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Nonlinear electrokinetic ejection and entrainment due to polarization
at nearly insulated wedges
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We examine a singular electrokinetic flow around a corner or a wedge in micro-channels constructed
from dielectric materials whose permittivity is small but finite compared to that of the electrolyte.
When the wedge angle is less than 180°, the applied electric field, which is tangential far from the
corner, develops a normal surface component that becomes singular at the corner. This normal field
leakage causes opposite polarization at the two sides of the wedge and produces a converging
singular tangential electrokinetic flow that ejects liquid from the tip. By expanding in cylindrical
harmonics, we estimate this ejecting flow as a function of the permittivity ratio, applied electric
field, angle of the wedge and the microscopic corner curvature that suppresses the singularity. The
ejecting flow entrains tangential flow on the front side of the wedge and produces a vortex on the
downstream side. This entrainment offers a long-range attractive hydrodynamic force that
complements short-range electrostatic DLVO~Derjaguin–Landau–Verwey–Overbeek! and
dielectrophoretic forces to enhance corner deposition and aggregation of colloids and proteins
during electrophoresis/electro-osmosis. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1519530#

I. INTRODUCTION

Electrokinetic flow is the mechanism of choice for trans-
porting fluids in future generations of biochips, as it allows
easy flow control, metering, and maneuvering.1 However,
one major problem for electrokinetic flow is that proteins
tend to precipitate at channel junctions and colloids aggre-
gate at the junction corners. As an example, a submicron
latex colloidal suspension is driven electro-osmotically and
electrophoretically in water through the micro-channel junc-
tion in Fig. 1~a!. After about 20 min, colloids aggregate in
large amounts around the inner corner of the channel junc-
tion as shown in Fig. 1~b!. As shown in the figure, the ag-
gregates form a curious and relatively large spiral-like struc-
ture that curls downstream and spans nearly half of the 80
mm channel. A small vortex is visible just downstream of the
spiral, as shown in Fig. 1~b!, when the colloid trajectories are
scrutinized with a microscope. The aggregation becomes
acute with higher electric fields~.30 V/cm! and smaller
channels.

Several physical mechanisms can be responsible for the
corner aggregation phenomenon. The spiral aggregate ex-
ceeds 40mm in size and is much larger than homogeneous
aggregates formed in comparable time by the DLVO
~Derjaguin–Landau–Verwey–Overbeek! mechanism.2 One
hence expects a preferential migration of the particles to-
wards the corner that is not present in homogeneous aggre-
gation. As we shall demonstrate in subsequent analysis, both
the tangential and normal electric fields are very large at the
corner. The latex particles can be polarized by this intense
field and migrate by dc dielectrophoresis.3 This dielectro-
phoretic migration is driven by electric fields that are highly
nonuniform spatially, such as those at the junction corner.

The nonuniform field will impart a net force on the bipolar
particle despite its opposite charges on the two sides perpen-
dicular to the field line. However, the direction of this dielec-
trophoretic motion is determined by the difference in the
medium and particle dielectric permittivities. For our sys-
tems, the dielectric constant of the water medium is 81 and
that of the latex particle is 2.5. Hence, the water medium is
more polar than the particle and the dielectrophoretic migra-
tion should be towards regions with low field intensity. This
is clearly opposite of our observation in Fig. 1, where par-
ticles migrate towards the high-field corner region. More-
over, dielectrophoretic motion cannot explain the observed
vortex. The field nonuniformity will also be shown to exist in
only a small neighborhood of the corner whose dimension is
much smaller than the aggregate size. Particle polarization
occurs and is a key mechanism that holds the aggregate to-
gether, but it probably does not contribute to its formation by
particle migration towards the corner in this transport-limited
aggregation process.

Instead, the large aggregate dimension, the observed vor-
tex, and the aggregate spiral structure that seems to be
shaped by the vortex, all suggest that the particle migration
towards the corner is driven by hydrodynamic convection.
Such a theory is proposed in this article. The small region of
high field intensity near the corner is shown to affect the flow
in a much larger region by a nonlinear electrokinetic mecha-
nism. We shall demonstrate through theoretical analysis and
numerical simulation that this long-range hydrodynamic en-
trainment mechanism can drive particles to the corner, pro-
duce the observed vortex, and allow the formation of a spiral
aggregate.

In an electrokinetic flow, fluid is driven by an electric
field. Usually, an electric potential drop is applied across the
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ends of a channel using electrodes which establishes an elec-
tric field parallel to the walls. The micro-channels are made
of dielectric materials like silica, polyester, acrylic, etc. Due
to surface functional groups, this material creates a charged
Debye layer in the electrolyte neighboring it, such that the
counter-ions within screen the surface charges. The extent of
charge separation in the electrolyte is usually measured by
the electric potential across it, the zeta potentialz, which
would be proportional to the surface charge of the wall. For
typical dielectric-electrolyte pairs,2 the potentialz is in the
range of6~25–100! mV. Due to the Maxwell body force
within the Debye layer, an electric field parallel to the wall
drives the bulk fluid at a velocity given by the Smoluchowski
slip velocity4

us52
e fzEt

h
, ~1!

wheree f is the liquid permittivity,h is its viscosity, andEt is
the tangential field. For dielectric materials with small per-
mittivity compared to the electrolyte, the normal electric
field En in the wall vanishes and the charge distribution
within the Debye layer is independent of the applied field.
The polarization in the Debye layer is produced by the field
generated by the surface charge. As such, both the zeta po-
tential and the Debye layer thickness are uniform in the en-
tire channel of the same material. Since there is no field
leakage and no liquid leakage, this linear electrokinetic slip
~1! implies that the velocity field everywhere in the channel
is simply

u52
e fz

h
E, ~2!

whereE52¹f is the electric field. Hence, the electric po-
tentialf also becomes the velocity potential and, despite the
minuscule Reynolds number in micro-devices (,1021), lin-
ear electrokinetic flow behaves like an inviscid potential flow

due to the absence of wall shear. The electric field lines
coincide with the streamlines in this case for an open
channel.4,5 More interestingly, this potential flow is irrota-
tional and the generation of microscopic vortices in electro-
kinetic devices for mixing purpose is a major challenge.6 Yet,
Fig. 1~b! indicates that a vortex exists just downstream of the
junction. We shall demonstrate that this vortex is generated
by a nonuniform zeta potential which is dependent on the
applied field. The resulting nonlinear electrokinetic flow pro-
duces an ejecting flow from the corner and a back pressure
that generates the vortex. This nonlinear electrokinetic phe-
nomenon is a result of field leakage at the corner.

If the dielectric wall has a small dielectric permittivity
~mathematically zero! compared to the fluid, then the electric
potential around a wedge corner can be solved by decompos-
ing the bulk Ohmic~electro-neutral! region from the wall
Debye charged layer and by the usual harmonic expansion.4

For a wedge angle less than 180°, the tangential field is sin-
gular at the corner from classical electrostatic potential
theory.7 However, the normal field remains zero everywhere
on the boundary and even the tangential field is smooth away
from the boundary. Hence, the coincidence between stream-
lines and electric field lines still holds away from the corner.

However, biochips are made with dielectrics with a
small but finite permittivity. While field leakage is negligible
over most of the chip, it is very important at corners because
of convexity and the singular tangential field. Using a per-
turbation analysis, we show that the singular tangential field
now leads to a singular normal field that also blows up at the
corner. This gives rise to large but opposite polarization on
two sides of the corner~see Fig. 2! in addition to the uniform
polarization due to surface charges. These normal fields drive
two oppositely charged ions to each side. Such polarization
produces a destabilizing normal Maxwell stress across a de-
formable membrane.8 Here, it produces another instability
with a converging electro-osmotic flow towards the corner.

FIG. 1. Experimental snapshot of the
micro-channel junction. The narrow
channel is 80mm wide and the latex
colloids move towards the narrower
channels. The silica channel and the
latex colloids are oppositely charged
and hence both electrophoretic and
electro-osmotic motions are in same
direction. ~a! During initial stages of
electrokinetic flow of submicron col-
loidal suspension in the direction indi-
cated by the arrow.~b! During later
stages showing a spiral colloidal ag-
gregation at the inner corner and a
small vortex as sketched schemati-
cally.
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This instability occurs because the zeta potential near a cor-
ner would have opposite contribution from the normal leak-
age field across the corner, which brings excess ions that
overwhelm the original surface charge of the wall. This nor-
mal field is singular~infinite! at the corner, localized, and
decays to an insignificant amount over a few microns away
from the corner. The resulting nonlinear Smoluchowski slip
velocity, which is proportional to the product of zeta poten-
tial and tangential field, also becomes nonlinear with respect
to the applied field, singular at the corner, and changes sign
across the corner over a microscopic length. Thus an electro-
static field leakage, though distributed, causes a momentum
dipole that produces an ejecting electrokinetic flow from the
corner. Although the field penetration length is typically
small ~,1 mm!, the ejection distance~hydrodynamic pen-
etration or entrainment length! is long at tens and hundreds
of microns due to the singularity. We estimate the finite
strength of this ejecting flow by assigning a finite but micro-
scopic radius of curvature to the corner tip. The ejecting
velocity would be directed symmetrically away from the in-
ner corner towards the outer corner and its strength would be
a function of the ratio of dielectric permittivities of wall and
the fluid, angle of the wedge, the far-away tangential field,
zeta potential of the wall, and the radius of curvature of the
corner. For atomically sharp corners, the ejecting flow can
exceed the bulk electro-kinetic flow.

Due to this strong ejecting flow from the corner, the bulk
flow is blocked and vortices develop at the corner. The irro-
tational feature of linear electrokinetic flow is revoked due to
the nonuniform and field-dependentz potential at the corner.
More precisely, ifz is nonuniform in~2!, the incompressibil-
ity condition “"u50 no longer produces the Laplace equa-
tion for potential flow. We demonstrate vortex formation by
obtaining a local solution for the stream function from the
biharmonic equation. We also develop a lattice-Boltzmann-
method~LBM ! code suitable to simulate the outer microflu-
idic flow in an actual 90° bent channel of finite width. We

have implemented a multi-scale approach in which the elec-
trostatics and nonlinear electrokinetic flow near the singular
point is dealt analytically while the electrokinetic microhy-
drodynamics is simulated numerically with a LBM code.
Hence, a very high resolution exists within the thin Debye
layer for the field-dependentz potential and the slip velocity
on the channel walls whereas for flow simulation, the lattice
node spacing is only of medium resolution—a few microns.
The ejecting flow at the corner stipulates a detailed deriva-
tion of the corner boundary conditions and lattice spacing. In
fact, the long-range corner ejecting flow entrains most of the
in-coming flow. With this large hydrodynamic entrainment
length of tens to hundreds of microns, colloids and proteins
are convected towards the corner and are exposed to the
singular normal field. They would then polarize and aggre-
gate due to the classical DLVO mechanism5 when they are
within a submicron neighborhood of the growing aggregate.
We propose this long-range hydrodynamic mechanism to be
the cause for polarization, alignment, and aggregation of col-
loids. We obtain the hydrodynamic entrainment fraction
through theory and favorably compare it with the multi-scale
simulation. Our study then allows us to design channels with
minimum hydrodynamic entrainment, protein precipitation
and colloid aggregation.

The remaining sections of this article are planned as fol-
lows. In Sec. II, we present the governing equations for elec-
trokinetic flow along with the electrostatics in electrolyte and
the wall. We propose a model to obtain the normal field
leakage and effective nonlinear Smoluchowski slip velocity
near a wedge corner. In Sec. III, we obtain a local solution to
the vortices and overall flow in the vicinity of the wedge
corner. In Sec. IV, we confirm the local results with numeri-
cal simulation~LBM ! for an electrokinetic flow around a 90°
bend.

II. ELECTROSTATICS BY PERTURBATION
EXPANSION

Consider the schematic diagram in Fig. 3 depicting a
micro-channel with a 90° bend. The electrodes are located at
the far ends of each branch. When a potential drop is applied
across the electrodes, an electric field would be established in
the fluid and also the neighboring wall. Since the fluid is an

FIG. 2. Schematic diagram showing polarization and the boundary condi-
tions on the electric field of a wall-electrolyte interface around a wedge. A
wedge with a finite radius of curvature is also shown.

FIG. 3. Schematic diagram of a 90° bend in a micro-channel with electrodes
located at far ends.
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electrolyte, there is a possibility of charge separation and net
ionic charge near the channel wall. The electrostatic potential
in the electrolyte or the fluid would be governed by the Pois-
son equation,4

¹2f52
r

e f
, ~3!

wheref is the electrostatic potential,r is the net ionic charge
density, ande f is the dielectric permitivity of the fluid. The
potential distribution in the wall,fw , would also be gov-
erned by a similar equation. There is no charge within the
solid dielectric material and its potential obeys the Laplace
equation,

¹2fw50. ~4!

Note that these equations and the ones to follow are two-
dimensional. One spatial variable is along the length and
another along the width of the channel. The micro-channels
are assumed to have uniform and constant slip velocities at
the top and bottom. With its small depth-to-width ratio, the
variations in the thin direction can be neglected.1 The lateral
boundary conditions are

fw5f on side wall, ~5a!

e f]nf5so1ew]nfw on side wall, ~5b!

due to continuity of potential and field across the two media.
Here,so is the uniform surface charge density on the wall
since we use the same functional material along the entire
channel.

To solve the above set of equations, one needs to model
the ionic concentration distribution in~3! and estimate the
cumulative charge density in the fluid,

r5(
i

zici , ~6!

whereci is the concentration ofith ionic species andzi its
ionic charge. Ideally, every ionic species should be captured
by the full Nernst–Planck convection-diffusion equation
with electromigration. However, we will construct specific
orthogonal coordinates in a given geometry such that one set
of lines is along the direction of ionic flux and the other set
of perpendicular lines along which ionic flux is zero. One of
these two coordinates correspond to the streamlines. There is
hence no convection in the other coordinate orthogonal to the
streamlines. The only ion flux mechanisms along them are
diffusion and electromigration. Moreover, since the wall is a
streamline, the latter orthogonal coordinates must terminate
at the wall. Since there is no ion flux into the wall, electromi-
gration must then cancel diffusion exactly everywhere along
this set of no-flux lines. Thermodynamic equilibrium must
exist along these lines and everywhere the lines are defined
on a plane. A simple integration of the convectionless
Nernst–Planck equation along these lines then yields the
equilibrium Boltzmann distribution,4

ci5ci ,o expS 2ziFc

RT D , ~7!

where ci ,o is the concentration ofith ionic species in the
bulk, c is the over-potential relative to the potential in the
bulk, F is the Faraday constant,R is the gas constant, andT
is the temperature of the fluid. As described earlier regarding
the orthogonal coordinates,c would be the potential along
those set of orthogonal lines that emanate from the imperme-
able wall and along which there is no ionic flux. These lines
would be perpendicular to the wall in straight channels. The
thickness of the Debye layer is simply the characteristic
length along these lines over whichc decays to the zero
reference value in the bulk. For the case of a wedge, the
thickness is measured along the no-flux coordinate. This no-
flux coordinate is multi-valued at the cusp, as shown in Fig.
4~a!. The equilibrium Boltzmann distribution~7! hence be-
comes undefined exactly at the cusp. However, we shall
smooth the cusp with an effective radius of curvature in our
theory and the singularity exactly at wedge corner is not
significant. Since the leading-order Ohmic field and the wall
field are determined by the Laplace equation, we shall make
extensive use of the conformal map of the cylindrical (r ,u)
coordinates of the wedge to rectilinear~x,j! coordinates

FIG. 4. Schematic diagram showing the ionic path lines and zero flux lines
around a wedge in~a! actual geometry and~b! transformed orthogonal co-
ordinates.
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along a flat plane as shown in Fig. 4~b!. Away from the
corner, the latter coordinates will also be shown to be the
desired orthogonal streamlines and no-flux lines for the Bolt-
zmann distribution and the Debye layer thickness.

Since the normal field in the Debye layer far exceeds the
applied tangential field, classical electrokinetic theory4 de-
composes the fluid potentialf into the Ohmic potentialF,
representing the tangential field for the neutral bulk that sees
an insulated wall, and an over potentialc, representing the
normal field in the polarized Debye layer. Moreover, the over
potential c obeys the Poisson equation with a wall flux
specified by the surface charge through~5b!. @In the classical
case, the wall is insulated andew is zero exactly in~5b!.#

Since ]nc@] tF, this decomposition allows an expan-
sion of the quadratic nonlinear Maxwell term in the momen-
tum equation such that it becomes linear in the tangential
field ] tF. This expansion leads to the slip velocity~1! di-
rectly. Moreover, the decomposition allows a one-
dimensional resolution ofc and the momentum equation due
to the corresponding length-scale separation~between the
Debye layer and the channel dimensions! that accompanies
the separation in the field strengths. Finally, the harmonic,
Ohmic potential obeys the Laplace equation with insulated
walls and is hence easy to resolve with mathematical tech-
niques like conformal maps.

We shall also employ the same convenient decomposi-
tion of the fluid potentialf into an Ohmic componentF and
an over potential componentc. At the wall polarized layer,
]nc@]nF as in classical theories. This large field]nc is
attributed to the surface chargeso in ~5b!. The new wall
leakage termew]nfw is negligible away from the corner but
must be comparable toso near it to reverse the polarization
as shown in Fig. 2. We hence associate the wall leakage
ew]nfw in ~5b! to the dominante f]nc andso terms on the
fluid side to produce a new boundary condition. The remain-
ing terme f]nF for the wall Ohmic field on the fluid side is
much smaller than these three terms. Hence, to leading order,
the fluid Ohmic potential obeys a no-flux condition at the
wall. We note that the wall field leakage termew]nfw has
opposite signs across the corner whileso has always the
same sign. Hence, the wall field on the liquid sidee f]nc can
have opposite signs across the corner—the polarization and
slip velocity can change sign across the corner. The sign
change is in fact necessary for back flow and vortex forma-
tion. Our theory will produce a new slip velocity that reduces
to the classical version~1! when the field leakage is absent.
Decomposing the fluid potentialf as stated,

f5F1c, ~8!

where F is the Ohmic potential governing the tangential
transport of neutral electrolyte andc is the over potential
across the polarized layer near the wall due to field leakage
at the corner. As such, the linear boundary condition~5b!
without the surface charge term is decomposed into a no-flux
condition forF and a gradient condition forc that is deter-
mined by the surface chargeso and the wall fieldew]nfw .
We solve forF andc iteratively by also employing the Bolt-
zmann distribution~7! and using boundary conditions~5!
alternatively in the iteration.

The leading-order Ohmic potential in the fluid is hence
governed by the following equations in the cylindrical coor-
dinates centered around the wedge corner as in Fig. 4~a!,

¹2F50, ~9a!

]nF50 at u56~p2a!. ~9b!

The large fluid electric field at the wall, as governed by~5b!,
is assigned to that of the over potentialc. The solution to the
Ohmic potential of~9a! in the physical coordinates is an
eigenfunction expansion in the cylindrical harmonics of the
Laplace equation that satisfy the boundary conditions~9b!,

F5Arl sinlu, ~10a!

where

l5
~2n11!p

2~p2a!
, n50, 61, 62,... . ~10b!

If the wedge were a corner in the bent channel, then the field
far from the corner should be a constant in either of the
channel branches. Only one eigenfunction corresponding to
n50 would not blow up far away and be zero at the line of
symmetry atu50. Hence for every wedge of certain anglea
there is only one possible eigenfunction with eigenvalue
l5p/2~p2a!. The constantA would then be obtained from
matching with the outer solution. Though the actual value of
A is case dependent, it is clear that it scales linearly with the
applied fieldE0 . Let A5A* EoW with A* a dimensionless
constant,Eo the constant electric field in the channel far
from the corner, andW the width of the channel. The dimen-
sionless space variable in~10a! is r 5 r̂ /W where r̂ is the
actual dimensional radial position. Since the far-way field is
constant atEo , it is chosen as the appropriate electric field
scaling. An appropriate length scale is the width of the chan-
nel W since the effect of a wedge in a bent channel is as-
sumed to persist only over a distance of the width of the
channel, which is a reasonable one to assume because be-
yond a distance equal to width from the corner, both the
walls are parallel and the field would be nearly a constant.
From numerical solution in bent channels, it will be shown
that A'(1.021.2)EoW, for all angles of the wedge 0,a
,p/2.

We next determine the wall potentialfw governed by
the Laplace equation~4!. Although the normal field strength
of the over potential]nc is much larger than] tF or ]nF of
the Ohmic field, the actual potential drop across the polar-
ized layer is small compared to the wall Ohmic potential
drop across the corner due to leakage. For Debye layers, the
zeta potential is the potential drop and is of the order of
25–200 mV. While the over potential with field leakage is
higher on one side, we do not expect it to exceed 200 mV,
which is far smaller than the drop in the wall Ohmic poten-
tial across the corner when leakage exists. We hence neglect
c in ~5a! and use the Ohmic potential continuity condition

fw5F at u56~p2a!, ~11!

The solution to the wall potential distribution can then
be obtained from~4! with boundary condition~11! as

5Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear electrokinetic ejection and entrainment

  PROOF COPY 022212PHF  



  PROOF COPY 022212PHF  

  PRO
O

F CO
PY 022212PHF  

fw5Arl
sinl~p2u!

sinla
. ~12!

The normal field leakage part ofEn in the adjacent electro-
lyte at the wall is then

ew

e f
]nfw57

ew

e f

A

W
l cotlar 2~12l! at u56~p2a!.

~13!

It can be seen from the schematic in Fig. 2 that the normal
field changes sign in the region near the corner. It is because
the field leakage enters from the fluid atu5~p2a! and re-
enters the fluid atu52~p2a!. Without surface charge, this
field leakage would establish Boltzmann distributions of op-
positely charged ions and create oppositely polarized sur-
faces on the opposite edges of the wedge, rendering the
wedge corner bipolar. We have shown in an earlier work that
electrokinetic flow past a large bipolar particle can produce
back-flow and vortices.6 Here, back flow and vortices de-
velop because the zeta potential changes sign across the cor-
ner and the resulting Smoluchowski slip velocity converges
towards the corner. The tangential slip velocity hence de-
creases and changes sign around a corner and continuity
stipulates that a back pressure must appear to eject the flow,
as sketched in Fig. 2. This back pressure also generates the
downstream vortex. However, the coefficientA will be deter-
mined through matched asymptotics with a constant field
applied far from the wedge. This far-field behavior depends
on the channel geometry and will be resolved numerically in
a later section with a finite channel width. The effect of sur-
face charge, ignored in the above argument, will also be
included.

Although the Ohmic field and wall potentials are solved
in the original cylindrical coordinates of the wedge, we shall
solve forc in the transformed coordinates~x,j! of Fig. 4~b!.
These coordinates are defined by the conformal map that
maps the wedge into a plane. They are both harmonic func-
tions that satisfy the Laplace equation¹2j5¹2x50. Insofar
as the Ohmic fluid potentialF is a harmonic function for the
wedge geometry, thej coordinate simply corresponds to a
dimensionless version ofF. The constantj contours are iso-
potential contours. The orthogonal constantx contours cor-
respond to the streamlines of linear electrokinetic flow with
an insulated wedge. Hence, the orthogonal coordinatesx are
the desired no-flux lines along which the Boltzmann distri-
bution ~7! can be derived and the Debye layer thickness can
be defined. The Boltzmann distribution hence holds every-
where thex coordinates are defined. Near the corner, wall
leakage would mean thatx coordinates are no longer the
no-flux lines but are good approximations of them near the
wall. At precisely the corner point, however, no-flux lines
cannot be defined at all. Hence, the Boltzmann distribution
~7! is valid everywhere except at the corner and a small
sector beyond it.

We can then use~7! to determine the net charge density
r5( izici everywhere except the point on the corner. Since
the Ohmic potentialF is a harmonic function,~3! then yields

¹2c52
( izici ,o exp~2ziFc/RT!

e f
. ~14a!

The boundary condition~5b! on the normal electric field now
produces a condition for the over-potentialc on the liquid
side,

]nc5En5
so

e f
1

ew

e f
]nfw at u56~p2a!, ~14b!

whereEn represents the normal electric field near the wall on
the fluid side and includes both surface charge and field leak-
age contributions. Another boundary condition is thatc→0
far from the wall. Ifc,RT/F throughout, then we can fur-
ther invoke the Debye–Huckel approximation2 on ~14a! by
expanding in (ziFc/RT) and transforming the Poisson–
Boltzmann equation to a linear partial differential equation,

1

W2 ¹ r ,u
2 c5

c

d2 , ~15!

where d5(( ici ,oF2zi
2/e fRT)21/2 is the Debye length and

use has been made of the electric neutrality condition at large
x, that is( izici50.

We now transform this Poisson equation by the confor-
mal map of the wedge to a plane in Fig. 4~b!. Thej variable
is the Ohmic potential functionF(r ,u) in its dimensionless
form andx corresponds to the field lines. We get from~10!

x5A* r l coslu, ~16a!

j5A* r l sinlu, ~16b!

wherex5x̂/W andj5 ĵ/W with x andj being the dimen-
sionless coordinates. Transforming~15! from (r ,u) coordi-
nates to~x,j! coordinates gives

u¹ju2

W2 ¹x,j
2 c5

c

d2 , ~17!

where¹x,j
2 5]2/]x21]2/]j2 is the Laplace operator in rec-

tilinear coordinates. Sincej is same as the nondimensional
potential function, the nonlinear coefficientu¹ju25iEi2/Eo

2

whereE52¹F is the local Ohmic electric field. Since this
Ohmic field does not leak into the wall,iEi5u] tFu5uEtu at
the wall. The fieldEo is the far field used to scaleF. In the
appropriate variables of~x,j!, it can be shown thatu¹ju2

5l2(j21x2)2(12l)/l. Since the Debye layer is very close
to the wall, that isu→6~p2a!, it would imply that x→0
and ]/]j!]/]x which upon substituting in~17! gives an or-
dinary differential equation inx as

d2c

dx̂2 5
c

~Et /Eo!2d2 , ~18!

where Et5lj2(12l)/l is the tangential field at the wall
which is only a function ofj and is independent ofx. Note
that x̂ is the dimensional form ofx, that is,x̂5Wx whereW
is the width of the channel. The boundary conditions in~14!
on c in the transformed variables are

2
]c

]x̂
5

En

~Et /Eo!
at x̂50 ~19a!
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c50 at x̂→`. ~19b!

Integration of~18! with ~19a! and~19b! then yields the field-
dependentz, the value ofc at x̂50,

z5End. ~20!

Note that unlike for a plane wall, the Debye layer thickness
from ~18! near a sharp corner is larger by a factor ofEt /Eo .
But, the normal field in~19a! is reduced by the same factor
Et /Eo . Hence these opposing contributions cancel each
other and the formula for zeta potential given in~20! remains
the same as for a plane wall which is equal to the product of
the normal field at the wall and Debye layer thickness. Since
Et52] tF is singular at the wedge,~18! becomes invalid at
the corner as shown in Fig. 4~a!. However, we expect~20! to
be valid away from some neighborhood of the corner.

If En is too large orz@RT/F, then the above approxi-
mation would overshoot the actual value that would be ob-
tained by solving~14a! and ~14b! exactly. Then, we would
have to use either Gouy-Chapman theory for symmetrical
electrolytes or Grahame’s analysis for asymmetrical
electrolytes.2 Note from ~14b! that the normal field at the
wall En and thez potential in ~20! would consist of two
parts, one is due to the field of surface charge (so /e f) and
the second is due to field (ew /e f)]nfw in the wall neighbor-
ing the fluid. With singular field leakage, the second contri-
bution becomes dominant in the vicinity of the corner.

We can now estimate the zeta potential from~20! by
substituting~13! and~14b! to obtain the natural and induced
z potentials,

z5zo1z1 , ~21a!

zo5S so

e f
D d, ~21b!

z157
ew

e f
d

A

W
l cotlar 2~12l! at u56~p2a f !.

~21c!

The linear and nonlinear parts of Smoluchowski slip velocity
can then be estimated by substituting~21! in ~1!,

us5us,o1us,1 , ~22a!

S h

e f
Dus,o52zoEt52zo

A

W
lr 2~12l!, ~22b!

S h

e f
Dus,152z1Et56

ew

e f
d cotlaEt

2

56
ew

e f
d

A2

W2 l2 cotlar 22~12l!

at u56~p2a!, ~22c!

whereus,o is the linear slip velocity in the absence of field
leakage effects andus,1 is the additional nonlinear slip veloc-
ity due to corner field leakage. The linearity and nonlinearity
refer to the scalings with respect to the local tangential field
Et which is linear forus,o while quadratic forus,1 . The non-
linear slip exists only near the corner where it actually domi-

nates the linear slip. The nonlinear slip velocity has opposite
signs on either sides of the wedge which implies that it is
directed towards the corner on either sides.

Moreover, the nonlinear slip occurs only ifl,1, that is
for wedge angles less thanp or a,p/2 from ~10b!. Hence
there would be field leakage at the inner corner of a bent
channel of Fig. 3. However, for the outer corner, with angle
3p/2 greater thanp, the eigenvaluel will be greater than 1
and there would not be any field leakage, polarization, or
vortex formation. This explains why protein and colloid ag-
gregates are never found at the outside corner. Moreover, the
inducedz1 changes sign across the wedge corner.

III. LOCAL HYDRODYNAMICS

When we solve for the hydrodynamic flow, the stream
function can also be split into two parts, one for linear and
one for nonlinear electrokinetics,

C5Co1C1 . ~23!

The first one would be due to the linear slip velocityus,o

caused by the uniform surface charge with a constant zeta
potential,zo . The second part is due to nonlinear slip veloc-
ity us,1 caused by the nonuniform zeta potentialz1 due to
field leakage. The linear electrokinetic flow biharmonic
equation with uniform slip is

¹4Co50, ~24a!

un52] tCo50 at u56~p2a!, ~24b!

ut5]nCo5us,o at u56~p2a!. ~24c!

With linear slip, it corresponds to potential flow. Hence, of
all the cylindrical harmonics of the biharmonic equation,
only one Laplace harmonic survives—the same one as the
electro-static harmonic~10a! with l5p/2~p2a!,

C05Crl coslu. ~25!

The streamlines of this linear electrokinetic flow are hence
exactly identical to the electric field lines, as shown in Fig.
5~a!. The magnitude of the coefficientC would be propor-
tional to the bulk flow rateuoW asC5A* uoW, whereA* is
the same constant that would appear in the potential function
of ~10a!.

The nonlinear electrokinetic flow stream functionC1

must be governed by a biharmonic equation as in~24a! and
have zero normal flux of fluid at the walls of the wedge,

] tC150 at u56~p2a!, ~26!

and yield opposite tangential velocities on the two sides of
the wedge, as shown in Fig. 5~b!. Hence, the only permis-
sible harmonics of the biharmonic equation are

C15Dr b sinbu ~27!

with b5np/(p2a), n561,62,... . Since there is an outer
wall, the momentum of the ejected flow should decay due to
back pressure and it stipulates thatC1→0 asr→`. Retain-
ing the dominant singular harmonic that decays the slowest,
we obtainn521 andb52p/~p2a!. The value of this ex-
ponentb is exactly negative of twice of the exponentl for
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the electrokinetic stream function in~10a!. However, the ex-
ponentb is incompatible with that of the nonlinear slip~22c!
for any positive wedge anglea, since

b21522l21Þ2~l21!. ~28!

In fact, the exponent of the nonlinear slip velocity is incom-
patible with any of the harmonics in~27! for any wedge
anglea,p/2. Unlike its linear electrokinetic flow counter-
part, the nonlinear creeping electrokinetic flow at a wedge is
strictly ill-posed. The difficulty may arise from the absence
of a normal and the inability to define a slip direction at the
tip. However, real wedges are not infinitely sharp but rather

have a finite radius of curvature, as seen in Fig. 2. This
regularized problem is well-posed and the incompatible har-
monics of~27! can still be used to approximate its solution.
A finite ejecting flow of strengthucd now exists for the
smoothed cusp as shown in Fig. 2 and it is taken to be the
total flow within the Debye layer on either sides of the
wedge converging towards the tip. If the tip is rounded off to
a radiusr c , thenuc can be evaluated fromus,1 of ~22c! at a
distancer * 5r c cota from the tip along the wedge wall:

S h

e f
Duc5

ew

e f
d

A2

W2 l2 cotlaS r *
WD 22~12l!

. ~29a!

FIG. 5. Streamlines of electrokinetic flow around a wedge.~a! Linear electrokinetic flowCo for a perfectly insulating wall. Equation~25! with C51. ~b!
Vortex stream functionC1 due to field leakage effect. Equation~27! with D50.0004.~c! Overall stream functionC5Co1C1 .
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If we invoke the matched asymptotic result,A5A* EoW,
whereA* has to be determined later, a more explicit estimate
of uc can be obtained as

uc5S e f

h D ew

e f
dEo

2A* 2l2 cotlaS r *
WD 22~12l!

. ~29b!

The ejecting velocity can be compared to the far-field elec-
trokinetic flow velocityuo given by ~1!,

uc

uo
5S ew

e f
D S Eod

zo
DA* 2l2 cotlaS r *

WD 22~12l!

~29c!

For a 90° bend~a5p/4, l52
3!, the ejecting velocity becomes

comparable touo for (r * /W)'1024 for a typical values of
(ew /e f)'

1
20, d'50 nm,zo'50 mV, andEo'100 V/cm. For

a mm-dimension channel, this is reached atr c of roughly 100
nm, a reasonable roughness scale for silica channels fabri-
cated by plasma etching. Due to the cota scaling, this criti-
cal ejecting velocity becomes even more severe for sharp
edges. As shown in Fig. 2, it produces an ejecting flow of
strengthucd at a radius roughly equal to that of Debye layer
thicknessd. This gives an estimate ofD that is the strength
of the circulating vortices and we getC1 in ~27! as

C15S ucd

2 D S r

d D 22l

sin 2lu. ~30!

However, we do not expect the flow near the wedge to be
dominated by only one Stokes harmonic, especially one with
an incompatible exponent from the nonlinear slip. The in-
compatibility gives rise to an error that grows towards the
corner. Rather,~30! should only be valid sufficiently far from
the wedge. In fact, we shall show from our subsequent simu-
lation that, with a sufficiently sharp wedge, the flow near the
wedge is a radial potential flow.

Nevertheless, the existence of vortices and hydrody-
namic entrainment can be estimated fromC1 . The stream-
lines of linear electrokinetic flowC0 , nonlinear electroki-
netic flowC1 , and the combined flowC01C1 are shown in
Figs. 5~a!–5~c!. It can be seen from Fig. 5~c! that the stream-
lines are drawn towards the corner on the front side of the
wedge. All the streamlines approaching the corner are bent
inwards and make a half circulation before passing on to
other side of the wedge. This hydrodynamic entrainment is
due to the ejecting momentum at the corner. The amount of
flow that is entrained can be estimated from the value of the
overall stream function near the wedge. Near the corner, the
circulatory flow due toC1 would be the dominating one. It
can be estimated as the maximum value ofC1 or total eject-
ing flow from ~30! in the region of singularity, that is,r
→d and 0,u,~p2a!/2. If Ce is the fraction of the flow
entrained, then

Ce5
ucd

2
. ~31!

Hence the entrainment efficiencyCe* that is the ratio ofCe

to the total flowuoW scales as

Ce* 5S ew

e f
D S Eod

z0
D S d

WDA* 2
l2

2
cotlaS r c cota

W D 22~12l!

.

~32!

The channel width isW and a pure electrokinetic flow with a
flat velocity profileuo described by the Smoluchowski slip
~1! has been assumed far from the corner. We will demon-
strate from subsequent matched asymptotic result for the
electric field in finite-width channels thatA* '1 for all
wedge angles less thanp. The entrainment efficiency,Ce* ,
has complex scalings with respect toa and a power-law
scaling with respect tor c . Nevertheless, it increases with
decreasinga and r c , as seen in Fig. 6. If the wedge were a
corner in a bent channel with a known flow rate~wall stream
function!, then it can be predicted that the entire flow could
be entrained ifCe is equal to the wall stream function. This
critical condition depends on the angle of the wedge, radius
of curvature or sharpness, dielectric constant of the wall, the
mean electric field, Debye layer thickness, width of the chan-
nel, and the mean zeta potential.

On the front side of the wedge, both main flow stream
function Co and the ejecting flow stream functionC1 are
positive whereas on the back side of the wedge,Co is posi-
tive while C1 is negative. The resultant overall flow would
have a back-flow or a vortex in the back side wherever the
overall stream function is negative. The size of this vortex is
insignificant for smaller strengths of the ejecting velocity, but
it increases gradually as the ejecting velocityuc increases. A
vortex also appears at the upstream side but tends to be much
weaker. The current analysis is a local one near the corner.
Only dominant harmonics have been retained and the flow
near the wedge can be very different from~30!. The outer
flow can also distort the vortices in Fig. 5~c!. However, the
back vortex and the entrainment condition~31! would be

FIG. 6. The entrainment stream functionCe* scales as a power-law with
respect tor c and increases with decreasing wedge angle,a. HereG is the
coefficient in~32!, G5(ew /e f)(Eod/z0)(d/W)A* 2(l2/2)cotla.
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verified for an actual 90° bend with numerical simulation
~LBM ! in the following section, where we remove the non-
linear slip and use the estimated ejecting velocityuc of ~29c!
in an appropriate manner to capture the ejecting flow due to
field leakage.

IV. NUMERICAL FLOW SIMULATION

The nonlinear ejecting flow due to field leakage is local-
ized to the inner corner and we use~29b! or ~29c! to model
its effects. The simulation is done on the remaining domains
with a linear slip where field leakage is absent. We hence
impose~1! or ~22b! with z5z0 of the naturalz potential. It is
necessary to solve the Ohmic electric field without leakage in
a bent channel of Fig. 3 with wedge anglea and unit width.
A numerical Laplace solver9 is used to solve Eq.~9a! with
no-flux boundary condition~9b! on the walls and the far
away electric field is set to unity. The magnitude of the tan-
gential electric field along the inner wall and the outer wall
of a 90° channel are plotted in Fig. 7~a!. As expected, the
field near inner corner bears a singularity and decreases
monotonically to its far field value of unity over a distance
equal to the width of the channel. For the outer wall, field is
zero at the corner and increases monotonically to its far field
value of unity over a distance equal to the width of the chan-
nel. The outer corner does not bear a singularity as the sin-
gularity occurs only for wedge angles~the angle on the wall
side! less than 180°. The Ohmic tangential field from~10a! is
Et5A* Eolr 2(12l) on the inner wall near the wedge where
Et must scale linearly with respect to the far-away fieldEo

being set to unity. The magnitude of the coefficientA* is
obtained from its asymptotic value asr→0 for various
wedge angles and it is plotted in Fig. 7~b!. It is clear that the
coefficient is nearly a constant of order unityA* '1. We
have even simulated walls with a finite but small dielectric
permittivity. The tangential field away from the corner does
not vary much from the solution plotted in Fig. 7~a! for per-
fectly insulating walls. The field profile near the corner shifts
downwards as the dielectric constant of the wall increases.
We can useA* 51 in ~32! to estimate the capture efficiency
of an arbitrary wedge.

To verify the accuracy of~30! and ~31!, we have devel-
oped a lattice Boltzmann method~LBM ! code for simulating
the flow. It is a mesoscopic simulation technique for fluid
flows and other transport phenomena.10 It incorporates the
features of density probability distribution, single relaxation
time constant, discretized spatial lattice, discrete particle ve-
locities. We refer to the literature for the simulation
technique.11 For our purpose, we choose the one that corre-
sponds to an incompressible fluid and that recovers the solu-
tion to Navier–Stokes equation. As shown in the schematic
Fig. 8, for a 90° bend channel, a square lattice is used with
nine velocity directions resolved at each lattice node.11 In
total, there are 100 nodes along the width of the channel and
400 nodes along the length.

Because the ejecting velocity~29b! is obtained via a
flow balance within the Debye layer, the slip and ejecting
boundary conditions imposed on the wall nodes of the LBM
code must be done with care. Linear and nonlinear electro-

kinetic tangential velocities approach constant asymptotic
values away from the wall, giving rise to effective universal
slip expressions like the linear Smoluchowski slip~1! or
~22b! and our nonlinear version~22c!. This is because the
bulk is neutral and the Maxwell stress vanishes away from
the polarized layer. The universality means that the slip ve-
locity can be applied anywhere near or on the boundary, as
far as the outer flow is concerned. Such asymptotic behavior
does not exist for normal ejection velocity from the corner.
Due to either radial mass flux considerations or momentum
loss, it decays monotonically from the corner. As such a
universal effective boundary condition does not exist for the
normal ejection velocity, its value depends on where this

FIG. 7. ~a! Electric field variation along the length of a 90° channel at inner
corner and outer corner.~b! The magnitude of the harmonic coefficientA*
obtained from its asymptotic value atr→0 for various wedge anglesa in
radians.
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boundary condition is imposed for the outer flow and this
location cannot be exactly at the wall. It hence becomes a
lattice-size-dependent effective normal velocity condition
that must be applied more carefully than the universal slip
conditions. The wall nodes are located at a half of the lattice
spacingD from the immediate neighboring nodes as shown
on Fig. 8. The first layer of nodes along the wall are assigned
a slip velocity given by~22b!, after the tangential wall elec-
tric field has been computed from the Laplace solver. The
only exception to this rule occurs at the corner node. The
ejecting velocityuc is assigned to the first node diagonally
away from the corner. As seen in Fig. 2, the derived ejecting
slip velocity uc is at a distanced ~Debye layer thickness!
from the tip and tangential on either sides of the wedge. The
actual ejecting velocity assigned to the corner node located at
a distanceD/A2 from the corner is notuc but uc

nodesuch that
the net ejecting flow condition is satisfied.

We expect the ejecting flow to be nearly irrotational flow
near the corner just outside the Debye layer, as is the case of
the classical outer linear electrokinetic flow. However, at a
finite distance away, the vortices and back pressure will ren-
der it a viscous Stokes flow that is eventually dominated by
the harmonic of~30!. Exactly where the transition occurs
depends on the ejecting velocity assigned to the corner node,
which has yet to be specified. It depends on the local Rey-
nolds number based on the channel widthW and the assigned
ejecting velocity.

Based on these arguments, the radial velocity should de-
cay asr 21, as is the case for a point source of inviscid flow
in two dimensions. Hence, the appropriate ejecting velocity
to be assigned to the corner node is

uc
node5ucS d

~p2a!~D/A2!
D , ~33!

which results from flow rate balance at a radius ofD/A2 and
assuming that the ejecting flow spans an angle of~p2a!/2
on either sides of the ejecting line of symmetry as shown in
Fig. 2. Its value depends on the grid spacing. In our simula-
tions, D is held constant at the value of 0.01W and we then
expect from~31! that the entrainment should be approxi-
mately @(p2a)/2A2#uc

nodeD.
We impose the ejecting velocity of~29c! at the corner

node as shown in Fig. 8, directed towards the outer corner.
We have performed LBM flow simulation for different val-
ues ofuc

node. Hence, each of the solutions and flow profiles
would correspond to different strengths of the corner singu-
larity and field leakage effects. In the LBM simulation, a
relaxation time constant oft51 is used. It corresponds to a
viscosity of m5~2t21!/651

3 units as in LBM. The far-field
velocity is given a small value ofuo50.001. Since the width
of the channel consists of 100 nodes, the Reynolds number
of the flow is Re5ruoW/m50.3 wherer51 is the density of
the fluid or particles at each node. The creeping flow condi-
tion described by the biharmonic equation is hence well ap-
proximated in the LBM simulation. Each simulation is run
until a steady flow is established or for 104 time steps.
Stream function of the flow is constructed from the obtained
velocity fields at the end of simulation. The contours of
stream lines are plotted in Figs. 9~a!–9~d! for different val-
ues of the corner ejecting velocitiesuc

node. As the strength of
the corner ejecting flow increases, the pair of vortices be-
comes prominent on either side of the corner. However, the
upstream vortex is extremely weak and, even when it appears
at highuc

node, it is detached from the corner. The outer flow
and higher-order harmonics seem to favor the back vortex.
Nevertheless, entrainment of streamlines still occurs up-
stream and intensifies with increasinguc

node, with or without
a front vortex. The spiral aggregate of Fig. 1 resembles the
streamlines around the back vortex in Fig. 9.

In Fig. 10~a!, the normal velocity in the direction of
diagonal is shown for several values ofuc

node. All of them
decay asr 2(2l11)5r 27/3 as in the dominant harmonic of the
viscous Stokes flow in~30! for most of the intermediate re-
gion. For a 90° bend or wedge witha5p/4, l5p/2~p2a!
52

3. However, in the vicinity of the corner it has a power law
scaling ofr 21 which is the solution for potential flow ejected
radially in two dimensions from a point source, as we have
speculated. The irrotational character of linear electrokinetic
flow has been revoked by the ejecting flow near but not
exactly at the corner due to field leakage. However, at the
high ejecting flow, the corner flow remains a potential flow.
The fraction of flow entrained is estimated from the value of
stream function at a distance of1

10 of width normally away
from the corner on the horizontal branch of the channel and
the data is plotted in Fig. 10~b!. It agrees with the theoretical
prediction of~31! that the entrainment fraction isucd/2uoW
or (p2a)uc

nodeD/2A2uoW, which are dimensional versions
of ~31!.

If the ejecting velocity is weaker than the far-field elec-
trokinetic flow, the short interval of potential flow seen in
Fig. 10~a! may not exist. The ejecting flow is entirely Stokes
flow and its velocity decays radially due to momentum loss

FIG. 8. Schematic diagram of slip boundary condition for LBM simulation
of electrokinetic flow in a micro-channel with a 90° bend. The channel
width W is scaled to unity.
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instead of the geometric effects on flow balance. In that case,
the proper nodal ejecting velocity should be from the domi-
nant Stokes flow scaling of~30! with a faster decay than
~33!,

uc
node5

ucb

2 S D

d D b21

, ~34!

where b52p/~p2a!. However, with such weak ejecting
flow, there is insignificant entrainment and vortices do not
appear. Correspondingly, theuc

node used in Fig. 9 would cor-

respond to atomically sharp corners if~34! is used. A good
criterion to determine whether~33! or ~34! to be used is to
evaluate the ejection Reynolds number

Rec5
r fucW

h
. ~35!

If Rec is much less than unity,~34! should be used. For a
typical applied field ofEo5100 V/cm, Debye layer thickness
of d550 nm, andew /e f5

1
20, we estimate from~29b! and

~35! for a 90° wedge~a5p/4! in a channel of width 1 mm
that Rec exceeds unity when the radius of curvaturer c is

FIG. 9. Streamlines of electrokinetics flow in a channel with 90° bend obtained from LBM simulation for various strength of the corner ejecting flow.~a!
uc

node50, with no field leakage effect,~b! uc
node528, ~c! uc

node557, and~d! uc
node585. The far-field linear electrokinetic velocity is taken to be unity.
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below 100 nm. This critical roughness dimension approaches
one micron for sharp wedges witha less than 10°. Submi-
cron roughness is the rule for plasma etched channels in
micro-channels,~see Fig. 1!, particularly when silica is used.
We hence expect~33! to be more relevant.

V. CONCLUSION

We have shown that electrokinetic flow past a wedge
produces vortices if the channel wall has a finite dielectric
permittivity. Due to the singularity and localized nature of
normal field leakage, we have combined the effect of result-

ant opposing nonlinear slip velocities into an ejecting veloc-
ity at the corner. Hydrodynamic entrainment vortices are
shown to exist on opposite sides of the wedge corner through
local analysis and by numerical simulation. We have also
implemented a multi-scale analysis and developed a simula-
tion strategy. In the simulation approach, an effective bound-
ary slip condition from our analysis is applied and the micro-
hydrodynamics is simulated by a lattice Boltzmann method
~LBM !. The corner ejecting velocity arises from flow bal-
ance and must be implemented judiciously to the LBM code
with ~33!. Unlike Moffat eddies12 in pressure-driven flows at
the outer corner, here nonlinear electrokinetic vortices occur
at the inner corner. They are far more ubiquitous and their
size and intensity increase with sharper corners, decreasing
wedge angle, larger (ew /e f), larger electric fields, and
smaller channel widths, as indicated by~29b! and ~32!.
These vortices entrain proteins and colloids and induce ag-
gregation at the inner corners but they can also be exploited
to mix reagents—a valuable modification of the otherwise
irrotational linear electrokinetic flow.

The electric field and velocity field singularities at the
corner can also be removed by mechanisms other than finite
tip curvature. We have neglected tangential ion fluxes in our
theory. Such fluxes include convection to the tip, electro-
migration of ions to the tip, and diffusion away from the tip.
The first two flux mechanisms act to enhance the singularity
while diffusion, as usual, acts to regularize~smooth! the po-
larization around the tip. We expect convection contribution
to be weak unless the polarized region extends far out of the
Debye layer. Electromigration and diffusion, however, can
balance around the tip to produce an effectively smoothed
field which is not singular. A simple scaling argument indi-
cates that this balance would produce a tangential Debye–
Boltzmann distribution within a tip region of size (RT/F)/Ec

where Ec is a characteristic tangential field at the tip. We
expect the tangential field at the radius of curvaturer c of 100
nm to be roughly 103 V/cm and this would produce a tangen-
tial Debye length scale of 250 nm, which is comparable to
the expected dimension ofr c . Hence, tangential flux is neg-
ligible for a distance ofr c and larger away from the tip. This
justifies our omission of the tangential flux from the theory.
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