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Nonlinear electrokinetic ejection and entrainment due to polarization
at nearly insulated wedges
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We examine a singular electrokinetic flow around a corner or a wedge in micro-channels constructed
from dielectric materials whose permittivity is small but finite compared to that of the electrolyte.
When the wedge angle is less than 180°, the applied electric field, which is tangential far from the
corner, develops a normal surface component that becomes singular at the corner. This normal field
leakage causes opposite polarization at the two sides of the wedge and produces a converging
singular tangential electrokinetic flow that ejects liquid from the tip. By expanding in cylindrical
harmonics, we estimate this ejecting flow as a function of the permittivity ratio, applied electric
field, angle of the wedge and the microscopic corner curvature that suppresses the singularity. The
ejecting flow entrains tangential flow on the front side of the wedge and produces a vortex on the
downstream side. This entrainment offers a long-range attractive hydrodynamic force that
complements short-range electrostatic DLV@®erjaguin—Landau—Verwey—Overbgekand
dielectrophoretic forces to enhance corner deposition and aggregation of colloids and proteins
during electrophoresis/electro-osmosis. 2002 American Institute of Physics.
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I. INTRODUCTION The nonuniform field will impart a net force on the bipolar
particle despite its opposite charges on the two sides perpen-
Electrokinetic flow is the mechanism of choice for trans-dicular to the field line. However, the direction of this dielec-
porting fluids in future generations of biochips, as it allowstrophoretic motion is determined by the difference in the
easy flow control, metering, and maneuveringlowever,  medium and particle dielectric permittivities. For our sys-
one major problem for electrokinetic flow is that proteinstems, the dielectric constant of the water medium is 81 and
tend to precipitate at channel junctions and colloids aggrethat of the latex particle is 2.5. Hence, the water medium is
gate at the junction corners. As an example, a submicromore polar than the particle and the dielectrophoretic migra-
latex colloidal suspension is driven electro-osmotically andion should be towards regions with low field intensity. This
electrophoretically in water through the micro-channel junc-is clearly opposite of our observation in Fig. 1, where par-
tion in Fig. 1(a). After about 20 min, colloids aggregate in ticles migrate towards the high-field corner region. More-
large amounts around the inner corner of the channel juncever, dielectrophoretic motion cannot explain the observed
tion as shown in Fig. (b). As shown in the figure, the ag- vortex. The field nonuniformity will also be shown to exist in
gregates form a curious and relatively large spiral-like struconly a small neighborhood of the corner whose dimension is
ture that curls downstream and spans nearly half of the 8thuch smaller than the aggregate size. Particle polarization
mm channel. A small vortex is visible just downstream of theoccurs and is a key mechanism that holds the aggregate to-
spiral, as shown in Fig.(b), when the colloid trajectories are gether, but it probably does not contribute to its formation by
scrutinized with a microscope. The aggregation becomeparticle migration towards the corner in this transport-limited
acute with higher electric field6>30 V/cm) and smaller aggregation process.
channels. Instead, the large aggregate dimension, the observed vor-
Several physical mechanisms can be responsible for thgx, and the aggregate spiral structure that seems to be
corner aggregation phenomenon. The spiral aggregate exhaped by the vortex, all suggest that the particle migration
ceeds 40um in size and is much larger than homogeneousowards the corner is driven by hydrodynamic convection.
aggregates formed in comparable time by the DLVOSuch a theory is proposed in this article. The small region of
(Derjaguin—Landau—Verwey—Overbgeknechanisnf. One  high field intensity near the corner is shown to affect the flow
hence expects a preferential migration of the particles toin a much larger region by a nonlinear electrokinetic mecha-
wards the corner that is not present in homogeneous aggreism. We shall demonstrate through theoretical analysis and
gation. As we shall demonstrate in subsequent analysis, botlumerical simulation that this long-range hydrodynamic en-
the tangential and normal electric fields are very large at thérainment mechanism can drive particles to the corner, pro-
corner. The latex particles can be polarized by this intenseuce the observed vortex, and allow the formation of a spiral
field and migrate by dc dielectrophoredihis dielectro- aggregate.
phoretic migration is driven by electric fields that are highly In an electrokinetic flow, fluid is driven by an electric
nonuniform spatially, such as those at the junction cornerfield. Usually, an electric potential drop is applied across the
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FIG. 1. Experimental snapshot of the
micro-channel junction. The narrow
channel is 80um wide and the latex
colloids move towards the narrower
channels. The silica channel and the
latex colloids are oppositely charged
and hence both electrophoretic and
electro-osmotic motions are in same
direction. (a) During initial stages of
electrokinetic flow of submicron col-
loidal suspension in the direction indi-
cated by the arrow(b) During later
stages showing a spiral colloidal ag-
gregation at the inner corner and a
small vortex as sketched schemati-
cally.

(a) (b)

ends of a channel using electrodes which establishes an eledue to the absence of wall shear. The electric field lines
tric field parallel to the walls. The micro-channels are madecoincide with the streamlines in this case for an open
of dielectric materials like silica, polyester, acrylic, etc. Due channef*® More interestingly, this potential flow is irrota-
to surface functional groups, this material creates a chargetibnal and the generation of microscopic vortices in electro-
Debye layer in the electrolyte neighboring it, such that thekinetic devices for mixing purpose is a major challefigfet,
counter-ions within screen the surface charges. The extent ¢fig. 1(b) indicates that a vortex exists just downstream of the
charge separation in the electrolyte is usually measured bjyinction. We shall demonstrate that this vortex is generated
the electric potential across it, the zeta potentialhich by a nonuniform zeta potential which is dependent on the
would be proportional to the surface charge of the wall. Forapplied field. The resulting nonlinear electrokinetic flow pro-
typical dielectric-electrolyte pairsthe potential{ is in the  duces an ejecting flow from the corner and a back pressure
range of +(25-100 mV. Due to the Maxwell body force that generates the vortex. This nonlinear electrokinetic phe-
within the Debye layer, an electric field parallel to the wall nomenon is a result of field leakage at the corner.

drives the bulk fluid at a velocity given by the Smoluchowski If the dielectric wall has a small dielectric permittivity
slip velocity' (mathematically zefocompared to the fluid, then the electric
e potential around a wedge corner can be solved by decompos-
Ug=— , (1) ing the bulk Ohmic(electro-neutral region from the wall
K Debye charged layer and by the usual harmonic exparsion.

wheree; is the liquid permittivity, is its viscosity, and; is  For a wedge angle less than 180°, the tangential field is sin-
the tangential field. For dielectric materials with small per-gular at the corner from classical electrostatic potential
mittivity compared to the electrolyte, the normal electric theory! However, the normal field remains zero everywhere
field E, in the wall vanishes and the charge distributionon the boundary and even the tangential field is smooth away
within the Debye layer is independent of the applied field.from the boundary. Hence, the coincidence between stream-
The polarization in the Debye layer is produced by the fieldines and electric field lines still holds away from the corner.
generated by the surface charge. As such, both the zeta po- However, biochips are made with dielectrics with a
tential and the Debye layer thickness are uniform in the ensmall but finite permittivity. While field leakage is negligible
tire channel of the same material. Since there is no fieldver most of the chip, it is very important at corners because
leakage and no liquid leakage, this linear electrokinetic slipof convexity and the singular tangential field. Using a per-
(1) implies that the velocity field everywhere in the channelturbation analysis, we show that the singular tangential field
is simply now leads to a singular normal field that also blows up at the
corner. This gives rise to large but opposite polarization on
, (2 two sides of the corndsee Fig. 2in addition to the uniform
polarization due to surface charges. These normal fields drive
whereE=—V4¢ is the electric field. Hence, the electric po- two oppositely charged ions to each side. Such polarization
tential ¢ also becomes the velocity potential and, despite th@roduces a destabilizing normal Maxwell stress across a de-
minuscule Reynolds number in micro-devicesi0™ 1), lin-  formable membran®.Here, it produces another instability
ear electrokinetic flow behaves like an inviscid potential flowwith a converging electro-osmotic flow towards the corner.
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FIG. 3. Schematic diagram of a 90° bend in a micro-channel with electrodes
located at far ends.

Eo

have implemented a multi-scale approach in which the elec-
FIG. 2. Schematic diagram showing polarization and the boundary conditrostatics and nonlinear electrokinetic flow near the singular
tions on ;he eIgc_tric fie]d of a waII-eIect.rolyte interface around a wedge. Apoint is dealt analytically while the electrokinetic microhy-
wedge with a finite radius of curvature is also shown. drodynamics is simulated numerically with a LBM code.

Hence, a very high resolution exists within the thin Debye

layer for the field-dependertpotential and the slip velocity
This instability occurs because the zeta potential near a cogp the channel walls whereas for flow simulation, the lattice
ner would have opposite contribution from the normal leak-gge spacing is only of medium resolution—a few microns.
age field across the corner, which brings excess ions thathe gjecting flow at the corner stipulates a detailed deriva-
overwhelm the original surface charge of the wall. This nor-tion of the corner boundary conditions and lattice spacing. In
mal field is singular(infinite) at the corner, localized, and fact, the long-range corner ejecting flow entrains most of the
decays to an insignificant amount over a few microns awayn_coming flow. With this large hydrodynamic entrainment
from the corner. The resulting nonlinear Smoluchowski S”plength of tens to hundreds of microns, colloids and proteins
velocity, which is proportional to the product of zeta poten-;,e convected towards the corner and are exposed to the
tial and tangential field, also becomes nonlinear with reSpe%ingular normal field. They would then polarize and aggre-
to the applied field, singular at the corner, and changes Sigﬁate due to the classical DLVO mechanfswhen they are
across the corner over a microscopic length. Thus an electrQyithin a submicron neighborhood of the growing aggregate.
static field leakage, though distributed, causes a momentuiye propose this long-range hydrodynamic mechanism to be
dipole that produces an ejecting electrokinetic flow from theyne cause for polarization, alignment, and aggregation of col-
corner. Although the field penetration length is typically |5igs. We obtain the hydrodynamic entrainment fraction
small (<1 um), the ejection distancénydrodynamic pen-  thyough theory and favorably compare it with the multi-scale
etration or entrainment lengtfis long at tens and hundreds gimy|ation. Our study then allows us to design channels with
of microns due to the singularity. We estimate the finite yinimum hydrodynamic entrainment, protein precipitation
strength of this ejecting flow by assigning a finite but micro- gq colloid aggregation.
scopic radius of curvature to the corner tip. The ejecting  The remaining sections of this article are planned as fol-
velocity would be directed symmetrically away from the in- o5 1n Sec. II, we present the governing equations for elec-
ner corner towards the outer corner and its strength would bgokinetic flow along with the electrostatics in electrolyte and
a function of the ratio of dielectric permittivities of wall and the wall. We propose a model to obtain the normal field
the fluid, angle of the wedge, the far-away tangential fieldjeakage and effective nonlinear Smoluchowski slip velocity
zeta potential of the wall, and the radius of curvature of théhear a wedge corner. In Sec. Ill, we obtain a local solution to
corner. For atomically sharp corners, the ejecting flow carne vortices and overall flow in the vicinity of the wedge
exceed the bulk electro-kinetic flow. corner. In Sec. IV, we confirm the local results with numeri-

Due to this strong ejecting flow from the corner, the bulk ¢4 simulation(LBM) for an electrokinetic flow around a 90°
flow is blocked and vortices develop at the corner. The irroyeng.

tational feature of linear electrokinetic flow is revoked due to
the nonuniform and field-dependehpotential at the corner.
More precisely, if¢ is nonuniform in(2), the incompressibil-
ity condition V-u=0 no longer produces the Laplace equa-
tion for potential flow. We demonstrate vortex formation by Consider the schematic diagram in Fig. 3 depicting a
obtaining a local solution for the stream function from the micro-channel with a 90° bend. The electrodes are located at
biharmonic equation. We also develop a lattice-Boltzmannthe far ends of each branch. When a potential drop is applied
method(LBM) code suitable to simulate the outer microflu- across the electrodes, an electric field would be established in
idic flow in an actual 90° bent channel of finite width. We the fluid and also the neighboring wall. Since the fluid is an

Il. ELECTROSTATICS BY PERTURBATION
EXPANSION
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electrolyte, there is a possibility of charge separation and net E,
ionic charge near the channel wall. The electrostatic potential
in the electrolyte or the fluid would be governed by the Pois-
son equatiot,

Ionic path lines
N N
N N ~. Electrolyte
N

v2g=— L2 3

Ef,

whered is the electrostatic potentigl,is the net ionic charge
density, ande; is the dielectric permitivity of the fluid. The
potential distribution in the wallg,,, would also be gov-
erned by a similar equation. There is no charge within the
solid dielectric material and its potential obeys the Laplace
equation,

V2 =0. (4)

SOUI[ XN[j 0197

(a)

Note that these equations and the ones to follow are two-
dimensional. One spatial variable is along the length and
another along the width of the channel. The micro-channels
are assumed to have uniform and constant slip velocities at
the top and bottom. With its small depth-to-width ratio, the
variations in the thin direction can be neglectéthe lateral
boundary conditions are

Ionic path lines
| | |

Electrolyte

L)

dw=¢ on side wall, (5a)

Wall

€0ndp=0y+ €,dnh, 0N side wall, (5b)

saug}; 0197

due to continuity of potential and field across the two media.
Here, o, is the uniform surface charge density on the wall
since we use the same functional material along the entire
channel.

To solve the above set of equations, one needs to model
the ionic concentration distribution i(8) and estimate the
cumulative charge density in the fluid,
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FIG. 4. Schematic diagram showing the ionic path lines and zero flux lines
_ 2 7.C: (6) around a wedge ifl@) actual geometry antb) transformed orthogonal co-
p ~ ordinates.

wherec; is the concentration ath ionic species and; its

ionic charge. Ideally, every ionic species should be capturewherec; , is the concentration ofth ionic species in the

by the full Nernst—Planck convection-diffusion equationbulk, ¢ is the over-potential relative to the potential in the
with electromigration. However, we will construct specific bulk, F is the Faraday constaR,is the gas constant, arid
orthogonal coordinates in a given geometry such that one sé& the temperature of the fluid. As described earlier regarding
of lines is along the direction of ionic flux and the other setthe orthogonal coordinates; would be the potential along

of perpendicular lines along which ionic flux is zero. One ofthose set of orthogonal lines that emanate from the imperme-
these two coordinates correspond to the streamlines. There@le wall and along which there is no ionic flux. These lines
hence no convection in the other coordinate orthogonal to thwould be perpendicular to the wall in straight channels. The
streamlines. The only ion flux mechanisms along them aréhickness of the Debye layer is simply the characteristic
diffusion and electromigration. Moreover, since the wall is alength along these lines over which decays to the zero
streamline, the latter orthogonal coordinates must terminatéeference value in the bulk. For the case of a wedge, the
at the wall. Since there is no ion flux into the wall, electromi- thickness is measured along the no-flux coordinate. This no-
gration must then cancel diffusion exactly everywhere alondlux coordinate is multi-valued at the cusp, as shown in Fig.
this set of no-flux lines. Thermodynamic equilibrium must 4(@. The equilibrium Boltzmann distributio7) hence be-
exist along these lines and everywhere the lines are definegpmes undefined exactly at the cusp. However, we shall
on a plane. A simple integration of the convectionlesssmooth the cusp with an effective radius of curvature in our

Nernst—Planck equation along these lines then yields th#heory and the singularity exactly at wedge corner is not

equilibrium Boltzmann distributiofy, significant. Since the leading-order Ohmic field and the wall
field are determined by the Laplace equation, we shall make
clc exp{ -z Fw) 7) extensive use of the conformal map of the cylindricalé)
oo RT /' coordinates of the wedge to rectilineéy,£) coordinates
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along a flat plane as shown in Fig(b4 Away from the The leading-order Ohmic potential in the fluid is hence
corner, the latter coordinates will also be shown to be thegyoverned by the following equations in the cylindrical coor-
desired orthogonal streamlines and no-flux lines for the Boltdinates centered around the wedge corner as in &), 4
zmann distribution and the Debye layer thickness.
Since the normal field in the Debye | f d VZ0 =0, (9a)
ye layer far exceeds the
applied tangential field, classical electrokinetic théodg-
composes the fluid potentig into the Ohmic potentiafb,
representing the tangential field for the neutral bulk that see$he large fluid electric field at the wall, as governed(5lg),
an insulated wall, and an over potential representing the is assigned to that of the over potentjalThe solution to the
normal field in the polarized Debye layer. Moreover, the overOhmic potential of(9a) in the physical coordinates is an
potential ¢y obeys the Poisson equation with a wall flux eigenfunction expansion in the cylindrical harmonics of the
specified by the surface charge through). [In the classical Laplace equation that satisfy the boundary conditi(@is,
case, the wall is insulated ang, is zero exactly in5b).] N
Since d,y> d,®, this decomposition allows an expan- ~ P =Ar" sin\é, (103
sion of the quadratic nonlinear Maxwell term in the momen-,here
tum equation such that it becomes linear in the tangential
field 9,®. This expansion leads to the slip velocity) di- (2n+1)m
rectly. Moreover, the decomposition allows a one- - 20m—a)’
dimensional resolution of and the momentum equation due
to the corresponding length-scale separatibatween the If the wedge were a corner in the bent channel, then the field
Debye |ayer and the channel dimensibﬂmt accompanies far from the corner should be a constant in either of the
the separation in the field strengths. Finally, the harmonicchannel branches. Only one eigenfunction corresponding to
Ohmic potential obeys the Laplace equation with insulated'=0 would not blow up far away and be zero at the line of
walls and is hence easy to resolve with mathematical techSymmetry at9=0. Hence for every wedge of certain angle
niques like conformal maps. there is only one possible eigenfunction with eigenvalue
We shall also employ the same convenient decomposi = m2(7—a). The constanA would then be obtained from
tion of the f|u|d potentiab& into an ohm|c Componeﬁb and matChing W|th the outer Solution. Though the aCtUal Value Of
an over potentia| Componem At the wall po'arized |ayer, Ais case dependent, it is clear that it scales Iinearly with the
a,4>d,® as in classical theories. This large fieldy is  applied fieldEy. Let A=A*E,W with A* a dimensionless
attributed to the surface charge, in (5b). The new wall constant,E, the constant electric field in the channel far
|eakage termwand)w is neg||g|b|e away from the corner but from the corner, andlv the width of the’\Channel. T!:]e dimen-
must be comparable to, near it to reverse the polarization Sionless space variable {108 is r=r/W wherer is the
as shown in Fig. 2. We hence associate the wall |eakag@ctual dimensional radial position. Since the far-way field is
€wdndy in (5b) to the dominant;d, and o, terms on the ~constant aE,, it is chosen as the appropriate electric field
fluid side to produce a new boundary condition. The remainsScaling. An appropriate length scale is the width of the chan-
ing term e;d,® for the wall Ohmic field on the fluid side is nel W since the effect of a wedge in a bent channel is as-
much smaller than these three terms. Hence, to leading ordé&gumed to persist only over a distance of the width of the
the fluid Ohmic potential obeys a no-flux condition at the channel, which is a reasonable one to assume because be-
wall. We note that the wall field leakage teregd, ¢, has yond a distance equal to width from the corner, both the
Opposite Signs across the corner th-g has a|WayS the walls are parallel and the field would be nearly a constant.
same sign. Hence, the wall field on the liquid sige,» can ~ From numerical solution in bent channels, it will be shown
have opposite signs across the corner—the polarization arfat A~ (1.0-1.2)E,W, for all angles of the wedge <O
slip velocity can change sign across the corner. The sigr?Tf/Z-
change is in fact necessary for back flow and vortex forma- ~We next determine the wall potential,, governed by
tion. Our theory will produce a new slip velocity that reducesthe Laplace equatiofd). Although the normal field strength
to the classical versiofil) when the field leakage is absent. Of the over potentiab, ¢ is much larger tha@,® or 9, of

=0 at o==*(7—a). (9b)

n=0, £1, *2,.... (10b)

Decomposing the fluid potentiat as stated, the Ohmic field, the actual potential drop across the polar-
ized layer is small compared to the wall Ohmic potential
p=D+y, ® drop across the corner due to leakage. For Debye layers, the

where ® is the Ohmic potential governing the tangential Z€t@ potential is_the potential drop and_ is .of the order .of
transport of neutral electrolyte angl is the over potential 2°—200 mV. While the over potential with field leakage is
across the polarized layer near the wall due to field leakagBigher on one side, we do not expect it to exceed 200 mV,
at the corner. As such, the linear boundary conditibb) which is far smaller than the drop in the wall Ohmic poten-
without the surface charge term is decomposed into a no-flu@l across the corner when leakage exists. We hence neglect
condition for® and a gradient condition fop that is deter- ¥ In (58 and use the Ohmic potential continuity condition

mined by the surface charge, and the wall fielde, d, ¢, - b= at == (7—a), (11)
We solve ford and iteratively by also employing the Bolt-

zmann distribution(7) and using boundary condition®) The solution to the wall potential distribution can then
alternatively in the iteration. be obtained from4) with boundary conditior{11) as
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Sin\(m—0) 2iZ,Ci o eXp — zFyIRT)
= )\— 2 = — 4
pu=Ar— . (12 V2y . . (143

i ) ] The boundary conditiofbb) on the normal electric field now
The normal field leakage part &, in the adjacent electro- 54y ces a condition for the over-potentialon the liquid

lyte at the wall is then side
€ €y A = —2 ﬂ = -
6—W0n¢w=IE—W\,—V>\COU\aF(H) at 6=+ (m—a). Ap=E = ef + Ef Indy at == (m—a), (14b
f f

13 whereE,, represents the normal electric field near the wall on
S the fluid side and includes both surface charge and field leak-
It can be seen from the schematic in Fig. 2 that the norma4ge contributions. Another boundary condition is tiat0
field changes sign in the region near the corner. It is becausar from the wall. If y<RT/F throughout, then we can fur-
the field leakage enters from the fluid @& (7—) and re-  ther invoke the Debye—Huckel approximatiaon (143 by
enters the fluid ab=—(7—a). Without surface charge, this expanding in ¢Fy/RT) and transforming the Poisson—
field leakage would establish Boltzmann distributions of op-Boltzmann equation to a linear partial differential equation,
positely charged ions and create oppositely polarized sur-
faces on the opposite edges of the wedge, rendering the 1 - d
- - - oz Vieb= =, (15
wedge corner bipolar. We have shown in an earlier work that w2 et s
electrokinetic flow past a large bipolar particle can produceWhere 5= (3¢ onzf/efRT)‘l/Z is the Debye length and
back-flow and vortice8.Here, back flow and vortices de- ' . . i
) . use has been made of the electric neutrality condition at large
velop because the zeta potential changes sign across the COF i tisS. 70— 0
(B

ner and the resulting Smoluchowski slip velocity converge§Y We now transform this Poisson equation by the confor-

towards the corner. The tangential slip velocity hence de}nal map of the wedge to a plane in Figb#t The  variable

g{ﬁ) ?J?:tse saphdatcg?ar;%isprséggu?etorﬂzgt 2p;0ergretroae?gcf?hne“:‘1|gli%/ the Ohmic potential functio®(r, ) in its dimensionless
as sketched in Fig. 2. This back pressure also generates t derm andy corresponds to the field lines. We get fra0)

downstream vortex. However, the coefficiénwill be deter- x=A*r" cos\ 6, (168
mined through matched asymptotics with a constant field .n
applied far from the wedge. This far-field behavior depends ~ §=A"T" SINA 6, (16b)

on the channel geometry and will be resolved numerically ir\NhereX:)}/W and é= %/W with y and ¢ being the dimen-
a later section with a finite channel width. The effect of SUrgionless coordinates. Transformifgs) from () coordi-

face charge, ignored in the above argument, will also b‘?‘nates tox,£&) coordinates gives

included.
Although the Ohmic field and wall potentials are solved |V§|2V2 Y
in the original cylindrical coordinates of the wedge, we shall W2 = 52 (17)

solve for¢ in the transformed coordinatég,é) of Fig. 4(b). ) ey )
These coordinates are defined by the conformal map th¥nereVy ;=d“/dx“+/o¢* is the Laplace operator in rec-
maps the wedge into a plane. They are both harmonic fundliinéar coordinates. Since is same as the nondimensional
tions that satisfy the Laplace equatiRé=V2y=0. Insofar Potential function, the nonlinear coefficiefit£|*=||E|/E;
as the Ohmic fluid potentiab is a harmonic function for the WhereE=—Vd is the local Ohmic electric field. Since this
wedge geometry, thé coordinate simply corresponds to a Ohmic field does not leak into the wallE| =[5, ®|=|E{| at
dimensionless version @. The constang contours are iso- the wall. The fieldE, is the far field used to scat. In th;a
potential contours. The orthogonal constantontours cor-  aPPropriate ‘fag'f‘P'/‘is ofx.£), it can be shown thatV ¢
respond to the streamlines of linear electrokinetic flow with=*(€%+x?) ~*"". Since the Debye layer is very close
an insulated wedge. Hence, the orthogonal coordinate  t0 the wall, that isf—=(7—a), it would imply that y—0
the desired no-flux lines along which the Boltzmann distri-2nd d/dé<<dldx which upon substituting iri17) gives an or-

bution (7) can be derived and the Debye layer thickness cafinary differential equation iry as

be defined. The Boltzmann distribution hence holds every- 42, y
where they coordinates are defined. Near the corner, wall i (E.JE,)28%" (18)
t (o]

leakage would mean thag¢ coordinates are no longer the

no-flux lines but are good approximations of them near thavhere E,=\&~ "M/ is the tangential field at the wall
wall. At precisely the corner point, however, no-flux lines which is only a function of and is independent of. Note
cannot be defined at all. Hence, the Boltzmann distributiorthat y is the dimensional form of, that is, y =Wy whereW
(7) is valid everywhere except at the corner and a smalls the width of the channel. The boundary conditionglid)

sector beyond it. on ¢ in the transformed variables are
We can then usé€7) to determine the net charge density
— : i Iy E, -
p=Z2ziC; everywhere except the point on the corner. Since  _ 77 _ at y=0 (199
the Ohmic potentiap is a harmonic function(3) then yields ax (E/Eo)
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y=0 at y—o». (19p  nates the linear slip. The nonlinear slip velocity has opposite
. . . ] signs on either sides of the wedge which implies that it is
Integration of(18) with (193 agd(19b) then yields the field-  jirected towards the corner on either sides.
dependent, the value ofy at =0, Moreover, the nonlinear slip occurs onlyN&1, that is
{=E,é. (200  for wedge angles less than or a</2 from (10b). Hence
there would be field leakage at the inner corner of a bent
Note that unlike for a plane wall, the Debye layer thicknesschannel of Fig. 3. However, for the outer corner, with angle
from (18) near a sharp corner is larger by a factolefE,.  37/2 greater thanr, the eigenvalue. will be greater than 1
But, the normal field in(193 is reduced by the same factor and there would not be any field leakage, polarization, or
E(/E,. Hence these opposing contributions cancel eaclortex formation. This explains why protein and colloid ag-
other and the formula for zeta potential given(20) remains  gregates are never found at the outside corner. Moreover, the

the same as for a plane wall which is equal to the product ofnduced; changes sign across the wedge corner.
the normal field at the wall and Debye layer thickness. Since

E;=—4,® is singular at the wedgé18) becomes invalid at
the corner as shown in Fig(&. However, we exped0) to  |ll. LOCAL HYDRODYNAMICS

be valid away from some neighborhood of the corner. When we solve for the hydrodynamic flow, the stream

.lf E, is too large or{>RT/F, then the above approxi- function can also be split into two parts, one for linear and
mation would overshoot the actual value that would be ob-

tained by solving(149 and (14b) exactly. Then, we would one for nonlinear electrokinetics,

have to use either Gouy-Chapman theory for symmetrical Y=¥,+¥;. (23
electrolytes or Grahame’s analysis for asymmetrica
electrolytes’ Note from (14b) that the normal field at the
wall E,, and the{ potential in (20) would consist of two
parts, one is due to the field of surface chargg/(e;) and
the second is due to fielce( / €;) 9,0, in the wall neighbor-
ing the fluid. With singular field leakage, the second contri-
bution becomes dominant in the vicinity of the corner.

'he first one would be due to the linear slip velocity,
caused by the uniform surface charge with a constant zeta
potential,{,. The second part is due to nonlinear slip veloc-
ity us, caused by the nonuniform zeta potentfal due to
field leakage. The linear electrokinetic flow biharmonic
equation with uniform slip is

We can now estimate the zeta potential fr¢20) by Vi,=0, (249
substltut_lng(13) and(14b) to obtain the natural and induced Uy=—dW,=0 at6=+(m—a), (24D
{ potentials,

u=2d,¥,=u at 0=+ (mr—a). (240

=L+, (21 S On™o= o (e

With linear slip, it corresponds to potential flow. Hence, of

[ 0o all the cylindrical harmonics of the biharmonic equation,
Lo=|—] 8, (21b | . e
€5 only one Laplace harmonic survives—the same one as the
A electro-static harmoni€l0a with A\=7/2(7—a),
€
glzle—wav—v)\ cothar "M at 9=+ (7—ay). Wo=Crcos\ 6. (25)
f

(219 The streamlines of this linear electrokinetic flow are hence

exactly identical to the electric field lines, as shown in Fig.

5(a). The magnitude of the coefficie@ would be propor-

tional to the bulk flow ratei,W asC=A* u,W, whereA* is

Us=Ug ot Ugq, (229 tr}e( sag1e constant that would appear in the potential function
of (103a.

(2>u -l E=—¢ ﬁ)\rf(lfm (22b) The nonlinear electrokinetic flow stream functioh,

S0 ot w ’ must be governed by a biharmonic equation afig and

have zero normal flux of fluid at the walls of the wedge,

The linear and nonlinear parts of Smoluchowski slip velocity
can then be estimated by substitutif®i) in (1),

n €
(;>U5,1=_§1Et=i€_:v5C0t)\aEt2 V=0 atb==*=(7—a), (26)
A2 and yield opposite tangential velocities on the two sides of
— W S——=N2cothar ~2(17M) the wedge, as shown in Fig(l5. Hence, the only permis-
e W sible harmonics of the biharmonic equation are

at =+ (m—a), (229 V,=DrPsingo (27)

whereus , is the linear slip velocity in the absence of field with B=n=/(7m—a), n=*1,%2,.... Since there is an outer
leakage effects andl ; is the additional nonlinear slip veloc- wall, the momentum of the ejected flow should decay due to
ity due to corner field leakage. The linearity and nonlinearityback pressure and it stipulates thlat— 0 asr— . Retain-
refer to the scalings with respect to the local tangential fieldng the dominant singular harmonic that decays the slowest,
E; which is linear forus , while quadratic forus;. The non- ~ we obtainn=—1 andpB=—=/(7m—a). The value of this ex-
linear slip exists only near the corner where it actually domi-ponentg is exactly negative of twice of the exponentor
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FIG. 5. Streamlines of electrokinetic flow around a wedgg Linear electrokinetic flow¥', for a perfectly insulating wall. Equatiof25) with C=1. (b)
Vortex stream function?”; due to field leakage effect. Equati¢®7) with D =0.0004.(c) Overall stream functionV =V + ¥, .

the electrokinetic stream function {1039. However, the ex- have a finite radius of curvature, as seen in Fig. 2. This
ponentg is incompatible with that of the nonlinear slip2c) regularized problem is well-posed and the incompatible har-
for any positive wedge angle, since monics of(27) can still be used to approximate its solution.
Aoy _ A finite ejecting flow of strengthu.é now exists for the
p-l=-2a=1#20-1). (28) smoothed cusp as shown in Fig. 2 and it is taken to be the
In fact, the exponent of the nonlinear slip velocity is incom-total flow within the Debye layer on either sides of the
patible with any of the harmonics if27) for any wedge wedge converging towards the tip. If the tip is rounded off to
angle a<w/2. Unlike its linear electrokinetic flow counter- a radiusr., thenu, can be evaluated froms, of (220 at a
part, the nonlinear creeping electrokinetic flow at a wedge iglistancer, =r . cota from the tip along the wedge wall:
strictly ill-posed. The difficulty may arise from the absence
of a normal and the inability to define a slip direction at the
tip. However, real wedges are not infinitely sharp but rather

r, —2(1-\)

W (299

2
77 76W A 2
Ef)uc— o 5W2)\ cot)\a(
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If we invoke the matched asymptotic result=A*E W, 10 : . . . T
whereA* has to be determined later, a more explicit estimate
of u; can be obtained as

Ue=|—
“ 7

€w —2(1-\)
- SE2A*2)\2 cotm(
f

*

W (29

The ejecting velocity can be compared to the far-field elec-

trokinetic flow velocityu, given by (1), *ED @
> !
ol e
—=|—|| ——|A*“N“cotAa| — 29¢
Uo €f {o W (299 10k
For a 90° benda= /4, \=3), the ejecting velocity becomes
comparable tai, for (r, /W)~10* for a typical values of T

(ew! €)= 35, 6~50 nm,Z,~50mV, andE,~ 100 V/cm. For

a mm-dimension channel, this is reachedatf roughly 100

nm, a reasonable roughness scale for silica channels fabri- 107 : L = - '

cated by plasma etching. Due to the aeaicaling, this criti- 10 10 10 10

cal ejecting velocity becomes even more severe for sharp L coto./ W

edges. As shown in Fig. 2, it produces an ejecting flow of _ _ ,
. FIG. 6. The entrainment stream functidn? scales as a power-law with

strengthucﬁ at _a rE!dIUS roth!y equal to that of Debye Iayer respect tor. and increases with decreasing wedge angleilerel is the

thicknessé. This gives an estimate d@ that is the strength  coefficient in(32), I'= (e, /€;) (Eo 8/ £o) (5/W)A*2(\2/2) cotha.

of the circulating vortices and we g8t in (27) as

vl

However, we do not expect the flow near the wedge to be (32)
dominated by only one Stokes harmonic, especially one witiThe channel width iV and a pure electrokinetic flow with a
an incompatible exponent from the nonlinear slip. The in-flat velocity profileu, described by the Smoluchowski slip
compatibility gives rise to an error that grows towards the(1) has been assumed far from the corner. We will demon-
corner. Rather(30) should only be valid sufficiently far from strate from subsequent matched asymptotic result for the
the wedge. In fact, we shall show from our subsequent simuelectric field in finite-width channels thad*~1 for all
lation that, with a sufficiently sharp wedge, the flow near thewedge angles less than The entrainment efficiency¥'y ,
wedge is a radial potential flow. has complex scalings with respect toand a power-law
Nevertheless, the existence of vortices and hydrodyscaling with respect to.. Nevertheless, it increases with
namic entrainment can be estimated frdm. The stream- decreasingr andr., as seen in Fig. 6. If the wedge were a
lines of linear electrokinetic flow¥, nonlinear electroki- corner in a bent channel with a known flow rédteall stream
netic flowW¥,, and the combined flow ,+ ¥, are shown in  function), then it can be predicted that the entire flow could
Figs. 5a)—5(c). It can be seen from Fig(®) that the stream- be entrained if¥’, is equal to the wall stream function. This
lines are drawn towards the corner on the front side of theritical condition depends on the angle of the wedge, radius
wedge. All the streamlines approaching the corner are bertf curvature or sharpness, dielectric constant of the wall, the
inwards and make a half circulation before passing on tanean electric field, Debye layer thickness, width of the chan-
other side of the wedge. This hydrodynamic entrainment isiel, and the mean zeta potential.
due to the ejecting momentum at the corner. The amount of On the front side of the wedge, both main flow stream
flow that is entrained can be estimated from the value of théunction ¥, and the ejecting flow stream functiok; are
overall stream function near the wedge. Near the corner, thpositive whereas on the back side of the wedlg,is posi-
circulatory flow due to¥, would be the dominating one. It tive while ¥, is negative. The resultant overall flow would
can be estimated as the maximum valuélgfor total eject- have a back-flow or a vortex in the back side wherever the
ing flow from (30) in the region of singularity, that is; overall stream function is negative. The size of this vortex is
— 0 and K6<(m—a)/2. If ¥, is the fraction of the flow insignificant for smaller strengths of the ejecting velocity, but
entrained, then it increases gradually as the ejecting velocityincreases. A
vortex also appears at the upstream side but tends to be much
weaker. The current analysis is a local one near the corner.
Only dominant harmonics have been retained and the flow
near the wedge can be very different frg80). The outer
Hence the entrainment efficiend)y; that is the ratio of’,  flow can also distort the vortices in Fig(cd. However, the
to the total flowu,W scales as back vortex and the entrainment conditi¢dl) would be

—2\

sin 2\ 6. (30 . | €w E,o0\( o *2)\2 r.cota —2(1-n)
\I’e— G_f go A TCOU\(X Y, .

wW

Uco
\I’EZT. (31)
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verified for an actual 90° bend with numerical simulation 45 - v v v '
(LBM) in the following section, where we remove the non-
linear slip and use the estimated ejecting veloaityf (29¢)

in an appropriate manner to capture the ejecting flow due to 35
field leakage.

IV. NUMERICAL FLOW SIMULATION 2.5

The nonlinear ejecting flow due to field leakage is local- 2t
ized to the inner corner and we u&9b) or (290 to model
its effects. The simulation is done on the remaining domains
with a linear slip where field leakage is absent. We hence 1
impose(1) or (22b) with {= ¢, of the naturak potential. It is
necessary to solve the Ohmic electric field without leakage in 0.5
a bent channel of Fig. 3 with wedge angteand unit width.
A numerical Laplace solvéiis used to solve Eq9a with 0 0.5 1 15 2 25 3
no-flux boundary condition9b) on the walls and the far T
away electric field is set to unity. The magnitude of the tan-
gential electric field along the inner wall and the outer wall (a)
of a 90° channel are plotted in Fig(aJ. As expected, the
field near inner corner bears a singularity and decreases
monotonically to its far field value of unity over a distance 13 ; ' ' ' ' ' ‘ '
equal to the width of the channel. For the outer wall, field is
zero at the corner and increases monotonically to its far field o
value of unity over a distance equal to the width of the chan- 9 o g g o
nel. The outer corner does not bear a singularity as the sin-
gularity occurs only for wedge angléthe angle on the wall
sidg less than 180°. The Ohmic tangential field fréb®a is
E.=A*E,\r~ 7N on the inner wall near the wedge where
E,; must scale linearly with respect to the far-away fi&lgl
being set to unity. The magnitude of the coefficignt is
obtained from its asymptotic value as—0 for various
wedge angles and it is plotted in Figby. It is clear that the
coefficient is nearly a constant of order uniy ~1. We
have even simulated walls with a finite but small dielectric
permittivity. The tangential field away from the corner does 0
not vary much from the solution plotted in Fig(ay for per- 0
fectly insulating walls. The field profile near the corner shifts o
downwards as the dielectric constant of the wall increases.
We can useA* =1 in (32) to estimate the capture efficiency (b)
of an arbitrary wedge.

1.5F \ Near Inner Corner

Near Outer Comer

E /Ar (™

-

A

0.5+

02 04 06 0.8 1 12 14 1.6

: _ FIG. 7. (a) Electric field variation along the length of a 90° channel at inner
To Ve”fy the accuracy 0630) and (31)’ we have devel corner and outer cornefb) The magnitude of the harmonic coefficieht

oped a lattice Boltzmann meth¢dBM) code for simulating obtained from its asymptotic value at-0 for various wedge angles in

the flow. It is a mesoscopic simulation technique for fluid radians.

flows and other transport phenoméfidt incorporates the

features of density probability distribution, single relaxation

time constant, discretized spatial lattice, discrete particle vekinetic tangential velocities approach constant asymptotic

locities. We refer to the literature for the simulation values away from the wall, giving rise to effective universal

techniquet! For our purpose, we choose the one that correslip expressions like the linear Smoluchowski slip or

sponds to an incompressible fluid and that recovers the soly22b) and our nonlinear versiof22¢). This is because the

tion to Navier—Stokes equation. As shown in the schematidulk is neutral and the Maxwell stress vanishes away from

Fig. 8, for a 90° bend channel, a square lattice is used witlthe polarized layer. The universality means that the slip ve-

nine velocity directions resolved at each lattice n&din locity can be applied anywhere near or on the boundary, as

total, there are 100 nodes along the width of the channel anfar as the outer flow is concerned. Such asymptotic behavior

400 nodes along the length. does not exist for normal ejection velocity from the corner.
Because the ejecting velocit§29b) is obtained via a Due to either radial mass flux considerations or momentum

flow balance within the Debye layer, the slip and ejectingloss, it decays monotonically from the corner. As such a

boundary conditions imposed on the wall nodes of the LBMuniversal effective boundary condition does not exist for the

code must be done with care. Linear and nonlinear electroaormal ejection velocity, its value depends on where this
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which results from flow rate balance at a radius\é£/2 and
assuming that the ejecting flow spans an anglémf «)/2

u, on either sides of the ejecting line of symmetry as shown in
We- o o o o o o o Fig. 2. Its value depends on the grid spacing. In our simula-
tions, A is held constant at the value of 0\M1and we then
expect from(31) that the entrainment should be approxi-
mately[ (7— a)/2\2]ul°A.

We impose the ejecting velocity @9¢) at the corner
node as shown in Fig. 8, directed towards the outer corner.
We have performed LBM flow simulation for different val-
ues oful®®. Hence, each of the solutions and flow profiles
would correspond to different strengths of the corner singu-
larity and field leakage effects. In the LBM simulation, a
relaxation time constant of=1 is used. It corresponds to a
viscosity of u=(27—1)/6=3 units as in LBM. The far-field
velocity is given a small value af,=0.001. Since the width
of the channel consists of 100 nodes, the Reynolds number
f * ? of the flow is Re=pu,W/u=0.3 wherep=1 is the density of
FIG. 8. Schematic diagram of slip boundary condition for LBM simulation t.he fluid O.r particles at .eaCh noge. The.cre?pmg flow condi-
of e-Iec.trokinetic flow in a micro-channel with a 90° bend. The chamneltIon qescnb?d by the blhgrmon!c equation !S hen'ce Well ap-
width W is scaled to unity. proximated in the LBM simulation. Each simulation is run
until a steady flow is established or for “.@ime steps.
Stream function of the flow is constructed from the obtained
velocity fields at the end of simulation. The contours of
stream lines are plotted in Figs(a®-9(d) for different val-
fes of the corner ejecting velocitie§°®. As the strength of

o *- *— o o= o o~ > [ ]

A ode
._’._.P._’H._’./Lt.

Comer

/ Node

Wall Node  Wall

-9 - -—9 -0 -—O0
[ ] [ ]
-9 - -9 -9 -9 -9 -9

boundary condition is imposed for the outer flow and this
location cannot be exactly at the wall. It hence becomes
Itﬁttltce-&ztet-)depenl(je(r;t effective fn|c|’ rr?t? ! Vfr:OC'ty. Cond||t|0|_nthe corner ejecting flow increases, the pair of vortices be-

at must be applied more carefully than the universal slip, ., prominent on either side of the corner. However, the

goggilgozsf.rzget\r,]v: I:r:r?wozlazsia?;er:gica;;[sgr?r: anhoagfegfatgesfgxn pstream vortex is extremely weak and, even when it appears
pacing g 9 t highu®®, it is detached from the corner. The outer flow

on Fig. 8. The first layer of nodes along the wall are assigne . .
. L . and higher-order harmonics seem to favor the back vortex.
a slip velocity given by(22b), after the tangential wall elec- . . .
Nevertheless, entrainment of streamlines still occurs up-

tric field has been computed from the Laplace solver. Thetr m and intensifies with increasi bode with or without
only exception to this rule occurs at the corner node. The'eama ensmes creasiag -, 0 ou

ejecting velocityu, is assigned to the first node diagonally a froly yortex. The spiral aggregate .Of F.'g' 1 resembles the
away from the corner. As seen in Fig. 2, the derived ejectingsnearnl”.]es awauind the back vortex.m F'g' 9. o

slip velocity u, is at a distanceS (Debye layer thicknegs In F'g_' 10@), the normal velocity in dtehe direction of
from the tip and tangential on either sides of the wedge. Thdidgonal is shown for several values @f*™. All of them

- Up , . —(A+1)—  ~T3 pc i - :
actual ejecting velocity assigned to the corner node located SE€2Y as r= " as in the dominant harmonic of the
a distance\ /2 from the corner is nati, but u™“such that viscous Stokes flow iri30) for most of the intermediate re-
C C

the net ejecting flow condition is satisfied. gion. For a 90° bend or wedge witk=m/4, \=m/2(m—a)

_g . . . . .

We expect the ejecting flow to be nearly irrotational flow =3 _Howevielr, in the vicinity of the corner it has a power law
near the corner just outside the Debye layer, as is the case 8f2/ing ofr ~~ which is the solution for potential flow ejected
the classical outer linear electrokinetic flow. However, at aradially in two dimensions from a point source, as we have
finite distance away, the vortices and back pressure will rensPeculated. The irrotational character of linear electrokinetic
der it a viscous Stokes flow that is eventually dominated byllow has been revoked by the ejecting flow near but not
the harmonic of(30). Exactly where the transition occurs €xactly at the corner due to field leakage. However, at the
depends on the ejecting velocity assigned to the corner nodBigh ejecting flow, the corner flow remains a potential flow.
which has yet to be specified. It depends on the local ReyThe fraction of flow entrained is estimated from the value of

nolds number based on the channel widtland the assigned Stream function at a distance gf of width normally away

ejecting velocity. from the corner on the horizontal branch of the channel and
Based on these arguments, the radial velocity should de¢he data is plotted in Fig. 1B). It agrees with the theoretical

cay asr 1, as is the case for a point source of inviscid flow prediction of(31) that the entrainment fraction ig 6/2u,W

in two dimensions. Hence, the appropriate ejecting velocityor (77— a)ug**A/2y2u,W, which are dimensional versions

to be assigned to the corner node is of (31).
If the ejecting velocity is weaker than the far-field elec-
s trokinetic flow, the short interval of potential flow seen in
ugode: o —m 1, (33 Fig. 10a may not exist. The ejecting flow is entirely Stokes
(m— a)(A/\/E) flow and its velocity decays radially due to momentum loss
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—_—
Flow direction
unode =18
<
(a) (b)

(c) (d)

FIG. 9. Streamlines of electrokinetics flow in a channel with 90° bend obtained from LBM simulation for various strength of the corner ejectiag flow.
ul*¥e=0, with no field leakage effecth) ul®®=28, (c) u°*=57, and(d) u’°*=85. The far-field linear electrokinetic velocity is taken to be unity.

instead of the geometric effects on flow balance. In that caseespond to atomically sharp corners(#4) is used. A good
the proper nodal ejecting velocity should be from the domi-criterion to determine whethéB3) or (34) to be used is to
nant Stokes flow scaling of30) with a faster decay than evaluate the ejection Reynolds number

(33),
:pfch (35)
A\ B-1 n
unode: M ( ) (34)
¢ 216 ' If Re; is much less than unity34) should be used. For a

typical applied field o£,=100 V/cm, Debye layer thickness
where B=—m/(m—a). However, with such weak ejecting of 6=50 nm, ande,/e;=+, We estimate from(29b) and
flow, there is insignificant entrainment and vortices do not(35) for a 90° wedgd a==/4) in a channel of width 1 mm
appear. Correspondingly, thd°®used in Fig. 9 would cor- that Re exceeds unity when the radius of curvatuteis

PROOF COPY 022212PHF



PROOF COPY 022212PHF

Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear electrokinetic ejection and entrainment 13

' ' i ant opposing nonlinear slip velocities into an ejecting veloc-
ity at the corner. Hydrodynamic entrainment vortices are
shown to exist on opposite sides of the wedge corner through
local analysis and by numerical simulation. We have also
implemented a multi-scale analysis and developed a simula-
] tion strategy. In the simulation approach, an effective bound-
ary slip condition from our analysis is applied and the micro-
hydrodynamics is simulated by a lattice Boltzmann method
(LBM). The corner ejecting velocity arises from flow bal-
ance and must be implemented judiciously to the LBM code
with (33). Unlike Moffat eddie&’ in pressure-driven flows at
the outer corner, here nonlinear electrokinetic vortices occur
at the inner corner. They are far more ubiquitous and their
size and intensity increase with sharper corners, decreasing
wedge angle, largere(,/€;), larger electric fields, and
5 smaller channel widths, as indicated 199b) and (32).
r These vortices entrain proteins and colloids and induce ag-
gregation at the inner corners but they can also be exploited
(a) to mix reagents—a valuable modification of the otherwise
irrotational linear electrokinetic flow.
The electric field and velocity field singularities at the
1 : " - ' corner can also be removed by mechanisms other than finite
ool ] tip curvature. We have neglected tangential ion fluxes in our
theory. Such fluxes include convection to the tip, electro-
081 ] migration of ions to the tip, and diffusion away from the tip.
] The first two flux mechanisms act to enhance the singularity
o while diffusion, as usual, acts to regulari@mooth the po-
0.6r ] larization around the tip. We expect convection contribution
¥ ost ; to be weak unless the polarized region extends far out of the
o Debye layer. Electromigration and diffusion, however, can
] balance around the tip to produce an effectively smoothed
03} ; field which is not singular. A simple scaling argument indi-
cates that this balance would produce a tangential Debye—
Boltzmann distribution within a tip region of siz&{/F)/E,
0.1} 1 where E, is a characteristic tangential field at the tip. We
) ) , , expect the tangential field at the radius of curvatyref 100
0 02 04 0.6 0.8 1 nm to be roughly 1®V/cm and this would produce a tangen-
Gn/8 2)u* A tial Debye length scale of 250 nm, which is comparable to
the expected dimension of . Hence, tangential flux is neg-
(b) ligible for a distance of , and larger away from the tip. This
justifies our omission of the tangential flux from the theory.

u e =28
slope =-7/3 |

0.7

0.41

0.2}

FIG. 10. (a) The decay of ejecting velocity away from the inner corner

obeys the scalings of ! in the immediate neighborhood and ™ for the

most of intermediate regior(b) Fraction of flow entrained to the corner

plotted as a function of corner ejecting velocity. These data obtained frotACKNOWLEDGMENT
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