O(1) as we return to the filament. The fact ing dynamics of the filament in Sec. IV since the former
that 7,(®) and h(®) are only functions of® and notz  begins at the neck while the latter at a jet minimum. Hence,
allows us to construct the leading-order filament equatiorihe radius of the secondary filament at the onset of drainage
from Eqgs.(9b) and (119 cannot be described by the stretching analysis of Sec. IV and
will, instead, be addressed in Sec. VII. In the next section,
dh S 1 hU and #,,+ iATzz_ 2U7,,=0. (36) We shall determine the instability that triggers the neck recoil
do 2 do by analyzing the stability of the drainage dynamics in Eq.
We have neglected to scalé,,~O(We“3) and h (_37)_. Since_ it o!escribes all draining filaments except the ini-
~0O(We Y2 explicitly for simplicity. tial jet, Whl_ch is not t_)ounded by beads, we also expect _the
The kinematic equatiofEq. (36)] is simply a mass bal- Same recoil mechanism to apply for all higher generation
ance for a straight filament while the stress equafigg.  filaments.
(36)] represents stress relaxation within the filament. They
both evolve exponentially for a constant uniaxial extensional/|. STABILITY OF A FILAMENT DRAINING INTO
flow, as shown by earlier straight-flament theorit® BEADS
h(t) ~exp(—~Ut/2) and7,t)~exd (2U—1)t]. However, the

new force balance across the ndélqg. (34)] stipulate they Due to the slow elastic drainage with time scaw/g

are correlated in time such that their product is a constanf"€ _¢an a}nalyze the .stab|_I|ty of t.he.dralmng fllamgnt—bead
configuration at any given instant in time by linearizing Egs.

This is only possible ilU=3, the maximum filament veloc- - . L .
ity at the neck remains constant during this drainage interval??;t%nnda(ril) about the draining state as if the jet is quasi-

This implies that the strain-rate of the uniaxial extensional®
flow within the draining filament remains constant at two- u’ u’
thirds the rate at which the stress would relax at fixed strain.  aA| h' | =\ h' |,
Although Entov and Hinch’s straight-filament theory uses a "y 7
different correlation constant betwebrand7,,, it still cap-

tures this unique constant strain rafeAfter inserting the

(38)

where the differential operatdk is

initial conditionh, of Eq. (30) for matching with the stretch- d 3S d ) d
ing stage, we obtain the large-time asymptotic behavior An=-— d—Z(U-)+ 12 dz h FEME
2 3
u(zt)= -2, (379 e 1d 2dh 2.d L
3We Mo=cala? Theaz Ttz | e aM
h(t)zh* exp(—t/3We), (37b) 6S d du 1 d
—— —|h*>—| .-+ 5 —(2h7,,)
2 h® dz\  dz h“ dz zz
T,4t) = ——=—expt/3We), 370
AN = 55 ORU3We) (379 +3Sd(2hdu
for the draining filament in the original variables. The h? dz dz )’
uniaxial extensional flow is clearly evident but the unique 1 d
feature is the correlated exponential decay@f and expo- A= —(h?"),
nential growth of7,(t) due to matching of the filament so- h* dz
lution to the bead. These asymptotic predictions are favor- 1
ably compared to the simulated evolution in Fig. 6. Matching  A,;=— >h d—z(hz- ),

with the final radius of the stretching stage in E80) and

the proper capture of thé,, and h correlation in Eq.(35)

from the neck analysis are essential to obtain the correct Az=— ﬁd_z(hu')’
description of the draining filament. They are not available in

earlier slender or straight filament theorfég? Ay=Ag=0,

In both the neck analysis of Eq31), which yields cor- q d 2(5-1) [ d
relations(32) for the neck, and the derivation of the impor- Agy=— _(}ZZ.)+3}ZZ(_ . ) - <_ )
tant stress-radius correlation of E§4) for the filament, the dz dz We \dz
beads are never explicitly included. So long as their radius is d du 1
much larger than the filament, the beads do not affect the Agz=— d—z(u-)+SE T We '

leading-order filament drainage dynamics captured in Eqg.
(37). This also suggests that E@7) is a universal drainage The dynamics ofr,, have been neglected due to the slender-
dynamics valid for all Oldroyd-B filaments bounded by ness of the neck and’ represents the disturbance to the
beads. We had used the initial jet radigsas the character- excess axial elastic stress.
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FIG. 11. The spectrum of the Oldroyd-B bead-filament
A o : i configuration with a draining filament in Fig. 6 &t
' * =500. The dominant structures are the stable bands on
—onk o] i the ellipse and the negative real axis. The fine structures
’ i near the origin are shown in Fig. 12.
0.4t ,"’; -
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Assuming the same periodicity, over the domain ofsion of the ellipsg. Several additional branché€? and 3
lengthl, for the disturbance and the evolving jet, the com-bifurcate from the ellipse near the origin. Complex branch 3
puted spectrum with a spectral numerical methoti=a500  tends to approach the imaginary axis while branch 2 extends
for the draining filament in Fig. 6 is shown in Fig. 11 with a slightly into the stable region on the negative real axis. The
blow-up of the origin in Fig. 12. Most of the spectrum is member of the eigenfunction corresponding to radius distur-
stable and the stable eigenvalues form a nearly continuousance is also shown in Fig. 12 for some typical members of
band of ellipse and a nearly continuous line on the negativéhe more unstable branches 1 and 3. The disturbances of both
real axis, as is evident in Fig. 11. Continuous spectrum idranches are confined to the filament and decay exponen-
obviously impossible with a finite domain sizebut both tially into the beads. The disturbances of branch 3, however,
stable bands do approach continuuni hecomes large. The also decay towards the middle of the filament.
stable ellipse terminates on the negative real axis near the The most unstable branch 4, however, protrudes into the
origin, as seen in Fig. 1ZDiscrete eigenvalue 1 is an exten- |eft half of the complex plane on the positive real axis. At

t=500, the most unstable mode of this branch isiat
=0.019 and this value is nearly constant upt$01000. Its
eigenfunction is also shown in Fig. 12 which suggests that all
the disturbances of this branch 4 are confined to the beads.
02l o “w m

There are hence two classes of disturbances, one con-
1 °°o fined to the filament and one to the beads. Although the latter
0151 %02 seems more unstable, both decay towards the neck where the
0.1 recoil initiates. We can better understand why the recoil ini-
0.05 - 1 ul tiates at the neck with a deeper analysis of the spectral prob-
' 10 es lem (38). If we omit the beads and use the estimated filament
Moo 2oo %ﬁg‘mcﬁ%@ © o0 0o solution of Eq.(37) over an unbounded domain, the com-
0.05 - ! 1 puted spectrum shown in Figs. 13 and 14 yields both the
stable ellipse in Fig. 13 and branches 1, 2 and 3 near the
01 origin in Fig. 14 att=500. Other than some details near the
-0.15 oo°° origin, due to mode interaction with the beads, the branches
02l o 0o° are all quantitatively reproduced. Even the eigenfunctions,
. ., 3 ' . including the odd branch 3, are captured correctly if one
-0.02 0.005 0.01 0015 0.2 allows for the fact that they do not decay into the missing

FIG. 12. Blow-up of the fine structures of the spectrum near the origin of
the complex plane. The vertical branch to the right of the ellipse in Fig. 12

1 1
-0.015 -0.01 -0005 O
A

r

beads.
In fact, analytical expressions can be derived from Eq.
(38) in the limit of infinite We In this limit, the z-dependent

is branch 3 here. Mode 1 is part of the ellipse and branch 2 is a stable realniaxial velocity profileu(z,t) in Eq. (378 vanishes and
branch. The most unstable branch 4 is opposite branch 2 on the positive regence the coefficients of the operatdrbecome constant.

axis. The radius eigenfunctions of branches 1, 3, and 4 are shown in insertq-.
The former two are confined to the filament in the middle and decay into the .

his allows the usual normal mode expansion to yield a

beads at the two ends. The eigenfunction of branch 4 is confined to the beatiMPle dispersion relationship. Due to the omission of the
in the middle of that insert.

uniaxial extensional velocity fieldy=0 is always a solution
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FIG. 13. Spectrum of an infinitely long draining fila-
< 0 - 7 ment. The computed values are indistinguishable from
the analytical result withh=h, exp(~t/3We) at t
~0.2} =500.
-0.4[
-0.6|
~0.8|
T Y Y -)1: o8 o5 o4 oz 0
with no velocity fluctuationu’=0. Omitting this neutral 3 9 h 242
mode, the other two modes are determined by the dispersion A=— ESazi ZSZCY4+ >Ca a®(1-a?)— Cah
relationship (40)
1 a*h . . . . . . . .
A2+3Sa®\—a?| =———%,,| + ==—=0. (39 This analytical dispersion relationship for an highly elastic
2Cah 2Ca (We—x) stretched filament quantitatively captures the

Comparing this to the Rayleigh dispersion relationship for arstable ellipse and stable real branch of Figs. 11 and 13, if one
unstretched filament of unit radiub ¢ 1) in Eq. (18), one  Uses the estimat€37b) for the filament radiush(t) at t

can easily see that the positive elastic stfgsshas a stabi- =900.

lizing effect. The ellipse corresponds to smalland is well approxi-
If one further introduces the derived correlati@4) of a  Mated by

stretched filament under drainage into beads, the spectrum

can be estimated explicitly as a function of the filament ra A= — o Sa?+ia / _ 41)
diush 2 Cah

FIG. 14. The spectrum of the infinitely long draining
filament near the origin and representative eigenfunc-
tions.

S0 -8 i -4 -2 0 Y2

Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 7, July 1999 Iterated stretching of viscolelastic jets 1731

Leoe leigh spectrum of Fig. 15 at =< correspond to normal

' ] modes in unbounded domains. However, if one introduces a

°r <= — generic localized disturbance, the local effect of the resulting

, . . . ‘ wave packet is not determined by the spectiufam) of the

-002  -0015  -0.01  -0.005 0 0.005 oo 0015 0.02 normal modes. Specifically, consider a generic disturbance
of the form

L=6.7 )
' ' ' ‘ i h’(z,t):f A(a)e'? Moty (43

— o0
0r0 00O 0 O O 0OO O 00O oOWAOO0O0 00 00 © 0O O [ek

whereA(«) is the Fourier coefficient of the initial localized

e 00 00t oms 0 oms  oor 005 oo disturbance and the evolution in time is specified by the lin-
earized equations of EG38).
L=335 , , At a specific locationz=0 say, the dynamic§43) are
dominated by a single complex mode* derivable by
0 © o o © 0 00 000000 00 O O O O Wentzel-Kramers—BrillouifWKB) theory*°
00z Toots 001 —000% o 0005 o0 Gots 0.02 dx .
-— =0, 44
(@) (44)
L=0
wherea= a, +ia; is complex and so is=\,+i\;. Hence,
0 0 ©o the contribution of all modes at the ne¢knd any other
Q o] c O o . . .
location is determined by the growth rate at the above
T e T e e T e os ke saddle poiniz* in the complex plane. An unstable spectrum

in an unbounded domain is “absolutely” unstable\jf{ a*)
FIG. 1_5._T_he spectra pf t_he begq with a cyIindr_ich _insert of lerigtfihe is positive. Otherwise, it is convectively unstable—
t;scﬂ”:tif;?; Fig?"e'gh instability and the=0 limit is the bead mode of disturbances will connect pass the neck without triggering
any local instability. The growth would then occur only in a
moving frame and would not be felt at any specific location.
This classification of an unstable spectrum is most pertinent
The stable real mode is at large corresponding te-3Sa”. o instabilities which possess a specific sensitive spot—the
Obviously, the actual filament lengthimposes an upper neck in the present example.
bound ofa=(2/l). We determine the absolute and convective stability of
The bead branch 4 can likewise be estimated by linkingyoth the filament and bead continuous spectra by exploiting
it with the Rayleigh instability of a cylinder. We insert in the the Cauchy—Riemann condition. Since bothand « are
middle of the bead a cylinder of lengthand a radius iden- complex in Eq. (44), «* can be determined from
tical to that of the bead. We than remove the filaments fromo) .)/(9a,) = (9\,)/(da;)=0 only. We optimize with re-
the elongated bead such that the structure has a leng8pect tow, ande; sequentially to locate the saddle poirt.
roughly equal to the sum of the diameter of the original beadn Fig. 16, we fixa; for both the filament and bead spectra
andL. The results are insensitive to the exact location whergyng plot the spectra(a, +ia;) as parameterized hy, from
the filaments are removed. We then impose periodic boundzerg to infinity. We then seek the maximuxm with respect
ary condition for the disturbance over this structure and solvgy o, on these spectray"™(a"™ ;). For all @; in both
the full eigenvalue problem with the preSCI‘ibbda.nd with cases, this optimum is located on the real a&g?xzo We
negl|g|b|e elaS'[iC Stl’eSA‘BZZ. At |nf|n|te L, we Obtain the con- then Varyai to Optimize)\max Wlth respect thi a|ong the
tinuous Rayleigh spectrum of an infinitely long cylinder of real axis. As seen in Fig. 16, the filament spectrunt at
Eq. (18), after correcting for the new cylinder radius: =500 is convectively unstable wita*=2.2 and \(a*)
3 9 o2 o = —0.6 while the bead spectrum is absolutely unstable with
\ Rayleigh= — ESaZt \/Z SPat+ scah 3ca @ a*=1.15 and\(a*)=0.466. The unstable filament spec-
trum of Fig. 14 hence does not contribute to local growth at
As L becomes finite, this continuous spectrum breaks up int@any location, including the neck. Its growth is in a moving
discrete modes. But as is evident in Fig. 15, the discretérame. The unstable bead spectrum of Fig. 15, on the other
modes lie approximately at the same location as the continthand, contributes to a local growth rate of 0.466 that is far in
ous modes of Eq42) and approach those on branch 4 of excess of its maximum value 0.019 on the original spectrum.
Fig. 12 atL=0. Branch 4 can hence be attributed to thelt is the ability of Rayleigh modes to accumulate at the neck
Rayleigh instability of a bead with openings to filaments. that accounts for the absolute instability which triggers the
The relative dominance of the unstable bead branch 4ecoil.
and the unstable filament branch 1 at the neck must be de- The same conclusion that the bead mode is absolutely
termined by a different spectral theory. The continuous fila-unstable has also been verified at largduring the drainage
ment spectrum Figs. 13 and 14 and the continuous bead Raiterval. Although our analysis is carried out for the continu-
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ous band at. =«, we expect the discrete modeslat 0 to
behave likewise due to their similarity in Fig. 15.

To verify that it is the disturbances from the bead and
not the filament that trigger neck recoil, we have performed a
large number of numerical simulations. If localized distur-
bances are placed on the draining filament, they are observed
to convect pass the necks and vanish within the beads. If
they are placed on the beads, they expand into the neck and
quickly trigger a recoil. To show that the recoil is indeed a
result of this instability, we place the same disturbance
; within the bead at=400, 600, and 800 in Fig. 17. Each
i disturbance triggers a recoil as seen in the figure. Without the
’ disturbance, the drainage would continue undisturbed by the

0.1%

; predicted dynamics of Eq37). The simulation in Fig. 17 is
02 01 carried out with a FENE model with extensibility=100. It

is clear that, folL in excess of 10, the above recoil initiation
due to absolutely unstable disturbances from the bead is in-
12 dependent of.. For smallerL, however, Fig. 9 indicates the
filament drainage is much faster than the Oldroyd-B expo-
nential drainage of Eq(37). Earlier theory? suggestsh(t)

| decreases linearly until breakup. The linear thinning is con-
4 sistent with Fig. 9 but the predicted rate does not agree with
our simulation. Nevertheless, this fast thinning invalidates
the quasi-steady assumption in the current filament stability
analysis. From the simulations, a low-L filament seems to
“outrun” the convective instability from the bead such that a
recoil is never triggered. We are unable to determine the
critical L that separates unstable filaments from stable ones.

3}

4 F

i VIl. FORMATION OF HIGH-GENERATION FILAMENTS

-5 "l e
(py 045 045 0455 046 0485 047 0475 048 The absolutely unstable Rayleigh disturbances from the
' beads relieve the tension at the necks and quickly trigger a
FIG. 16. The spectra(a,+ia;) parameterized by . The solid spectra  recoil of the primary high-extensibility flament. As seen in
correspond to those whose"™ decrease withy; and the dashed lines are Fig. 4, the relieved tension is almost immediately replaced
those that increaséa) The filament spectrum witle* =2.2 and A\ (a*) - . . . .
Dy a sharp maximum in the axial elastic stress at the neck.

=—0.6.(b) The bead spectrum, as approximated by the Rayleigh spectru . ) . .
with o* =1.15 and\(a*)=0.466. This elastic stress grows very rapidly as the stretching cre-

FIG. 17. Recoil triggered by small localized distur-
bances placed in the beads tat400, 600, and 800.
This simulation was actually done with a FENE model
with all conditions identical to those of Fig. 6 but with
extonsibility L= 100.

[ 200 400 600 800 1000 1200
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10 The secondary filament formed must still obey the same
1-128.20 @ quasi-steady force balan¢g6) and the kinematic condition
8+ 2-815 ! (239 of the primary filament before its drainage due to poly-
izg-;‘s’ mer relaxation. Combining these equations, we get
6l :
g GSdh 7 ! 45
o 4l , dt~ "#* Cah’ 49
<« . where we have neglectedhlvelative to 1h? in the capillary
f term and have omitted,,. We hence expect the elastic
0 — stress to again balance the azimuthal capillary pressure to
form a secondary filament of radius
-2 1 ) 1 1 1 I 1 i 1 1/2
3 25 3 -15 -1 05 0 05 1 15 h, = (46)
4 .La

However, since the stretching here arises from the recaoill
0.06 and not the elastic stretching of the Rayleigh instability in
Sec. lll, we cannot use the stress-radius correlation of Eq.
(28) in Eq. (46) to obtain an explicit prediction for the sec-
ondary filament radius. Instead, we need to resolve the
pinching dynamics during the recoil. We shall associate such
dynamics with a self-similar solution that evolves from the
primary filament, after being triggered by the Rayleigh insta-
bility from the beads.

The pinching dynamics triggered by the bead distur-
bances push fluid rapidly from the neck into the filament and
the bead. This relieves the stretching and reduces the elastic
stressr,, at the neck. As a result, inertia terms are important
for the first time in the jet evolution while elastic effect is
negligible at the beginning of a recoil. The recoil dynamics
are hence similar to that of a Newtonian jet. However, unlike
FIG. 18. Rescaling of the stress evolution near the neck beyond the recoil dhertia pinching of a Newtonian jét° the extensional flow
Fig. 4 by (a) Newtonian pinching scaling ar#h) viscoelastic pinching scal- gpout a newly created stagnation point near the neck again
ing. (We=10,000,5=0.25,Ca=10, andi=12.5.) creates a large local maximum #, seen in Figs. 4 and 18.

This elastic stress mediates the subsequent pinching dynam-
ics considerably. Since the neck profile is asymmetric about
ates a much finer secondary filament near the neck with the minimum during pinching, asymmetric stretching occurs
much larger azimuthal curvature. The small spikerin of  initially that evolves later into a straight filament, as seen in
Fig. 4 rapidly grows into a large maximum, much larger thanFig. 4.
7,, Of the primary filament, as seen in Fig.(48 We first attempt to simplify the force balance and kine-
matic conditions with the Oldroyd-B model of E¢L1) by
the self-similar transform of a Newtonian jet

0.04

X—Xg to—t
h=SH(&)7/Ca, u=S Y27 Y2y, (47)
L XD, Y
T2y T gy

wheret, is a nominal “pinchoff” time when the filament
radiush vanishes ak=x,. Although this pinchoff is never
completed due to elastic effects that form the secondary fila-
ment in Eq.(45), scaling Eq.(47) is still appropriate in an
intermediate interval beyond the initiation of the recoil and
before the secondary filament is established. This is quite
analogous to the termination of the hyperbolic stretching
FIG. 19. Normalization of the interface evolution near the neck beyondStage in Eq.(23) when the jet nodes have been convected
recoil. Conditions same as those in Fig. 18. into the beads. After that, a straight filament is formed and

. L s ) L . ‘ L
-3 -25 -2 -1.5 -1 § ~0.5 ] 0.5 1 15

Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1734 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin

begins to drain by the elastic time scal#&/®, as described The axial velocity is again a uniaxial extensional flow which
by Eq. (37). Unlike the self-similar pinching solutions stud- flows to the right and left from the stagnation pofigt How-

ied earlier, the current one at the neck in E4) will even-  ever, unlike a straight-filament extensional flow, its strength
tually evolve into the beads and terminate the self-similaincreases in timey~ 27" 34(x—x,).

behavior. Nevertheless, as the hyperbolic stretching yields Substituting Eq(52) into Eq. (50), one again concludes

the initial filament radius, in Eq.(30) prior to the drainage that the radial excess stress approaches zero as the pinching
of the primary filament, transformatidd?) yields an impor-  progresses]—« and r—0. The axial excess stress, how-
tant intermediate pinching solution that links the recoil to theever, increases monotonically as described by

straight secondary filament.

Under transformatiod7), the Oldroyd-B jet of Eqs(9) d_X =3X. (53)
and (11) becomes, in the limit ofF—0 dT
V 1(dH d As for the characteristic lines during initial stretching,
(V+E&12) d—+ 5= m:d—Jr d—HZ(X—Y) the characteristic lines on the plane of the self-similar vari-
g 3 3 ables¢ and T also fan out from the stagnation poig.
d , Hence, the elastic stress near the pinching point is dominated
+3d_§H Ver, (483 py the evolution on the characteristic lines néaré,. Sub-
stituting the expansion of the velocity negk in Eq. (52)
dH into Eq. (49), we get
(V4 812) g7 == (V2= DH, (48D 9.(49. we g
‘ e _>5 54
ﬁx+1(2v+§) ox (2V,—1)X (480 at 2!l >
—r—+= —= - , 0
ar 2 3 ¢ Combining Eqgs(54) and(53), it is clear that any initial

aY 1 Y stress profile= (&) near¢, at T=0 would be propagated by
—To-t5(2VH f)a—§=—(Vg+ 1)Y. (48d  the characteristics to produce a stress fieX{é&,T)

aT N N
=F(£e 5723 where é=¢—¢, is the distance from the

Without the normal stress difference, Eq48a and - - : : .
' stagnation point. Expandi ,7) in powers of¢, we ob-
(48b) are just the inertial self-similar equations of motion o P P (&.7) inp ¢

tain
and kinematic operation of a Newtonian jet. There are de-
scribed by an ode. However, the hyperbolic nature of the  X(&,7)=F(&e 572)e3T~Fy(1)+F(7) &, (55)
stress equations must be retained to propagate the initial _ _3 1w 5
stress profiles. Hence, one cannot omit t&J7) terms in where Fo(7)=F(0)7 and Fp(7)=3F"(0)r". Hence,

: . knowing the initial profileF(¢) for X, we can derive the
Egs. (480 and(48d). Otherwise X andY vanish exactly as time-dependent coefficients (7).

the system has o memory of the past—it collapse's into the The dominant stress behavior né&grfrom Eq. (55) sug-
Newtonian self-similar pinchoff. Hence, the Newtonian scal- . : o 4 .
gests the invariant scaling, (t,—1t)" is the true self-similar

lcincg'eth. (47) is not the self-similar transform for a viscoelas- transform for the pinching dynamics of the current viscoelas-
Jet tic jet. This is distinctly different from thé&,(to—t) scaling

Nevertheless, the hyperbolic nature of E¢480 and L A .
(48d) renders them amenable to another self-similar trans:;)f a Newtonian jet from Eq(47). The deviation originates

form by the methods of characteristics. Definiig — In 7 rom thee®T factor of Eq.(55) which, in turn, arises from the
one obtains alona each characteristic defined b ' hyperbolic stress convection and elastic stretching enhance-
9 y ment. The universal stress scaling during self-similar pinch-
d¢ 1 ing of a viscoelastic jet is hence quite distinct from that of a
a7 §(2V+ &), (49 Newtonian jet eventhough the radius and velocity scalings of
. Eq. (47) are identical.
the stress evolution In Figs. 18 and 19, we verify these universal scalings of

dX dy the pinching dynamics in a viscoelastic jet by collapsing both
a7~ (AVem DX and o =— (VDY (50)  the stress evolution and the interface evolution at neck by
demonstrating that, at the neck
We shall carry out Taylor expansion i& about the R 4
pinch-off stagnation poin§= &, to facilitate numerical solu- s 7.40)to _ M(t 1) (56)
tion of Egs.(489 and (48b). However, as in the Newtonian 2z (tg— 1)t SCa ° "

case, the coefficients in the kinematic equatji&i). (48b)]
stipulate that the expansion is only possitdesmooth self-
similar solution only existsif

whereH i, is a universal constant. The neck radius scaling is
identical to that of a Newtonian jet for which Brenretral ®
have determinedi,;, to be 0.0304. The stress scaling, how-
V(éo)=2, V+Ei/2=0. (51) ever, is unigue to viscoelastic jets. In fact, the Newtonian
Hence, the leading-order expansion of the velocity is specil-sc‘fi"ng%zz.: 724 0)to/(to—1) fails to collapse the stress evo-
fied ution in Fig. 1£(a): _ _ _
It would be difficult to solve Eq(48) with expansion
V~—§&gl2+2(&—&p). (52 (55) to obtain the actual radius and stress profiles. Fortu-
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0.15 with h, replaced by Eq(57). We also expect it to suffer the
same instability at the neck as the primary one, as captured
° in Sec. VI. An iterated stretching sequence is hence pre-
dicted, creating finer and finer filaments, even though we are
unable to capture the higher-generation filaments numeri-
cally. If the disturbances are large, such that the recoil ini-
tiates before significant drainage has taken place, the fila-
ment radius is a constant ah@0) in Eq.(57) corresponds to

the undrained filament. From the drainage history of Figs. 6
0.05 and 17, this requires very little disturbance at the bead and is
quite reasonable for a jet in the presence of constant noise
from the environment. In this realistic limit, E¢57) yields a
recursive relationship for filaments of successive generation

0 00T 002 005 004 005 006 007 008 (ralro)=v2(rn_1/re)%2 (58
' h(o)*® - . , . o .
in dimensional filament radius and the original jet radius
FIG. 20. Comparison of the predicted filament radius iterattop  ro. Equivalently, if we allow the first iterate to be given by

=v2[h(0)]%? from various experiments with varying conditions by trigger- Eq. (30) and all subsequent ones by H§8), one obtains
ing the recoil in Fig. 17 at different radius of the primary filament. '

3(n—1)/4

Cca(1-9) 59

We

(ralro)=
nately, scalingg56) are already sufficient for our purpose.
Consider a primary filament in drainage, with strésg0)  and the axial elastic stress of thth filament, from Eq(34),
and radiush(0), when its neck recoils due to bead distur-
bances. We do not know the values7gf(0) andh(0) pre- - _ i
cisely, as they are determined by the disturbances as shown 72AN)= Ca
in Fig. 17. However, we do know they are related through
the stretched filament correlatig®4) from the neck analysis
(that specifies the driving force during drainage
Cah(0)7,(0)=2. We have sett=0 to be the onset of recoil
and hence to be consistent, E¢56) must yield tg
=[h(0)SCa/Hi,- The scalingg56) can now be inserted, e . A
with these matching conditions into the force balatt® to and extensibility becomes important. As seen in Fig. 9, a

determine the radius of the secondary filament. ConsisteA?W'L primary filament, apalogous _to a hlgh—generatlon fila-
with our earlier leading-order matching in time, we use theMent, will no longer recoil and the iteration ceases. Breakup

self-similar recoil stress and radius of E§6) in the subse- 1S e>_<rpr>1ectel;1 at tha't pomtl. i ise f h .
guent quasi-steady force balance of the secondary filamentin " € above universal scalings arise irom the asymmetrlc
Eq. (46) during its stretching interval. AlthougH ;;, is not self-similar pinching after recoil. This particular self-similar

known exactly, the power-law expressions allow us to eIimi-SOIUtion_ ne_cessarily in\_/ol_ves inertia, as does E_gger_’s _for
nateH ., ty, SCa 7,, and#,40), toyield an explicit rela- _Nevvtonlan jet$. In fact, it is the ony stag_e where me_r_tlz_i is
tionship betweerh, , the radius of the secondary filament IMPOrtant. We have carried out simulations by artificially
after the recoil and stretching stages but prior to elastic draincmoving the inertial terms. Only the pinching dynamics af-

age, anch(0), theradius of the primary filament when the tgr recoil differ from those W|th.|nert|a. Thg recoil st|I! ini-
recoil initiates tiates at the neck as the Rayleigh instability responsible for

triggering it is independent of inertia. A secondary filament

h, =v2(h(0))¥2 (57)  still forms but it does not obey correlati¢&7). The pinching
is also asymmetric, unlike the inertialess pinching of Papa-
georgiou’s solutiof for Newtonian jets without inertia. We
are hence unable to predict the radius of the secondary fila-
ment if inertia is omitted. However, as is evident from the
naturally scaled governing equatigr&g. (9)], inertia is neg-
ligible for a jet surrounded by an inviscid fluid only for ex-
cessively smallCa and S in the limit of largeWe This is

The beads do not participate actively during the stretchimpractical and we expect inertia to enter during the pinch-
ing and drainage stages. They act as sources of noise, org and recoil at the neck, as we have observed in our simu-
accumulators and transmitters of noise from the surroundintations. In fact, to obtain Papageorgiou’s symmetric pinching
fluid, that trigger the recoil dynamics. However, they aresolution, one must introduce large-amplitude disturbances at
unaffected by the recoil and the subsequent formation of théhe middle of the filament that will transform the linear
secondary filament. We hence expect this secondary filamenmniaxial extensional flow into a uniform axial flow with van-
to drain like the primary one as described by E8j7), but  ishing (9u)/(dz). Only then would the inertial term

Ca(l_ S) —-3(n—1)/4

We (60)

The elastic stress hence increases very rapidly with each
successive filament, as we have observed in Fig. 18 for just
one iteration. As the elastic stress increases, so does the poly-
mer stretchingA is the axial direction, as described by the
Oldroyd-B model. EventuallyA~L? in the spring law(2)

This simple correlation is verified numerically in Fig. 20 by
triggering the recoil in Fig. 17 at different raditg0) of the
primary filament during drainage. The recoil is initiated by
placing localized disturbances at the bead.

VIIl. DISCUSSION

Downloaded 03 Mar 2005 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1736 Phys. Fluids, Vol. 11, No. 7, July 1999 Chang, Demekhin, and Kalaidin

viscoelastic effects as their axial velocity has a radial gradi-
ent even in a straight filament. This scenario is beyond the
current theory.

All prior experimental studies of the viscoelastic bead-
filament configuration involve flying jets instead of static
ones confined within finite domains. In a long flying jet, the
beads can slide along the filaméhend disrupt the recoil
dynamics. The jet also bends and twists when the bead-
filament configuration appears. Not surprisingly, there is no
reported observation of recoil and high-generation filaments.
To remedy this, we have performed a primitive experiment
by squeezing a viscoelastic fluid of uncharacterized rheologi-
cal properties through a tube into a Newtonian fluid of about
the same density but much lower viscosity. We have
squeezed an excess of fluid initially to create a bead-like
head followed by a narrower filament, as seen in Fig. 21.
Despite the crudeness of the experiment, the filament
stretches immediately by draining into the bead and under-
goes a distinct recoil to generate a secondary filament. Note
the recoiled primary filament forms another bead-like struc-
ture that bounds the other end of the secondary filament. This
suggests that recoils and stretchings to form high-generation
filaments are to be expected from viscoelastic jets. More
careful experiments are underway to verify the universal
scalings of Eq(58).
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