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When an electric field is applied across a conducting and ion-selective porous granule
in an electrolyte solution, a polarized surface layer with excess counter-ions is created.
The depth of this layer and the overpotential V across this layer are functions of
the normal electric field j on the granule surface. By transforming the ionic flux
equations and the Poisson equation into the Painlevé equation of the second type
and by analysing the latter’s asymptotic solutions, we derive a linear universal j–V
correlation at large flux with an electrokinetic slip length β. The flux-induced surface
polarization produces a nonlinear Smoluchowski slip velocity that can couple with
the granule curvature to produce micro-vortices in micro-devices. Such vortices are
impossible in irrotational electrokinetic flow with a constant zeta-potential and a
linear slip velocity.

1. Introduction
Electrokinetic flow occurs when an electric field imparts a net electrostatic force

in polarized surface regions in an electrolyte to induce solvent flow both within
and outside the charged regions. It has been proposed as a convenient means of
transporting electrolyte solutions in micro-devices. Since the liquid flow is governed
by implantable electrodes, it is far easier to control, direct and meter than the other
proposed transportation mechanisms like syringe-displaced, centrifugally driven and
Marangoni-driven flows (Stone & Kim 2001). A flat velocity profile also results from
electrokinetic flow with the classical linear Smoluchowski slip velocity u = εε0ζE/η,
where ε and ε0 are the relative and vacuum permittivities, ζ the zeta-potential due
to surface charges, η the liquid viscosity and E the tangential electric field. Because
the electrostatic body force is confined to a narrow charged Debye layer (10–200 nm)
near the surface, it is manifested like a tangential surface force to produce the flat
velocity profile. This flat velocity profile is independent of the channel width and
minimizes hydrodynamic dispersion (Dutta & Leighton 2001).

However, with low dispersion, electrokinetic flow suffers from mixing deficiencies
that reduce reaction yield and promote colloid/protein aggregation/precipitation
(Chang 2001; Takhistov, Indeikina & Chang 2002; Minerick, Ostafin & Chang 2002);
many of them can be remedied by the generation of micro-vortices within the flow
channels. However, generation of micro-vortices is difficult in electrokinetic flow.
It was realized long ago (Probstein 1994) that with the linear Smoluchowski slip
velocity and uniform ζ-potential, the electrokinetic streamlines are the same as the
electric field lines governed by the electric vector field E = −∇φ. As a result, both
the velocity and electric vector fields are irrotational. Due to the slip condition,
viscous electrokinetic flow fields are unique in that they can also be described as
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a potential flow at vanishing Reynolds numbers. However, the irrotational feature
of potential flow then implies that closed streamlines and vortices are impossible.
One can introduce surfaces with non-uniform ζ-potential (Herr et al. 2000), but such
non-uniformities are difficult to impose at junctions and membrane surfaces where
vortex mixing is most needed. Mechanical stirrers of sub-millimetre dimension, like
expanding bubbles and pezio-electric actuators, are also not reliable.

There is a unique vortex generation mechanism specific for electrokinetic flows
that is promising, first proposed by Dukhin (1991). If a conducting and ion-specific
porous granule is inserted into an electrolyte with a uniform electric field, the field
lines are attracted to the conducting granule and the counter-ions (assumed to be
cations here) carry the flux (current) into the granule but the co-ions do not penetrate
into the granule. Since the streamlines do not penetrate the granule, the velocity
field no longer coincides with the electric field and is hence no longer irrotational.
The finite counter-ion flux requires a linear diffusive concentration gradient in the
electro-neutral region near the bulk. With increasing flux j+, this gradient increases
and so does the width of a polarized region near the granule that is depleted of
co-ions. This elongation then increases the potential drop V , the overpotential, over
the polarized region. If a tangential field Et is now applied along the granular surface,
standard hydrodynamic analysis (Probstein 1994) shows that the slip velocity becomes
u = εε0VEt/η, where the overpotential V replaces the ζ-potential and usually exceeds
it by several factors. Moreover, since V is a monotonically increasing function of
j+, the counter-ion flux, it is also a monotonically increasing function of the normal
current into the granule and hence the normal electric field En in the electroneutral
Ohmic region away from the polarized region. As a result, u ∼ V (En)Et is now a
nonlinear Smoluchowski slip velocity. More specifically, consider a granule with a
uniform electric field in the plane of the equator (see figure 1): the normal electric
field has a minimum at the poles due to the granule curvature and the tangential slip
velocity decreases towards them. From continuity, a back pressure must then build
up at the poles to eject the fluid radially outwards. A recirculating vortex can then be
generated with this nonlinear Smoluchowski slip velocity due to current leakage into
the granule. This has been verified in experiments by Mishchuk & Takhistov (1995),
reproduced in figure 1 for a 1 mm granule. These vortices last for nearly an hour until
the granule is saturated with ions and does not permit additional flux.

However, this vortex generation mechanism has yet to be captured theoretically or
numerically. The obstacle is the derivation of the electrostatic slip condition j+(V ) on
the granule surface for the Ohmic outer region beyond the diffusion layer. Numerical
solutions have been constructed by Rubinstein & Shtilman (1979) and, much earlier,
Levich (1962) derived a nonlinear closed-form small-flux condition by expanding
about the electroneutral intermediate solution,

j+l

D+C∞
= 2

[
1− exp

(
− VF

2RT
+

ln(p/C∞)

2

)]
, (1.1)

where l is the diffusion layer thickness, D+ is the counter-ion diffusivity, C∞ is the bulk
concentration and p is the surface concentration of the counter-ions. Levich’s theory
predicts that there is a maximum asymptotic current density, the limiting current j+

lim

of (2D+C∞/l), at large V . This, however, has been refuted by experimental data and
numerical studies that show j+ can exceed j+

lim by a factor of 2 at large V (Rubinstein
& Shtilman 1979). In fact, vortices are expected only when j+ exceeds j+

lim when the
overpotential V is large and sensitive to j+. Given the surfeit of system parameters, it
is also desirable to obtain a closed-form universal condition to simplify the analysis. It
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(a) (b)

Figure 1. (a) Illuminated titanium oxide powder shows the streamlines of electrokinetic flow around
a 1 mm spherical granule housed in a slot in a field of about 100 V cm−1. The electric field is applied
towards the left in the plane of the equator and there is significant bulk flow due to the slot
zeta-potential. (b) Computed streamlines for R = 1 mm, E∞ = 100 V cm−1, C∞ = 10−1 mol l−1,
λ = 43 nm, k = 1 and D = 1.994× 10−5 cm2 s−1. The slight shift of the imaged vortices towards the
poles is probably due to the unmodelled flow on the left of the sphere with outward ionic flux.

is even more desirable if the universal electrostatic slip is linear to permit easy solution
of the electro-static problem. A universal large-flux electro-static slip condition has
not been reported and is an explicitly stated open-problem in Rubinstein (1990).
We offer just such a correlation here and use the closed-form solution to confirm
Dukhin’s vortex formation mechanism. We begin with the problem formulation and
a reproduction of earlier numerical results by Rubinstein & Shtilman (1979).

2. Formulation and numerics
The ionic flux is the sum of diffusive flux and electro-migration

j+ = −D+∇C+ − D+z+C+(F/RT )∇φ, (2.1)

where z+ is the valence of the cation, D+ its diffusivity, C+ its concentration and
φ the electric potential. A similar equation applies for C− but with a sign change
on the electro-migration term. Outside the polarized granule surface, the liquid is
well-stirred and the counter- and co-ion concentrations are equal and uniform. This
neutral outer Ohmic region then only involves electro-migration and its potential
satisfies the Laplace equation ∇2φ = 0 obtained by taking the divergence of the flux
vector in (2.1) in the absence of concentration gradient.

Hence, the normal ion flux j+ across the polarized layer is also the normal electric
field ∂φ/∂n in the Ohmic outer region modulo a factor of D+z+C+(F/RT ). The
correlation j+(V ) or j+(φ) on the surface is then an electro-static slip condition for
the Ohmic Laplace equation. The original conducting granule has become one that
is between perfectly conducting (φ = const) or perfectly insulating (j = 0) due to the
polarization. A desirable linear version of j+(V ) would have the form β′j+ = (φ−V0),
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or

β′D+z+C+

(
F

RT

)
∂φ

∂n
= (φ− V0) (2.2)

with β′D+z+c+(F/RT ) = β being the electrostatic slip length. Perfectly conducting
and insulating granules then correspond to β = 0 and ∞, respectively.

We assume that the Ohmic well-stirred region begins at a distance l from the
granule surface. Although this diffusion layer thickness depends on the local Péclet
number and can vary from one position to another according to its distance from
the initiation point of the diffusion layer, we shall assume that it is small compared
to the granule size and varies slowly. Hence, at every local position, the dominant
variation is in the normal direction and the steady flux equations and the Poisson
equation become one-dimensional. With normal electro-migration from the Ohmic
region supplying most of the normal current, tangential convection is unimportant
except in specifying l. Using l as the characteristic length, RT/F ∼ 24 mV as the
characteristic potential and the bulk concentration C∞ as the reference concentration,
the steady, dimensionless and integrated versions of the flux equation (2.1) for both
ions and the Poisson equation become

dC+

dx
+ C+ dφ

dx
= −j, dC−

dx
− C−dφ

dx
= 0, δ2 d2φ

dx2
= C− − C+, (2.3)

where we have omitted the superscript + in j+ and the small parameter δ = λ/l is

the ratio of the Debye length λ =
√
RTεε0/F2C∞ to the diffusion layer thickness l.

Four boundary conditions are required for (2.3) and they are

C+(x = 0) = C−(x = 0) = 1, φ(x = 0) = 0, C+(x = 1) = p, (2.4)

where x is the inverted and normalized normal coordinate such that x = 0 is assigned
to the outer boundary that interfaces with the Ohmic outer region. The reference
point for the electric potential is also designated there. The granule is then at x = 1.

For every given flux j, the solution of (2.3) with boundary conditions (2.4) yields

φ(1) = −V = −V (j, δ, p). (2.5)

This is the inverted form of the electrostatic condition j(V ).
Due to the smallness of δ, there exists a neutral intermediate solution away from a

small inner region of width δ at x = 1. Its solution can be readily constructed from
(2.3), with an expansion about the electro-neutral limit at δ = 0,

C+ = C− = 1− 1
2
jx; φ = ln(1− 1

2
jx). (2.6)

This neutral diffusive intermediate solution has linear concentration profiles and an
electric field dφ/dn that increases towards the membrane at x = 1. In the limit when
φ(1) = −V = −∞, j = jlim = 2. This represents the limiting current due to diffusion
limitation for a neutral electrolyte. Without polarization, this is the upper limit of ion
flux into the granule.

The inner equation cannot be solved explicitly to allow analytical patching with
(2.6). Instead we have numerically integrated (2.3) from x = 1 by specifying φ(1) =
−V , (dφ/dx)(1) = −E1, C

+(1) = p and C−(1) = 0. The last two conditions are exact
and we iterate on the first two until the solutions match (2.6) smoothly at some
location x between zero and 1. In figure 2, we depict a standard set of numerical
results for this two-parameter iteration scheme. It is clear that the c+ profile exhibits a
minimum in the polarized layer where there is significant ion depletion. In figure 3(a),
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Figure 2. The computed profiles of ion concentrations and potential φ from numerical matching at
δ = 0.0127, j = 3.5, V = 45.18 and p = 2.0, initiated with the intermediate neutral diffusive solution
(2.6) on the left near x = 0. Deviation from neutrality occurs beyond x = 0.5.
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Figure 3. (a) Raw j–V data from numerical matching for various δ and p = 2. Levich’s
near-equilibrium theory collapses the date for j < 2. (b) Collapse of large-j data in (a) using
our theory (3.16).

we depict the computed j(V ) correlations. The correlation is clearly highly nonlinear
and approaches the result of Levich (1.1) only for j < j+

lim = 2. However, the large-
flux correlations that show large V sensitivity seem linear although they are quite
scattered in the raw coordinates for a wide range of δ and p. They will be collapsed
by a universal scaling offered by the matched asymptotics analysis below.

3. Matched asymptotics
Rubinstein (1990) noted that (2.3) can be collapsed into one single nonlinear

equation with an ingenious transformation. The ion equations are added together and
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the Poisson equation is used to replace the sum of the electro-migration terms

d

dx
(C+ + C−)− δ2 d2φ

dx2

dφ

dx
= −j. (3.1)

Integrating once and recognizing that the no-flux condition on C− yields a Boltzmann
distribution, C− = eφ, one obtains

C+ = −jx− eφ +
δ2

2

(
dφ

dx

)2

− d, (3.2)

where d is an integration constant.
Applying the boundary condition for C+ at x = 0 in (2.4), one specifies the

parameter

d = −2 +
δ2

2

(
dφ

dx
(0)

)2

= −2 +
δ2j2

8
∼ −2 (3.3)

as (dφ/dx)(0) = −j/2 from (2.6) of the electro-neutral solution at x = 0. The other
boundary condition C+ at x = 1 yields the desired j–V relationship

j = −p+ 2− δ2j2

8
− e−V +

δ2

2

[
dφ

dx
(1)

]2

. (3.4)

Knowledge of (dφ/dx)(1), the field at the granule, would yield the j–V correlation.
Rubinstein (1990) first showed that the transformation

η =
exp(φ/2)

21/6(δj)1/3
, ξ =

jx− 2 + δ2j2/8

21/3(δj)2/3
(3.5)

then transforms the Poisson equation, with (3.2) substituted, into the second Painlevé
equation (Bender & Orszag 1978)

d2η

dξ2
= 2η3 + ξη. (3.6)

At x = 0 on the outer Ohmic boundary, ξ approaches negative infinity for small δ.
Moreover, the neutral diffusive intermediate becomes

η ∼√−ξ/2 (3.7)

as φ→ 0 in (3.5) for this limit. The logarithm singularity of (2.6) is removed by (3.5).
At the other boundary on the granule x = 1, ξ∗ = (j − 2)/(21/3(δj)2/3) approaches

positive infinity for large flux j > 2. Moreover, in the limit of eV/2 � δ1/3 or
V � − 2

3
ln δ, which is valid for large flux, η vanishes at the granule surface. This

means the appropriate trajectory in the (ξ, η)-plane is one that intersects the ξ-axis at
ξ∗. Replacing (dφ/dx)(1) by the transformed (dη/dξ)(ξ∗) in (3.4), we obtain

j = −p+ 2− e−V − δ2j2/8 +
2(δj)4/3eV

21/3

[
dη

dξ
(ξ∗)
]2

. (3.8)

The j–V correlation now reduces to the estimate of (dη/dξ)(ξ∗), the slope at the
intercept with the ξ-axis of the asymptotic solution of the Painlevé equation at
large ξ∗.

This requires an asymptotic expansion of the Painlevé equation in the region near
the ξ-axis where η2 � ξ. In this neighbourhood of the ξ-axis, the first term on the
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Figure 4. Solution trajectories approach the neutral diffusive solution (3.7) at large negative ξ and
the Airy function (3.10) at large positive ξ. A movable attracting pole causes each trajectory to
approach negative infinity in η at a finite ξ value after the intercept with the ξ-axis.

right-hand side of the Painlevé equation (3.6) is negligible and one obtains the Airy
equation

d2η

dξ2
= ξη. (3.9)

This equation has a unique large-ξ solution, the Airy function (Bender & Orszag
1978),

η ∼ 1

2
√
π
ξ−1/4 exp(− 2

3
ξ3/2), (3.10)

which decays monotonically to zero at large ξ.
We have transformed some of our large-flux numerical solutions to the (ξ, η)-plane

in figure 4. It is clear that all trajectories evolve from the neutral diffusive solution to
the Airy solution at large flux with an intermediate region that escapes both. However,
the blow-up of figure 4 shows that different asymptotic trajectories depart from the
Airy function at large ξ and intersect the ξ-axis at different ξ∗. After the intersection
at ξ∗, the trajectories approach negative infinity at finite ξ, indicating a movable pole
for each trajectory (Bender & Orszag 1978). The different intercepts correspond to
different higher-order terms that match (3.7) to (3.10) in the intermediate region.
However, the existence of a movable pole means that we can estimate (dη/dξ)(ξ∗)
without determining these higher-order terms: all intercepts at large ξ have slopes
with identical dependence on ξ.

As the trajectory passes the ξ-axis and η blows up in the negative direction at the
pole, the condition η2 � ξ that leads to the Airy function is no longer valid. Instead,
we examine the region when both terms on the right of the Painlevé equation (3.6) are
of the same order, ξ ∼ η2. We hence define new variables z = θ/

√
ξ and t = ξ3/2 to

arrive at the Jacoby equation from an expansion in ξ and t of the Painlevé equation

d2z

dt2
= 2z3 + z. (3.11)
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It is well-known that the associated Jacoby elliptic integral yields an infinite number
of discrete simple poles t0, such that z ∼ 1/(t− t0) near the poles. The exact location
of the poles is unimportant. We simply need the behaviour of η near its poles ξ0 from
this analysis

ηinner ∼
√
ξ

ξ3/2 − ξ3/2
0

. (3.12)

Hence, a composite solution of the asymptotic Painlevé trajectory near a particular
pole ξ0 can be constructed from both the Airy function and ηinner:

ηcomp ∼ 1

2
√
π
ξ−1/4 exp(− 2

3
ξ3/2) +

√
ξ

ξ3/2 − ξ3/2
0

(3.13)

for large ξ and ξ0. An expansion of (3.13) for large ξ yields an estimate of the intercept
at ξ∗ = (ln ξ0)

2/3. Substituting this into (3.13), we conclude that ξ∗ is sufficiently smaller
than the pole ξ0 that the inner solution (3.12) does not contribute to the slope at the
intercept ξ∗. We can hence use just the slope of the Airy function (3.10) to estimate
the slope at the intercept, even though the former does not intersect the ξ-axis,

dη

dξ
(ξ∗) ∼ − ξ

1/4
∗

2
√
π

exp(− 2
3
ξ

3/2
∗ ). (3.14)

At large ξ∗, the slope of every intercept hence has the same universal dependence on
the intercept location ξ∗ due to the dominance of the Airy function, which decays
monotonically in ξ without singularities.

We can now insert ξ∗ ∼ (j−2)/(21/3(δj)2/3) from (3.5) into (3.14) and substitute the
resulting (dη/dξ)(ξ∗) into (3.8). Since eV in (3.8) dominates, we take the logarithm to
yield, to leading order,

V =
2
√

2

3

(
j − 2

j2

)1/2(
j − 2

δ

)
+ ln

(j + p− 2)

0.11δj(j − 2)

1/2

. (3.15)

The quantity (j − 2)1/2/j approaches a shallow maximum of 0.33 for j beyond 2.5
and remains within 15% of this value for j < 8 and similarly for the weak logarithm
term, which can be estimated by V0(p, δ) = 1.0 − ln δ valid for 2 < j < 8 and
10−2 < p < 1. The p dependence is negligible to leading order. Hence, the electrostatic
slip condition at large j can be expressed as a linear condition like (2.2) and as
suggested by figure 3(a),

(j − 2)/δ = 3.0[V − V0(δ)] (3.16)

for a large and important region in the parameter space. This version implies that
j exceeds the dimensionless limiting current of 2 when V is larger than V0. Most
double layers are 10 to 100 nm while the diffusion layer thickness ranges from 1
to 100 microns. Hence, a typical range of δ is 10−4 to 10−2. Using δ = 10−3, we
obtain V0 ∼ 7.9. Equivalently, the limiting current is exceeded when the overpotential
exceeds 7.9(RT/F) or about 190 mV. In figure 3(b), we successfully collapse all large-j
correlations with (3.16).

A more convenient form of (3.16) for the outer Ohmic region is to determine its
limiting electric field at x = 0. Relating j to dφ/dn on the Ohmic side, we obtain
version (2.2) of the slip condition on the Ohmic side of the surface diffusion layer,

dφ

dn
= 3.0δφ+ 2.0, (3.17)
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where even V0 becomes negligible. The dimensionless slip length is then 1/3.0δ,
corresponding to a dimensional one of β = l/3.0δ in (2.2). This slip length is hence
much larger than the diffusion layer thickness and can be as large as 1 mm. The
vortices constructed in the next section hence have a characteristic size of one slip
length.

4. Vortex generation around a spherical granule
The electrostatic slip length implicit in (2.2) and (3.17) depends on the diffusion

layer thickness l, which should grow from the equator towards the poles in figure 1.
Moreover, its local thickness is dependent on the local nonlinear slip velocity, which
is, in turn, dependent on l. This coupling between electrostatics and hydrodynamics is
quite complex. Instead of discussing this coupling in detail, we shall assume a constant
diffusion layer here as a simplifying assumption. Using classical diffusion layer scaling
for slip boundary conditions, the diffusion layer thickness is l = kR0/

√
Pe, where

Pe = UR0/D, U represents the characteristic velocity of the system to be specified
later, R0 the dimensional particle radius, D = D+, and k is an unknown unit-order
coefficient. This completely specifies the effective boundary condition on the ion-
specific granule for the electric potential in the well-stirred Ohmic region which obeys
the Laplace equation.

Using (3.17) as the boundary condition for the Laplace equation, we obtain from
a harmonic expansion the electric potential around a spherical granule in a uniform
electric field E∞

φ = E∞ cos θ

(
r +

(
1− 3Uλ/(k2D)

2 + 3Uλ/(k2D)

)
R3

0

r2

)
− 2k

3λ

√
R0D

U

RT

F
. (4.1)

The overpotential at the surface and the tangential electric fields are, respectively,

V = φ(r = R0) = E∞ cos θ

(
3R0

2 + 3Uλ/(k2D)

)
− 2k

3λ

√
R0D

U

RT

F
,

Et = −1

r

∂φ

∂θ
(r = R0) = E∞ sin θ

(
3

2 + 3Uλ/(k2D)

)
.

 (4.2)

Hence, the nonlinear Smoluchowski slip velocity is

Uθ(r = R0) =
εε0

µ

(
3E∞R0 cos θ

2 + 3Uλ/(k2D)
− 2k

3λ

√
R0D

U

RT

F

)
E∞ sin θ

(
3

2 + 3Uλ/(k2D)

)
(4.3)

and the zero normal liquid flux condition stipulates Ur(r = a) = 0. The negative term
within the parentheses corresponds to the negative intercept of the j-axis in figure 3
of our large-flux expansion. The true velocity is always positive.

As expected, the polarization φ is weakest at the poles (θ = ± 1
2
π) and largest at

the equator (θ = 0) due to En variation and the nonlinear Smoluchowski slip velocity,
which scales as sin θ cos θ at large field, has a maximum at θ = 1

4
π. As such, the

tangential flow uθ has a negative downstream gradient ∂uθ/∂θ < 0 for 1
4
π < θ < 1

2
π.

By continuity, an outward radial flow must then result from the granule. This, in turn,
produces a back-pressure gradient due to flow imbalance away from the granule and
drives a vortex.
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We now examine the electrokinetic flow field around the sphere. Harmonic ex-
pansion of the biharmonic equation for the stream function, with the nonlinear
Smoluchowski slip velocity (4.3) and vanishing normal velocity as boundary con-
ditions, yields

ψ(r, θ) = R0J

(
r − R2

0

r

)
sin2 θ

2
+ 2R2

0K

(
1− R2

0

r2

)
cos θ sin2 θ

2
, (4.4)

where

J = −εε0

µ

2E∞
(2 + 3Uλ/(k2D))

k

λ

√
R0D

U

RT

F
and K =

9

2

εε0

µ

E2∞R0

(2 + 3Uλ/(k2D))
2
.

The velocity components in terms of the stream function are: ur = (∂ψ/∂θ)/r2 sin θ
and uθ = −(∂ψ/∂r)/r sin θ. By averaging the slip velocity (4.3) over 0 < θ < 1

2
π and

setting it to U, we can also estimate U and the intensity of the vortices in a self-
consistent manner. A constructed flow field which is consistent with the experimental
conditions is shown in figure 1. Our derived linear electrostatic slip, (2.2) or (3.17),
valid for large-flux j+ > j+

lim conditions, and the nonlinear slip velocity (4.3) have
hence allowed us to verify Dukhin’s vortex generation mechanism theoretically.

This work is supported by an NSF-XYZ-on-a-chip grant NSF-CTS99-80745. We
are grateful to Pavlo Takhistov for imaging the flow field in figure 1.
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