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The authors review and project their group’s work in reaction engineering, electrokinetics, thin-film lubrication/wetting,
biosensing, mass spectrometry, etc., that share one common mathematical underpinning: singularities. These can be geo-
metric singularities of actual surfaces or objects, where focused electrical, acoustic, optical and shear-stress fields produce
anomalous physical phenomena that have been explored mathematically with a spectral theory or exploited for specific
applications. They are also singularities of mathematical manifolds, such as solution branches and Riemann manifolds,
defined by abstract mathematical formulations, so that they can be used to design optical sensors, and understand nonlin-
ear dynamical behavior that is relevant to system control and surface characterization. The common mathematical frame-
work for these diverse topics underscores how mathematics can reveal, organize and inspire real and industrially relevant
problems in chemical engineering. VC 2013 American Institute of Chemical Engineers AIChE J, 59: 1830–1843, 2013
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Introduction

The senior author fondly recalls his Associate Professor
days at the University of Houston. It was a heady time in
chemical engineering when mathematical analysis was
respected and encouraged. Young faculty members were
imbued with the excitement that, given the highly mathemati-
cal faculty at Houston, history would be made there. It would
be the G€ottingen of engineering, or at least chemical engineer-
ing. The intellectual orientation of chemical engineering has
moved away from mathematical analysis recently. Theoretical
articles often report molecular dynamics or fluid mechanics
computations, with little analysis. It is the authors’ collective
opinion that this is a loss for our community at large—mathe-
matical analyses can offer physical insight into an organiza-
tion of complex phenomena in chemical engineering. Indeed,
the best technologies can be inspired and guided by proper
mathematics in the most elegant and yet precise manner. It
supplies a common language that links our seemingly dispar-
ate disciplines, allowing knowledge to be transferred from one
to another and inspiring insight in the new ones even when
there is no apparent physical connection. Given the disparate
length and time scales and complex integration of different
materials/phenomena in current devices and processes, mathe-
matics can offer a coherent, precise and rational description
that is not accessible by computations, empirical approaches
or human intuition. An intimate intertwine between

mathematics and relevant advanced technology is the
ideal we would like to rekindle with this article.

A believer in this ideology, the senior author has strived

to use mathematics in his work, however, applied, complex

and diverse the project, to explain new phenomena in com-

plex systems, to derive simple correlations and to invent

new technologies for many fields in chemical engineering.

He developed this style during his formative years at Hous-

ton. This short review/perspective reviews how mathematics

was the common denominator that underpins his group’s

work (and guides its future direction).
The authors will refrain from an extensive review of

steady-state and dynamic singularities in reaction engineer-
ing, which uses local theories to explore solutions near sin-
gularities of the solution manifold and was used to study
steady-state multiplicity in exothermic reactions of nonbatch
reactions, whose mass and heat exchange with the surround-
ing endows it with this and many other nonequilibrium phe-
nomena impossible in closed systems near thermodynamic
equilibrium. The senior author’s own journey in this field
started from his PhD thesis,1 when he associated the solution
surface of a first-order exothermic reaction in a CSTR to a
cusp singularity (see Figure 1a) in catastrophe theory, where
the singularity occurs on the manifold that is a map from the
parameter space to the solution space. (His former colleagues
at University of Houston would be more qualified to review
this subject.) Nevertheless, the hysteretic behavior associated
with the multivaluedness of the surface appears in many of
the senior author’s projects and so is the “ignition” dynamics
associated with the transition from the lower manifold to the
upper one, the two locally stable states for this bistable sys-
tem. In fact, these diverse phenomena can be described by
the same analysis because of the aforementioned similarities.
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A local expansion (sometimes called a center manifold
projection) about the singularity on the manifold is equiv-
alent to linearizing the problem and expanding about the
dominant “zero” modes of the spectrum of the linear op-
erator, eigenmodes with zero or purely imaginary eigen-
values, to capture how multiplicative parametric
perturbation from the singularity and higher-order system
nonlinearity excite the less dominant modes and, in turn,
perturb the linear dynamics of the zero modes. Canonical
low-dimensional dynamical systems for the zero modes
produce equations like the Stuart-Landau and Ginzburg-
Landau equations, which can describe many (but not all)
physically different systems with the same singularity.
Like the recent topological insulator theory in quantum
mechanics, these zero modes are often related to certain
symmetries in the system—geometric symmetries like
translational and rotational symmetries as well as mathe-
matical symmetries in the equation due to mass/energy
conservation, etc. Sometimes both kinds of symmetries
are connected. A well-known example in engineering of
the latter symmetry is that a mass conservation related
symmetry of the diffusion equation with respect to affine
transformation allows a self-similar analysis of the diffu-
sion equation and the convection-diffusion boundary
layer.2 Different classes of singularities from systems with
different symmetries and different number of symmetries
produce different normal forms; some of them are not as
well-known as the GL equation. This tremendous reduc-
tion in system dimension, sometimes from infinity to less
than three, allows a generic analysis (and understanding)
of many systems with (often) closed-form estimates of
the normal forms.

These closed-form solutions of the normal forms offer
generalized correlations among dimensionless parameters
familiar to the chemical engineers. The challenge is to
find the proper singularities where the expansion can be
valid over large spatiotemporal and parametric domains,
and can classify as many solution features (topologies) as
possible. It is, hence, quite similar in spirit to renormaliza-
tion theories in physics where one strives to obtain a clas-
sification of different phase-transition critical points
(singularity of the order parameter), and generalized phase
diagrams with them as “organizing centers”. This is also
the approach taken by unified field theorists, whose pre-
dicted Higgs particles were just recently detected. The
senior author was able to use a dynamical version of the
theory to explain different types of wave solutions on a
thin falling film—he identified (0,0) and singularities (two
zero eigenvalues and one zero plus one imaginary pair) on
the solution manifold where solitary wave, shock wave
and periodic wave solutions of the Kuramoto-Sivashinskey
equation converge in the parameter space.3,4 The solution
manifold of the (0,6ix) singularity is shown in Figure 1b.
The purely imaginary pair suggests that time-periodic solu-
tions exist in the neighborhood of such singularities. (In
fact, a chaotic attractor also exists there and so do hetero-
clinic orbits (shocks) and homoclinic orbits (solitons).)
The same dynamic singularity theory was used to analyze
high-Reynolds number vortex formation and instability in
several packed bed models.5 The earlier wave work led to
a 10-year analysis of wave dynamics on a falling film,
mostly with Evgeny Demekhin.6 The “turbulent” thin-film
wave dynamics were shown to be dominated by a

Figure 1. (a). The cusp Catastrophe for the solution manifold of a first-order exothermic reaction in a CSTR.

The shaded area in the two-dimensional parameter space is where 3 solutions (represented by x) exist. Ignition and extinction

occurs at the boundary of the shaded region, and (b) solution trajectories near one singularity of a dynamical system derived from

the Kuramoto-Sivashinsky equation for falling film waves. Shown in the bottom is the homoclinic orbit corresponding to a solitary

wave.
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ubiquitous “coherent structure”—the solitary waves. Hence,
one can examine how solitary waves interact with each
other7 through zero modes that arise from translational
invariance of the solitary waves and how solitary waves
interact with wave fields8 with a special weighted spectral
theory to reveal another zero mode related to mass conser-
vation. Using such dynamic singularity theory, they are
able to decipher the complex wave dynamics over a large
domain with simple correlations derived from low-dimen-
sional dynamical systems. Similar approaches were used to
study wetting patterns,9 nanoscale pattern formation in
electropolishing10 and nanopore formation in anodization.11

However, the aforementioned mathematical works, how-
ever sophisticated, do not lead to new technologies. The sen-
ior author’s first industrially relevant theoretical work came
with his realization that the reason it is difficult to imple-
ment P and PI control on underdamped systems with delay
is that it often has two distinct cross-over frequencies—a
double Hopf singularity12(ix1,ix2). Guided by the theory, his
group was able to produce two-frequency oscillations (a so-
called torus attractor) in a CSTR flow control experiment,
using the conventional Ziegler-Nichols empirical tuning
approach and, thus, demonstrating it is invalid for such sys-
tems. They have also used the same singularity theory to
reduce the dimension of distributed systems such that low-
order control strategies can be implemented.13

This review/perspective will focus on the group’s work
that has very specific and direct industrial relevance—they
result in new technologies and new patents from the authors’
group. The singularity theory used in the work offers
reduced models with closed-form or nearly analytical corre-
lations that were fruitfully used to understand the complex
phenomena and arrive at the new designs. The theme is that,
although the efforts span the entire wide spectrum of chemi-
cal engineering and encompass both classical and cutting-
edge technologies, they are fundamentally connected through
singularity theory—knowledge from one effort has been
fruitfully used in another in a way unique to mathematics.
Not all the senior author’s attempts to use mathematics to
improve technology have been successful. For example, his
earlier work of using dynamic singularity theory to produce
chaotic mixing for heat-transfer enhancement led to a pat-
ent,14 but its efficiency is far lower than what can be
achieved with clever designs with tortuous flow geometries
that can regenerate thermal boundary layers or produce vor-
tex shedding.15 The thermal Peclet number is so high that
passive chaotic mixing can never compete with convective
heat transfer in open-flow system. However, even in failed
examples, knowledge is gleaned and passed down to future
generations in a concise, rigorous and elegant manner that
befits a proud and inventive discipline.

Designing Fast-Igniting Catalytic Converters

In the 1990s, before the appearance of high-revolution and
high-efficiency engines with a much hotter exhaust gas, the
temperature of the exhaust gas entering the catalytic con-
verter is at about 600 K for a car driving on surface roads at
35 miles/h. Although CO and NOX in the exhaust can still
be removed at this temperature, hydrocarbons require the
catalytic converter to ignite (a trajectory that takes off from
the lower manifold to the top in Figure 1a), and its tempera-
ture rises beyond 900 K from the heat released by the highly
exothermic CO oxidation reaction. It was found through

extensive simulation by the General Motors reaction engi-
neering group and by the senior author’s group that, with the
exhaust composition and temperature from the automobile
models then, the three-way ceramic monolith catalytic con-
verter would not ignite under a standardized cold-start and
surface road driving conditions unless the exhaust tempera-
ture16 increases to 800 K. The elevated exhaust temperature
can be achieved when the car accelerates to highway speeds.
For cars on surface roads or congested highways, the cata-
lytic converter essentially remains unignited over the average
commuting drive of about 20 min, with all its HC pollutants
released to the environment. It was realized very early,
through extensive simulation at the GM supercomputer, that
the reason for this slow converter light-off at low speeds is
that, at low-exhaust temperatures such as 600 K, the con-
verter first ignites at the downstream end, forming a local-
ized hotspot there. The heat released from that hot spot is
convected out of the exhaust pipe instead of heating the rest
of the converter upstream to ignite the entire converter. Ear-
lier remedies such as using a metallic monolith (Corning, W
R Grance and Allied Signals) to conduct heat upstream from
the downstream ignition point, using a preheater and to
increase the catalyst load at the upstream end of the con-
verter all fail due to a poor understanding of the underlying
mechanism or to manufacturing or cost constraints.

In an article with David Leighton,17 the senior author
pointed out that hydrodynamic thermal dispersion could shift
the ignition position from the trailing end to the leading end
of the catalytic converter, such that the heat released can be
used to heat up the rest of the converter. The exhaust gas
thermally heats up the cold monolith such that a thermal
front propagates along the solid monolith at a thermal veloc-
ity Ueff that is much smaller than the gas exhaust velocity U
due to the far larger thermal capacitance of the monolith. A
simple capacitance averaging yields Ueff � U/c where c � 1
is the ratio of the solid thermal capacitance to that of the
gas. However, due to imperfect thermal equilibration
between the two phases, the thermal front suffers from dis-
persion, much the same way as hydrodynamic Taylor-Aris
solutal dispersion, with an effective thermal diffusivity, nor-
malized by the gas thermal diffusivity, that scales as the
square of the Peclet number (see physical arguments for this
Taylor scaling).18 Quite counterintuitive to the uninitiated is
that the effective dispersion scales inversely with respect to
the molecular diffusivity). There is an extra capacitance ratio
that factors into thermal hydrodynamic dispersion, since
unlike solutal transport, heat transport permeates into the
entire solid phase. The effective thermal diffusivity scaled
by the gas diffusivity is then aeff =ag � Pe2=c, where the
thermal Peclet number is Pe5Ua=ag, where a 5 0.06 cm is
the standard monolith pore size, and c 5 2000 is the large
thermal capacitance ratio between solid and gas. With the
fast gas flow U � 23102cm=s

� �
, the Peclet number is large

in excess of 100, and the effective thermal diffusivity aeff is
about half of the large gas thermal diffusivity ag50.74cm2/s,
and about 100 times higher than the solid thermal diffusivity.
Due to the large capacitance (thermal velocity) ratio, the
solid thermal diffusivity contribution to effective thermal dis-
persion is insignificant, explaining why metal catalytic con-
verters are bad ideas. Whether the ignition occurs at the
downstream or upstream end of the monolith then depends
on whether dispersion can lower the front temperature suffi-
ciently to suppress ignition at the downstream end. It is,
hence, determined by the magnitude of a key parameter
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v5 aeff =U2
eff t
1
ig

� �
that is equal to the thermal dispersion time

of the front aeff =Ueff and the kinetic ignition time without
thermal transport or flow t1ig , which is about 17 s for a
monolith at 300 K that is exposed to a step increase in
the exhaust temperature to 600 K. It was estimated
numerically that v must be unit order or larger for thermal
dispersion to prevent downstream ignition. It was also esti-
mated that, at standard conditions, the monolith is just
below the required value. It was, hence, important to esti-
mate accurately aeff beyond just a simple scaling theory,
without doing extensive numerical simulation or even
worse, extensive prototype building, to cover the myriad
of design parameters.

At about the same time, in an article with Vermuri
Balakotaiah, the senior author realized that dynamic singu-
larity theory (in the form of center manifold projection)
could be used to reproduce the classical Taylor-Aris dis-
persion coefficients for solutes.19 Its mathematical formal-
ism due to different versions of center manifold projection
is much simpler than the moments method used before
that work. Dispersion is a transient phenomenon that can
only be defined when thermal or solutal diffusion in the
cross-flow direction is much faster than convection in the
flow direction. Since the Peclet number Pe based on the
transverse length scale is often large, this implies that one
must consider a convection length scale L1 in the flow
direction that is much larger than the transverse length
scale L1=a51=e� 1 for the catalytic converter, since its
thermal Peclet number is large Pe� 1. (Dispersion only
occurs after a length scale L1 that is much larger than
the transverse length scale.) As such, if one scales the
transverse coordinate by a, and the longitudinal coordinate
by L1, which can be taken to be the length of the stand-
ard monolith at 14.7 cm, and take the limit of e ! 0,
one gets a transient diffusion equation in the transverse
direction. If the domain is insulated, this diffusion operator
has a spectrum with a discrete zero eigenvalue. The for-
malism offered by the center manifold theory then projects
the higher-order convection terms onto the eigenspace of
the zero modes to couple the effects of convection with
dispersion. The result is that the convection-diffusion equa-
tion in two spatial dimensions is reduced to a convection-
diffusion equation in one-dimension (1-D), with an effec-
tive dispersion

@T

@t
1Ueff

@T

@x
5aeff

@2T

@x2
1

eb T2Tin
gð Þ

bt1ig
(1)

where Tin
g is the temperature of the exhaust, and b is the

inverse Frank-Kamanetskii temperature that estimates the
ignition temperature of the exothermic reaction. The sim-
ple exponential dependence on scaling represents a kinetic
model reduction of the full kinetics, with its different
reactant and product species, and its complex temperature
dependence at the ignition fold point of the cusp singular-
ity in Figure 1—on the catalytic converter’s solution mani-
fold. The effective thermal dispersion term for the
catalytic converter, however, requires expansion about
another singularity—the zero mode of the diffusion equa-
tion. Several projection methods have been developed for
this projection. Under certain conditions, Leighton and
Chang17 are able to use an infinite series expansion to
obtain an explicit estimate of aeff =ag5 11=48ð Þ Pe2=cð Þ for
a cylindrical pore approximation of the square monolith

pore. It is a remarkably simple correlation for such a
complex system.

Substituting this effective thermal diffusivity into the pro-
jected simple 1-D convection and diffusion equation and
with some asymptotic analysis,17 a solution to Eq. (1) is
obtained and it offers a simple correlation-like estimate of
the ignition time

tig=t1ig

� �
5112v1=2jln v1=2=2g

� �
j1=2

(2)

where g5b Tin
g 2T0

s

� �
is the difference between the inlet

exhaust temperature Tin
g 5600K and the initial monolith tem-

perature of under standard conditions, normalized by the
inverse Frank-Kamanetskii temperature b. The ignition loca-
tion is estimated by Lig5Ueff tig. It is clear from Figure 2a
that this analytical estimate offered by dynamic singularity
theory can accurately capture the numerical value from
brute-force simulation of this complex system.

It is seen that upstream ignition occurs for v> 0.5, and
the standard condition and monolith design yields v 5 0.13.
The question is then how one can redesign the catalytic con-
verter to increase v by a factor of 4. After weighting several
design strategies against costs and fabrication difficulties,
Keith et al16 arrived at the condition that preheating the
exhaust to increase t1ig is the only viable means of v increas-
ing to the desired value with the standard exhaust conditions.
One design, shown in Figure 2b, is to use a short converter
upstream as a preigniter and bypassing a fraction of the

Figure 2. (a) Comparison of the ignition location
Lig5Ueff tig as a function of the parameter
between the curve from analytical theory of
Eq. 2 and the solid data points from numeri-
cal simulation for a single catalytic con-
verter.

The parameter v is a ratio between ignition time and

dispersion time, and (b) A 2/3 bypass design with a

short converter as preigniter. The flow through the

preigniter is turned off after the main converter down-

stream lights off. This design has been shown to ignite

in 10 s under transient standard testing protocols.16
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exhaust—the unignited main converter still offers satisfac-
tory CO and NOx conversions. The exact ignition location of
the preigniter is inconsequential and given the required
exhaust temperature of 800 K at highway speeds for light-
off, only 1=3 of the exhaust needs to pass through the pre-
igniter. This third bypass would be switched off when the
main converter has ignited. This and other designs have
been shown to offer consistent rapid ignition within 10 s—
soon after the car leaves the driveway and without accelerat-
ing to highway speeds.16 It is difficult to imagine that such a
simple design for such a complex problem can be achieved
without the reduced model and its analytical solution offered
by singularity theory, thus, eliminating or reducing confus-
ing, inaccurate and largely unnecessary numerical and empir-
ical search. A rather straightforward extension from solutal
to thermal dispersion allowed the transfer of knowledge and
mathematical machinery from the former to the latter to pro-
duce a viable design. The aforementioned bypass design is
the basis of a Notre Dame patent20 and is in some European
automobiles. With fuel injection control in modern engines,
the exhaust temperature is sufficiently high so this bypass
design is not necessary. However, the need may arise again
if diesel engines and engines for other alternative fuels
become more common. The mathematics should be equally
useful for many current and future light-off problems, even
if the parameters or even systems are different—such is the
power of a general mathematical framework. For example,
diesel engines are extremely polluting and the modern diesel
emission system includes a soot particulate trapping and
burning procedures. We refer the readers to J M Keith’s
excellent articles on this subject,21 which contains in-depth
mathematical analysis of the relevant thermal dispersion
phenomena.

Designing More Sensitive Mass Spectrometers

The same analysis applied to the singularity of a solu-
tion manifold can also be used to analyze actual geometric
structure with a surface or volume singularity. The best
example of an industrially relevant geometric singularity is
the Taylor cone for proteomic mass spectrometry. It is dif-
ficult to ionize proteins for analysis in a mass spec
because the biomolecules prefer to remain in water and it
is difficult to ionize the proteins in water and create nano-
sized drops for injection into the mass spectrometer.
Before this need was even appreciated, Taylor had real-
ized that when a sufficiently high-direct current (DC) elec-
tric field is applied to a liquid drop at the end of a
capillary, it deforms into a conic structure now called a
Taylor cone.22 In typical practice, the tip of this cone
extends to form a liquid microjet (cone-jet mode), and
charged nanosized droplets are ejected from the tip.23 John
Fenn then showed that molecules in the Taylor cone can
be ionized at a particular voltage so that the charged
droplets contain ionized molecules and can be easily trans-
mitted into a mass spectrometer. This electrospray ioniza-
tion has become a workhorse in proteomic mass
spectrometry because it enables soft ionization of proteins
from an aqueous solution.24 However, the droplets are
ejected in a large, expanding plume that negatively
impacts transport into a mass spectrometer, with injection
efficiencies25 less than 1%. Moreover, the size and charge
of each aerosol directly influences the all-important degree
of ionization of the analyte molecules within the droplets.

Yet, despite more than 50 years of theoretical scrutiny
and 20 years of extensive use in mass spectrometry, the
underlying mechanisms behind microjet breakup and plume
formation remain unknown.

Taylor22 offered the first mathematical description of the
conic meniscus singularity for an electrospray, which has
been studied experimentally since the pioneering work of
Zeleny.26 Taylor’s theory omits the microjet and assumes the
meniscus cone is a perfect singularity. He solved for the har-
monics of the Laplace equation near the constant-potential
cone, stipulating that the Maxwell electric pressure that
results from the local potential distribution must match the
singular capillary pressure cf/r of the cone, for a surface ten-
sion of cf, due to its azimuthal curvature. Solving the spheri-
cal harmonics near a cone is a spectral problem in the radial
coordinate r and the “zero modes” here correspond to dis-
crete eigenvalues whose total electric energy remains finite.
The dominant mode under this constraint has a potential u
that scales as r

1=2 and a singular electric field E 5 2 r u
that scales as r21=2, with a corresponding Maxwell pressure
eojruj2, where eo is the gas permittivity, that scales the
same way in the radial coordinate as the singular capillary
pressure of a conic free surface. This simple argument
selects the dominant spherical harmonic of
r1=2P1=2 cos p2hð Þ½ � for the potential near the cone, with a
Legendre function Pn of order n 5 1=2 in the polar angle h
direction, and the requisite r

1=2 in the radial direction. In
fact, one of the authors computed other harmonics for an
isopotential cone and found a countably infinite of them
(see Figure 3b). Nevertheless, the Taylor mode is the
most singular mode—it is the dominant zero mode that
dominates the electric potential distribution near the cone.
This zero mode must satisfy the boundary condition that it
vanishes at the cone half-angle because of the equipoten-
tial condition on the conducting or high-permittivity cone
interface. Taylor then obtained a universal cone half-angle
of h 5 49

�
for any high-permittivity (or high conductivity)

liquid cone. The Taylor cone is a very elegant real-life
example of a dominant discrete and singular (in gradient)
mode in (semi-) unbounded domains that can only occur
near geometric singularities, such that the local electric
field has a generic functional dependence that is insensi-
tive to far-field conditions.

There is, however, a fallacy to Taylor’s argument. Real
cones are not perfectly sharp and are actually rounded off by
a spherical cap with a radius of curvature. The capillary
pressure of this spherical cap is 2c/a and yet the spherical
harmonics for the electric potential near the spherical cap is
1/r, giving rise to an electric field at the rounded tip that
scales as a22 and a Maxwell pressure that scales as a24.
Hence, in the limit of a ! 0, matching of capillary and
Maxwell pressures becomes impossible at the rounded tip. A
new physical phenomenon not described in Taylor’s theory
must, hence, exist at the cone tip. In recent experiments
from the authors’ laboratory, this new physical phenomenon
is found to be the microjet that emits from the Taylor cone.
In fact, it is suspected that the Taylor cone cannot exist
without this microjet. Moreover, as seen in Figure 3a, the
submicrom droplets are formed when the microjet explodes
dramatically and ejects a conic plume of nanodrops. This
conic geometry of the ejected aerosol plume is, in the
authors’ opinion, why electrospray mass spectrometry has
only 1% injection efficiency. A current effort in their labora-
tory is to understand the charging of the microjet and the
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mechanism behind the conic plume explosion. Fortunately,
the dominant Taylor potential r1=2P1=2 cos p2hð Þ½ � dominates
the polarization/charging of the microjet and simple analysis
can provide estimates for the length of the microjet and the
aerosol plume cone angle.27 The cutoff mechanism for a
geometric singularity is often of utmost importance but one
can still use the dominant zero mode without the cutoff to
analyze the physics of the cutoff. The mathematical
approach is quite similar to how center manifold projection
handles a parametric perturbation around a singularity on the
solution manifold.

The observation that the zero-mode Taylor potential
r1=2P1=2 cos p2hð Þ½ � for the cone still dominates the potential
around microjet allows us to estimate the angle of the conic
plume emitted from the microjet and the trajectory of any
molecule within the plume. This theory is validated by em-
pirical measurements of the trajectories and deposition pat-
terns of nanocolloids of different size when they are ejected
at the plume.28 Because the dominant field due to the Taylor
potential is in the axial direction along the jet, the transverse
force on the nanocolloids is due to Coulombic repulsion
between the colloid and the charged jet, which is dependent
on the colloid size. The net result is that nanocolloids of dif-
ferent size are ejected in different conic plumes and depos-
ited as concentric rings, as seen in Figure 3c. These
concentric conic plumes were shown to correspond to
higher harmonics of rmPm cos p2hð Þ½ �, which still satisfies
the equipotential condition at the Taylor cone
r1=2P1=2 cos p249�ð Þ½ �50. The modes m 5 3.275, and 4.655
are the next dominant modes with field maxima less than

90�, at 5 58.7, 42.8 and 78.4�. The first is the lone field
maximum of mode m 5 3.25, and the latter two the two
maxima of mode m 5 4.655. The three concentric rings of
deposited nanocolloids in Figure 3 correspond to these three
plume angles. The group and their collaborators have used
this unique mathematical feature of the dominant discrete
modes near the Taylor cone, including the Taylor mode
m 5 1=2, to design a nanocolloid mass spectrometry that can
separate nanocolloids of different size. A pending patent is
on how such a method can be used to quantify the number
of nanocolloids with bound biomolecules, biomarkers that
the nanocolloids have captured with specific probes function-
alized onto them.29

The Maxwell pressure eojruj2 that is produced by the
Taylor potential near a cone is produced by dielectric polar-
ization—field-induced interfacial charge on the interface due
to molecular polarization by the DC field. However, this is
not the only electric pressure that is possible. The dramatic
explosion of the microjet in Figure 3a, and the Coulombic
repulsive force between nanocolloids in Figure 3c suggest
that net space charge, not induced charge, on the interface
can produce an electric pressure different from the Maxwell
pressure. By using an AC field at high frequency (>100
kHz), such that high-mobility cations (protons) generated by
ionization reaction in the meniscus tip can relax into the
bulk but not the low-mobility anions, the authors’ laboratory
was able to accumulate net space charge at the meniscus tip.
The result is an AC cone with a universal angle of 11

�

instead of the Taylor angle of 49
�

due to induced dielectric
polarization,30 as seen in Figure 4a. Nishant Chetwani of the

Figure 3. (a) Image of the Taylor cone, microjet and aerosol plume, (b) the field maxima from the Taylor cone that
controls the aerosol plume, and (c) nanocolloids of different size (980 nm, 400 nm and 200 nm) are
ejected in different member of a nest of concentric conic plumes and are deposited as semicircles on
the substrate.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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authors’ laboratory formulated a variational theory to
describe the electric energy due to Coulombic interaction of
this interfacial charge, which was able to accurately capture
the observed angle of 11

�
.30 His analysis was simplified by

the observation that the resulting pressure must scale as 1/r,
since it must also balance the cone capillary pressure of the
same scaling, as was first observed by Taylor. The mass
spectrometry due to this AC electrospray is quite distinct
from DC spray, as the pH of the sample can be tuned by
just changing the frequency near the inverse diffusion time
of protons and that the anion can be concentrated at the
tip.31 The charged state of an analyte is seen to be a function
of the AC frequency, as seen in Figure 4c. This pH control
and other unique features of AC spray have been used in
several new AC electrospinning technologies.32,33

Instead of relying on the electric field to produce a menis-
cus with a conic singularity, one can also use an existing
wedge geometric singularity of a contact line to focus elec-
tric field and acoustic waves. Gagnon and Chang have used
this technique to generate nanobubbles and nanodrops at a

contact line.34 This concept also led to the development of
surface acoustic wave mass spectrometry.35 The surface
acoustic wave on the piezoelectric surface scatters into the
interior of a liquid drop lying in its path. The scattered bulk
acoustic wave generates submicrometer drops at the end of
the drop. The electric field of the piezoelectric device is also
focused at the contact line where the scattering occurs, ioniz-
ing any molecule at that region. The result is an alternative
ionization and atomization method for mass spectrometry.
Preliminary results indicate the ionization is much softer
than DC or AC sprays.

Designing More Sensitive and More Rapid
Biosensors

That an electric field is focused at geometric singularities
can be used to improve many bioassays. Pull-down surface
assays, like the DNA microarray, involve surface-functional-
ized probes like antibodies or single-stranded oligonucleo-
tides that can capture specific target molecules like proteins

Figure 4. (a) The distinct difference between an AC cone with an 11
�

half angle and a DC Taylor cone with a 49
�

half angle, (b) theoretical analysis of the DC (top curve) and AC (bottom curve) cone angle as a function
of the ratio of liquid permittivity and gas permittivity.

The DC Taylor theory is based on the dominant mode from the spectral analysis of the Laplace operator with induced charge (dis-

placement) boundary conditions. The AC theory is based on a variational analysis of space charge Columbic repulsion. Note the

different dependence on b, (c) the charge state of the apomyoglobin mass spectrum at different frequencies of the AC spray and

for DC spray, and (d) mass spectra at different frequencies, showing the shift to higher charge states at high frequencies.
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and complementary nucleic acids, respectively. However, for
practical samples, such docking or hybridization reactions
are often transport limited. The diffusion time of the target
molecules often exceeds hours for practical samples, which
is much longer than the reaction time. Convective mixing
can reduce this time but since the mass-transfer Peclet num-
bers cannot be large in biochips, the diffusion-convection
boundary layer is often comparable to the chip height. Con-
sequently, another more short-range force on the target mole-
cules is needed to transport them faster to the surface
probes. The authors’ laboratory has found that nanometer-
sized large biomolecules like nucleic acids have very large
dielectrophortic (DEP) mobility because of ion polarization
within the Debye layers.36 The DEP mobility scales jrEj2,
and, hence, is largest near geometric singularities with singu-
lar electric fields like conic structures or pointed electrodes
(see Figure 5). Another way to generate near-singular elec-
tric fields is through fabrication of nanoslots37,38 and through
assembly of nanocolloids.39 In Figure 5, DNA molecules are
shown to be attracted to a nanocolloid assembly with high
fields within 1 min by DEP (compared to the hour-long dif-
fusion time) with this mechanism. Several patents from the
authors’ laboratory involve different designs for this DEP
molecular transport to reduce the assay time of biosensors.
The hybridization of the target molecules onto probes on the
biosensor can then be reported optically (fluorescence,
absorption or Raman scattering39,40,) or electrochemi-
cally.41,42 In some cases, the DEP mobility and even direc-
tion are different for different molecules or for nanoscale
floating electrodes like carbon nanotubes and nanocolloids
with or without hybridized molecules. In such cases, selec-
tive transport can also be achieved.41–45

Center manifold projection also allows us to derive the
effective AC ion conductivity of nanocolloids. Since electro-
migration and electro-osmotic convection exist within the
Debye layer, which is much thinner than nanocolloid size,
dispersion effects are important and an effective tangential
transport equation, much like the effective thermal dispersion
of catalytic converter under transient conditions in Eq. (1),
can be derived45 to produce a closed-form expression for the
effective ion conductivity for the nanocolloids. The “surface”
conductance within the Debye layer can render a dielectric
latex nanocolloid conducting, with nearly metallic conductiv-
ity because of the high-ion concentration within the Debye
layer. This ion polarization mechanism dominates DEP at
frequencies below the inverse ion dispersion time along the
double layer and it produces an induced colloid dipole that
is in opposite direction compared to dielectric (molecular
polarization) at high frequency. This implies that the DEP
transport of the nanocolloids can switch from negative DEP
(toward low fields in a biochip) to positive DEP (toward
high fields) upon molecular hybridization. This DEP molecu-
lar spectroscopy must be carried out near crossover fre-
quency, which is xco5

rp

2
ffiffi
2
p

pem
, where em is the medium

permittivity, a the colloid size, and the effective nanocolloid
conductivity for a dielectric nanocolloid is rp52Ks=a from
the theory,36,45 with the surface conductance being related to
the surface charge density rs0Ks5DFrs=RT. The validity of
this simple correlation, derived from singularity theory, is
verified by successfully collapsing crossover frequency data
for a range of particles with different charge density and in
different ionic strengths, as seen in Figure 6. The hybridized
molecules change the surface charge density, which alters

the ion concentration within the Debye double layer, and,
hence, the ion conductivity of the nanocolloids. This peculiar
Debye layer conductance endows a very unique size and sur-
face charge dependence of the DEP crossover frequency of
nanocolloids that can be used to quantify the number of mol-
ecules on the nanocolloids, sometimes even to determine
conformation of the hybridized molecules.46 Note that the
surface charge effect can only be captured for nanocolloids
roughly between 10 nm and 500 nm.

Optical fields can also be focused by geometric singular-
ities. However, such focusing only exists for plasmonic (sur-
face) electromagnetic waves on metallic cones, as bulk
radiation actually scatters off dielectric cones. The authors’
group is developing a discrete spectral theory for the former
and a new spectral theory to describe the essential spectrum
responsible for bulk radiation scattering off dielectric
cones.47 We report some preliminary results for etched opti-
cal fiber tips. Such tips can be coated with a gold film to
sustain plasmonic waves. The same gold film can be electri-
cally activated to use electrical DEP to rapidly transport the
target molecules to the tip surface. However, we shall focus
here on the focusing of plasmonic waves to the gold tip here
as a means of reporting the presence of hybridized target
molecules there.

The cone harmonics now correspond to the spherical har-
monics of Maxwell equations. We solve the full Maxwell
equations for localized EM field at the tip of an infinite long
cone in spherical coordinate. The apex angle of the cone is

Figure 5. Multiscale dielectrophoretic traps.

(a) Pointed electrodes with high-intensity AC field is

used to assemble nanocolloids with functionalized nano-

beads from a flowing suspension, (b) the assembled

nanobeads with highly focused electric fields at its inter-

stices, particularly at the pointed end near the tip of the

arrowhead shaped electrodes, and (c) fluorescent DNA

molecules are trapped at the tip of nanocolloid assembly

within 1 min.
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2a and the cone is made of a material with a complex per-
mittivity em, and a permeability lm surrounded by a dielec-
tric medium with a real permittivity eo and a permeability
lo. Applying the continuity of the field and displacement on
the interface and omitting higher-order less singular plas-
monic modes, a transcendental dispersion relationship is
obtained for the dominant eigenvalue t,
em

eo
1

f p2a;tð Þfh a;tð Þ
f a;tð Þfh p2a;tð Þ5

em

eo
1g a; tð Þ50; with f h; tð Þ5P1

t cos hð Þsin h.
In near field the radial component of the electric field Er �
rtr1iti 5rtr21eitilnr ( t 5 t r1i t i; r is the radial distance
from the apex of the cone), while the azimuthal magnetic
field Hu is less singular since it scales as rt. Note that while
field singularity occurs in the radial direction of the spherical
coordinate, both electric and magnetic field decays in the az-
imuthal polar direction. We define 1 2 tr as the intensifica-
tion exponent as it is related to the amplification of the
electric field as the azimuthally confined plasmonic radiation
focuses to the tip. The restriction that the total EM energy
be finite over the entire domain48 requires that tr>2 1=2.
The position-dependent wave number j 5 ti/r increases dra-
matically as plasmon waves propagate toward the tip, which
is found to be negative (ti< 0) for the converging waves
with speed retardation.

The plasmonic dispersion relationship defines a conformal
map from the complex permittivity space to the complex
eigenvalue space, as shown in Figure 7a, and the inverse
conformal map is shown in Figure 7b. The branch point
(tr 5 2 1=2, ti 5 0) on the intersection of two Riemann sheets
(shown as the black circle in Figure 7a) has significant phys-
ical implications—it corresponds to the demarcation line
between bounded and unbounded total electromagnetic
energy for the cone. At this point, the analyticity of the dis-
persion relationship coincides with energy conservation crite-
rion. To sustain surface plasmon waves, other than the
global energy conservation criterion, negative real permittiv-
ity and positive imaginary permittivity of the metal must
also apply. Negative real permittivity is a prerequisite for
surface bounded waves, and positive imaginary permittivity
guarantees that waves converge to the tip, instead of diverg-
ing to the far field. Therefore, only the dark region of the

Reimann sheet can sustain surface plasmon waves. In inverse
conformal map, the black circle in Figure 7b shows the
image of the branch point, while the dashed line indicates
where tr goes to infinity.

As field focusing at small cone angles can increase both
the field intensity and also the conductive loss, an optimal
angle is expected. Conversely, the ratio 2 ei/er of the material
determines the energy loss-storage ratio of the system,49 and,
hence, should determine the global resonant frequency. Con-
tour lines of constant EM field intensification exponent
1 2 tr computed from the dispersion relationship for a gold
cone with the permittivity model50 are shown in Figure 8 for
different angles and wavelengths k of incident light. A
global maximum in the intensification exponent exists at
k 5 892 nm, and a 5 11

�
. As expected, this global resonant

frequency resides at the minimum energy loss-storage ratio
of gold, as shown in Figure 8b. The dashed line connects
local resonant frequency for different angles, which ends at
the global optimal angle. The resonance spectrum for a gold
cone at different cone angles is shown in Figure 8a, which
shows that broader bandwidth is expected for smaller cone
angles.

Asymptotic behavior of g(a,t) in the limit of low conduc-
tion loss (ei/er ! 0) is most relevant for metals at the visible
frequency range. Taylor expansion was carried out about a
critical point (to 5 2 1=2 1 tioi), which is perturbed in the
imaginary eigenvalue near the branch point. Taylor expan-
sion yields tr 1 1=2 5 2 ieigt(to, ao). This simplified equation
can give a first-order estimate of the dominant exponent tr

given the permittivity of the metal. Furthermore, it is found
at the limit of er/eo !21, that ier/g(to,ao) approaches a
constant, and, hence, tr 11=2�20.693(ei/er). This estimate
reveals that the global resonant frequency occurs at the mini-
mum of ei/er, which is the energy loss-storage ratio of the
material.

Intensification exponent calculated from the dispersion
relationship can be compared to simulation data published in
the literature.51 Knowing jErj�rtr 2 1, we obtain the depend-
ence of the ratio of the electric field intensity on the expo-
nents and the geometry Etip/Eo 5 (r1/r2)tr21, where r1 is the
radial distance from the apex of the cone to the point where
Etip is measured, and r2 is the radial distance from the apex

Figure 6. Collapse of latex nanocolloids DEP crossover
frequency data for different nanocolloid size
and different ionic strengths of different
media.

The theory is provided by averaging over a dominant

mode to produce an effective transient nanocolloid ion

electric conductivity.

Figure 7. (a) Conformal map of dispersion relation,
where the circle marks the branch point, and
the dashed line marks where tr goes to in-
finity.

The dark region is where surface plasmon waves can

be excited, (b) Inverse conformal map of dispersion

relation, where circle marks the image of the branch

point and the dashed line marks where tr goes to infin-

ity. The dark region is where surface plasmon waves

can be excited.
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to the point where laser with electric field Eo impinges on
the cone. From simple geometry, r1 5 R1 sin a and r2 5 R2
sin a where R1 5 5 nm is the radius of curvature of the
apex, and R2 5 300 nm is the radius of the cylindrical wire
at the far end. Figure 9 favorably compares the literature
data log10(Etip/Eo) to our analytical estimate (tr 2 1)
log10(R1/R2), where the exponents are evaluated from the
dispersion relationship.

Designing Better Surface Force Instrumentation

Stress singularity is known to occur near moving contact
lines52 and at contact points of sliding solids. These are non-
integrable singularities that must be cutoff by new physics at
the contact point, like how microjet removes the singularity
of a rounded Taylor cone. Several new physical phenomena
can be responsible for such cutoff but one common feature
is that the dynamics often exhibit a common stick-slip fea-
ture. During evaporation of drops and for force driven wet-
ting, for example, the authors’ group has observed molecule
and nanocolloid packing at the meniscus to produce stick-
slip receding dynamics at the contact line.53,54 The singular
force field can often induce particle or molecular aggregation
or melting and such assembly/disassembly processes are
typically hysteretic with a solution manifold like that in
Figure 1a.

A common tool for characterizing the roughness of a sur-
face, and to study the “nanorheology” of an assembled mo-
lecular layer is surface force apparatus (SFA)
spectroscopy.55–59 One classical SFA design (see Figure 10a)
is the top cylinder attaching to a stationary spring with the
lower cylinder, separated from the upper one with a thin (�
nm) lubricating film of surfactant molecules below the CMC
(critical micelle concentration) pulling laterally at a constant
speed or cyclically with a constant speed in each direction.55

A curious stick-slip dynamics have been observed recently
in a regime bounded by two smooth sliding regimes without

a static yield stress.58,59 The force oscillates between two ki-
netic states with high- and low-friction forces (viscosities)
and shows complex periodic patterns with two oscillation
frequencies. This two-frequency stick-slip dynamics occur in
an intermediate range of driving velocity for the cylinder
(Figures 11 and 12).

It was speculated for some time59 that such stick-slip dy-
namics occur when both a condensed state and a melted state
exist for the surfactant monolayer. The cylinder oscillates at
its natural spring frequency at low-driving velocities in Fig-
ure 12, as the cylinder simply slides over the condensed sur-
factant monolayer. It also oscillates at the same frequency at
high driving speed, when all the surfactant molecules have
melted and the film viscosity approaches the low value for a
bulk surfactant solution. The interesting hysteresis region
exists in the middle, when both melted and condensed states
exist.

Like all phase transitions, such phase transitions of surface
assemble monolayers are hysteretic with respect to the
applied force, describable by the cusp singularity of Figure
1a. In collaboration with Yingxi Zhu, the group has demon-
strated with confocal microscopy hysteresis of molecules
with respect to a net AC electric force (Figure 10c), which is
varied by ramping the AC frequency so that the intensity of
dipole due to Debye layer ion conduction changes.60 Melt-
ing/freezing of the surfactant monolayer in SFA due to the

Figure 8. Constant intensification exponent contours
lines (1 2tr 5 1.428, 1.4, 1.3, 1.1) for a gold
cone for empirical permittivities,50 with dif-
ferent angles and incident light wavelengths,
where the dashed curve connects the local
resonant conditions from large angles until
the global optimal angle (circle).

The inset (a) plots the intensification exponent for a

gold cone with different cone angles (a 5 5, 10, 15, 20,

and 30�) and shows the CPR spectrum broadens and

exhibits a redshift away from the planar plasmon reso-

nant wavelength ks 5 c/xs. The inset (b) plots the ratio

of the imaginary to real permittivity for gold,50 where

maximum intensification occurs at k 5 892 nm.

Figure 9. (a) Comparison of theoretical intensification
factor (tr 2 1) log10(R1/R2) against the litera-
ture values51 for gold cones of different
angles (R1 5 5 nm, R2 5 300 nm), and (b)
Comparison against literature data51 for
three different materials at excitation wave-
length 488 nm with the same R1 and R2.
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nearly singular hydrodynmaic shear is also expected to be
hysteretic and its solution manifold resembles the cusp sin-
gularity. The different viscosity of each phase is expected to
produce a positive feedback mechanism to sustain the jump
from one surface to another of the solution manifold in Fig-
ure 1a. The limit-cycle and quasi-periodic chaos dynamics
suggest that low-dimensional dynamics are at play and sin-
gularity theory can be fruitfully applied to reduce the model
dimension of the molecular dynamics at the contact point
that removes the stress singularity.

With surfactants in the liquid, the assembly surfactant
monolayers is precipitated by absorption (trapping) of indi-
vidual molecules in the potential minima, due to the templat-
ing provided by the trapped molecules. The potential minima
are due to charged sites on the (mica) cylinder and its maxi-
mum electrostatic attraction with the charged surfactants.
However, the captured molecules can be sheared off the sur-
face, thus, destroying the monolayer assembly. With a dis-
continuous jump in the viscosity at the transition between
the condensed and melted phase, one then expects that for
the intermediate regime of Vd, where both phases exist, a
hysteresis exists in the force with respect to Vd, as seen in
Figure 12, that is related to the capture and release of a sin-
gle molecule from the potential minimum by shear. Hence,
the condensation and melting of the monolayer assembly can
be described by a single molecule in the potential landscape
and a convenient way of injecting singularity theory is
through a set of coupled equations of motion for a represen-
tative master surfactant molecule and the top cylinder

M€x1kcx1
@U y2xð Þ

@x
50 (3a)

gs _y2Vdð Þ1 @U y2xð Þ
@y

50 (3b)

where x and y are the lateral position of top cylinder and a
surfactant molecule on its surface, M is the mass of top cyl-
inder, kc is the spring constant. The unknown potential U,

with a barrier of U0, arises due to the attractive interaction
between the periodic lattices of surface charges (spacing a)
with the surfactant molecule. It is expected to have sharp
minima because of the nature of the (screened) coulombic
interaction. Vd is the driving velocity of the bottom cylinder
(substrate).

Viscosity of gas and liquid in a nanoslot is a complex
phenomenon. For high-Knudsen gas transport in gaps whose
height is smaller than the mean free path, the viscosity is
dominated by wall collision, particularly low-angle collisions
with molecular trajectories almost tangent to the wall.61 For
liquid filled nanoslots, the viscosity is determined by the
structure of the liquid molecules and with surfactants, by the

self-assembled monolayer. The condensed and melted

phases, hence, produce different damping coefficients. Its

value for the condensed phase is related to the condensed-

phase viscosity ls, contact area and gap width gs 5 lsA/d,
and its value can be estimated from the shear stress-speed

(r-Vd) data (in Figure 11) by gs5rA=Vd. This viscosity is

found to have a wide range 103 � 105Pa � s with strong de-

pendence on the velocity (or shear stress). This suggests that

Figure 10. (a) A schematic of the surface force apparatus with a nm-sized lubricated gap between the two cylin-
ders, (b) the single-molecule reduced model for the surfactant molecules within the film.

At low shear rate, it absorbs onto the active site on the mica cylinder. The ensemble of such absorbed molecules forms a solid-

like assembled layer of molecules with high viscosity. At high-shear rates, the absorbed molecule is sheared off the surface and

its ensemble form a melted state with low viscosity modeled by the usual damper for purely viscous fluids. The transitions from

condensed state to/from the melted state is hysteretic, which can be captured by the cusp singularity of Figure 1a, and (c) that

force field can change the conformation and phase of molecules was recently verified by varying the field-induced molecular

dipole through frequency ramping of the AC field to change the molecular stretching force. Hysterisis in the molecular hydrody-

namic radius with respect to the frequency was observed with confocal microscope.60
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there is a shear-thinning effect, as shear from the driving

cylinder can move the condensed molecule from the poten-

tial minima. We model this shear thinning effect by

Kramer’s theory for activated transport.62 Under an external

sheer force of Fe � rA=N, the forward and backward hop-

ping frequencies out of a potential well of a single molecule

are given by the rate equation x65x0e
2

U07rAa=2N

kBT . The prefac-

tor x0 is the vibration frequency of the water molecule

inside the potential well x0 5 U0/(a2gib), where gib � 6 pllD

is the damping coefficient for a single molecule with size D

in a bulk solvent viscosity of ll. With the net forward hop-

ping frequency being x12x2, the average surfactant drift

velocity is Vm5a x12x2ð Þ: At steady transport, this fluid

velocity is expected to be proportional to (but is a small

fraction of) the driving velocity and we have

Vd5c1Vm5
2c1U0

giba
e

U0
kBT sinh

r ~V

kBT

� �
(4)

with a proportionality constant c1 � 1 and a molecular vol-
ume ~V5Aa=2N. The condensed phase viscosity is then esti-
mated as

ls5
r

Vd2Vmð Þ=d
� rdgiba

c12U0

e
U0
kBTcsch

r ~V

kBT

� �
(5)

Equation 4 is in good agreement with the condensed
(high-friction) smooth sliding stress-speed (r-Vd) data,59 as
shown in Figure 11b for a normal load of L 5 4.5mN
between the two mica cylinders with surfactant at a concen-
tration of 0.8 CMC and at a temperature of 20

�
C. The force

increases linearly at low-speed Vd, but logarithmically at
high Vd.

The melted film with mobile surfactant molecules is
assumed to have the same rheological property as a free
bulk surfactant solution that feels no surface force. The dy-
namics of the molecule in 3b can then be omitted and vis-
cous drag from the sliding cylinder is now transmitted
directly to the top cylinder and we modify its equation of
motion in 3a to

M€x1gl _x2Vdð Þ1kcx50 (6)

Where gl5 l lA=d � 10Pa �m � s is the damping coeffi-
cient and is also estimated by the shear stress-velocity

Figure 11. (a) Measured winding number,59 the ratio of
the two oscillation frequencies, as a func-
tion of the velocity of the driving cylinder.

A winding number of one corresponds to a single-fre-

quency limit cycle. Two-frequency oscillations exist

beyond a critical driving velocity of about 0.6

(microns/s), (b) the stress-velocity curve of (a), and (c)

the critical driving velocity as a function of the load-

theory (curve) and measured data (points).

Figure 12. (a) Observed and simulated (inset) solutions,
and (b) Measured and simulated force oscil-
lations and power spectra.

AIChE Journal June 2013 Vol. 59, No. 6 Published on behalf of the AIChE DOI 10.1002/aic 1841



relation (r-Vd) in the melted smooth sliding region in Fig-
ures 11b and 12.

The key issue of which phase exists under a specific shear
must be addressed by examining how a molecule is captured
and released by the sites on the surface. The lattice site in
front of the molecule exerts a force in the direction of the
viscous drag while the force due to the site behind it opposes
viscous drag. However, because the molecule moves slower
in front of a site than behind it for the same reason, it favors
the former position and the time-averaged net force on the
molecule is attractive. Also, as the viscosity for each phase
is different, the critical shear (or sliding velocity Vd) for the
stick-slip transition, when the molecule is dragged off the
lattice site, is lower than the slip-stick transition, when it is
recaptured by the lattice site. The actual molecular velocity
is a linear combination of its average velocity Vm and a fluc-
tuation due to viscous drag from the periodic lattice
_z5Vm1~v; where z 5 y 2 x is the relative position of the mol-
ecule relative to the stationary cylinder and ~v5f zð Þ=gs

arises from the local surface force. This force f zð Þ52
@U zð Þ
@z

has a zero average over one unit cell hf zð Þi52 1
a

ð
a

@U

@z
dz50.

The distribution p(z) of the molecule over a unit cell of

length a is then p zð Þ � Vm

a
dt
dz � 1

a
1

11~v=Vm

� �
� 1

a 12~v=Vmð Þ.
Although <~v > 5 < f > 50, the average force weighted by
this drift-induced inhomogeneous distribution is quadratic in
f and has a nonzero average. This average force for a drifting

velocity is fM5hp zð Þf zð Þi � 2 1
Vmgsa

2 hf 2 zð Þi � a Lð Þ
Vd

. The exact

profile of the surface force potential f(z) is difficult to obtain
but the fact that fM scales inversely with respect to Vd is suf-
ficient for the estimate of the critical velocities. The parame-
ter a(L) depends on the exact potential profile and lattice
geometry/spacing.

The condensed high-friction smooth sliding mode becomes
unstable at Vd 5 Vc1 when the viscous drag gsVd exceeds fM.
This critical force is defined as fslip 5 gsVc1, where
Vc15

ffiffiffiffiffiffiffiffiffi
a=gs

p
(7) by balancing the viscous drag with fM. For a

normal load of L 5 4.5mN, and an estimated damping coeffi-
cient of gs � 103 Pa�m�s at Vd 5 Vc1 5 0.3 lm/s, we estimate
a to be 0.15 nJ. The low-friction smooth sliding mode loses
its stability at the second critical velocity Vd 5 Vc2 5 14–17
lm/s when fM/N becomes smaller than the viscous drag of
one bulk molecule at the middle of film, 6pllDVc1/2 with a
molecule size of D � 1 nm, and the viscosity of ll �10 P�s.
This critical force is defined as fstick 5 6pllDNVc1/2. Simple
proportionality exists for the two critical velocities (Vc2/Vc1)
� (gs/NDll)

0.5�102, which is close to the measured value of
50 in Figure 12.

The dynamics within the stick-slip regime can now be
simulated with Eqs. (3) and (6) with the following criteria:

a. the governing equation is switched from Eqs. (3) to (6)
if y 2 x> a when the molecule exits one potential min-
imum; and

b. from Eqs. (6) to (3) when fstick> 6 pllDNDV/2, and the
molecule is recaptured by a site.

In invoking “sticking” condition (b), the velocity differ-
ence between the two cylinders DV5Vd2 _x is monitored dur-
ing the simulation and must be decreasing. The critical force
fstick 5 6pllDNVc1/2 is specified by the first critical velocity
in (7). It is noted that the “melting” condition (a) differs
from that used to determine the stability of the stick phase—
this dynamic hysteretic condition allows cylinder inertia to

correct the critical force for “melting”. The simulations pro-

duce both the one-frequency and two-frequency stick-slip

dynamics, with quantitatively accurate spring force time se-

ries and power spectra, at the correct values of the driving

velocity); the correct frequency ratio (Figure 11), and the

complete force-speed data in both the stable sliding regions

and the stick-slip region (Figure 12).
The model offered by Singularity theory has allowed us to

capture the stick-slip dynamics that relieve the stress singu-
larities at the contacting solids. It is the shear-induced melt-
ing of the surfactant molecules from the potential minima
that relieves the stress. However, with lower viscosity, the
inertia of the spring-cylinder system produces cylinder oscil-
lations. The velocity of the driving cylinder approaches zero
at the extremes of the oscillation and the vanishing shear
returns the surfactant molecules to the potential minima—the
monolayer recondenses. In addition to the natural frequency
of the cylinder at the melted state, this stick-slip dynamics
exhibit another frequency corresponding to the escape and
capture time of the surfactant molecule at the potential
minimum.

Summary

These disparate projects from the authors’ group have all
benefited from a common mathematical framework for geo-
metric or parametric singularities. In many cases, such as the
nanocolloid mass spectrometry, knowledge of such theory
precedes the experimental outcome. In other cases, like
stick-slip dynamics at a contact singularity, the theory
explains an existing phenomenon. In yet another case, like
the fast igniting converters, the theory allows us to design
new technologies without experiments or computations. The
Taylor cone and cone plasmonic problems are particularly
intriguing, as the field focusing effect singular geometry
selects dominant modes that are themselves singular and the
singularities of the Riemann manifold allow the dominant
modes to offer accurate quantitative description of the solu-
tion. We had singularities galore!

Acknowledgment

The senior author is grateful to Neal Amundson for imbu-
ing him with the ideal espoused here and to all his students
and collaborators who share his excitement about singular-
ities. Part of this work is supported by NSF grants
IDBR0852741 and CBET 1065652.

Literature Cited

1. Chang HC, Calo JM. Exact criteria for uniqueness and multiplicity
of an nth order chemical reaction via a catastrophe theory approach.
Chem Eng Sci. 1979;34:285–299.

2. Ben Y, Demekhin EA, Chang HC. A spectral theory for small-am-
plitude miscible fingering. Phys Fluids. 2002;14:999–1006.

3. Chang HC. Evolution of nonlinear waves on vertically falling
films—a normal form analysis. Chem Eng Sci. 1987;42:515–533.

4. Chen LH, Chang HC. Nonlinear waves on liquid film surfaces—II.
Bifurcation analyses of the long-wave equation. Chem Eng Sci.
1986;41:2477–2486.

5. Lahbabi A, Chang HC. Flow in periodically constricted tubes: transi-
tion to inertial and nonsteady flows. Chem Eng Sci. 1986;41:2487–
2505.

6. Chang HC, Demekhin EA. Complex Wave Dynamics on Thin Film.
Elsevier Science; 2002.

7. Chang HC, Demekhin EA, Kalaidin E. Interaction dynamics of soli-
tary waves on a falling film. J Fluid Mech. 1995;294:123–154.

1842 DOI 10.1002/aic Published on behalf of the AIChE June 2013 Vol. 59, No. 6 AIChE Journal



8. Chang HC, Demekhin EA, Kopelevich DI. Stability of a solitary
pulse against wave packet disturbances in an active medium. Phys
Rev Lett. 1995;75:1747–1750.

9. Ye Y, Chang HC, A spectral theory for fingering on a prewetted
plane. Phys Fluid. 1999;11:2494–2515.

10. Yuzhakov VV, Miller AE, Chang HC, Pattern formation during elec-
tropolishing. Phys Rev B. 1997; 56:12608–12624.

11. Thamida SK, Chang HC. Nanoscale pore formation dynamics during
aluminum anodization. Chaos. 2002;12:240–251.

12. Boe E, Chang HC. Dynamics of delayed systems under feedback
control. Chem Eng Sci. 44, 1281 (1989).

13. Chen CC, Chang HC. Accelerated disturbance damping of an
unknown distributed system by nonlinear feedback. AIChE J.
1992;38:1461–1476.

14. Sen M, Chang HC. Gas Research Institute. Process and apparatus for
enhancing in-tube heat transfer by chaotic mixing. U.S. Patent
5,311,932. May 17, 1994.

15. Archaya N, Sen M, Chang HC. Analysis of heat transfer enhance-
ment in coiled-tube heat exchangers. Int J Heat Mass Tran.
2001;44:3189–3199.

16. Keith JM, Chang HC, Leighton DT. Designing a fast-igniting cata-
lytic converter system. AIChE J. 2001;47:650–663.

17. Leighton DT, Chang HC. A theory for fast-igniting catalytic convert-
ers. AIChE J. 1995;41:1898–1914.

18. Chang HC, Yeo LY. Electrokinetically Driven Microfluidics and
Nanofluidics. New York, NY: Cambridge University Press; 2010.

19. Balakotaiah V, Chang HC, Dispersion of chemical solutes in chro-
matographs and reactors. Phil Trans R. Soc Lond A. 1995;351:1695
39–75.

20. Leighton DT, Chang HC. Fast-igniting catalytic converters with
bypass. U.S. Patent No. 6,428,754. August 6, 2002.

21. Zheng H, Keith JM. Averaging theory for diesel particulate filter
regeneration. AIChE J. 2007;53:1316–1324.

22. Taylor GI. Disintegration of water drops in an electric field. Proc R
Soc A. 1964;280:383–397.

23. Marginean I, Nemes P, Vertes A. Astable regime in electrosprays.
Phys Rev E. 2007;76:026320–026325.

24. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electro-
spray ionization for mass spectrometry of large biomolecules. Sci-
ence. 1989;246:64–71.

25. Page JS, Kelly RT, Tang K, Smith RD. Ionization and transmission
efficiency in an electrospray ionization-mass spectrometry interface.
J Amer Soc Mass Spectrom. 2007;18:1582–1590.

26. Zeleny J. Instability of electrified liquid surface. Phys Rev. 1917;10:1–
6.

27. Wang Y, Tan MK, Go DB, Chang HC. Electrospray cone-jet
breakup and droplet production for electrolyte solutions. Europhys
Lett. 2012;99:64003. (Editor’s highlight).

28. Cheng X, Chang HC, Universal nanocolloid deposition patterns: can
you see the harmonics of a Taylor cone? J New Phys. 2009;11:
75023–75031.

29. Cheng X, Chang HC. Identification and separation of DNA-hybri-
dized nanocolloids by Taylor cone harmonics. Electrophoresis.
2009;30: 3236–3241.

30. Chetwani N, Maheshwari S, Chang HC. Universal cone angle of ac
electrosprays due to net charge entrainment. Phys Rev Lett.
2008;101:204501.

31. Chetwani N, Cassou CA, Go DB, Chang HC, Frequency dependence
of alternating current electrospray ionization mass spectrometry.
Anal Chem. 2011;83:3017–3023.

32. Yeo L, Gagnon Z, Chang HC. AC Electrospray biomaterial synthe-
sis. Biomaterials. 2005;26:6122.

33. Maheshwari S, Chang HC. Assembly of multi-stranded nanofiber
threads through ac electrospinning. Adv Mater. 2009;21:349–354.

34. Gagnon Z, Chang HC. Dielectrophoresis of ionized gas microbub-
bles: dipole reversal due to diffusive double layer polarization. Appl
Phys Lett. 2008;93:224101.

35. Ho J, Tan MK, Go DB, Friend JR, Chang, HC. A paper-based
microfluidic surfae acoustic wave sample delivery and ionization
source for rapid and sensitive ambient mass spectrometry. Anal
Chem. 2001;83: 3260–3266.

36. Basuray S, Chang HC. Induced dipoles and dielectrophoresis of
nano-colloids in electrolytes. Phys Rev E. 2007;75:060501–060504.

37. Yossifon G, Chang HC. Selection of nonequilibrium overlimiting
currents: universal depletion layer formation dynamics and vortex
instability. Phys Rev Lett. 2008;101:254501.

38. Chang HC, Yossifon G. Understanding electrokineitcs at the nano-
scale–a perspective. Biomicrofluidics. 2009;3:012001.

39. Cheng IF, Senapati S, Cheng X, Basuray S, Chang HC, Chang HC.
A rapid field-use assay for mismatch number and location of hybri-
dized DNAs. Lab Chip. 2010;10,828–831.

40. Zhou R, Chang HC, Protasenko V, Kuno M, Singh AK, Jena D.
CdSe nanowires wih illumination enhanced conducitivity: induced
dipoles, dielectrophoretic assembly and field-sensitive assembly. J
App Phys. 2007;101:073704.

41. Zhou R, Wang P, Chang HC, Bacteria capture, concentration and
detection by AC dielectrophoresis and self-assembly of dispersed
single-wall carbon nanotubes. Electrophoresis. 2006;27:1375.

42. Basuray S, Senapati S, Aijian A, Mahon AR, Chang HC, Shear, AC
Field. Enhanced carbon nanotube impedance assay for rapid, sensi-
tive and mismatch-discriminating DNA hybridization. ACS Nano.
2009;3: 1823.

43. Gagnon Z, Senapati S, Gordon J, Chang HC. Dielectrophoretic
detection and quantification of hybridized dna molecules on nano-
genetic beads. Electrophoresis. 2008;29:4808.

44. Chang HC, Nanobead electrokinetics: the enabling microfluidic plat-
form for rapid multi-target detection. AIChE J. 2007;53:2486–2492.

45. Basuray S, Wei HH, Chang HC. Dynamic double-layer effects on
ac-induced dipoles of dielectric nanocolloids. Biomicrofluidics.
2010;4:022801.

46. Basuray S, Chang HC. Designing a sensitive and quantifiable nano-
colloid assay with dielectrophoretic cross-over frequency. Biomicro-
fluidics. 2010;4:013205.

47. Wang Y, Plouraboue F, Chang HC. Broadband converging plasmon
resonance at a conical nanotip. Opt Express. 2013;21:6609–6617.

48. Kawata Y, Xu C, Denk W. Feasibility of molecular-resolution fluo-
rescence near-field microscopy using multi-photon absorption and
field enhancement near a sharp tip. J Appl Phys. 1999;85:1294–
1301.

49. Wang F, Shen Y. General properties of local plasmons in metal
nanostructures. Phys Rev Lett. 2006;97:206806.

50. Johnson PB, Christy RW, Optical constants of the noble metals.
Phys Rev B. 1972;6:4370.

51. Issa NA, Guckenberger R. Optical nanofocusing on tapered metallic
waveguides. Plasmonics. 2007;2:31.

52. Huh C, Scriven LE, Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line. J Colloid Interf Sci. 1971;35:85–101.

53. Maheshwari S, Zhang L, Zhu Y, Chang HC. Coupling between pre-
cipitation and contact-line dynamics: multiring stains and stick-slip
motion. Phys Rev Lett. 2008;100;044503.

54. Veretennikov I, Agarwal A, Indeikina A, Chang HC. Unusual con-
tact-line dynamics of thick films and drop. J Colloid Interf Sci.
1999;215:425.

55. Yoshizawa H, Chen YL, Israelachvili J, Fundamental mechanisms of
interfacial friction. 1. Relation between adhesion and friction. J Phys
Chem. 1993;97:4128.

56. Klein J, Kumacheva E, Simple liquids confined to molecularly thin
layers. I. Confinement-induced liquid-to-solid phase transitions. J
Chem Phys. 1998;108:6996.

57. Demirel AL, Granick S. Friction fluctuations and friction memory in
stick-slip motion. Phys Rev Lett. 1996;77: 4330.

58. Richetti P, Drummond C, Israelachvili J, In M, Zana R. Inverted
stick-slip friction. Europhys Lett. 2001;55:653.

59. Drummond C, Israelachvili J, Richetti P, Friction between two
weakly adhering boundary lubricated surfaces in water. Phys Rev E.
2003;67:066110.

60. Wang S, Chang HC, Zhu Y. Hysteretic conformational transition of
single flexible polyelectrolyte under resonant ac electric polarization.
Macromol. 2010;43:7402–7405.

61. Arya G, Chang HC, Maginn EJ, Knudsen diffusivity of a hard
sphere in a rough slit pore. Phys Rev Lett. 2003;91:26102.

62. Kramer HA, Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica. 1940;7:284.

Manuscript received Sept. 13, 2012, and revision received Mar. 3, 2013.

AIChE Journal June 2013 Vol. 59, No. 6 Published on behalf of the AIChE DOI 10.1002/aic 1843

info:x-wiley/patent/US/5311932
info:x-wiley/patent/US/6428754

