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We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as de-
fined by a normalized density of the surface charge, significantly affects ion current rectification
across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the
current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves
through the tip, respectively), which is responsible for current rectification. For strongly selective
negatively charged pores under positive bias, the current can be reduced by external field focusing
and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These
external phenomena produce a rectification inversion for highly selective pores at high (low) volt-
age (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we
derive simple scaling laws to quantitatively capture empirical and numerical data for ion current
rectification and rectification inversion of conic nanopores. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4776216]

Ion current measurements across synthetic nanopores
with surface charges, under a dc voltage bias, have revealed
several surprising ion transport phenomena that clearly defy
Onsager-type near-equilibrium linear response transport
theories. Ion-current rectification, when the ion current is
asymmetric with respect to the voltage polarization, has been
observed for conic pores,1–4 diode-like nanochannels with
asymmetric charge distribution5 and even for perfectly sym-
metric channels.6 Hysteresis, 5 oscillations,7 and “pink” cur-
rent noise fluctuation8, 9 and other uniquely non-equilibrium
features have been observed. Water dissociation10, 11 and
vortex instabilities12, 13 have also been shown or suspected
to occur at internal and external ion depleted regions, thus
further revoking the linear Ohmic I-V relationship for
near-equilibrium electrophoretic ion transport.

Here, we focus on an anomalous ion current feature that
is unique to synthetic nanopores. While it is not surprising that
bipolar pores5 or membranes10 can produce ion current rec-
tification, that conic1–4 or, more surprisingly, straight pores6

can also exhibit current rectification remains inadequately un-
derstood. Numerical solutions of the Poisson-Nernst-Planck
equation have shown that intra-pore ion depletion/enrichment
plays an important role in the rectification phenomenon14, 15

and, at low external ionic strength, external ion depletion con-
tributes to the rectification inversion.16, 17 Here, we develop
a theory that delineates how intra- and external ion deple-
tion is sensitively controlled by the ion selectivity of the pore
and report experimental rectification measurements, guided
by the theory, that are in quantitative agreement to the theory.

a)Author to whom correspondence should be addressed. Electronic mail:
hchang@nd.edu.

We find that, other than external ion depletion, field focus-
ing can also play an important role in rectification inversion
for conic nanopores. We verify our theory with ion current
measurements through single conic nanopores. Our experi-
mental facility and measurement techniques for polyethylene
terephthalate (PET) conic nanopores and KCl solutions are
described in Refs. 18 and 19.

Our theory attributes rectification and its inversion to
the degree of ion selectivity of the nanopore or nanoporous
membranes. In classical equilibrium membrane science, ion
selectivity of a nanoporous membrane is captured by the Don-
nan theory, which will be paraphrased below for a cylindrical
nanopore of radius Rp and arbitrary length with negative
surface charge density σ s and for a symmetric electrolyte
of concentrations C0 and valency z. Although this nanopore
Donnan theory, which assumes equilibrium with the bulk,
becomes invalid within the pore during non-equilibrium ion
transport, it remains valid at the ends of the pore where equi-
librium with the bulk is maintained at reasonable voltages. We
hence develop this cylindrical nanopore equilibrium theory
to derive the boundary conditions during non-equilibrium ion
transport. For an electrically isolated pore without any exter-
nal field penetrating the Gauss volume around the nanopore
that includes the surface charge, integrating the Poisson
equation over the same Gauss volume V would stipulate that
the equilibrium nanopore contains no net charge or zF

∫
V

(C+
− C−)dV = ∫

V
ρdV = ∫

∂V
σsdA, where F is the Faraday

constant and ρ the space charge density. However, another
constraint is supplied by a Boltzmann equilibrium condition
with the bulk electroneutral electrolyte outside the nanopore
with concentration C0, C± = C0 exp(∓ zφF

RT
), where R is the

ideal gas constant and T the temperature. Donnan theory
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neglects the variation of C± in the transverse direction and φ

and stipulates electroneutrality,

zF (C+ − C−) = ρ = 2σs

Rp

(1)

and an average intra-pore potential of

φ = −RT
Fz

sinh−1( σs

C0RpFz
) = −RT

Fz
ln(X

2 +
√

(X
2 )2 + 1). The

dimensionless parameter X = 2σs

zFC0Rp
represents the density

of the surface charge, extrapolated over the entire pore
volume, relative to the bulk electrolyte concentration, and is a
good measure of the ion-selectivity of the pore or membrane.
For weakly selective membranes with low charge density
(X � 1), φ ∼ −(RT/2zF)X and both ion concentrations
approach the bulk value C±/C0 ∼ 1 ± X/2. More tellingly, for
highly selective membranes (X � 1), the Donnan potential
approaches φ ∼ −(RT/zF)ln X and the mobile ion concen-
trations C±/C0 = ±X/2 +

√
(X/2)2 + 1 approach a surface

charge-controlled and bulk-independent counterion concen-
tration of C+/C0 ∼ X + O(X−1) with a vanishingly small
coion concentration limit C−/C0 ∼ 1/X + O(X−3) for the
highly selective limit. A bulk independent pore conductance
in the large-X limit has been experimentally verified.20–22

Donnan theory also suggests that, at the large-X limit, the
total ion concentration and the conductance of the nanopore
is a universal invariance—rectification cannot occur due to
change in intra-pore depletion/enrichment.14, 16

We expect the Donnan theory to be valid when the
Debye length λ is larger than the pore size Rp and the
overlapping Debye layers produce very little variation in
the transverse direction. Indeed, solutions of the dimension-
less equilibrium nonlinear Poisson equation for a cylindri-
cal pore, 1

r
d
dr

(r dφ

dr
) = η2 sinh φ, with boundary conditions

dφ

dr
(r = 0) = 0 and dφ

dr
(r = 1) = −η2X/4 and with the poten-

tial scaled by RT/zF and the radial coordinate scaled by the
cylinder radius, show the area average total concentration ap-
proaches that of the Donann theory in Fig. 1, when the ratio of
the pore radius to the Debye length η is less than unity. Even
if the pore radius Rp varies longitudinally, for large-X limit,
the Donnan theory is still locally valid with the local Rp and
equilibrium with the bulk electrolyte with concentration C0

is sustained throughout the pore. Such an equilibrium large-X

FIG. 1. Comparison of average total ionic concentration between numeri-
cal solution (symbols) and the Donnan theory (line) for a cylindrical pore at
equilibrium, over a range of pore radius to Debye length ratio and X. When X
� 1 or X � 1, Donnan expression is valid. For the intermediate region, the
Donnan theory is less accurate as η increases.

conic pore would not exhibit rectification due to internal de-
pletion/enrichment. A large-X conic pore at equilibrium with
a symmetric bulk electrolyte, hence, has an intra-pore con-
ductance that can be readily derived from the large-X Donnan
theory by allowing for longitudinal variation14

GLX = I0/V0 = 2πD sin θmzFσs

RT ln(Rbase/Rtip)
, (2)

where D is the ionic diffusion coefficient, θm the half cone
angle, and Rbase, Rtip the base and tip radius of the cone.

However, intra-pore resistance is expected to dominate
only for weakly selective nanopores (X � 1). Moreover, the
Donnan theory is a near-equilibrium theory that assumes lo-
cal Boltzmann equilibrium and neutrality. For a conic pore
with varying cross section, the local ion selectivity increases
from base to the tip as the −1 power of the local pore radius.
The selectivity gradient produces ion enrichment (depletion)
under positive (reverse) biased voltage when the current and
dominant counterion enter (exit) the tip end. This intra-pore
ion enrichment and depletion phenomena is responsible for
rectification for weakly selective pores (X � 1), for which
intra-pore resistance dominates the ion transport. We hence
modify the near-equilibrium Donnan theory for weakly selec-
tive conic nanopores by allowing for non-equilibrium longi-
tudinal transport.

Nevertheless, the Donnan theory remains valid at the two
ends of the small-X pore, which are in equilibrium with the
bulk. This is so even when the Debye layer is smaller than
the pore radius Rp such that, in contrast to the assumptions
made by the Donnan theory, there can be significant trans-
verse variation in the ion distribution at the ends—all the
space charge lies within the thin Debye layer on the peripheral
of the pore where the counterion is in excess of the coion and
much higher than its value at the pore center. We demonstrate
this by carrying out the Debye-Hückel approximation at the
pore ends, C± = C0 exp(∓ zFφ

RT
) ∼ C0(1 ∓ zFφ

RT
) in the Debye-

Hückel limit with small transverse potential drop (zFφ/RT)
� 1. Hence, to leading order, the local averaged charge den-
sity becomes 〈ρ〉 = 〈C+ − C−〉 ∼ −(2zF/RT)C0〈φ〉 where
〈φ〉 is the local cross-section averaged potential. Invoking
the electroneutrality condition (Eq. (1)) and relating it to the
above expression, we then obtain an invariance between the
cross-section averaged potential and surface charge at the two
pore ends, as constrained by electroneutrality and Boltzmann
equilibrium, 〈φ〉 ∼ −(RT

zF
)(X

2 ) and, to the leading order in
the Debye-Hückel expansion, 〈C±〉/C0 ∼ 1 ± X/2, which are
identical to the small-X Donnan theory and are without ex-
plicit dependence on the Debye length. The 6 boundary con-
ditions for concentrations and potential at the two ends of the
weakly selective (small-X) conic pore are then: 〈C±〉/C0 ∼ 1
± X/2 for both tip and base and 〈φ〉t ip ∼ V0 − (RT

zF
)(Xtip

2 )

while 〈φ〉base ∼ −(RT
zF

)(Xbase

2 ).
To describe the non-equilibrium intra-pore enrich-

ment/depletion phenomena responsible for rectification of
weakly selective pores, cross-section average of the Nernst-
Planck transport equation can simplify the non-equilibrium
transport theory. We shall derive this non-equilibrium the-
ory for “separable” geometries like the small half angle
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conic cone, whose cone surface is along the spherical ra-
dial coordinate. For such geometries, the averaging operator
〈〉 = 1

1−cos θm

∫ θm

0 dθ sin θ where θm is the half cone angle (for

small cone angle θm = Rbase−Rtip

L
)14, 15 is independent of the

radial coordinate and can hence commute with operators in-
volving radial coordinates, thus preventing the creation of
“higher moment” terms that do not correspond to the aver-
aged concentrations. We decouple the transverse and longi-
tudinal fields by stipulating that the longitudinal field ∂φ

∂r
is

weaker than the transverse field, which is valid for our ex-
periments for any applied voltage less than 10 V. As such,
the potential can be decoupled into two terms, φ(r, θ ) ∼ φ(r)
+ 
(θ ). This decomposition due to field separation allows
a linearization of the nonlinear longitudinal electromigration
term 〈C± ∂φ

∂r
〉 → 〈C±〉 ∂φ

∂r
and again eliminates any problem-

atic terms that are not the averaged concentrations. The same
field separation condition also implies that we can neglect the
longitudinal field to leading order at every cross section and
electroneutrality condition (Eq. (1)) remains valid for the av-
eraged charge density. The longitudinal field will enter in the
averaged equation, however, and will be estimated.

Averaging the Nernst-Planck equations then produces the
following two equations for the total current and ion flux in
the longitudinal r direction along the conic pore:

J

r2
= −d〈C〉

dr
− ε

r

dφ

dr
, (3a)

I

r2
= ε

r2
− 〈C〉dφ

dr
, (3b)

where 〈C〉 = 〈C+〉 + 〈C−〉, and the averaged charged density
〈ρ〉 has been replaced by the electroneutrality condition (Eq.
(1)). The characteristic properties for scaling are the bulk con-
centration C0, the pore length L, the characteristic flux den-
sity DC0/L, ion flux and current by 2πFz(1 − cos θm)DC0L,
and the thermal potential RT/zF. With this scaling, the tip and
base, where the derived boundary conditions are imposed, are
located at r1 = Rtip

Rbase−Rtip
and r2 = Rbase

Rbase−Rtip
. The small pa-

rameter is ε = sin θm

2(1−cos θm)Xtip
Rtip

L
(for small half cone angle,

ε = Xtip
Rtip

Rbase−Rtip
) where Xtip is evaluated with the tip radius.

This small parameter is about the same order as X evaluated at
Rbase. The averaged flux equations (Eq. (3)) with the unknown
total current I and ion flux J must be solved with the 6 derived
boundary conditions.

Using a simple ansatz for the averaged concentration
〈C〉 = 〈C〉0 + ε〈C〉1 + · · ·, the potential and the fluxes, one
obtains the near-equilibrium Ohmic electromigration equa-
tions without surface charge effect and with homogeneous
concentration—with uniform conductivity within the pore,
J0
r2 = − d〈C〉0

dr
and I0

r2 = −〈C〉0
dφ0

dr
. Using the leading order

boundary condition 〈C〉0 = 2 for both tip and base and φ0t ip

= V0 while φ0base = 0, one then obtains the Ohmic solution
with homogeneous ionic strength 〈C〉0 = 2 and its longi-
tudinal potential distribution φ0 = V0r1(r2−r)

r
. This potential

distribution then yields the dimensionless version effective
conductance of an Ohmic pore without surface charge I0/V0

= 2r1r2, which yields the dimensional weak selec-
tivity (small-X) conductance after multiplying by

2πF 2z2(1−cos θm)DC0L

RT

GSX = 4πF 2z2(1 − cos θm)DC0LRtipRbase

RT (Rbase − Rtip)2

= 2πF 2z2DC0RtipRbase

RT L
(4)

that augments the large-X cone Ohmic conductance in Eq. (2).
In the next order, however, the surface charge effect

becomes important and the resulting selectivity gradient
is responsible for the internal depletion and enrichment,
J1
r2 = − d〈C〉1

dr
− 1

r

dφ0

dr
and I1

r2 = 1
r2 − 〈C〉0

dφ1

dr
− 〈C〉1

dφ0

dr
. Im-

posing the next order boundary conditions 〈C〉1 = 0 and
φ1 = − 1

2r
for both tip and base then yields

〈C〉1 = V0(r2 − r)(r − r1)

2r2
. (5)

Since r1 ≤ r ≤ r2, the sign of this ionic strength correction
term to the near-equilibrium homogenous ion concentration
distribution, 〈C〉0 = 2, and whether internal depletion or en-
richment occurs is then governed by the voltage bias, the sign
of V0. This estimate of enrichment and depletion profile is
in good agreement with numerical solution of the Poisson-
Nernst-Planck equation for a weakly selective conic pore,
as seen in Fig. 2(a). Here, the 1D simulation is carried out
by solving the averaged Poisson-Nernst-Planck with Donnan
theory as boundary conditions at the tip and base,14, 15 while
in the 2D simulation the full Poisson-Nernst-Planck for 2D
symmetric cone with two large reservoirs is used.4 The cur-

rent correction from the Ohmic current is I1 = V 2
0

12 and one
hence gets a simple estimate for the incremental current and
the rectification factor as small-X, Rf − 1 ∼ I+

I−
− 1 = εV0

12r2r1
,

or in dimensional form

12(Rf −1)RbaseRtip

(Rbase − Rtip)2
=� ∼ εFzV0

RT
= 2σsV0

RT C0(Rbase−Rtip)
,

(6)

FIG. 2. Comparison of theory (lines) to computed enrichment and deple-
tion profiles (symbols) for weakly and strongly selective conic pores with
opposite polarization at FV/RT = 10. The total concentration for Donnan
equilibrium (green dashes), namely, when V = 0, is also given for compar-
ison. The computation is done by solving both 1D (open symbol) and 2D
(closed symbol) Poisson-Nernst-Planck equations. Enrichment occurs when
applying a voltage from tip to base (positive V0, red, lines and up triangles)
and depletion with reverse bias (blue, lines and circles). The tip radius, base
radius, length, and surface charge density of nanopore are fixed at 5 nm,
30 nm, 1 μm and 0.05 C/m2, respectively. The size of the reservoirs for 2D is
500 nm × 500 nm. A symmetric electrolyte KCl with the diffusion coefficient
of 2 × 10−9 m2/s is used. (a) Weakly selective, the concentration is 1000 mM
(Xtip = 0.21). (b) Strongly selective, the concentration is 15 mM (Xtip = 13.8).
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FIG. 3. (a) Collapse of measured rectification factor data for 12 μm PET
nanopore, with a tip radius of 19 nm and base 268 nm, surface charge
0.19 C/m2 (estimated from 1M data) by our small-X theory (line). (b) Col-
lapse of 2D numerical rectification data for different geometries plus sim-
ulation data from literature23 (magenta down triangle) with surface charge
ranging from 0.00625 to 0.2 e/nm2 and bulk concentration from 0.25 M
to 2 M. The simulation parameters (tip radius-base radius-length-surface
charge-concentration) are: 5 nm-30 nm-1 μm-0.05 C/m2-2000 mM (black
square), 5 nm-30 nm-1 μm-0.05 C/m2-1000 mM (red circle), 5 nm-30 nm-1
μm-0.05 C/m2-250 mM (blue up triangle), 5 nm-30 nm-1 μm-0.1 C/m2-
250 mM (olive diamond), 5 nm-30 nm-1 μm-0.01 C/m2-250 mM (navy left
triangle), 3 nm-30 nm-1 μm-0.05 C/m2-1000 mM (violet right triangle) and
15 nm-30 nm-1 μm-0.05 C/m2-1000 mM (purple hexagon), respectively.

which is in good agreement with both numerical and ex-
perimental data in the small-X limit, as seen in Fig. 3. The
numerical data include ones reported in the literature23 as well
as our own and the normalization involves raw parameters.

Similarly, a perturbation around large-X limit can be
done for intra-pore ion transport after introducing the small
parameter δ ∼ 1

ε
. Use the same characteristic scaling and

scale Cδ = Cδ, Jδ = Jδ, Iδ = Iδ. The 6 new dimension-
less boundaries for large-X conic pore are: 〈Cδ〉 ∼ δ(X + 2

X
)

= 1
r

+ 2δ2r for both tip and base and φtip ∼ V0 − (ln 1
δrtip

+ δ2r2
t ip) while φbase ∼ −(ln 1

δrbase
+ δ2r2

base). For the lead-

ing order, Jδ0
r2 = − d〈Cδ〉0

dr
− 1

r

dφ0

dr
and Iδ0

r2 = 1
r2 − 〈Cδ〉0

dφ0

dr
,

together with the leading boundary conditions, the total
concentration is 〈Cδ〉0 = 1

r
and the conductance is I0/V0

= Iδ0/δV0 = 1
δ ln(r2/r1) , which is identical to the equilibrium

large-X conductance (Eq. (2)) after multiplying by the scal-
ing factor 2πF 2z2(1−cos θm)DC0L

RT
. The next order is trivial as the

boundary condition does not explicit contain O(δ). For the
O(δ2) order that corrects this equilibrium conductance, one
obtains

Jδ2

r2
= −d〈Cδ〉2

dr
− 1

r

dφ2

dr
, (7a)

Iδ2

r2
= −〈Cδ〉0

dφ2

dr
− 〈Cδ〉2

dφ0

dr
. (7b)

Imposing the boundary condition 〈Cδ〉2 = 2r and φ2

∼ −r2 at the tip and base, the intra-pore concentration correc-
tion at large-X is found to be related to the equilibrium current
Iδ0 by

〈Cδ〉2 = 2
(
r2

1 − r2
2

)
r

2−Iδ0
1 − r

2−Iδ0
2

r1−Iδ0 + 2
(
r

Iδ0
1 − r

Iδ0
2

)
r

Iδ0−2
1 − r

Iδ0−2
2

r−1. (8)

Figure 2(b) shows the enrichment still occurs at forward bias
and depletion at backward bias. The current correction hence

FIG. 4. A nanopore with a tip radius of 5 nm, base radius 30 nm, length 1 μm
and surface charge 0.05 C/m2 is used. (a) Comparison of large-X intra-pore
rectification theory (line) of Eqs. (9) and (10) to computed rectification factor
(symbols) at various voltage and concentration. The computation is done by
solving both 1D (open symbol, no external region) and 2D (closed symbol,
with external region) Poisson-Nernst-Planck equations. Deviation from the
theory occurs at large voltage and low concentration (for 2D) when external
depletion occurs and the rectification inverts with negative (Rf − 1). Away
from these conditions, the rectification factor approaches constant at large
voltages, as predicted by Eq. (10). (b) 2D numerical I-V curves showing op-
posite rectification at low (inset) and high voltages.

will be

Iδ2 = Iδ0
(
r2

1 − r2
2

)
ln(r2/r1)(Iδ0 − 2)

+ 2(Iδ0 − 1)
(
r

Iδ0
1 − r

Iδ0
2

)
r

Iδ0−2
1 − r

Iδ0−2
2

. (9)

At high voltage when|Iδ0| � 1 and when the conic pore is
sharp (r1 � r2), this correction current approaches a con-

stant Iδ2 = { (r2
1 −r2

2 )
ln(r2/r1) + 2r2

2 Iδ0(Iδ0>0)

2r2
1 Iδ0(Iδ0<0)

, as shown in Fig. 4(a), with

a constant rectification factor Rf − 1 ∼ 2δ2(r2
2 − r2

1 ) for |Iδ0|
� 1 or in dimension form

Rf − 1 ∼ 2

(
R2

base − R2
t ip

)
X2

t ipR2
t ip

. (10)

Figure 4(a) shows this predicted rectification factor from
the large-X intra-pore ion current theory for highly selective
pores collapses the 1D numerical model (without external re-
gion). As is consistent with the theory, Rf − 1 has a C−2

dependence on the concentration and approaches a voltage-
independent asymptote for large voltage. For positive bias V0,
both the small-X intra-pore theory (Eq. (6)) and the large-X
intra-pore theory (Eqs. (9) and (10)) predict a positive rectifi-
cation factor Rf − 1, suggesting that intra-pore theory cannot
account for rectification inversion at large X. However, with
the increase of voltage or decrease of concentration, the 2D
model (with external region) starts to deviate from the large-
X intra-pore theory and 1D model. This deviation indicates
that external region plays an important role under these lim-
iting conditions and is responsible for rectification inversion.
Figure 4(a) also shows rectification inversion, when Rf − 1
becomes negative, at low concentrations and high voltages for
the 2D model. This rectification inversion phenomenon oc-
curs at diminishing voltages as X increases (or ionic strength
decreases, also see Fig. 4(b)), until the critical voltage van-
ishes at a critical X in Fig. 4(a). This suggests that beyond
a critical X, external resistance becomes so dominant that
the intra-pore theory of Eqs. (9) and (10) becomes invalid.
Hence, at a sufficiently large X, the rate-limiting step for
ion transport is no longer intra-pore ion transport but rather
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external resistance. Since the rectification inversion phe-
nomenon is defined relative to the intra-pore rectification the-
ory, inversion may occur at zero voltage when X exceeds a
critical value.

It has been shown numerically16 and
experimentally6, 12, 13 that, at higher voltages, external
concentration depletion and enrichment begin to develop
at the pore entrance (where counterion and current enter)
and exit, respectively, of any weakly or strongly selective
nanopores or nanoporous membranes. A limiting current
occurs beyond a critical voltage when the ion concentration
at the pore entrance (membrane surface) becomes zero at the
depletion end and, for small cylindrical pores, the ions within
a roughly spherical external region (with a radius comparable
to the pore radius) is severely depleted. Since intra-pore
enrichment occurs with positive bias when the current enters
the tip, we then expect external resistance due to ion depletion
at the tip can invert the rectification phenomenon beyond a
critical voltage corresponding to the onset of the limiting
current. However, we shall show another phenomenon, field
focusing as described by the classical Hall resistance of ion
flux into a pore, also plays a role in the rectification inversion
and is responsible for the critical X observed in Fig. 4.

With the radial symmetry of the external concentration
and electric fields, we can model the external depletion phe-
nomenon with a pseudo-one-dimensional model with radial
symmetry. Since intra-pore ion transport is unimportant when
external depletion occurs and becomes the bottle neck for
ion transport, we can assume the pore is an ideally selective
cylindrical pore with radius Rp corresponding to the radius at
one end of the pore (Rbase or Rtip) where the counterion enters
the pore (where depletion occurs). This cylindrical pore is
connected coaxially to a much bigger hemispherical reservoir
(radius Lr), with electrodes on the sphere surface and a
symmetric electrolyte of concentration C0. For symmetric
electrolytes that are electroneutral, C+ = C− = C, the electro-
migration flux into the ideally selective cylindrical pore is ex-
actly equal to the diffusive flux21 and the Nernst-Planck equa-
tion for the ions reduce the diffusion equation, 1

r2
d
dr

(r2 dC
dr

)
= 0 with two boundary conditions C = (C0, 0) at r = (Lr,
Rp), respectively, at limiting-current conditions. The concen-
tration profile at limiting-current for this radially symmetric
depletion region is then C = C0( Lr

Lr−Rp
− RpLr

Lr−Rp

1
r
) and lim-

iting current is I = J = zF2D dC
dr

2πr2 = 4πzFDC0
LrRp

Lr−Rp

∼ 4πzFDC0Rp. For highly selective conic pores with
a positive applied bias from tip to base is then Ilim

= 4FzπDC0Rtip.21

Figure 5(a) shows the resistance of large-X pore increases
after the current exceeds this limiting current, with a large de-
crease in the current. The large increase in external resistance
at the tip beyond the onset of limiting current overwhelms the
decrease in intra-pore resistance under positive voltage bias,
thus inverting the rectification. The limiting voltage when the
limiting current occurs is, hence, a good criterion for the rec-
tification inversion. A good estimate of the rectification inver-
sion voltage can then be obtained by combining the intra-pore
resistance from our large-X theory in Eq. (2) with the large-X
limiting current due to external depletion to yield the limiting-

FIG. 5. (a) 2D numerical results (positive bias) for large-X indicating limit-
ing current or voltage as a hallmark for the deviation from the case without
external depletion (line). The resistance increases after the voltage exceeds
limiting voltage. The simulation parameters (tip radius-base radius-length-
surface charge-concentration) are: 5 nm-30 nm-1 μm-0.05 C/m2-10 mM
(black square), 2.5 nm-30 nm-1 μm-0.05 C/m2-15 mM (red circle), 5 nm-
30 nm-0.5 μm-0.05 C/m2-15 mM (blue up triangle), 5 nm-30 nm-1 μm-0.01
C/m2-2 mM (magenta down triangle), 5 nm-60 nm-1 μm-0.05 C/m2-15 mM
(olive diamond) and 5 nm-30 nm-1 μm-0.05 C/m2-5 mM (navy left triangle),
respectively. (b) Collapse of 2D numerical results of rectification inversion
voltage as a function of X scaling with an empirical factor of 3. One data point
(black cross is from literature23). There exists a critical 1/Xc

tip below which
rectification inversion happens right away. The inset shows collapse of the
numerical data for the critical Xc

tip by a theory based on Hall resistance due
to field focusing. The simulation parameters (tip radius-base radius-length-
surface charge) are: 2.5 nm-30 nm-1 μm-0.01 C/m2 (black square), 5 nm-60
nm-1 μm-0.01 C/m2 (red circle), 5 nm-30 nm-0.5 μm-0.01 C/m2 (blue up
triangle), 5 nm-30 nm-1 μm-0.05 C/m2 (magenta down triangle), 2.5 nm-30
nm-1 μm-0.05 C/m2 (olive diamond), 5 nm-30 nm-1 μm-0.01 C/m2 (navy
left triangle), 5 nm-60 nm-1 μm-0.05 C/m2 (violet right triangle), 5 nm-
30 nm-0.5 μm-0.05 C/m2 (purple hexagon) and 4 nm-250 nm-12 μm-0.08
C/m2 (wine star), respectively.

voltage

VlimFz

RT
= 4 ln(Rbase/Rtip)L

(Rbase − Rtip)Xtip

. (11)

This prediction is favorably compared to our and literature
numerical rectification inversion voltage at large-X, as seen in
Fig. 5(b). An empirical factor of 3 is used to obtain quantita-
tive collapse of the data. This factor of 3 is probably due to
the fact that the concentration at the pore entrance is not ex-
actly zero, as is assumed in our limiting current estimate. As
predicted, the rectification inversion voltage blows up as −1
power of X, as X approaches zero, but the theory fails to pre-
dict a critical X beyond which rectification inversion occurs at
zero voltage, which was first seen in Fig. 4(a).

This critical X arises because, at very large-X, field fo-
cusing effect or Hall resistance,24, 25 which exists for both
polarizations but can offset the intra-pore enrichment at
positive bias (lower concentration at tip) so that intra-pore
rectification fails to develop. Mathematically, the derivation
for field focusing effect is analogous to limiting current, since
the Laplace equation describes both the potential distribu-
tion for field focusing and concentration distribution for lim-
iting current. With the same geometric model above, the po-
tential satisfies 1

r2
d
dr

(r2 dϕ

dr
) = 0 with two boundary condi-

tions ϕ = (V0, 0) at r = (Lr, Rp). So the dimension conduc-
tance for the reservoir is I0/V0 = zFzF D

RT
2C0

dϕ

dr
2πr2/V0

= 4πzFDC0Rp
zF
RT

= Ilim
zF
RT

. This simple derivation of the
Hall resistance is off by a factor π /2 from the literature value24

RHall = RT
8z2F 2DC0Rp

, which was derived by correcting the
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radial symmetry with a more detailed analysis in a hemispher-
ical neighborhood of radius Rp near the entrance. Despite the
mathematical similarity, the physical mechanism for the Hall
field focusing phenomenon at the entrance is quite distinct
from the limiting current due to tip ion depletion. We hence
match the higher order large-X intra-pore conductance, corre-
sponding to the leading order large-X intra-pore conductance
(Eq. (2)) multiplied by the higher-order intra-pore rectifica-
tion factor (Eq. (10)), with the inverse Hall resistance to ob-
tain a condition for the critical X beyond which field focusing
Hall effect towards the tip is as important as external ion de-
pletion at the tip as the dominant process in ion transport,

1

Xc
tip

= χ =
(

πR2
t ip

16 ln(Rbase/Rtip)L(Rbase + Rtip)

)1/3

.

(12)
This estimate is seen in the inset of Fig. 5(b) to capture the
numerical values for the critical X above which rectification
inversion at zero voltage—when the intra-pore rectification
is not observed. Below this critical X, inversion is due only
to external depletion and the rectification inversion voltage is
predicted by Eq. (11).

Our attempts to measure this rectification inversion
voltage at low concentrations with our conic nanopores
encountered severe current instabilities which did not allow
us to obtain reliable current data or rectification inversion
concentrations. We did, however, observe rectification
inversion at high voltages and low ionic strengths as is
qualitatively consistent with the theory.

In summary, we report a perturbation theory (confirmed
by experimental measurement and numerical simulation) that
explains the rectification phenomenon for weakly (small-X)
and highly selective (large-X) conic pores. The former is due
to intra-pore enrichment and depletion that results from ion
selectivity gradient introduced by the conic geometry. The
rectification of highly selective nanopores at high voltage is
due, instead, to external concentration depletion at the end
where the counterion and current enters the pore. Its rectifica-
tion direction is opposite from the weakly selective nanopore,
thus producing a rectification inversion phenomenon at high
voltages. Another rectification inversion mechanism is iden-
tified at low concentrations due to field focusing Hall effect
amplified by external ion depletion such that, beyond a critical

X, the rectification inversion occurs at zero voltage—the intra-
pore ionic transport is unimportant for all voltages. Quantita-
tive predictions of the rectification factor and rectification in-
version voltages and concentrations are favorably compared
to numerical and experimental data.
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