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1 CLASSES

Abstract

by

Joshua A. Cole

Recently, researchers in the foundations of mathematics have become inter-

ested in the distributive lattices Pw and Ps, the study of which is a major part

of the field of “mass problems.” In general, a mass problem U is a subset of ωω

(Baire space). We define U ≤s V if there is an index e for a computable functional

so that ∀f ∈ V(Φf
e ∈ U). If we do not require the same e for every f , we get a

“weak” version: U ≤w V if for all f ∈ V there is an e so that Φf
e ∈ U .

The relations≤s and≤w naturally induce equivalence relations≡s and≡w. We

define Ps to be the collection of ≡s degrees of nonempty Π0
1 subsets of 2ω (Cantor

space); similarly, we define Pw to be the collection of ≡w degrees of nonempty Π0
1

subsets of 2ω.

An important open question is whether Pw is dense. The result of Chapter 2 is

that the embedding of the free distributive lattice on countably many generators

into Ps can be done densely. The way it is done gives indirect evidence that the

kinds of priority arguments that show the density of Ps are probably not strong

enough to show the density of Pw. The result of Chapter 3 applies these priority

arguments to show the decidability of the elementary ∀∃-theory of Ps as a partial

order. The result of Chapter 5 is that certain index sets related to Pw are
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Π1
1-complete. This leads to a conjecture that the Turing degree of its elementary

theory is as high as possible.
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CHAPTER 1

INTRODUCTION

The reductions ≤s and ≤w originally were named Medvedev and Muchnik

reducibility; we like to use “s” and “w” to avoid the confusion that results from

both names beginning with an “M”. An old intuition is that a subset of ωω can

be thought of as a mathematical problem, and then an element of the subset is

thought of as a solution of the problem. If U and V are subsets of ωω, then U is

Medvedev (or strongly) reducible to V (U ≤s V) if there is a Turing functional Ψ

so that for all f ∈ V , Ψ(f) ∈ U . If U ≤s V then a solution to the mass problem V

uniformly yields a solution to the mass problem U . Muchnik reducibility relaxes

the uniformity constraint: if U and V are subsets of ωω, then U is Muchnik (or

weakly) reducible to V (U ≤w V) if for every f ∈ V there is a Turing functional

Ψ so that Ψ(f) ∈ U . Under either reducibility, there is an equivalence relation

defined in the usual way: U ≡ V just in case U ≤ V and V ≤ U . We write degs(U)

(degw(U)) for the degree of U under the equivalence relation induced by strong

(weak) reducibility.

We work mostly with Π0
1 mass problems, and this allows for the use of com-

putable approximations. (See Lemma 5.) We take the following as the definition

of a Π0
1 mass problem.

Definition 1. R ⊆ ωω × ω is a computable relation if there is an index e for a

Turing functional so that for all X ∈ ωω and n ∈ ω, ΦX
e (n) = 1 if R(X, n) holds
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and ΦX
e (n) = 0 if R(X, n) does not hold. We say U ⊆ ωω is Π0

1 if there is a

computable relation R so that U = {X : ∀nR(X, n)}.

Except in Section 5.1, we work mostly with subsets of 2ω, and this allows for

the use of compactness; often we will use ‘Π0
1 class’ as shorthand for ‘Π0

1 subset of

2ω.’ It turns out that each of the collections of Medvedev and Muchnik degrees of

nonempty Π0
1 subsets of 2ω is a distributive lattice; we will denote them by Ps and

Pw, respectively. For an introduction to the study of Ps and Pw, see Simpson’s

[19]. We will summarize some of the basics needed for this thesis.

The join operation, by definition the least upper bound of two degrees, is the

same in Pw and Ps. It is induced by an operation on representative Π0
1 classes. If

U and V are Π0
1 classes, then

U ∨ V = {f ⊕ g : f ∈ U , g ∈ V}.

The meet operation, by definition the greatest lower bound of two degrees, is

also induced by an operation on representative Π0
1 classes. In Pw it is simply given

by a union:

U ∧w V = U ∪ V .

In Ps, the meet is similar to a union, but we also need to be able to tell which

mass problem an element originally came from. If U and V are Π0
1 classes, then

U ∧s V = {0�f : f ∈ U} ∪ {1�g : g ∈ V},

where for a function h and number n, n�h is the function given by n�h(0) = n

and n�h(x) = h(x− 1) if x �= 0.
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It is a straightforward exercise to check that the induced operations on equiv-

alence classes are well-defined and that Ps(Pw), together with these induced oper-

ations, is a lattice and is distributive. As is usual when working with a collection

of equivalence classes, we will often work with representative elements, as we did

above in the definitions of the meet and the join.

There is a bottom element 0; in both Pw and Ps it the degree of the Π0
1

subsets of 2ω which contain a computable function. For if U contains a computable

function, then every member of every V computes a member of U . There is also a

top element 1; in both Pw and Ps it is the degree of PA, the set of characteristic

functions of completions of Peano Arithmetic. (This is originally from a paper

of Scott [16], which appears in [8]. For another proof, see a result of Simpson

[18, Lemma 3.16], which appears in [20].) However, not every Π0
1 class weakly

equivalent to PA is strongly equivalent to PA. This can be see from the result that

every non-zero weak degree contains infinitely many strong degrees. (This latter

result was first shown in a preprint by Simpson and Slaman [23]; an alternative

proof has been given in a paper by Simpson and me [7, Corollary 5.10].)

Why do we study Ps and Pw? That PA has degree 1 in both immediately

sparks interest. Furthermore, Ps is a refinement of Pw, as shown by the result

quoted in the last paragraph. Thus, it is reasonable to suppose that the study

of the local properties of Ps may shed light on the the local properties of Pw. In

turn there are many connections in Pw to topics in or related to computability

theory, such as the c.e. Turing degrees (RT ) [21], almost everywhere domination

[22], the diagonally non-recursive functions, randomness, and

computational complexity [19]. The theory of mass problems provides a useful

context in which to think about problems in these areas. Also, the techniques for
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studying Ps are similar to those used in the study of RT , as we will see in the

next chapter.

When not otherwise noted, our notation follows the standard usage in com-

putability theory. Soare’s text is a good reference [25].
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CHAPTER 2

EMBEDDING FD(ω) INTO Ps DENSELY

A version of this chapter has already been published [6]. A way to investigate

the local properties of Pw and Ps is to ask the questions that were answered in the

case of RT , the c.e. Turing degrees as a partial order. An easy first result is that

while RT is only an upper semi-lattice, Pw and Ps form true lattices. Binns [3] has

shown every non-trivial degree splits in both Pw and Ps, as Sacks showed of RT .

Alfeld [1] has studied the analogous question in the upwards direction, namely

which degrees branch. Sacks proved the density of RT ; Cenzer and Hinman [5]

proved the density of Ps, but whether Pw is dense is not known.

Binns and Simpson have studied which lattices embed in Ps and Pw, and

the main theorem of this chapter is an improvement on two of their results in

Ps. Binns [3] proved that every finite distributive lattice embeds densely in Ps.

Together Binns and Simpson [4] proved that there is a lattice embedding of FD(ω),

the free distributive lattice on countably many generators, below any non-trivial

degs(V) ∈ Ps. Our result makes this embedding dense.

Theorem 2. If degs(U) <s degs(V) in Ps, the lattice of degrees of non-empty

Π0
1 subsets of 2ω under Medvedev reducibility, then there is a lattice-embedding

of FD(ω), the countable free distributive lattice, strictly between degs(U) and

degs(V).
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The method of construction for our extension of the results of Binns and

Simpson is derived from the proof of the density of Ps by Cenzer and Hinman.

They used separating classes of c.e. sets to construct Π0
1 classes. They satisfied

requirements with Sacks Coding and Preservation Strategies, the main techniques

of Sacks’ proof of the density of RT .

Sacks faced and solved the problem of infinite injury in his proof. Once the

proper definitions are made and preliminary lemmas proved, the proof of Cenzer

and Hinman follows closely the proof of the Sacks Density Theorem in a style

as in, for example, the proof given by Soare [25, 142-145]. Like the proof of the

density of RT , the proof of the density of Ps has infinite injury. Although the

construction in this Chapter is based on the construction of Cenzer and Hinman,

with one modification we are able to eliminate the possibility of infinite injury. In

fact, the same modification eliminates infinite injury in the construction of Cenzer

of Hinman. We will give more details in Sections 2.4 and 2.5.

Another aspect of our dense-embedding result is that it suggests, along with

other evidence, that we can often do anything we want in Ps densely, if we can

do it at all. Simpson and Binns [4] showed FD(ω) embeds in Pw, and then they

showed it embeds in Ps. From this point, we make use of known techniques and

a finite-injury priority argument to make an embedding of FD(ω) in Ps that is

dense.

Binns’ paper [3] on splitting in Pw and Ps is another example of this process.

First, splitting is shown in Pw, and in Ps, and then it is shown to occur densely in

Ps, still with only a finite-injury priority argument. Moreover, an attempt to use

Binns’ methods for the dense splitting in Ps does not directly yield a dense splitting

in Pw. Similarly, the proof in this Chapter cannot easily be modified to embed
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FD(ω) densely in Pw. This is because the length of agreement function used in

this chapter has no easy, well-behaved analogue in the case of weak reducibility.

The existence of a dense splitting in Pw, or of a dense embedding of FD(ω) in

Pw, would immediately imply the density of Pw. Thus the result of this chapter

is a little bit more evidence that new techniques may be needed to answer the

question of density for Pw.

2.1 The general plan

Let U <s V . (In the rest of this chapter we will often suppress the subscript

s on <,≤,≡, etc.) With a priority argument, we will construct sequences of c.e.

subsets of ω, {Ai}i∈ω and {Bi}i∈ω, satisfying certain properties and such that for

each i, Ai ∩Bi = ∅. Then, for each i, we set

Si = S(Ai, Bi) = {X ∈ 2ω : (n ∈ Ai ⇒ X(n) = 1)&(n ∈ Bi ⇒ X(n) = 0)}.

Finally, for each i, we set

Vi = (U ∨ Si) ∧ V .

For this to work, we must show that each Si is a Π0
1 class.

Definition 3. If A and B are disjoint c.e. subsets of ω, then

S(A, B) = {X ∈ 2ω : (n ∈ A ⇒ X(n) = 1)&(n ∈ B ⇒ X(n) = 0)}

is a separating class.

Lemma 4. Every separating class is a Π0
1 class.
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Proof. Let S(A, B) be a separating class, and fix effective enumerations of A, B.

Define a computable relation R ⊆ 2ω × ω as follows. If for some m ≤ n, m has

been enumerated into A by stage n, but X(m) = 0, then R(X, n) does not hold.

Similarly, if for some m ≤ n, m has been enumerated into B by stage n, but

X(m) = 1, then R(X, n) does not hold. Otherwise, R(X, n) does hold. Then,

S(A, B) = {X : ∀nR(X, n)}.

We will consider the lattice L in Ps generated by {degs(Vi)}i∈ω, and show that

if certain requirements are satisfied then L is free and entirely between degs(U)

and degs(V). Note that the free distributive lattice on countably many generators

has no maximal or minimal element.

2.2 Requirements

In our priority construction, we will have positive and negative requirements.

The positive requirements desire that no join of a finite subset of {Vi}i∈ω computes

the meet of any finite subset of {Vi}i∈ω, if these two finite subsets are disjoint. The

negative requirements desire that no join of a finite subset of {Vi}i∈ω computes V .

To achieve these goals, the following requirements are sufficient, as we will

show.

For each pair I, J of finite subsets of ω such that I ∩ J = ∅:

PI,J : U ∨
�

i∈I

Si � (U ∨
�

j∈J

Sj) ∧ V .

NI : U ∨
�

i∈I

Si � V .

8



We must verify five facts to show that if we satisfy each instance of the re-

quirements PI,J and NI , then the lattice L generated by {degs(Vi)}i∈ω is free and

between degs(U) and degs(V). From here on, we assume that I and J are finite

subsets of the natural numbers. We claim the following:

1. Every element of L is below degs(V).

2. Every element of L is above degs(U).

These first two immediately follow from the fact that U ≤ Vi ≤ V for all i,

which is immediate from the definition of the Vi.

3. We show no element of L is above degs(V). By discarding meets, we see it

suffices to show
�

i∈I

Vi � V .

If not, for some Turing functional Φ0 we have

Φ0 :
�

i∈I

Vi → V .

By the distributive laws, we see

�

i∈I

Vi ≡ (U ∨
�

i∈I

Si) ∧ V .

Combining these last two, there is a Turing functional Φ1 so that:

Φ1 : (U ∨
�

i∈I

Si) ∧ V → V .

9



Then, for each f ∈ (U ∨
�

i∈I Si), Φ0�f
1 ∈ V . Hence, there is a Turing

functional Φ2 so that Φf
2 ∈ V for all f ∈ (U ∨

�
i∈I Si). So (U ∨

�
i∈I Si) ≥ V ,

contradicting NI .

4. We show L is free. Binns and Simpson [4] pointed out that by a lemma

from Lattice Theory (for instance, see [9, Theorem II.2.3]), we need only

show that if
�

i∈I

Vi ≥
�

j∈J

Vj,

then I ∩ J �= ∅.

Substituting and then expanding both sides by the distributive laws, we

have

(U ∨
�

i∈I

Si) ∧ V ≥ (U ∨
�

j∈J

Sj) ∧ V .

Next, by discarding a meet, we have

(U ∨
�

i∈I

Si) ≥ (U ∨
�

j∈J

Sj) ∧ V .

By PI,J , we must have I ∩ J �= ∅.

5. Finally, we must show no element of L is below degs(U). By discarding joins

we see it suffices to show
�

j∈J

Vj � U .

This follows from the proof of (4) and the fact that for I ∩ J = ∅,

U ≤
�

i∈I

Vi.

10



2.3 Further definitions and a key lemma

Lemma 5. If U is a Π0
1 subset of ωω(2ω), then there is a computable tree

T ⊆ ω<ω(2<ω) such that U = [T ], where [T ] is the set of infinite paths through T .

Proof. Let R ⊆ ωω×ω be a computable relation such that U = {X : ∀nR(X, n)};

let e be such that for all X ∈ ωω and n ∈ ω, ΦX
e (n) = 1 if R(X, n) holds and

ΦX
e (n) = 0 if R(X, n) does not hold. Define T ⊆ ω<ω as follows. If σ(n) = 1 and

Φσ
e,|σ|(n) = 0, then σ /∈ T . Similarly, if σ(n) = 0 and Φσ

e,|σ|(n) = 1, then σ /∈ T .

Otherwise, σ ∈ T .

Sequences of such trees will be our computable approximations of Π0
1 classes,

in this chapter.

We will want to consider sets of strings of fixed length in these trees, and so

we have the following notation.

Definition 6. If T is a tree, let T s = {σ ∈ T : | σ| = s}.

Definition 7. If T is a tree, then σ ∈ T is extendible if there is X ∈ [T ] so that

σ ⊂ X. Otherwise, σ ∈ T is a dead end.

Definition 8. If T is a tree, then T̃ = {σ ∈ T : σ is extendible in T}.

Proposition 9. If Q is a Π0
1 class with no computable member, and T is a com-

putable tree such that [T ] = Q, then T has infinitely many dead ends.

We worry the dead ends will cause a problem in our priority argument. Wor-

rying about this difficulty may prove pedagogically useful. However, in the end

it is not really a difficulty, and so some readers may wish to skim the rest of this

section, which ends on page 17, and consult Sections 3.9.1 and 3.10. Next we give

a definition, then a lemma to help with this difficulty.

11



Definition 10. A sequence of sets {Ci}i∈ω is nested if for each j ≤ k, Cj ⊇ Ck.

Lemma 11. If U is a Π0
1 subset of ωω(2ω), there is a nested sequence of uniformly

computable trees {TU ,s}s∈ω so that each TU ,s is a subset of ω<ω(2<ω), TU =
�

TU ,s

contains only extendible nodes, and [TU ] = U .

Proof. Let �TU be a computable tree such that [�TU ] = U .

Set

TU ,s = {σ ∈ �TU : ∃τ ∈ �T s
U(τ ⊆ σ or σ ⊆ τ)}.

Set

TU =
�

TU ,s.

It is straightforward to check TU contains only extendible nodes and [TU ] = U .

We will call the sequence {TU ,s} the canonical approximation of U with respect

to �TU . Usually we will take the tree �TU for granted and simply speak of the

canonical approximation. Note that while each TU ,s is computable, TU may not

be computable.

If we are given two Π0
1 subsets of ωω, and canonical approximations to each, we

may want to have a canonical approximation for the join or meet of these subsets,

in terms of our given approximations. We may even want to do this with arbitrary

finite combinations of Π0
1 subsets of ωω.

In general, we have the following definitions for the join and meet of trees.

Definition 12. Suppose T0, T1 are computable trees. Then we define,

T0 ∨ T1 = {σ : σ(0)�σ(2)�σ(4)�... ∈ T0 & σ(1)�σ(3)�σ(5)�... ∈ T1}.

T0 ∧ T1 = {0�σ : σ ∈ T0} ∪ {1�σ : σ ∈ T1}.

12



Proposition 13. Suppose T0 and T1 are computable trees.

1. T0 ∨ T1 and T0 ∧ T1 are computable trees.

2. If [T0] = Q0 and [T1] = Q1, then Q0∨Q1 = [T0∨T1] and Q0∧Q1 = [T0∧T1].

Definition 14. If U and V are Π0
1 subsets of ωω with canonical approxima-

tions {TU ,s}s∈ω and {TV,s}s∈ω, respectively, define the canonical approximations

{T(U∨V),s}s∈ω and {T(U∧V),s}s∈ω as follows:

T(U∨V),s = TU ,s ∨ TV,s.

T(U∧V),s = TU ,s ∧ TV,s.

The definition can be extended inductively to give a canonical approximation

of any Π0
1 subset of ωω built up out of finitely many joins and meets of canonically

approximated Π0
1 subsets of ωω.

Lemma 15. U ∨ V = [
�

s∈ω T(U∨V),s] and U ∧ V = [
�

s∈ω T(U∧V),s].

By induction with this lemma and the previous definition, one can show that

the canonical approximation of a Π0
1 subset of ωω constructed by finitely many

joins and meets of Π0
1 subsets of ωω is a nested uniformly computable sequence

such that the set of paths through its intersection is the intended set.

As we build separating classes, which are Π0
1 subsets of 2ω, we will want stage-

wise canonical approximations of them as well.

Definition 16. Suppose A =
�

s∈ω As and B =
�

s∈ω Bs are disjoint, c.e., and

constructed in stages (i.e. As ⊆ As+1 and Bs ⊆ Bs+1 for all s). Let S = S(A, B).

Then we define as follows a computable tree �TS with respect to which the canon-

ical approximation {TS,s}s∈ω for S is to be taken via the method in the proof of

Lemma 11.
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�TS = {σ : (σ(n) = 1 ⇒ n /∈ B|σ|)&(σ(n) = 0 ⇒ n /∈ A|σ|)}.

Definition 17. If Ψ is a Turing functional, we will write Ψf
s (x) for its output

after running s steps with oracle f and input x.

To carry out our Sacks Preservation and Coding Strategies, we will need a way

to measure incremental progress toward a final result we want to avoid.

Definition 18. (Cenzer-Hinman [5, Definition 18]: Length of Agreement) If Ψ is

a Turing functional and U and V are Π0
1 classes, define:

�U ,V(Ψ, s) = µy[∃σ ∈ T s
U ,s(Ψ

σ
s � (y + 1) /∈ TV,s)].

If Ψσ
s � (y + 1) is undefined, we say it is not in TV,s.

Note that �U ,V(Ψ, s) ≥ n iff ∀σ ∈ T s
U ,s(Ψ

σ
s � n ∈ TV,s).

When it is obvious which U and V are under consideration, the superscripts on

� are sometimes dropped. Similarly Ψ will be dropped from the argument when

it is obvious which functional is under consideration.

To make the proof easier to read, we will also be interested in stages at which

the length of agreement becomes greater than it ever has been, and so we have

the following definitions.

Definition 19. If Ψ is a Turing functional and U and V are Π0
1 classes, we define

�
U ,V

(Ψ, s) = max{�U ,V(Ψ, t) : t ≤ s}.

Or, more simply:

�(s) = max{�(t) : t ≤ s}.

14



Note that lim sups �(s) = lims �(s).

Definition 20. If Ψ is a Turing functional and U and V are Π0
1 classes, s + 1 is

an expansionary stage (for U ,V, and Ψ) if �
U ,V

(Ψ, s + 1) > �
U ,V

(Ψ, s).

We will act for the sake of a requirement only at an expansionary stage for the

the relevant length of agreement function. This way, we easily see that if there is

an upper bound on the length of agreement function for a requirement, it will act

only finitely often.

The following lemma confirms that our definition of length of agreement is

well-behaved, and it will be one of the essential elements for the proof that our

construction succeeds.

Lemma 21. If Ψ is a Turing functional and U and V are Π0
1 classes:

1. If Ψ : U → V, then lims �U ,V(Ψ, s) = ∞.

2. If lim sups �U ,V(Ψ, s) = lims �
U ,V

(Ψ, s) = ∞, then Ψ : U → V.

Proof. (1) Suppose that Ψ : U → V . We prove that for every n ∈ ω there is

a stage t such that for all t� ≥ t, �(t�) ≥ n. Fix n. For each σ ∈ T |σ|
U ,0, define

τσ = Ψσ
|σ| � n if it is defined. (If it is not defined, by convention we say that τσ is

not in any tree.) Define

Bad = {σ ∈ TU ,0 : τσ /∈ TV,|σ|}.

Define

Good = {σ ∈ TU ,0 : τσ ∈ TV,|σ|}.

Immediately Bad ∪ Good = TU ,0 and Bad ∩ Good = ∅. Also, note that Bad is

closed downwards and is therefore a tree.
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If Bad were infinite, by Compactness there would be an X ∈ [Bad]. Since

Bad ⊆ TU ,0 and [TU ,0] = U , we would have X ∈ U . By hypothesis Ψ : U → V ,

and so there would be σ ⊂ X so that Ψσ
p � n ∈ TV for some stage p. Letting

q = max{|σ|, p}, we have ΨX�q
q � n ∈ TV,q, whence X � q ∈ Good, a contradiction.

Since Bad is finite, there is stage t so that if t� ≥ t and σ ∈ T t�
U ,t� , then σ ∈ Good.

This means that for all t� ≥ t, �(t�) ≥ n, as desired.

(2) Suppose lim sups �(s) = ∞. Given X ∈ U we want to show Y = Ψ(X) ∈ V .

We do this by showing Y � n ∈ TV for all n. Since lim sups �(s) = ∞ we can find

a stage p so that �(p) ≥ n. Then ΨX�p
p � n is defined and in TV,p. For all stages

p� ≥ p, ΨX�p�
p� � n = ΨX�p

p � n. Set τ = ΨX�p
p � n. Note that Y � n = τ .

If Y � n = τ /∈ TV , then at some stage q we have τ /∈ TV,q. Because {TV,s}s∈ω

is nested, for all q� ≥ q, τ /∈ TV,q� . Let r ≥ max {q, p}. (Actually, it is necessary

that q > p.) For all r� ≥ r, ΨX�r�
r� � n = ΨX�p

p � n = τ /∈ TV,r� . Then �(r�) < n for

all r� ≥ r, contradicting the assumption that lim sups �(s) = ∞.

Hence, Y � n = ΨX � n = ΨX�p
p � n = τ ∈ TV , as desired.

Binns [3, Lemma 6] proved something similar to part (1) of our lemma here.

Part (1) is actually slightly stronger than we will need for the construction. In

place of part (1), the weaker condition ‘If Ψ : U → V , then lim sups �(s) =

∞.’ would be sufficient. This weaker form of part (1) follows immediately from

Definition 18 and Proposition 19 in the proof of Cenzer and Hinman [5]. Part (2)

is actually not true for one of the length of agreement functions used in the

construction of Cenzer and Hinman, and this causes the infinite injury that forces

the creation of a hatted length of agreement function.

It turns out that a simpler length of agreement function, using a single tree
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to represent each relevant class, is sufficient. We will implement this later, in

Sections 3.9.1 and 3.10.

2.4 Placing restraints on Π0
1 classes

Suppose we are building a Π0
1 class S = S(A, B) by building A and B as c.e.

subsets of ω such that A ∩ B = ∅ and certain other requirements are met. As

indicated in Definition 16, there is a canonical approximation {TS,s}s∈ω so that

S = [
�

s∈ω TS,s].

For a strategy at stage t to restrain S up to level m means to attempt to ensure

that for all stages t� ≥ t, if |τ | ≤ m and τ ∈ TS,t, then τ ∈ TS,t� .

The strategy will force lower priority strategies to comply with this request.

The restraint may fail (‘be injured’) if a higher priority strategy makes an enu-

meration that violates this request. In particular, since S = S(A, B), if τ ∈ TS,t

but τ /∈ TS,t� , it must be that for some x < |τ |, either

1. τ(x) = 1, but x ∈ Bt� \Bt or

2. τ(x) = 0, but x ∈ At� \ At.

In other words, restraining S up to level m at stage t amounts to an attempt

to prevent the following situations: x ∈ Bt� \ Bt or x ∈ At� \ At for some t� ≥ t

and some x < m. This amounts to restraining At � m and Bt � m in the sense

standard for c.e. priority arguments.

If we are told that we need not worry about anything beyond ensuring that at

expansionary stages t, A is protected from injury by lower priority requirements

up to some specified level m (i.e. At � m = A � m, if there is no injury by higher

priority requirements), then the work is even simpler. For if At(x) = 1 for some
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x < m, then there is no way we will enumerate x ∈ Bt� at a later stage t� ≥ t,

because we insist A ∩ B = ∅. Therefore, case (1) from above will never be a

concern, and we need not restrain B at all. This simplified method for placing

restraints is the one we will use in our construction.

2.5 Negative requirements and strategies

To satisfy NI , we will have for each Turing functional Φ, the requirement

NI,Φ Φ : U ∨
�

i∈I

Si � V .

A simplified version of the Sacks Preservation Strategy is used for satisfying

the negative requirements. At expansionary stages we will restrain each Ai at

least up to its use in the relevant computations.

1. Wait for an expansionary stage s.

2. For each i ∈ I, restrain Ai up to its maximum use in all computations used

in calculating �(U∨
W

i∈I Si),V(Φ, s). We may as well take all the restraints to be

s + 1. Also, initialize all PI�,J �,Ψ strategies of lower priority than NI,Φ with

markers mσ,j� < s + 1 for some σ ∈ 2<ω and j� ∈ J �.

3. Go back to step 1 and wait for another expansionary stage.

4. NI,Φ is injured if a higher priority positive requirement performs an enumer-

ation that violates an Ai-restraint. No action is taken.

Current Outcome at stage s is �(s).

Final Outcome is lims �(s) = lim sups �(s).
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Verification: that NI,Φ is satisfied and acts only finitely often.

Suppose NI,Φ is not satisfied. Then Φ : U ∨
�

i∈I Si → V . By Lemma 21(1)

lims �(s) = ∞. Hence lims �(s) = lim sups �(s) = ∞, and there were infinitely

many expansionary stages.

By induction, assume that higher priority requirements act only finitely often.

Then, after some stage q, no Ai-restraints are ever injured. We derive a contra-

diction to the theorem’s hypothesis by giving a uniform procedure to calculate a

Y ∈ V given X ∈ U .

Fix n. We describe how to calculate Y � n. Look for the first expansionary

stage t ≥ q so that �(U∨
W

i∈I Si),V(Φ, t) ≥ n. Such a t exists because there were

infinitely many expansionary stages. Define σt = (X ⊕
�

i∈I Ai,t) � t. Note that

σt ∈ T t
(U∨

W
i∈I Si),t

. Therefore, by the definition of the length of agreement function,

Φσt
t � n ∈ TV,t.

Set Y � n = Φσt
t � n. At stage t, step (2) of the strategy directs us to restrain

each Ai up to level t+1, which is greater than the use of each Ai in the computation

showing Φσt
t � n ∈ TV,t. By the choice of q, the restraints up to t + 1 on each

Ai will never be violated. Therefore, Φσt
t � n = ΦX⊕

L
i∈I Ai � n. Furthermore,

ΦX⊕
L

i∈I Ai � n ∈ TV , because X⊕
�

i∈I Ai ∈ U ∨
�

i∈I Si and Φ : U ∨
�

i∈I Si → V .

Hence Y � n ∈ TV for each n, and so Y ∈ V , as desired.

This contradiction shows that the requirement is in fact satisfied. By the

contrapositive of Lemma 21(2), there are only finitely many expansionary stages,

and so NI,Φ acts only finitely often to impose restraints on each Ai.
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2.5.1 Contrast with negative requirements in the proof of the density of Ps.

Our negative requirements, met by Sacks Preservation Strategies, were:

NI,Φ Φ : U ∨
�

i∈I

Si � V .

Cenzer and Hinman had negative requirements very similar to these [5, p. 590].

In our notation, they began with U < V and were building S = S(A, B), where

A and B are disjoint c.e subsets of ω built by the construction. The requirements

ensured that U < (U ∨ S) ∧ V < V . For each Turing functional Φ, their negative

requirement was (in our notation):

NΦ Φ : U ∨ S � V .

These are the same as our negative requirements, except that we have the join

of finitely many Si in place of a single S. Cenzer and Hinman sought to simplify,

by replacing each NΦ with a requirement:

NA
Φ ¬∀X ∈ U(ΦX⊕A ∈ V).

Because A ∈ S(A, B) = S, the satisfaction of NA
Φ guarantees the satisfaction

of NΦ. In a way, NA
Φ is a simpler requirement than NΦ: there is less to keep track

of. However, in general, {A} is not a Π0
1 class. Therefore, the length of agreement

function � from Definition 18 cannot be directly adapted to work for NA
Φ .

This approach of Cenzer and Hinman would correspond for us to requirements

of the form

N{Ai}i∈I

I,Φ ¬∀X ∈ U(ΦX⊕
L

i∈I Ai ∈ V).
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Again, because Ai ∈ S(Ai, Bi) = Si for each i, the satisfaction of N{Ai}i∈I

I,Φ guaran-

tees the satisfaction of NI,Φ. Of course, the length of agreement function � cannot

be directly adapted for N{Ai}i∈I

I,Φ either.

Because the original length of agreement function was not directly adaptable to

the demands of the new requirement, Cenzer and Hinman defined another length

of agreement function [5, pp. 594-595]. This length of agreement function works

directly with the c.e. set A:

��(U×A),V(Φ, s) = µy[(∃σ ∈ T s
U ,s) �Φσ,As

s � (y + 1) /∈ TV,s],

where �Φ is defined via the hat trick adapted for Π0
1-classes. The hat trick is

needed to handle the infinite injury that accompanies this new length of agreement

function. For suppose � is defined as ��, except with Φ in place of �Φ. It can happen

that lim sups �(U×A),V(Φ, s) = ∞, although NA
Φ is satisfied. This is precisely where

Lemma 21(2) fails, as mentioned after the proof of that lemma.

See Soare [25, Chapter 8] for an explanation of the original hat trick, as used to

combat infinite injury in a proof of the Sacks Density Theorem. It seems that the

hat trick is necessary for a direct proof of the Sacks Density Theorem by priority

argument.

This strategy of Cenzer and Hinman using the hat trick would also work in

our case. With only straightforward extensions of definitions, requirements of the

form N{Ai}i∈I

I,Φ can be satisfied for us without need of any further work.

However, it is interesting to note that infinite injury and the hat trick machin-

ery can be avoided as we do in this chapter, by working with the length of agree-

ment functions for the original requirements, namely NI,Φ in our case, and NΦ for

Cenzer and Hinman. The construction and verification used in our negative strat-
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egy goes through without any extra work when applied to the NΦ-requirements

of Cenzer and Hinman.

2.6 Positive requirements and strategies

To satisfy PI,J we have for each Turing functional Ψ the requirement,

PI,J,Ψ Ψ : U ∨
�

i∈I

Si � (U ∨
�

j∈J

Sj) ∧ V

for I, J finite, I ∩ J = ∅.

If PI,J,Ψ fails, we ensure there are Turing functionals

Γj : Sj → V

for each j ∈ J and

∆i : 0→ Si

for each i ∈ I.

Then we can put Ψ, Γj, and ∆i together to show U ≥ V , contradicting the

hypothesis of the theorem. Here’s how: given X ∈ U , we can effectively produce

Xi ∈ Si for each i via the finitely many ∆i. Then, Ψ(X ⊕
�

i∈I Xi) produces

either 1�Z, where Z ∈ V , or 0�Z, where

Z ∈ U ∨
�

j∈J

Sj.

If we see 1�Z, then Z ∈ V , and we are done. If we see 0�Z, then given the finite

piece of information |J |, we can extract from Z a W ∈ Sj for some j ∈ J , and we
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will know which j it is. Then Γj(W ) gives Y ∈ V , as desired.

To create the Turing functionals Γj we use a Sacks Coding Strategy. To create

the Turing functionals ∆i, in a way similar to a Sacks Preservation Strategy, we

make each Ai computable via restraints set at expansionary stages. We proceed

as follows:

1. Set n = 0.

2. Wait for an expansionary stage s at which

�(U∨
W

i∈I Si),((U∨
V

j∈J Sj)∧V)(Ψ, s) ≥ n.

3. For each i ∈ I, restrain Ai up to level s + 1. Note that s + 1 will be greater

than the length of agreement at stage s. Also, initialize all PI�,J �,Ψ-strategies

of lower priority with markers mσ,j� < s + 1, where σ ∈ 2<ω and j� ∈ J �.

4. For each j ∈ J and each σ ∈ 2<ω with |σ| = n, choose large markers

mσ,j. Here “large” means greater than any restraints on Aj and greater

than any other markers for Sj (whether or not at this stage they have been

enumerated into Aj or Bj) established for the sake of this or any other P -

strategy. Increment n and go to step 2 for this new n. Meanwhile, for the

old n, go to the next step.

5. Wait for another expansionary stage t > s at which either

(i) σ�0 /∈ TV,t or

(ii) σ�1 /∈ TV,t.

6. If (i) happens for σ at stage t, place mσ,j into Aj for each j ∈ J , and do not

act again for this mσ,j.
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7. If (ii) happens for σ at stage t, place mσ,j into Bj for each j ∈ J , and do

not act again for this mσ,j.

8. PI,J,Ψ is injured if a higher priority P -strategy makes an enumeration that

violates an Ai-restraint. No action is taken.

As directed in the strategies, a PI,J,Ψ strategy is initialized if a higher priority

N - or P -strategy makes an Aj-restraint greater than a current marker mσ,j for

PI,J,Ψ. If PI,J,Ψ is initialized, all current markers mσ,j are discarded and we return

to step 1, setting n = 0. The PI,J,Ψ outcomes are the same as the outcomes for

negative strategies:

Current Outcome at stage s is �(s).

Final Outcome is lims �(s) = lim sups �(s).

Verification: that PI,J,Ψ is satisfied and acts only finitely often.

First note that the actions PI,J takes for the sake of {Si}i∈I and {Sj}j∈J never

conflict because I ∩ J = ∅.

By induction, assume all higher priority requirements have finite outcomes, so

that there is a stage q after which PI,J,Ψ is never initialized and is never injured.

If PI,J,Ψ were not satisfied, we would have by Lemma 21(1) that lims �(s) =

lim sups �(s) = ∞. In this case, we need to define the functionals Γj and ∆i which

will yield a contradiction. We begin by giving Γj : Sj → V , for each j ∈ J .

Given X ∈ Sj and inductively assuming we have σn ∈ TV with |σn| = n, we say

how to determine whether σn
�0 ∈ TV or σn

�1 ∈ TV . First determine the value, if

any, of mσn,j after the last initialization before stage q. If mσn,j was not defined by

stage q, simply find its value once it is defined. Note that because lims �(s) = ∞,

mσn,j must eventually be defined. Further, mσn,j can never change after stage q.
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Case 1 If X(mσn,j) = 1, then mσn,j /∈ Bj, because X ∈ S(Aj, Bj). Thus, if

(ii) happened from step 4 in the strategy, it happened after (i). Since TV contains

only extendible nodes and σn ∈ TV , we cannot have both (i) and (ii) happening.

Thus, (ii) never happened. Hence, σn
�1 ∈ TV . Set σn+1 = σn

�1.

Case 2 If X(mσn,j) = 0, then mσn,j /∈ Aj, because X ∈ S(Aj, Bj). Thus, if (i)

happened from step 4 in the strategy, it happened after (ii). Since TV contains

only extendible nodes and σn ∈ TV , we cannot have both (i) and (ii) happening.

Thus (i) never happened. Hence σn
�0 ∈ TV . Set σn+1 = σn

�0.

Defining Y =
�

n σn, we see that because each of its initial segments is in TV ,

we have Y ∈ V , as desired.

We now give ∆i : 0→ Si for each i ∈ I. We do this by calculating

Ai ∈ Si = S(Ai, Bi). To calculate Ai � x, wait for an expansionary stage t > q so

that �(t) = �(t) ≥ x. At stage t in step (3) of the strategy we will restrain Ai up

to level t + 1, which must be greater than x. Recall that after stage q, PI,J,Ψ is

never injured. So Ai � x is never injured after stage t. Hence Ai,t � x = Ai � x.

Now, Γj and ∆i, for each j ∈ J and i ∈ I, together with

Ψ : U ∨
�

i∈I

Si → (U ∨
�

j∈J

Sj) ∧ V ,

will give a uniform reduction from U to V as shown above, which is a contradiction.

The contradiction we have arrived at shows that PI,J,Ψ is satisfied. Therefore,

by the contrapositive of Lemma 21(2), PI,J,Ψ has finite outcome. Because it acts

only at expansionary stages, PI,J,Ψ acts only finitely often.
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Because there will be no infinite outcomes, any priority ordering for the require-

ments will yield a construction in which the strategies satisfy their requirements

as described above, thus proving Theorem 2.

2.7 A note on preservation strategies

To accomplish our preservation strategy as part of satisfying a positive require-

ment PI,J,Ψ, we simply ensure that for each i ∈ I, Ai is computable, if it turns out

the requirement is violated. This helps lead to a contradiction of the theorem’s

hypothesis.

On the other hand, in the verification that our preservation strategy satis-

fies a negative requirement NI,Φ, we do not say that for each i ∈ I, Ai must be

computable whenever the requirement is violated. However, it is true, so long

as we take the restraints at each expansionary stage s to be s + 1, as mentioned

in step (2) of the strategy for negative requirements. The verification that each

Ai is computable is exactly the same as in the verification for the positive re-

quirements. Furthermore, the computability of each Ai would be enough to reach

the contradiction of the theorem’s hypothesis in the verification of the negative

requirement.

We leave the verification of the strategy for the negative requirements as is,

because it is then as close as possible to the verification of the negative strategy

of Cenzer and Hinman, with the exception of the modification that eliminates

infinite injury. This way, it is easier to isolate the exact cause of infinite injury

for Cenzer and Hinman.

26



2.8 More on the length of agreement function.

This section gives a more precise account of exactly how the length of agree-

ment function behaves in this chapter. It also applies to the construction of

Cenzer and Hinman once the modification we describe in Section 2.5.1 is made.

This section is not necessary for the proof of the main result of this chapter.

We begin by noticing that if lim sups �(s) = ∞, then by two applications of

Lemma 21, lims �(s) = ∞. Then lim infs �(s) = ∞. Hence we have the following

proposition.

Proposition 22. For a length of agreement function � as defined in

Definition 18, the following are equivalent.

1. lim sups �(s) = ∞.

2. lim infs �(s) = ∞.

3. lims �(s) = ∞.

In particular, it is never the case that lim infs �(s) is finite but lim sups �(s) = ∞.

Proposition 22 leaves open the possibility that lim sups �(s) and lim infs �(s) are

both finite but lim infs �(s) < lim sups �(s). However, Π0
1 classes are nice enough

that this never happens.

Proposition 23. For the length of agreement function � defined in

Definition 18, lim infs �(s) = lim sups �(s) = lims �(s). These equal limits may be

finite or infinite.
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For the proof of this proposition, we need a further lemma. As motivation,

suppose that at some first stage t, �(t) ≥ n. We want to analyze what could later

cause the length of agreement to drop below n after t, and also what could bring

the length of agreement back up to at least n, once it drops below n.

Lemma 24. Let M,N be Π0
1 classes. Let Ψ be a Turing functional. Fix n ∈ ω.

There is a stage r such that either

1. for all r� ≥ r, �M,N (Ψ, r�) ≥ n or

2. for all r� ≥ r, �M,N (Ψ, r�) < n.

Note that Lemma 24 immediately implies Proposition 23.

Proof. In this proof, if σ ∈ 2<ω and x ≤| σ| then σx = σ � x.

We begin with an easy fact: if {Ci}i∈ω is a nested sequence and for each i ∈ ω,

Ci is finite, then there is j ∈ ω so that for all j� ≥ j, Cj� = Cj.

Suppose there is a stage t so that �M,N (Ψ, t) ≥ n. (Otherwise, for any r, (2)

holds). Let Outputn,t = {τ ∈ TN ,t : τ = Ψσ
t � n for some σ ∈ T t

M,t}. For t� ≥ t,

define Outputn,t� = {τ ∈ Outputn,t : τ ∈ TN ,t�}. By the easy fact, there is a stage

q so that for all q� ≥ q, Outputn,q = Outputn,q� . Also by the easy fact, there is

r ≥ q so that T t
M,r = T t

M,r� for all r� ≥ r.

We claim this is the desired r. We verify the claim in two cases.

Suppose �M,N (Ψ, r) ≥ n.

Let r� ≥ r and σ ∈ T r�
M,r� . Because �M,N (Ψ, t) ≥ n, Ψσt

t � n ∈ TN ,t. Since Ψσt
t � n

converges and r� ≥ r ≥ t, we have Ψσ
r� � n = Ψσr

r � n = Ψσt
t � n ∈ TN ,t. Then

Ψσr
r � n ∈ Outputn,t. Since �M,N (Ψ, r) ≥ n, we must have Ψσr

r � n ∈ TN ,r. So
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Ψσr
r � n ∈ Outputn,r. Since r ≥ q, by the choice of q above we have Outputn,r� =

Outputn,r, and so Ψσr
r � n ∈ TN ,r� . But Ψσ

r� � n = Ψσr
r � n, so Ψσ

r� � n ∈ TN ,r� .

Hence, �M,N (Ψ, r�) ≥ n.

Suppose �M,N (Ψ, r) < n.

Then there is σ ∈ T r
M,r so that Ψσ

r � n /∈ TN ,r. But �M,N (Ψ, t) ≥ n, so we must

have Ψσt
t � n ∈ TN ,t. Then Ψσ

r � n must converge and Ψσ
r � n = Ψσt

t � n. So, we

must have Ψσt
t � n /∈ TN ,r. Because σ ∈ T r

M,r, we must have σt ∈ T t
M,r. By the

choice of r, we must have σt ∈ T t
M,r� for all r� ≥ r. Then, by the definition of

the canonical approximation (see the proof of Lemma 11), for all r� ≥ r there is

σ� ∈ T r�
M,r� so that σ� ⊇ σt. We must have Ψσ�

r� � n = Ψσt
t � n /∈ TN ,r. Because

{TN ,s}s∈ω is nested, Ψσ�
r� � n /∈ TN ,r� .

Hence, �M,N (Ψ, r�) < n, for all r� ≥ r.
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CHAPTER 3

THE DECIDABILITY OF THE ∀∃-THEORY OF (Ps,≤s).

3.1 Introduction to the problem

It is natural to ask about the Turing degree of the elementary theory of a

mathematical structure; it is not known whether the elementary theory of (Ps,≤s)

is decidable. Binns [3] has shown that the ∃-theory is decidable; the main result of

this section is that the ∀∃-theory is also decidable. This has been independently

shown by Takayuki Kihara.1

In this chapter, we assume some very basic model theory. Marker’s text is

a good reference [14]. We also assume basic knowledge of ordered lattices; in

particular, one must always remember that in an ordered lattice, if x ≤ y, then

x ∨ y = y and x ∧ y = x.

3.1.1 Conventions

Let L be the language {0, 1,≤}. Let �L be the language {0, 1,≤,∧,∨}.

As we proceed, we will use some assumptions about L- and �L-structures.

If M is a structure with underlying domain M , then x ∈M means x ∈ M .

Similarly, M∪{n} is the structure with domain M∪{n}, assuming we are already

1
Kihara has a different and shorter proof in his thesis for the master’s degree he is working on

for Takeshi Yamazaki at the Mathematical Institute, Tohoku University. He and I are currently

collaborating on a paper that will feature this result.
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given how all functions and relations act with respect to n. The meaning of similar

conventions should be clear from the context.

We will assume that all L-structures are in fact partial orders with least and

greatest elements, given by 0 and 1, respectively. In �L-structures, we assume

these things as well, and in addition that the lattice operations are defined by the

partial order and that the lattice operations are distributive. In other words, we

assume that all L- and �L-structures satisfy the following axioms:

1. ∀x∀y((x ≤ y & y ≤ x) ⇐⇒ x = y).

2. ∀x∀y∀z((x ≤ y & y ≤ z) ⇒ x ≤ z).

3. ∀x(x ≥ 0).

4. ∀x(x ≤ 1).

In addition we assume the following axioms of all �L-structures:

1. ∀x∀y∀w[x ∨ y = w ⇐⇒ ∀z(z ≥ x & z ≥ y ⇒ z ≥ w)].

2. ∀x∀y∀w[x ∧ y = w ⇐⇒ ∀z(z ≤ x & z ≤ y) ⇒ z ≤ w)].

3. ∀x∀y∀w((x ∨ y) ∧ w = (x ∧ w) ∨ (y ∧ w)).

4. ∀x∀y∀w((x ∧ y) ∨ w = (x ∨ w) ∧ (y ∨ w)).

If an L(�L)-structure does not satisfy these axioms, we know for sure that it

does not L(�L)-embed into Ps, because these are universal sentences true in Ps.

Hence, we may assume these axioms while studying which finite structures embed

into Ps.
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3.1.2 Partial orders, lattices, and Ps

If U is a Π0
1 class, then degs(U) is the equivalence class of U under the equiv-

alence relation induced by ≤s.

Theorem 25. (Binns) Given Π0
1 classes U <s V and a finite distributive lattice

L, there is a lattice-embedding of L into Ps so that the maximum element of L is

mapped to degs(V) and each element of L is mapped to an element of Ps above

degs(U).

Proof. See [3].

Corollary 26. (Binns) In �L, the one-quantifier theory of Ps is decidable.

Proof. See [3].

Corollary 27. Every finite �L-structure �M, in which 0 is non-branching,

�L-embeds into Ps.

Proof. First, let us recall that in Ps, 0 is non-branching. This is because a Π0
1

class Q is in 0 just in case it has no computable member, and the meet of two Π0
1

classes contains a computable member just in case one of the two classes does.

Let �M be a finite �L-structure in which 0 is non-branching. Consider the

structure �M - {0}. Because, in �M, 0 is non-branching, �M - {0} is a finite

distributive lattice with a greatest element named 1. By Theorem 25, �M - {0}

lattice-embeds into Ps so that 1 is mapped to the greatest degree in Ps, and every

other element is mapped to a degree above the lowest degree in Ps. If we extend

this embedding by mapping 0 to the lowest degree in Ps, we have the desired

�L-embedding.
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Our goal is to study the two-quantifier theory of Ps. Dropping the lattice

operations, we are able to show that the two-quantifier theory in L is decidable.

Interestingly, the proof of this result about the L-theory makes use of �L structures.

So we take a moment to lay out some facts about L and �L structures.

Lemma 28. Suppose M is an L-structure and �M is an �L-structure that extends

M, as an L-structure. Further, suppose P is an �L-structure. If �f : �M �→ P is

an �L-embedding, then f : M �→ P is an L-embedding, where f = �f � M.

Proof. Note that L ⊂ �L.

Definition 29. Suppose M is an L-structure and �M is an �L-structure. Then,

�M minimally extends M if �M extends M over the language L and is the closure

of M in �M under the operations ∧ and ∨.

Example 30. Suppose �M is the �L-structure consisting only of 0 and 1. Trivially,

�M minimally extends the L-structure M consisting of 0 <M 1.
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Example 31. Suppose M is the L-structure with four linearly ordered elements: 0 <M

x <M y <M 1. Then M’s unique minimal extension, up to isomorphism, is �M, the �L-

structure with the same universe and with ∨ and ∧ structure entirely determined by the

linear order, in accord with our convention: x ∨ y = y and x ∧ y = x.
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Example 32. Suppose M is the L-structure with universe M = {0, x, y,1} such that x

and y are incomparable. Then M has exactly four minimal extensions, up to isomorphism.

We may have x ∨ y = 1 or w, where w is a new element. And, independently, we may have

x ∧ y = 0 or z, where z is a new element.
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Figure 3.1. Sketch of Example 30.

Example 31. Suppose M is the L-structure with four linearly ordered elements:

0 <M x <M y <M 1. Then the unique minimal extension of M, up to isomor-

phism, is �M, the �L-structure with the same universe and with ∨ and ∧ structure

entirely determined by the linear order, in accord with our convention: x ∨ y = y

and x ∧ y = x.
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Example 31. Suppose M is the L-structure with four linearly ordered elements: 0 <M

x <M y <M 1. Then M’s unique minimal extension, up to isomorphism, is �M, the �L-

structure with the same universe and with ∨ and ∧ structure entirely determined by the

linear order, in accord with our convention: x ∨ y = y and x ∧ y = x.
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Example 32. Suppose M is the L-structure with universe M = {0, x, y,1} such that x

and y are incomparable. Then M has exactly four minimal extensions, up to isomorphism.

We may have x ∨ y = 1 or w, where w is a new element. And, independently, we may have

x ∧ y = 0 or z, where z is a new element.
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Figure 3.2. Sketch of Example 31.

Example 32. Suppose M is the L-structure with universe M = {0, x, y,1} such

that x and y are incomparable. Then M has exactly four minimal extensions, up

to isomorphism. We may have x ∨ y = 1 or w, where w is a new element. And,

independently, we may have x ∧ y = 0 or z, where z is a new element.
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Example 31. Suppose M is the L-structure with four linearly ordered elements: 0 <M

x <M y <M 1. Then M’s unique minimal extension, up to isomorphism, is �M, the �L-

structure with the same universe and with ∨ and ∧ structure entirely determined by the

linear order, in accord with our convention: x ∨ y = y and x ∧ y = x.
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Example 32. Suppose M is the L-structure with universe M = {0, x, y,1} such that x

and y are incomparable. Then M has exactly four minimal extensions, up to isomorphism.

We may have x ∨ y = 1 or w, where w is a new element. And, independently, we may have

x ∧ y = 0 or z, where z is a new element.
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Figure 3.3. Sketch of Example 32.

Example 33. Let M be the L-structure with universe {0,1, x, x�, y} such that

0 <M x <M x� <M 1, x⊥My, and x�⊥My, where ⊥ signifies incomparability.

(The case where x�⊥My is changed to x� >M y leads to a situation very similar

to Example 32.)
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We will show three minimal extensions ofM, which differ according to whether

x∨ y ⊥ x�, x� < x∨ y < 1, or x∨ y = 1. Note that it is impossible for x� ≥ x∨ y,

because x�⊥My.

In the following diagrams of these three minimal extensions, we leave out

much additional structure, so that we can focus on what happens with x∨ y. For

example, we leave out x� ∨ y and x� ∧ (x ∨ y); there are many possibilities for the

placement of these two elements.

Example 33. Let M be the L-structure with universe {0,1, x, x�, y} such that 0 <M x <M

x� <M 1, x⊥My, and x�⊥My, where ⊥ signifies incomparability. (The case where x�⊥My is

changed to x� >M y leads to a situation very similar to Example 32.)

We will show three minimal extensions of M, which differ according to whether x∨ y⊥x�,

x� < x ∨ y < 1, or x ∨ y = 1. Note that it is impossible for x� ≥ x ∨ y, because x�⊥My.

In the following diagrams of these three minimal extensions, we leave out much additional

structure, so that we can focus on what happens with x∨y. For example, we leave out x�∨y

and x� ∧ (x ∨ y); there are many possibilities for the placement of these two elements.
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Proposition 34.

(1) Every L-structure has a minimal extension; moreover, if we desire, we may ensure 0

is non-branching.

(2) If M is a finite L-structures that contains elements x⊥My, then M has more than

one minimal extension.

(3) Every minimal extension of a finite L-structure is finite.

(4) If M is a finite L-structure, it has finitely-many minimal extensions, up to isomor-

phism.
32

Figure 3.4. Sketch of Example 33.
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Proposition 34.

1. Every L-structure has a minimal extension; moreover, if we desire, we may

ensure 0 is non-branching.

2. If M is a finite L-structures that contains elements x⊥My, then M has

more than one minimal extension.

3. Every minimal extension of a finite L-structure is finite.

4. If M is a finite L-structure, it has finitely-many minimal extensions, up to

isomorphism.

5. There is a function f so that if M is an L-structure with at most n elements,

then every minimal extension of M has at most f(n) elements.

6. f is computable.

Corollary 35. Given any finite L-structure M, we can effectively compute each

of its finitely-many minimal �L-extensions.

The following Corollary is the form in which we will use Binns’ main result.

Corollary 36. Every finite L-structure L-embeds into Ps.

Proof. By Proposition 34(1), every finite L-structure M extends to a finite

�L-structure �M in which 0 is non-branching. By Corollary 27, there is an

�L-embedding of �M into Ps. This is also an L-embedding, and its reduct to M

(see Lemma 28) gives the desired embedding.
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Proof of Proposition 34.

(1): By straightforward algebraic technique.

(2): Since M is finite and 1 ∈M, there is a minimal z ∈M so that x ≤ z and

y ≤ z. We claim there is a minimal extension of M in which x ∨ y = z, and a

minimal extension in which x ∨ y < z. This claim is verified by straightforward

algebraic technique.

(3), (5), and (6): We explicitly give the computable function f(n).

Let M be an L-structure with n-elements; M = {x0, . . . , xn−1}. Let �M be

an �L-structure minimally extending M. Every element of �M can be written

as a finite combination of meets and joins of elements of M, by the definition

of a minimal extension. Now, since by our conventions, every �L-structure is a

distributive lattice, every such finite combination of meets and joins of elements

of M may be put in disjunctive normal form. In other words, for every x ∈ �M,

x =
�

i∈I yi, where I is finite and each yi =
�

j∈Ji
xj, where each Ji ⊆ n.

Now, we may assume that yi �= yj for all i �= j. Furthermore, we may identify

each yi with the set Ji ⊆ n. So each x ∈ �M may be associated with a unique set

of subsets of n. Thus the number of elements of �M is bounded by the cardinality

of the power set of the powerset of n; so we may set f(n) = 22n
.

(4): Let M be an L-structure with at most n elements. Up to isomorphism, there

are only finitely many �L-structures with at most f(n) many elements; for there

is a correspondence between such structures and the collection of valid tables for

the functions ∨ and ∧.

Definition 37. Suppose f : M �→ P is an L-embedding, and P is also an

�L-structure. We define the �L-closure of M under f to be an �L-structure �M that
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L-extends M and is �L-isomorphic to the closure of f(M) in P under ∨ and ∧.

Remark 38. It is clear that the �L-closure of M under f is well-defined up to

isomorphism, and that if �M is the �L-closure of M under f , then �M minimally

extends M.

Proposition 39. Suppose f : M �→ P is an L-embedding, and that P is also

an �L-structure. Let �M be the �L-closure of M under f . Then, there is a unique

�L-embedding �f : �M �→ P that is an extension of f .

Proof. Straightforward.

Now, we may assume that yi �= yj for all i �= j. And we may identify each yi with the set

Ji ⊆ n. So each x ∈ �M may be associated with a unique set of subsets of n. So the number

of elements of �M is bounded by the cardinality of the power set of the powerset of n. So we

may set f(n) = 22n
.

(4): Let M be an L-structure with at most n elements. Up to isomorphism, there are only

finitely many �L-structures with at most f(n) many elements; for there is a correspondence

between such structures and the collection of valid tables for the functions ∨ and ∧.

�

Definition 37. Suppose f : M �→ P is an L-embedding, and P is also an �L-structure.

We define the �L-closure of M under f to be an �L-structure �M that L-extends M and is

�L-isomorphic to the closure of f(M) in P under ∨ and ∧.

Remark 38. It is clear that the �L-closure ofM under f is well-defined up to isomorphism,

and that if �M is the �L-closure of M under f , then �M minimally extends M.

Proposition 39. Suppose f :M �→ P is an L-embedding, and that P is also an �L-structure.

Let �M be the �L-closure of M under f . Then there is a unique �L-embedding �f : �M �→ P

that is an extension of f .

Proof. Straightforward. �

We can think of

M Ps
......................................................................................................... .........................

........... f

as extended to

M �M Ps.......................................................................................................... .........................
........... i ....................................................................................................... .........................

...........
�f

Note that we think of i as the identity map, as indeed it is literally, according to Defini-

tion 37.
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Note that we think of i as the identity map, as indeed it is literally, according

to Definition 37.

3.1.3 The multi-extension of embeddings problem

In the study of degree structures, the two-quantifier theory is sometimes shown

to be decidable by means of solving the multi-extension of embeddings problem for

that structure. Furthermore, it is even easier to first study the simpler extension

of embeddings problem, and then attempt to generalize to the multi-extension

of embeddings problem, if possible. Our little explanation of these borrows from

Montalbán’s nice presentation [15].
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Definition 40. Given a structure P in a computable language L, the extension

of embeddings problem is the set of pairs (M,N ) such that M,N are finite L-

structures and every embedding of M into P extends to an embedding of N

into P .

3.3. The multi-extension of embeddings problem. In the study of degree structures,

the two-quantifier theory is sometimes shown to be decidable by means of solving the multi-

extension of embeddings problem for that structure. Furthermore, it is even easier to first

study the simpler extension of embeddings problem, and then attempt to generalize to the

multi-extension of embeddings problem, if possible. Our little explanation of these borrows

from Montalbán’s nice presentation [14].

Definition 40. Given a structure P in a computable language L, the extension of embed-

dings problem is the set of pairs (M,N ) such that M,N are finite L-structures and every

embedding of M into P extends to an embedding of N into P .
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Definition 41. Given a structure P in a computable language L, the multi-extension of

embeddings problem is the set of finite tuples (M,N0, . . . ,Nt) such that M,N0, . . . ,Nt are

finite L-structures, and for every embedding ofM into P there is an i so that the embedding

extends to an embedding of Ni into P .
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There is useful way to state what it means for an extension of embeddings or multi-

extension of embeddings problem to be computable (or “decidable”).

Proposition 42. Suppose L is a computable language, and P is an L-structure. Then the

following two statements are equivalent.

(1) In L the extension of embeddings problem for P is decidable.
35

Figure 3.5. Sketch for Definition 40.

Definition 41. Given a structure P in a computable language L, the multi-

extension of embeddings problem is the set of finite tuples (M,N0, . . . ,Nt) such

that M,N0, . . . ,Nt are finite L-structures, and for every embedding of M into P ,

there is an i so that the embedding extends to an embedding of Ni into P .

3.3. The multi-extension of embeddings problem. In the study of degree structures,

the two-quantifier theory is sometimes shown to be decidable by means of solving the multi-

extension of embeddings problem for that structure. Furthermore, it is even easier to first

study the simpler extension of embeddings problem, and then attempt to generalize to the

multi-extension of embeddings problem, if possible. Our little explanation of these borrows

from Montalbán’s nice presentation [14].

Definition 40. Given a structure P in a computable language L, the extension of embed-

dings problem is the set of pairs (M,N ) such that M,N are finite L-structures and every

embedding of M into P extends to an embedding of N into P .

M

N

P
......................................................................................................
...
.........
...

........................

......................................................................................................... .........................
...........

............
............
............
............
............
............
............
............
............
............
............
...............
............

..................
.....

?

Definition 41. Given a structure P in a computable language L, the multi-extension of

embeddings problem is the set of finite tuples (M,N0, . . . ,Nt) such that M,N0, . . . ,Nt are

finite L-structures, and for every embedding ofM into P there is an i so that the embedding

extends to an embedding of Ni into P .

M

N0 N1
. . . Ni

. . . Nt

P
.................................................................................................................................................................................................................

..
............

..................

............................................................................................................................................................................................................................................................... .........................
...........

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

.......................
............

..............
....

?

..........................................................................................................................................................
...
............

....................... ......................................................................................................
...
.........
...

........................ ............................................................................................................................................................. .........
...

.........

..............

There is useful way to state what it means for an extension of embeddings or multi-

extension of embeddings problem to be computable (or “decidable”).

Proposition 42. Suppose L is a computable language, and P is an L-structure. Then the

following two statements are equivalent.

(1) In L the extension of embeddings problem for P is decidable.
35

Figure 3.6. Sketch for Definition 41.

There is useful way to state what it means for an extension of embeddings or

multi-extension of embeddings problem to be computable (or “decidable”).

Proposition 42. Suppose L is a computable language, and P is an L-structure.

Then the following two statements are equivalent.

1. In L the extension of embeddings problem for P is decidable.

39



2. There is an algorithm, which, given a pair of finite L-structures M ⊆ N ,

decides whether for every L-embedding f : M �→ P, there is an extension

of f to an L-embedding f � : N �→ P.

Proof. Straightforward.

Proposition 43. Suppose L is a computable language, and P is an L-structure.

Then the following two statements are equivalent.

1. In L the multi-extension of embeddings problem for P is decidable.

2. There is an algorithm, which, given a finite L-structures M, and finitely-

many finite L-structures N0, . . . ,Nt such that M ⊆ Ni for each 0 ≤ i ≤ t,

decides whether for every L-embedding f : M �→ P, there is 0 ≤ i ≤ t such

that there is an extension of f to an L-embedding f � : Ni �→ P.

Proof. Straightforward.

Proposition 44. Suppose P is a structure in a finite relational language L. If the

multi-extension of embeddings problem for P is decidable, then so is the elementary

two-quantifier theory of P .

This seems to be a bit of folklore. Lerman [13, Theorem VII.4.4] proves some-

thing a bit different, but anyone who understands his proof ought to know this

result. We include the proof for completeness.

Proof. Note that in this proof ∧ is the logical symbol for “and” and ∨ is the logical

symbol for “or”.
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Definition 45. Suppose θ(x̄) is a quantifier-free formula in L. θ(x̄) is a complete

atomic diagram for x̄ if θ(x̄) ≡
�

i≤n θi(x̄), where the following two conditions

hold:

1. Each formula θi(x̄) is of the form Rj(x̄0) or ¬Rj(x̄0) for some relation Rj in

L and x̄0 ⊆ x̄ of appropriate size, and

2. For each relation Rj in L and each x̄0 ⊆ x̄ of appropriate size, exactly one

of Rj(x̄0),¬Rj(x̄0) is equivalent to θi(x̄) for some i ≤ n.

Let ψ be a sentence in L with at most two alternations of quantifiers. Say

ψ ≡ ∀x̄∃ȳϕ(x̄, ȳ), where ϕ(x̄, ȳ) is a quantifier-free formula in L. Replace ϕ(x̄, ȳ)

with its disjunctive normal form. Then ψ ≡ ∀x̄∃ȳ[
�

i≤n ϕi(x̄, ȳ)], where each

ϕi(x̄, ȳ) is a conjunction of atomic and negative atomic sentences. For each ϕi(x̄, ȳ)

let {ϕij(x̄, ȳ)}j≤mi be a listing of all complete atomic diagrams in (x̄, ȳ) that are

consistent with the conjuncts that make up ϕi(x̄, ȳ). If there are no such ϕij(x̄, ȳ),

let ϕi0(x̄, ȳ) be ⊥, a logically false sentence. Note that mi really is a finite number,

because L is a finite language and (x̄, ȳ) is finite.

Now, note that for each i, ϕi(x̄, ȳ) ≡
�

j≤mi
ϕij(x̄, ȳ). Hence,

ψ ≡ ∀x̄∃ȳ[
�

i≤n

�
j≤mi

ϕij(x̄, ȳ)]. By reindexing and renaming, we may turn the

nested disjunctions into a single disjunction: ψ ≡ ∀x̄∃ȳ[
�

i≤t ϕi(x̄, ȳ)], where, we

recall, each ϕi(x̄, ȳ) is some complete atomic diagram for (x̄, ȳ), or is ⊥.

Now, let {θ�(x̄)}�≤u be a listing of all complete atomic diagrams for x̄. Again,

note that u is a finite number. It is straightforward to check that

ψ ≡ ∀x̄∃ȳ[
�

�≤u(θ�(x̄) ⇒
�

i≤t ϕi(x̄, ȳ))].

Here, we can notice that to decide the ∀∃-theory it suffices to decide all sen-

tences of the form ψ� ≡ ∀x̄∃ȳ[θ�(x̄) ⇒
�

i≤t ϕi(x̄, ȳ)], where θ�(x̄) is a complete
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atomic diagram for x̄, and each ϕi(x̄, ȳ) is a complete atomic diagram for (x̄, ȳ)

or is ⊥. Let M be the L structure defined by θ�(x̄). For each i ≤ t, let Ni be the

L-structure defined by ϕi(x̄, ȳ); if some ϕi(x̄, ȳ) is ⊥, then let Ni be the empty

structure. Note that, literally speaking, it is very possible for some Ni to extend

M, because they share the same names for x̄. We can see now that P |= ψ�

just in case (M,N0, . . . ,Nt) is an element of the multi-extension of embeddings

problem for P . (Note that if θ�(x̄) is false for every possible substitution for x̄

from elements of P , there is no embedding of M into P , so (M,N0, . . . ,Nt) is

trivially a member of the multi-extension of embeddings problem for P .)

It is not to hard to see that the converse of the proposition is also true.

3.2 Algebraic considerations

We begin our investigation with the extension of embeddings problem for Ps.

To get a handle on the problem, we assume that the extension we are inquiring into

is only a one-element extension. So, we imagine we are given finite L-structures

M and M ∪ {n}. Then, we must be able to answer, according to some effective

procedure, whether every f : M �→ Ps extends to some f � : M ∪ {n} �→ Ps.

With previous results for embeddings into Ps in mind (as in Chapter 2, for

example), we would expect that if there is “space” for the embedding to even have

a chance to extend to n, then we should be able to do so.

We give the following definitions to make precise this idea.
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Definition 46. Suppose N = (N,0N ,1N ,≤N ) is a finite L-structure and

M0 ⊆ N . Then, for each n ∈ N , define the following subsets of M0.

An(M0,≤N ) = {x ∈ M0 : x >N n} ∪ {1}.

Bn(M0,≤N ) = {x ∈ M0 : x <N n} ∪ {0}.

In(M0,≤N ) = {x ∈ M0 : x⊥Nn},

where x⊥Nn means x �N n and x �N n.

If M0 is the domain of some L-structure M ⊆ N , we may use the notation

An(M,≤N ), Bn(M,≤N ), and In(M,≤N ).

We make a further definition: if �M = (M,0 cM,1 cM,≤cM,∧cM,∨cM) is an

�L-structure such that M0 ⊆ M and ≤cM agrees with ≤N , we define, for each

n ∈ N ,

an( �M, M0,≤N ) =

cM�

x∈An(M0,≤N )

x,

bn( �M, M0,≤N ) =

cM�

x∈Bn(M0,≤N )

x,

where the �M over the meet and the join mean to take these operations in the

structure �M.

Again, if M0 is the domain of some L-structure M ⊆ N , we may use the nota-

tion an( �M,M,≤N ) for an( �M, M0,≤N ) and bn( �M,M,≤N ) for bn( �M, M0,≤N ).

See [24] for a similar definition, used while working on the extension of em-

beddings problem for the c.e. Turing degrees.
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A is meant to recall “Above”. B is meant to recall “Below”. I is meant to

recall “Independent.”

Proposition 47. Suppose, as in the previous definition, that M ⊆ N are

L-structures, and that �M is an �L-structure extending M such that ≤cM agrees with

≤N . (Note that �M may contain elements of N −M). Then, for each n ∈ N ,

1. An(M,≤N ) �= ∅, since 1, at least, is a member, even if n = 1.

2. Bn(M,≤N ) �= ∅, since 0, at least, is a member, even if n = 0.

3. an( �M,M,≤N ) ≥cM bn( �M,M,≤N ).

For all i ∈ In(M,≤N ),

4. i � cM bn( �M,M,≤N ).

5. ai( �M,M,≤N ) � cM bn( �M,M,≤N ).

6. i � cM an( �M,M,≤N ).

7. bi( �M,M,≤N ) � cM an( �M,M,≤N ).

For all n� ∈ N ,

8. If n >N n�, then An�(M,≤N ) ⊆ An(M,≤N ), hence

an�( �M,M,≤N ) ≥cM an( �M,M,≤N ).

9. If n <N n�, then Bn�(M,≤N ) ⊇ Bn(M,≤N ), hence

bn�( �M,M,≤N ) ≥cM bn( �M,M,≤N ).

Note that in this proposition, i is a variable for an element independent of n,

not for an index.
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Proof. Straightforward. For example, consider (4). If i ∈ In(M,≤N ) is such that

i ≤cM bn( �M,M,≤N ), then for all x ∈ Bn(M,≤N ), i ≤cM x. Since �M respects

≤N , we have i ≤N x ≤N n, contradicting i ⊥N n.

These basic facts will be enough to decide the extension of embeddings problem

in Ps when it is restricted to the cases of one-element extensions. In order to decide

the full extension of embeddings problem, we will proceed inductively, and will

need the following Proposition.

Proposition 48. Suppose �N0 ⊆ �N1 are finite �L-structures, respectively extending

finite L-structures N0 and N1. Suppose also that Ni ⊆ N for i = 0, 1, where N

is an L-structure. For each n ∈ N :

1. an( �N1,N1,≤N ) ≤cN1
an( �N0,N0,≤N ).

2. bn( �N1,N1,≤N ) ≥cN1
bn( �N0,N0,≤N ).

Proof. Note that An(N1,≤N ) ⊇ An(N0,≤N ) and Bn(N1,≤N ) ⊇ Bn(N0,≤N ).

Our goal as we proceed inductively is to extend the embedding to a new element

n ∈ N in such a way as to avoid making more difficult the future embedding of

those elements n� ∈ N yet to be embedded. To accomplish this, we need some

freedom in where we place the new element n. Unfortunately, it turns out that in

some cases we will have no freedom.
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Definition 49. Suppose M ⊆ N∗ ⊆ N are finite L-structures, and �N∗ is an

�L-structure that is a minimal extension ofN∗. For each n ∈ N−M, n is degenerate

for �N∗ if an( �N∗,N∗,≤N ) = bn( �N∗,N∗,≤N ). For n1, n2 ∈ N −M such that

n1 �= n2, let (n1, n2) be a degenerate pair for �N∗ if each of n1 and n2 is degenerate

in �N∗ and an1( �N∗,N∗,≤N ) = bn2( �N∗,N∗,≤N ).

We need some straightforward results before we put this definition to use.

Lemma 50. Suppose N0 ⊆ N1 ⊆ N are finite L-structures, �N0 ⊆ �N1 are

�L-structures, and h0 : N0 �→ �N0 is an L-embedding extended by the L-embedding

h1 : N1 �→ �N1.

Then, for each n ∈ N1,

h1(n) ≤ bN1
an( �N0,N0,≤N )

and

h1(n) ≥ bN1
bn( �N0,N0,≤N ).

(In the calculation of an( �N0,N0,≤N ) and bn( �N0,N0,≤N ) here, we think of N0 as

a substructure of �N0 given by h0.)

Lemma 50. Suppose N0 ⊆ N1 ⊆ N are finite L-structures, �N0 ⊆ �N1 are �L-structures, and

h0 : N0 �→ �N0 is an L-embedding extended by the L-embedding h1 : N1 �→ �N1.

Then, for each n ∈ N1, h1(n) ≤ bN1
an( �N0,N0,≤N , n) and h1(n) ≥ bN1

bn( �N0,N0,≤N , n). (In

the calculation of an( �N0,N0,≤N ) and bn( �N0,N0,≤N ) here, we think of N0 as a substructure

of �N0 given by h0.)

N0 �N0

N1 �N1

....................................................................................................................................................................................................................................................................... ............
h0

..............................................................................................................
...
.........
...

i

..............................................................................................................
...
.........
...

i

....................................................................................................................................................................................................................................................................... ............
h1

Proof. For notational ease in this proof, let B = Bn(N0,≤N ) and let A = An(N0,≤N ).

By the definition of an embedding, for all x ∈ B, h1(n) ≥ bN1
h1(x) = h0(x). So,

h1(n) ≥ bN1

�

x∈B

h0(x) = bn( �N0,N0,≤N ).

Similarly, by definition, for all x ∈ A, h1(n) ≤ bN1
h1(x) = h0(x). So,

h1(n) ≤ bN1

�

x∈A

h0(x) = an( �N0,N0,≤N ).

�

Note that the following slight variation of Lemma 50 is true by a proof only slightly more

involved; this form will be useful for us later.

Corollary 51. Suppose N0 ⊆ N1 ⊆ N are finite L-structures and g : N0 �→ Ps is an L-

embedding extended by the L-embedding h : N1 �→ Ps. Let �N0 be the �L-closure of N0 induced

by g. Let �g : �N0 �→ Ps be the �L-embedding that is the unique extension of g to �N0, as given

by Proposition 39. The following diagram illustrates the situation.

N0 �N0 Ps

N1 Ps

................................................................................................................. ............i ................................................................................................................. ............
�g

..............................................................................................................
...
.........
...

i

....................................................................................................................................................................................................................................................................... ............h

..............................................................................................................
...
.........
...

i

41

Figure 3.7. Sketch for Lemma 50.
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Proof. For notational ease in this proof, let B = Bn(N0,≤N ) and let

A = An(N0,≤N ). By the definition of an embedding, for all x ∈ B,

h1(n) ≥ bN1
h1(x) = h0(x). So,

h1(n) ≥ bN1

�

x∈B

h0(x) = bn( �N0,N0,≤N ).

Similarly, by definition, for all x ∈ A, h1(n) ≤ bN1
h1(x) = h0(x). So,

h1(n) ≤ bN1

�

x∈A

h0(x) = an( �N0,N0,≤N ).

Note that the following slight variation of Lemma 50 is true by a proof only

slightly more involved; this form will be useful for us later.

Corollary 51. Suppose N0 ⊆ N1 ⊆ N are finite L-structures and g : N0 �→ Ps

is an L-embedding extended by the L-embedding h : N1 �→ Ps. Let �N0 be the

�L-closure of N0 induced by g. Let �g : �N0 �→ Ps be the �L-embedding that is the

unique extension of g to �N0, as given by Proposition 39. The following diagram

illustrates the situation.

N0 �N0 Ps

N1 Ps

................................................................................................................. ............i ................................................................................................................. ............
�g

..............................................................................................................
...
.........
...

i

....................................................................................................................................................................................................................................................................... ............h

..............................................................................................................
...
.........
...

i

1

Figure 3.8. Sketch for Corollary 51.

Then, for each n ∈ N1, h(n) ≤s �g(an( �N0,N0,≤N )) and

h(n) ≥s �g(bn( �N0,N0,≤N )).
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If n ∈ N−N0 is degenerate for �N0 then n’s place is determined in any extension

of �N0 that contains n and respects ≤N :

Corollary 52. Suppose N0 ⊆ N1 ⊆ N are finite L-structures and h0 : N0 �→ �N0

is an L-embedding extended by the L-embedding h1 : N1 �→ �N1. Further, suppose

n ∈ N1 is degenerate for �N0. (Here we think of �N0 as an L-extension of N0 given

by h0.)

Then, h1(n) = an( �N0,N0,≤N , n) = bn( �N0,N0,≤N , n).

Proof. Apply Lemma 50.

Hence, if there is a degenerate pair (n1, n2) for �N0, there is no extension of �N0

that contains both n1 and n2 and respects ≤N . For n1 and n2 would have to be

in exactly the same spot. So an �L-structure can contain at most one of the two

elements of a pair degenerate for it.

This is a fact we will use later, so we stop to formally state it (in a slightly

purer form).

Proposition 53. Suppose N0 is a finite L-structure, and �N0 is an �L-structure

that is an L-extension of N0. Then, there do not exist n1, n2 ∈ N0 so that (n1, n2)

is a degenerate pair for �N0.

Lemma 54. Suppose N0 ⊆ N1 ⊆ N are finite L-structures, �N0 ⊆ �N1 are finite

�L-structures, and �N0 and �N1 extend N0 and N1 as L-structures, respectively. If

n ∈ N is degenerate for �N0, then bn( �N0,N0,≤N ) = an( �N0,N0,≤N ) =

an( �N1,N1,≤N ) = bn( �N1,N1,≤N ).

Proof. The first equality is what it means for n to be degenerate for �N0. The sec-

ond and third follow from Proposition 48, the first equality, and Proposition 47(3):
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an( �N1,N1,≤N ) ≤N1 an( �N0,N0,≤N ) ≤N1 bn( �N0,N0,≤N ) ≤N1 bn( �N1,N1,≤N ) ≤N1

an( �N1,N1,≤N ).

At this point, we are prepared to give the condition that will guarantee an

element n yet to be embedded will pose no obstacle to accomplishing the desired

embedding. Then, in the next section, we will be able to solve the extension of

embeddings and multi-extension of embeddings problems, based almost entirely

on whether this condition holds for all n.

Definition 55. Suppose M ⊆ N∗ ⊆ N are finite L-structures and �N∗ is an

�L-structure that minimally extends N∗. For n ∈ N −N∗, we define

C(�N∗,N∗,≤N , n) as the conjunction of the following conditions.

1. If n is degenerate for �N∗, then

an(�N∗,N∗,≤N ) = bn(�N∗,N∗,≤N ) /∈ N∗.

2. i �cN∗
an(�N∗,N∗,≤N ), for all i ∈ In(N∗,≤N ).

3. i �cN∗
bn(�N∗,N∗,≤N ), for all i ∈ In(N∗,≤N ).

If n⊥n� for some n� ∈ N −N∗, then

4. an(�N∗,N∗,≤N ) �N∗ bn�(�N∗,N∗,≤N ) &

5. bn(�N∗,N∗,≤N ) �N∗ an�(�N∗,N∗,≤N ).

Remark 56. Suppose n is degenerate in �N∗, and therefore

an(�N∗,N∗,≤N ) = bn(�N∗,N∗,≤N ). If C(�N∗,N∗,≤N , n) holds, then by parts (4)

and (5):
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1. if n⊥Nn� for some n� ∈ N −N∗, then

bn(�N∗,N∗,≤N ) �cN∗
bn�(�N∗,N∗,≤N ), and

2. if n⊥Nn� for some n� ∈ N −N∗, then

an(�N∗,N∗,≤N ) �cN∗
an�(�N∗,N∗,≤N ).

Remark 57. Note that if clause (2) or (3) in the definition fails, we will not

be able to extend �N∗ to a structure that includes n and respects ≤N . Also, by

Corollary 52, (1) is necessary for such an extension to be possible. If (4) or (5) were

to fail, we might be able to extend �N∗ to a structure �N∗∗ including n. However,

we would not then be able to extend �N∗∗ to a structure including n�, because (2)

or (3), respectively, would fail to hold for n� with respect to �N∗∗.

3.3 The decision procedure for the ∀∃-theory of Ps

Recall the languages L = {0, 1,≤} and �L = {0, 1,≤,∨,∧} and our conventions

as in Section 3.1.1.

Theorem 58. Suppose M ⊆ N are finite L-structures. The following are equiv-

alent.

1. For every L-embedding f : M �→ Ps, there is an L-embedding f � : N �→ Ps

that extends f .

2. For each �L-structure �M minimally extending M, and such that 0 is non-

branching in �M, the following two hold:

(a) There are no n1, n2 ∈ N so that (n1, n2) is a degenerate pair for �M.

(b) For each n ∈ N −M, C( �M,M,≤N , n) holds, where C is as in

Definition 55.
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Corollary 59. The extension of embeddings problem is decidable for Ps in the

language L = {0, 1,≤}.

Proof. Use the notion of the extension of embeddings problem given by

Proposition 42. Corollary 35 tells us that for each L-structure M, we effectively

know all its minimal extensions. Checking condition (2) of Theorem 58 is an

effective procedure. So, given finite L-structures M ⊆ N , we simply calculate the

minimal extensions of M, and then check to see if condition (2) holds for each

one of them with respect to N . If so, (M,N ) is an element of the extension of

embeddings problem for Ps in L. Otherwise, not.

Theorem 60. Suppose M,N0, . . . ,Nt are finitely many L-structures such that

M ⊆ Ni for each 0 ≤ i ≤ t. Then the following are equivalent.

1. For every L-embedding f : M �→ Ps, there is an i such that 0 ≤ i ≤ t and

an L-embedding f � : Ni �→ Ps that extends f .

2. For each �L-structure �M minimally extending M, and such that 0 is non-

branching in �M, there is 0 ≤ i ≤ t such that the following two hold:

(a) There are no n1, n2 ∈ Ni so that (n1, n2) is a degenerate pair for �M.

(b) For each n ∈ Ni −M, C( �M,M,≤Ni , n) holds, where C is as in Defi-

nition 55.

Proof. Apply Theorem 58.

Corollary 61. The ∀∃-theory of Ps is decidable in the language (0, 1,≤).
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Proof. Apply Proposition 43, then mimic the proof of Corollary 59. In particular,

(M,N0, . . . ,Nt) is an element of the multi-extension of embeddings problem just

in case, for every �M minimally extending M, there is an i so that (2a) and (2b)

of Theorem 60 hold for �M and Ni. Finally, apply Proposition 44.

3.4 When there is not always an extension

Proof of (1) ⇒ (2) in Theorem 58, by establishing the contrapositive.

Assume M ⊆ N are finite L-structures. The negation of (2) is that there is a

finite �L-structure �M minimally extending M with 0 non-branching in �M, such

that either

There is a pair (n1, n2) in N degenerate for �M OR

there is n ∈ N so that C( �M,M,≤N , n) does not hold.

Either way, by Corollary 27, there is an �L-embedding �f : �M �→ Ps. By

Lemma 28, f : M �→ Ps is an L-embedding, where f = �f � �M. This establishes

the hypothesis of (1).

If there is a pair (n1, n2) degenerate for �M, then, by Proposition 53, there is

no �L-structure �N that extends �M and contains n1 and n2. Hence, by

Proposition 39, there is no L-embedding f � : N �→ Ps that extends f . This is the

negation of the conclusion of (1), so we are done with the case of a degenerate

pair.

The other case is that there is n ∈ N so that C( �M,M,≤N , n) does not hold.

We consider the negation of each of the clauses in the definition of C. If part

(1) of C fails for n, then it is clear the conclusion of (1) in Theorem 58 fails;
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for Corollary 52 requires n to be mapped to a spot that is already the image of

another element of N .

If part (2) of C fails for n, then i ≥cM an( �M,M,≤N ) for some

i ∈ In(M,≤N ). Then, if f � : N → Ps were a map extending f and an

L-embedding, we would have f �(i) = f(i) ≥s
�f(an( �M,M,≤N )) ≥s f �(n). (The

first inequality comes from an application of Corollary 51.) On the other hand,

i⊥Nn, contradicting that f � is an L-embedding. A similar argument, replacing ≥

by ≤ in the appropriate places, shows that if clause (3) of C fails for n, then the

conclusion of (1) in Theorem 58 fails.

Suppose part (4) of C for n fails: n⊥Nn� for some n� ∈ N −M and

an( �M,M,≤N ) ≤cM bn�( �M,M,≤N ).

Our argument is similar to the cases just discussed. If f � : N → Ps were a map

extending f and an L-embedding, we would have

f �(n) ≤s
�f(an( �M,M,≤N )) ≤s

�f(bn�( �M,M,≤N )) ≤s f �(n�). (The first inequality

comes from an application of Corollary 51.) On the other hand, n⊥Nn�, contra-

dicting that f � is an L-embedding. A similar argument, replacing ≤ by ≥ in the

appropriate places, shows that if clause (5) of C fails for n, then the conclusion of

(1) in Theorem 58 fails.

3.4.1 Examples

We give examples of structures M, N , and �M, the �L-closure of an embedding

of M into Ps that does not extend to an embedding of N .
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In the diagrams for this subsection, lines will indicate a ≤ relationship; we will

omit lines to 1 and 0.

Example 62. A degenerate pair.

3.6.1. Examples. We give examples of structures M, N , and �M, the �L-closure of an em-

bedding of M into Ps that does not extend to an embedding of N .

In the diagrams for this subsection, lines will indicated a ≤ relationship; we will omit lines

to 1 and 0.

Example 62. A degenerate pair.
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By Corollary 27 and Lemma 28 there is an f : M �→ Ps with �M as its �L-closure.

Here, x and y are degenerate for �M; there is no extension of f to N . The reason is that

if we extend to f �
: M ∪ {x} �→ Ps, we must have f(x) = f(a1) ∧ f(a2) = f(b1) ∨ f(b2).

But then if f ��
extends f �

and includes y in its domain, there is nowhere for y to go. Thus,

this particular pair (M,N ) is not an element of the extension of embeddings problem for

(Ps,≤s).

Example 63. Failure of part (1) of C.

If we take M ∪ {x} as our base structure, and f �
as as our original embedding into Ps,

where M, x, and f �
are as in Example 62, then part 1 of the corresponding condition C fails
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Figure 3.9. Sketch of Example 62.

By Corollary 27 and Lemma 28, there is an f : M �→ Ps with �M as its

�L-closure.

Here, x and y are degenerate for �M; there is no extension of f toN . The reason

is that if we extend to f � : M ∪ {x} �→ Ps, we must have f(x) = f(a1) ∧ f(a2) =

f(b1) ∨ f(b2). But then if f �� extends f � and includes y in its domain, there is

nowhere for y to go. Thus, this particular pair (M,N ) is not an element of the

extension of embeddings problem for (Ps,≤s).

Example 63. Failure of part (1) of C.

If we take M∪ {x} as our base structure, and f � as as our original embedding

into Ps, whereM, x, and f � are as in Example 62, then part 1 of the corresponding
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condition C fails for y. Switching back to the usual notation for these examples

and C, the situation is as follows.
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1

Figure 3.10. Sketch for Example 63.

Part 1 of C( �M,M,≤N , y) fails: y is degenerate for �M, but y’s spot in �M is

already taken by x. So this pair (M,N ) is not an element of the extension of

embeddings problem for (Ps,≤s).
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Example 64. Failure of part (2) of C.

for y. Switching back to the usual notation for these examples and C, the situation is as

follows.
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Condition 1 of C( �M,M,≤N , y) fails: y is degenerate for �M, but y’s spot in �M is already

taken by x. So this pair (M,N ) is not an element of the extension of embeddings problem

for (Ps,≤s).

Example 64. Failure of part (2) of C.
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Figure 3.11. Sketch for Example 64.

Part (2) of C( �M,M,≤N , x) fails. The �L-closure of an embedding of N would

have to place x below a1 ∧ a2, which is below i, contradicting that in N , x is

incomparable with i. Again, by Corollary 27 and Lemma 28, there is an

f : M �→ Ps with �M as its �L-closure. This shows that (M,N ) is not an element

of the extension of embeddings problem for (Ps,≤s).

In the diagram of �M, we left out i ∨ a1, i ∨ a2, i ∨ a1 ∨ a2, i ∧ (a1 ∨ a2), i∧ a1,

i ∧ a2, (i ∧ a1) ∨ a2, (i ∧ a2) ∨ a1, (i ∨ a1) ∧ a2, and (i ∨ a2) ∧ a1, which were not

relevant. (Really, we could have left out a1 ∨ a2 as well.)

A dual example shows the failure of part (3) of C.
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Example 65. Failure of parts (4) and (5) of C.

N

0

1

x

i a1 a2
..................................................

..................................................

M

0

1

a1 a2i

�M

0

1

a1 a2

a1 ∧ a2

a1 ∨ a2

i
..............................................

............
............
............
............
..

..............................................

............
............

............
............

..

........................................................................................

Figure 12

N

0

1

n�

n

a1 a2b1 b2
..................................................

..................................................

............
............
............

............
............

............

M

0

1

a1 a2b1 b2

�M

0

1

b1 ∨ b2

a1 ∧ a2

a1 a2b1 b2
..............................................

..............................................

............
............
............

............
............

............
...............................................................................................................................................................................................................................................

Figure 13
3

Figure 3.12. Sketch for Example 65.

In this diagram, we again leave out all of �M except what interests us. In this

situation, C( �M,M,≤N , n�) fails in part (4) and C( �M,M,≤N , n) fails in part

(5). In �M, if we are to add both n� and n, they will have to go above b1 ∨ b2, and

below a1∧a2, respectively. As a result, we will have n� ≥cM n contrary to n� and n

being incomparable in N . As before, �M is the �L-closure of some f : M �→ Ps by

Corollary 27 and Lemma 28. Hence, (M,N ) is not an element of the extension

of embeddings problem for Ps.
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3.5 The other half of the proof of Theorem 58

The following Lemma will inductively prove (2) ⇒ (1) in Theorem 58.

Lemma 66. Suppose M ⊆ Nk ⊆ Nk+1 ⊆ N are finite L-structures such that

Nk+1 = Nk ∪ {nk+1}, �Nk is an �L-structure that minimally extends Nk, and

C(�Nk,Nk,≤N , n) holds for each n ∈ N − Nk. Finally, suppose there are no

pairs degenerate for �Nk. Then, given any diagram of embeddings in the following

form (where �fk is an �L-embedding and i is the identity map):
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Figure 3.13. Sketch for Lemma 66.

there is an L-embedding fk+1 : Nk+1 �→ Ps so that the resulting diagram commutes,

and for every n ∈ N −Nk+1, C( �Nk+1,Nk+1,≤N , n) holds, where �Nk+1 is the

�L-closure of Nk+1 under fk+1. Finally, we can also ensure there are no pairs from

N that are degenerate for �Nk+1. The new diagram is as follows, where �fk+1 is the

�L-embedding such that i ◦ �fk+1 = fk+1, which is justified by Proposition 39.
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Figure 3.14. Sketch for Lemma 66.
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Proof of (2) ⇒ (1) in Theorem 58 from Lemma 66. Fix M ⊆ N , finite

L-structures. We assume condition (2) from Theorem 58 about M and N . Let

f : M �→ Ps be an L-embedding. We must show there is an L-embedding

f � : N �→ Ps that extends f .

Let {n1, . . . , n�} = N −M be such that if k� �= k, then nk� �= nk. Let

Nk = M ∪ {n1, . . . , nk} for each 1 ≤ k ≤ �. Let N0 = M.

We will show by induction that for each 0 ≤ k ≤ �, the following three condi-

tions hold, whose conjunction is named Ψ(k).

1. There is an L-embedding fk : Nk �→ Ps that extends f .

2. There are no pairs from N degenerate for �Nk, where �Nk is the �L closure of

Nk under fk.

3. C( �Nk,Nk,≤N , n) holds for each n ∈ N −Nk.

Base Case: k = 0. Recall that N0 = M and, so, also �N0 = �M, the �L-closure

of M = N0 under f . Set f0 = f . Trivially, f0 is an L-embedding extending f as

required by the first condition of Ψ(0). By Remark 38, �N0 is a minimal extension

of N0 = M. Note that 0 is non-branching in �N0, because 0 is non-branching

in Ps. We may apply (2) from Theorem 58, which gives the second and third

conditions of Ψ(0).

Inductive Case. We assume Ψ(k) holds and then see that Ψ(k + 1) holds, if

k < �. It is trivial to check that the hypothesis of Lemma 66 follows from our

inductive assumption, if k < �. Then, the conclusion of Lemma 66 trivially implies

Ψ(k + 1).

Setting f � = f� gives an L-embedding of N into Ps that extends f , as desired.
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3.6 Beginning the proof of Lemma 66

Let fk : Nk �→ Ps be given by �fk ◦ i.

There are two main cases: either nk+1 is degenerate in Nk or it is not. We take

the former (and easier) case first. The latter will involve a priority argument.

Case 1: nk+1 is degenerate in �Nk. The intuition is that all we have to do to

obtain fk+1 is put nk+1 where it must go. Then, proving the rest amounts to

showing that nothing much really changes since we only put nk+1 in an already

existing spot in �Nk.

By part (1) of C(�Nk,Nk,≤N , nk+1), we have that ank+1
(�Nk,Nk,≤N ) /∈ �Nk. So

we define fk+1 : Nk+1 �→ Ps by letting fk+1 agree with fk on Nk and defining

fk+1(nk+1) = �fk(ank+1
( �Nk,Nk,≤N )).

By parts (1), (2), and (3) of C(�Nk,Nk,≤N , nk+1), it is clear that fk+1 is an

L-embedding that extends fk and makes the diagram commute. We can also

immediately note that �Nk+1, as defined by Proposition 39, is the same as �Nk.

The following Lemma makes precise the intuition that nothing much changes.

Lemma 67. Suppose we are in case 1 of the proof of Lemma 66, where nk+1 is

degenerate, and we define fk+1 as above, by setting

fk+1(nk+1) = �fk(ank+1
( �Nk,Nk,≤N )).

Then for all n ∈ N − Nk+1, the following hold:

an( �Nk,Nk,≤N ) = an( �Nk+1,Nk+1,≤N ).

bn( �Nk,Nk,≤N ) = bn( �Nk+1,Nk+1,≤N ).
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Proof. If nk+1 �N n we trivially have an( �Nk,Nk,≤N ) = an( �Nk+1,Nk+1,≤N ). If

nk+1 >N n, then

an( �Nk+1,Nk+1,≤N ) =

bNk+1�

An(Nk+1,≤N )

x

= nk+1 ∧
bNk+1�

An(Nk,≤N )

x

= nk+1 ∧ an( �Nk,Nk,≤N ).

By our definition of fk+1 and by Proposition 47(8), we have

nk+1 = bNk+1
ank+1

( �Nk,Nk,≤N ) ≥ bNk+1
an( �Nk,Nk,≤N ). So in fact we can finish by

writing

= an( �Nk,Nk,≤N ),

and we have shown the first part of the Lemma’s conclusion. The second part is

analogous, using Proposition 47(9) in place of Proposition 47(8).

From Lemma 67, it follows that for every n ∈ N , if n is not degenerate in �Nk,

then n is not degenerate in �Nk+1. So there are no new degenerate elements for

�Nk+1. Hence, by an application of Lemma 54, there are no new degenerate pairs

in �Nk+1. Finally, there no pairs degenerate for �Nk+1 at all, since by assumption

there were none for �Nk.

It remains to show that C( �Nk+1,Nk+1,≤N , n) holds for each n ∈ N −Nk+1.

Fix such an n. Parts (1), (4), and (5) of C( �Nk+1,Nk+1,≤N , n) follow immediately
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from C( �Nk,Nk,≤N , n) and Lemma 67.

Suppose nk+1⊥Nn. By C( �Nk,Nk,≤N , n) and Remark 56(1), we have

ank+1
( �Nk,Nk,≤N ) � bNk

an( �Nk,Nk,≤N ).

Then, by our definition of fk+1 and by Lemma 67,

nk+1 � bNk+1
an( �Nk+1,Nk+1,≤N ).

Therefore, part (2) of C( �Nk+1,Nk+1,≤N , n) holds in the case i = nk+1.

If i �= nk+1, part (2) of C( �Nk+1,Nk+1,≤N , n) holds by part (2) of C( �Nk,Nk,≤N , n)

and Lemma 67. A similar argument, using Remark 56(2) in place of Remark 56(1),

shows that part (3) of C( �Nk+1,Nk+1,≤N , n) holds.

This completes the proof of Lemma 66 for case 1, where nk+1 is degenerate for

�Nk.

3.7 Case 2 (of the proof of Lemma 66)

We assume that nk+1 is not degenerate for �Nk, and we must exhibit the em-

bedding fk+1 described by Lemma 66.

We will construct a Π0
1 class Qk+1 and then define fk+1 : Nk+1 �→ Ps by letting

fk+1 agree with fk on Nk and setting fk+1(nk+1) = degs(Qk+1).

We need some notation.
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3.7.1 Notation for use throughout the priority argument

If j ∈ �Nk then let Qj be a Π0
1 class such that �fk(j) = degs(Qj).

Let

a = ank+1
( �Nk,Nk,≤N )

and

b = bnk+1
( �Nk,Nk,≤N ).

Then, by definition, Qa is a Π0
1 class such that

�fk(ank+1
(�Nk,Nk,≤N )) = degs(Qa).

Note that degs(Qa) = degs(
�
{Qj : j ∈ Ank+1

(Nk,≤N )}).

Also by definition,Qb is a Π0
1 class such that �fk(bnk+1

(�Nk,Nk,≤N )) = degs(Qb).

Note that degs(Qb) = degs(
�
{Qj : j ∈ Bnk+1

(Nk,≤N )}).

3.7.2 Towards a first form for requirements

Lemma 68. Under the assumptions of case 2 of the proof of Lemma 66, and using

the notation just defined:

1. Qa >s Qb.

2. Qi �s Qa for all i ∈ Ink+1
(Nk,≤N ).

3. Qi �s Qb for all i ∈ Ink+1
(Nk,≤N ).

Proof. We see that (1) follows from Proposition 47(3) and the fact that nk+1 is

not degenerate in Nk. We see that (2) follows from part (2) of the definition of

C(�Nk,Nk,≤Nk
, nk+1). We see that (3) follows from part (3) of the definition of

C(�Nk,Nk,≤Nk
, nk+1).
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We now propose to construct Qk+1 to meet the following requirements.

(I) Qa >s Qk+1 >s Qb.

(II) Qi �s Qk+1 for all i ∈ Ink+1
(Nk,≤N ).

(III) Qi �s Qk+1 for all i ∈ Ink+1
(Nk,≤N ).

For all x, y ∈ �Nk,

(IV) If Qb ∨Qx �s Qy, then Qk+1 ∨Qx �s Qy.

(V) If Qa ∧Qx �s Qy, then Qk+1 ∧Qx �s Qy.

Remark 69. Requirement (IV) implies that if Qb �s Qy for some y ∈ �Nk, then

Qk+1 �s Qy. Similarly, (V) implies that if Qa �s Qy for some y ∈ �Nk, then

Qk+1 �s Qy.

3.7.3 Verification that the requirements complete the proof.

Before giving the actual construction, we explain how a Qk+1 meeting require-

ments (I)-(V) completes the proof of case 2 of Lemma 66. Namely, if fk+1 is the

proposed extension given by fk+1(nk+1) = Qk+1, then we show that fk+1 is indeed

an embedding, that each n ∈ N−Nk+1 still possesses the property C, now relative

to fk+1, and that there are no degenerate pairs in the �L-structure induced by fk+1.

That fk+1 is an L-embedding follows from (I)-(III) and the fact that fk was

an L-embedding.

Recall that, by definition, �Nk+1 is the �L-structure minimally extending Nk+1

and isomorphic to the closure of the image of Nk+1 in Ps under fk+1.

Lemma 70. In case 2 of the proof of Lemma 66, with fk+1 as described above, if

n ∈ N is degenerate in �Nk+1, then n was degenerate in �Nk.

Proof. We show the contrapositive. Suppose n is not degenerate in �Nk.
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If n = nk+1 it is clear that an( �Nk,Nk,≤N ) = an( �Nk+1,Nk+1,≤N ) and that

bn( �Nk,Nk,≤N ) = bn( �Nk+1,Nk+1,≤N ), so that nk+1 is not degenerate in �Nk+1.

Hence, we may assume that n �= nk+1.

For notational convenience, let us set

an = an( �Nk,Nk,≤N )

bn = bn( �Nk,Nk,≤N ).

By the assumption that n is not degenerate in �Nk, we have that

an > bNk+1
bn. If we had

an( �Nk+1,Nk+1,≤N ) = bn( �Nk+1,Nk+1,≤N ),

then either

nk+1 <N n and nk+1

�
bn = an

or

nk+1 >N n and nk+1

�
an = bn

(where the join and meet are taken in �Nk+1).

In the former case, this means that Qk+1

�
Qbn ≥s Qan , and then by require-

ment (IV) that Qb

�
Qbn ≥s Qan . However, we also had nk+1 <N n, and hence

by Proposition 47 (9), in reality Qb

�
Qbn = Qbn . This implies Qbn ≥s Qan , con-

tradicting that an > bNk+1
bn. A similar contradiction is achieved in the latter case

by using requirement (V) and Proposition 47 (8).

Since there are no new degenerate elements, it follows that �Nk+1 has no new

degenerate pairs, and hence no degenerate pairs at all, since �Nk had none, by
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assumption of Lemma 66.

It remains to show that for each n ∈ N −Nk+1, C( �Nk+1,Nk+1,≤N , n) holds. If

n is degenerate in �Nk+1, then by our recent Lemma 70, n was already degenerate

in �Nk. Then by part (1) of C( �Nk,Nk,≤N , n), an( �Nk,Nk,≤N ) =

bn( �Nk,Nk,≤N ) /∈ Nk. Thus, to show part (1) of C( �Nk+1,Nk+1,≤N , n), it suffices

to show nk+1 �= bNk+1
an( �Nk,Nk,≤N ) = bn( �Nk,Nk,≤N ). This follows from Remark

69 and that nk+1 was not degenerate for �Nk.

If i �= nk+1, then parts (2) and (3) follow from parts (2) and (3) of

C( �Nk,Nk,≤N , n), along with requirements (IV) and (V). In the case i = nk+1,

parts (2) and (3) follow from parts (4) and (5) of C( �Nk,Nk,≤N , n), along with

Remark 69.

Parts (4) and (5) of C( �Nk+1,Nk+1,≤N , n) follow from parts (4) and (5) of

C( �Nk,Nk,≤N , n) and requirements (IV) and (V).

3.8 Shaping the requirements

Here we finish the proof of case 2 of Lemma 66, by constructing the Π0
1 class

Qk+1 meeting requirements (I)-(V), mentioned in Section 3.7.3.

Actually, we construct a Π0
1 class Q, and then set

Qk+1 = (Q ∨Qb) ∧Qa,

where Qb and Qa are as defined in Section 3.7.3.

We will have the following requirements, for each e ∈ ω.

I.Ne ≡ Φe : (Q ∨Qb) ∧Qa �→ Qa.
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I.Pe ≡ Φe : Qb �→ (Q ∨Qb) ∧Qa.

II.Pe,i ≡ Φe : Qi �→ (Q ∨Qb) ∧Qa.

where i ∈ Ink+1
(Nk,≤N ).

III.Ne,i ≡ Φe : (Q ∨Qb) ∧Qa �→ Qi,

where i ∈ Ink+1
(Nk,≤N ).

IV.Ne,x,y ≡ Φe : [(Q ∨Qb) ∧Qa] ∨Qx �→ Qy,

where x, y ∈ �Nk are such that Qb ∨Qx �s Qy.

V.Pe,x,y ≡ Φe : Qy �→ [(Q ∨Qb) ∧Qa] ∧Qx,

where x, y ∈ �Nk are such that Qa ∧Qx �s Qy.

Note that, taken together, the requirements of the form I.Ne and I.Pe suffice

to satisfy requirement I. For, from the definition that Qk+1 = (Q ∨Qb) ∧Qa, it

immediately follows that Qa ≥s Qk+1 ≥s Qb; then I.Ne and I.Pe take care of the

necessary inequalities to give Qa >s Qk+1 >s Qb.

It is immediately clear that the satisfaction of all requirements of the form

II.Pe,i, III.Ne,i, IV.Ne,x,y, and V.Pe,x,y guarantees the satisfaction of the original

requirements II, III, IV, and V .

Our strategies for satisfying these more specific requirements will be like those

in Chapter 2. We give next the two representative strategies and then the full
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construction.

3.9 Basic strategies

For the basic notation and definitions to be used in the priority argument,

refer back to Section 2.3. We add two pieces of notation.

Definition 71. Let {σn}n∈ω be an effective enumeration of 2<ω.

We also need to give names to trees for Qa and Qb.

Definition 72. Let Ta and Tb be computable trees so that [Ta] = Qa and

[Tb] = Qb, where Qa and Qb are as in Section 3.7.1.

Globally we construct disjoint c.e. sets C, D, where C = ∪sCs, D = ∪sDs, and

define Q and a tree T as follows:

Q = S(C, D) = {X ∈ 2ω : (n ∈ C ⇒ X(n) = 1)&(n ∈ D ⇒ X(n) = 0)}.

T = {σ ∈ 2<ω : ∀n < |σ|[(σ(n) = 1 ⇒ n /∈ D|σ|)&(σ(n) = 0 ⇒ n /∈ C|σ|)]}.

Note [T ] = Q.

3.9.1 Strategy for I.Ne

To satisfy Φe : (Q ∨Qb) ∧Qa �→ Qa it suffices to satisfy

Φe : Q ∨Qb �→ Qa. The construction controls Q but not Qb or Qa. We will use

a preservation strategy so that if Φe : Q ∨ Qb → Qa, then in fact Qb ≥s Qa, a

contradiction to Lemma 68(1). As it seems more true that Φe : Q ∨ Qb → Qa,

according to some length of agreement function, we will work to ensure there is a
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computable element of Q = S(C, D), by making C and D computable. Then we

would have Q ∨Qb ≡s Qb, and hence Qb ≥s Qa.

The following length of agreement function for this negative requirement is a

re-formulation of one defined by Cenzer and Hinman [5]. (I would like to thank

Keng Meng Ng for helping me to see that the stagewise tree approximations used

by Cenzer and Hinman and by me in Chapter 2 are not technically necessary.)

Definition 73. Suppose [T ] = S(C, D), [Ta] = Qa, and [Tb] = Qb, as in

Definition 72, and where C, D are disjoint c.e. sets. Then,

�N(s) = max{y : ∀σ ∈ (T ∨ Tb)s [τ = Φσ
e,s � y ∈ Ta & ∃ρ ∈ T s

a , ρ ⊇ τ ]}.

The intuition is that if �N(s) = y then everything long enough in T ∨ Tb is

mapped to something of length at least y in Ta, and, moreover, none of these

images in Ta are currently known to be dead ends in Ta.

Remark 74. �N(s) = min{y : ∃σ ∈ (T ∨ Tb)s [τ = Φσ
e,s � y + 1 /∈ Ta or

∀ρ ∈ T s
a , ρ � τ ]}. (If Φσ

e,s � y + 1 is undefined, we say it is not in Ta.) This

equivalent formulation gives another way to think about �N(s).

Definition 75. s + 1 is an expansionary stage for I.Ne if �N(s + 1) > �N(r) for

all r ≤ s.

If s + 1 is an expansionary stage for I.Ne, and I.Ne is the highest priority

requirement whose strategy currently requires attention, then we act to restrain

T by restraining C and D up to s + 1. That is, we make a request that the

construction ensure C � s + 1 = Cs � s + 1 and B � s + 1 = Bs � s + 1. Strategies

for lower priority requirements must always respect this request.
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If some higher priority strategy at stage t > s + 1 makes an enumeration so

that Ct � s + 1 �= Cs � s + 1 or Dt � s + 1 �= Ds � s + 1, we say that I.Ne is injured

at stage t.

This ends the description of the strategy for satisfying I.Ne.

Lemma 76. Fix nonempty Π0
1 classes Qb,Qa, an enumeration of disjoint c.e. sets

C, D, and set Q = S(C, D). If Φe : Q ∨ Qb → Qa then lims→∞�N(s) = ∞, and

I.Ne has infinitely many expansionary stages.

Proof. This is a slightly modified version of Lemma 21(1). Suppose that

Φe : Q ∨ Qb → Qa. We prove that for every n ∈ ω there is a stage t such that

for all t� > t, �N(t�) > n. Fix n. For each σ ∈ 2<ω, let τσ = Ψσ
e,|σ| � n if this is

defined. If it is not defined, then τσ is undefined, and therefore not a substring of

any other string. Define

Bad = {σ ∈ T ∨ Tb : ¬∃ρ ∈ T |σ|
a , ρ ⊇ τσ}.

Define

Good = {σ ∈ T ∨ Tb : ∃ρ ∈ T |σ|
a , ρ ⊇ τσ}.

Immediately Bad ∪ Good = (T ∨ Tb) and Bad ∩ Good = ∅. Also, note that Bad

is closed downwards and is therefore a tree.

If Bad were infinite, then by compactness for the standard topology on 2ω,

there would be X ∈ [Bad]. Since Bad ⊆ T ∨ Tb and [T ∨ Tb] = Q ∨Qb, we would

have X ∈ Q∨Qb. By hypothesis Φe : Q∨Qb → Qa, and so there would be σ ⊂ X

so that Φσ
e,t � n ∈ T̃a for some stage t. (Recall T̃a is the tree of extendible nodes

in Ta.) Letting s = max{|σ|, t} we have ΦX�s
e,s � n ∈ T̃a, whence X � s ∈ Good, a

contradiction.
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Since Bad is finite, there is a stage t� so that if t > t� and σ ∈ (T ∨ Tb)t, then

σ ∈ Good. This means that for all t > t�, �N(t�) > n, as desired.

Lemma 77. Suppose Q is constructed in accord with the strategy given in this

subsection for I.Ne and strategies for requirements of higher priority than I.Ne

act only finitely often. Then Φe : Q ∨Qb �→ Qa.

Proof. This is a slightly modified version of the proof in Section 2.5. Assume

otherwise, that Φe : Q ∨ Qb → Qa. Then it suffices to show that Q contains a

computable element, as noted at the beginning of this subsection. To show that

Q = S(C, D) contains a computable element, it suffices to show that C and D

are computable. Fix a stage s� so that I.Ne is no longer injured after stage s�.

(Such a stage exists because I.Ne is only injured by higher priority requirements.)

Let n > s�. We say how to compute C(n) and D(n). By Lemma 76, there is an

expansionary stage s > n > s� so that �N(s) > n. The strategy for I.Ne will act

at stage s because no strategy for a higher priority requirement acts after stage

s�; the strategy for I.Ne will restrain C and D up to s. Since I.Ne is never injured

after stage s�, C � s = Cs � s and D � s = Ds � s. Since n < s, C(n) = Cs(n) and

D(n) = Ds(n). Note that s� is fixed: it does not depend on n.

Lemma 78. If I.Ne is satisfied, then I.Ne acts only finitely often. Thus, action

for I.Ne will not hinder strategies for lower priority requirements more than finitely

often.

Proof. It suffices to show that I.Ne has only finitely many expansionary stages,

if I.Ne is satisfied. We will actually show the contrapositive, namely that if
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lim sups→∞ �N(s) = ∞, then Φ : Q∨Qb → Qa. We simplify the proof we gave for

Lemma 21(2).

Suppose lim sups→∞ �N(s) = ∞. Given X ∈ Q ∨ Qb, we want to show that

Y = ΦX
e exists and Y ∈ Qa. It suffices to show that for each n, there is a

stage sn so that ΦX�sn
e,sn

� n exists and is in Ta. Precisely this is guaranteed by the

fact that for each n, there is a stage sn such that �N(sn) ≥ n.

3.9.2 Strategy for I.Pe

To satisfy Φe : Qb �→ (Q∨Qb)∧Qa, it suffices to show Φe : Qb �→ Q∧Qa. Our

construction controls Q, but Qb and Qa are given. We use a strategy based on

the Sacks coding strategy, as adapted by Cenzer and Hinman. At expansionary

stages for an appropriate length of agreement function, we try to code Qa into Q.

The result will be that if Φe : Qb → Q∧Qa, then we will also have Q ≥s Qa, and

hence Qb ≥s Qa, contradicting Lemma 68(1).

We have a length of agreement function in analogy to the one defined in the

strategy for I.Ne.

Definition 79. Suppose [T ] = S(C, D), [Ta] = Qa, and [Tb] = Qb, as in

Definition 72. Then, let �P (s) = max{y : ∀σ ∈ T s
b [τ = Φσ

e,s � y ∈ (T ∧ Ta) &

∃ρ ∈ (T ∧ Ta)s, ρ ⊇ τ ]}.

Remark 80. �P (s) = min{y : ∃σ ∈ T s
b [τ = Φσ

e,s � y + 1 /∈ (T ∧ Ta) or

∀ρ ∈ (T ∧ Ta)s, ρ � τ ]}. (If Φσ
e,s � y + 1 is undefined, we say it is not in (T ∧ Ta).)

This equivalent formulation gives another view of �P (s).

Definition 81. s+1 is an expansionary stage for I.Pe if �P (s+1) > �P (r) for all

r ≤ s.

72



If I.Pe is expansionary at stage s + 1 with �P (s + 1) = k and is the highest

priority requirement that requires attention at stage s + 1, we set up a means to

code into T something about which nodes are extendible in Ta. We use markers.

For all j ≤ k for which m(σj) has not been defined, we define m(σj) to be greater

than any number yet mentioned in the construction. (Recall σj is the j-th finite

string.) Then, for each such j, we wait for a stage t + 1 > s + 1 such that no

higher priority requirement needs attention at stage t + 1 and either

(i) there is no τ ⊇ σj
�0 such that τ ∈ T t

a or

(ii) there is no τ ⊇ σj
�1 such that τ ∈ T t

a.

If (i) happens at stage t+1 and (ii) has not yet happened, or also first happens

at stage t + 1, then we set m(σj) ∈ Ct+1.

If (ii) happens at stage t + 1 and (i) has not yet happened by stage t + 1, then

we set m(σj) ∈ Dt+1.

The strategy for I.Pe is injured along with the marker m(σj) at stage v if

some higher priority requirement makes a restraint up to v > s, where m(σj) was

last defined at stage s, and m(σj) /∈ Cv−1 ∪ Dv−1. In this case, we do not take

any action for (i) or (ii) happening for some m(σj) at stage v; and before ending

stage v, for all injured m(σj), redefine m(σj) to be greater than any number yet

mentioned in the construction. Then proceed with the construction.

This ends the strategy for satisfying I.Pe.

The verification begins as it did for the negative requirement.

Lemma 82. Fix nonempty Π0
1 classes Qb,Qa, an enumeration of disjoint c.e. sets

C, D, and set Q = S(C, D). If Φe : Qb → Q ∧Qa, then lims �P (s) = ∞, and I.Pe

has infinitely many expansionary stages.
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Proof. Analogous to the proof of Lemma 76.

Lemma 83. Suppose Q is constructed in accord with the strategy given in this

subsection for I.Pe and strategies for requirements of higher priority than I.Pe act

only finitely often. Then Φe : Qb �→ Q ∧Qa.

Proof. This proof is essentially the same as the verification in Section 2.6. Suppose

otherwise, that Φe : Qb → Q ∧ Qa. By the assumption of this lemma, there is

a stage s� after which no strategies for requirements of higher priority than I.Pe

act. Let X ∈ Qb. We describe, in a uniform way, how to compute Y ∈ Qa from

X, contradicting that Qb �s Qa.

To begin, ΦX
e ∈ Q ∧Qa. If ΦX

e (0) = 1, then Y ∈ Qa, where 1�Y = ΦX
e .

If ΦX
e (0) = 0, then Z ∈ Q, where 0�Z = ΦX

e . We use Z to compute Y ∈ Qa.

Set τ0 = ∅, the empty string. Inductively assume we have τn ∈ T̃ n
a , the set of

extendible strings in Ta of length n. We uniformly describe how to compute that

τn
�0 ∈ T̃a or that τn

�1 ∈ T̃a. First the value of m(τn) at stage s�, if any, is

determined. If m(τn) is undefined at stage s�, there is a stage s > s� at which it is

defined, because lims �P (s) = ∞ by Lemma 82. Note that once m(τn) is defined

at or after stage s�, it is ever after defined with the same value, by choice of s�.

Case 1: Suppose Z(m(τn)) = 1. Then m(τn) /∈ D, because Z ∈ Q = S(C, D).

Thus if (ii) from our strategy for I.Pe happened for τn, it happened after (i), or

at the same stage as (i). Since τn is extendible in Ta, it cannot be that both (i)

and (ii) happened. So (ii) did not happen. Hence τn
�1 ∈ T̃a. Set τn+1 = τn

�1.

Case 2: Suppose Z(m(τn)) = 0. Then m(τn) /∈ C. Thus, if (i) from our

strategy for I.Pe happened for τn, it happened after (ii). Since τn is extendible in

Ta, it cannot be that both (i) and (ii) happened. Hence (i) did not happen. So
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τn
�0 ∈ T̃a. Set τn+1 = τn

�0.

Define Y = ∪nτn. Since τn ∈ T̃a for each n, it follows that Y ∈ Qa. So, we

have shown Qb ≥s Qa, the desired contradiction. Hence Φe : Qb �→ Q ∧Qa.

Lemma 84. If I.Pe is satisfied, then the strategy for I.Pe acts only finitely often.

Hence enumerations into C and D for the sake of I.Pe will injure strategies for

lower priority requirements only finitely often.

Proof. Analogous to the proof of Lemma 78.

The other positive and negative strategies work according to the same princi-

ples, though they are more involved.

3.10 Full priority construction

The idea for the full construction is simply to generalize the two strategies just

described.

Definition 85. Suppose U and V are nonempty Π0
1 classes and U and V are

computable trees such that U = [U ] and V = [V ]. Let R be a requirement of the

form Φe : U �→ V . Then, the length of agreement function associated with R and

the trees U and V is as follows.

�(s) = max{y : ∀σ ∈ U s[τ = Φσ
e,s � y ∈ V & ∃ρ ∈ V s, ρ ⊇ τ ]}.

Remark 86. Where �(s) is as in Definition 85, we have

�(s) = min{y : ∃σ ∈ U s [τ = Φσ
e,s � y + 1 /∈ V or ∀ρ ∈ V s, ρ � τ ]}. (If Φσ

e,s � y + 1

is undefined we say it is not in V .) This formulation is another view of �(s).

Definition 87. s+1 is an expansionary stage for requirement R if �(s+1) > �(r)

for all r ≤ s, where �(s) is the length of agreement function for R.
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Lemma 88. If a requirement R of the form Φ : U �→ V is not satisfied, then R

has infinitely many expansionary stages.

Proof. Same as the proof of Lemma 76.

Lemma 89. If a requirement R of the form Φ : U �→ V is satisfied, then R has

only finitely many expansionary stages.

Proof. The proof of this is found in the essence of the proof of Lemma 78.

Definition 90. Suppose we are constructing a Π0
1 class Q.

1. A negative requirement is a requirement R of the form Φe : Q ∨ S �→ V ,

where S and V are fixed Π0
1 classes such that S �s V .

2. A positive requirement is a requirement R of the form Φe : U �→ Q ∧ S,

where U and S are fixed Π0
1 classes such that S �s U .

Now, suppose we begin with the setup as in the previous section. We construct

disjoint c.e. sets C and D and set Q = S(C, D). The construction of C and D is

in stages; C = ∪sCs and D = ∪sDs. We again have Q = [T ], where

T = {σ ∈ 2<ω : ∀n < |σ|[(σ(n) = 1 ⇒ n /∈ D|σ|) & (σ(n) = 0 ⇒ n /∈ C|σ|)]}.

We suppose we have certain positive and negative requirements in our con-

struction. We put the requirements in some computable ω-ordering.

Strategy for a negative requirement. Suppose R is the negative require-

ment Φe : Q ∨ S �→ V . Let S be a computable tree such that [S] = S and let V

be a computable tree such that [V ] = V . We let �(s) be the length of agreement

function for R as defined by Definition 85, where we take U = T ∨ S.
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If s+1 is an expansionary stage for R and it is the highest priority requirement

whose strategy currently requires attention, then we act to restrain T by restrain-

ing C and D up to s+1. That is, we make a request that the construction ensure

C � (s+1) = Cs � (s+1) and D � (s+1) = Ds � (s+1). Strategies for lower prior-

ity requirements must always respect this request. If some higher priority strategy

at stage t > s + 1 makes an enumeration so that Ct � (s + 1) �= Cs � (s + 1) or

Dt � (s + 1) �= Ds � (s + 1), we say I.Ne is injured at stage t.

This ends the description of the strategy for satisfying a negative requirement.

Verification of the strategy for a negative requirement.

Lemma 91. If Q is constructed in accord with the strategy just given for the

negative requirement R, and strategies for requirements of higher priority than R

act only finitely often, then R is satisfied, and the strategy for R acts only finitely

often.

Proof. Assume contrary to R, that Φe : Q∨S → V . It suffices to show Q contains

a computable element, because from the definition of the negative requirement R,

we have S �s V . To show Q = S(C, D) contains a computable element, is suffices

to show C and D are computable. Fix a stage s� so that no requirement of higher

priority than R acts after stage s�. Let n > s�. We say how to compute C(n) and

D(n). By Lemma 88 there is an expansionary stage s > n > s� so that �(s) > n.

The strategy for R will act at stage s because no strategy for a higher priority

requirement acts after stage s�; the strategy for R will restrain C and D up to s at

stage s. Since R is never injured after stage s�, C � s = Cs � s and D � s = Ds � s.

Since n < s, C(n) = Cs(n) and D(n) = Ds(n). Note that s� is fixed: it does not

depend on n.
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Since R is satisfied, by Lemma 89 R has only finitely many expansionary

stages. Hence, R acts only finitely often.

Strategy for a positive requirement. Suppose R is the positive require-

ment Φe : U �→ Q ∧ S. Let U be a tree so that [U ] = U and let S be a tree such

that [S] = S. We let �(s) be the length of agreement function for R as defined by

Definition 85, where we take V = T ∧ S.

If R is expansionary at stage s+1 with �(s+1) = k and is the highest priority

requirement that requires attention at stage s + 1, we set up a means to code

into T something about which nodes are extendible in S. We use markers. For

all j ≤ k for which m(σj) has not been defined, we define m(σj) to be greater

than any number yet mentioned in the construction. (Recall σj is the j-th finite

string.) Then, for each such j, we wait for a stage t + 1 > s + 1 such that no

higher priority requirement needs attention at stage t + 1 and either

(i) there is no τ ⊇ σj
�0 such that τ ∈ T t

a or

(ii) there is no τ ⊇ σj
�1 such that τ ∈ T t

a.

If (i) happens at stage t+1 and (ii) has not yet happened, or also first happens

at stage t + 1, then we set m(σj) ∈ Ct+1.

If (ii) happens at stage t + 1 and (i) has not yet happened by stage t + 1, then

we set m(σj) ∈ Dt+1.

The strategy for R is injured along with the marker m(σj) at stage v if some

higher priority requirement makes a restraint up to v > s, where m(σj) was last

defined at stage s and m(σj) /∈ Cv−1 ∪ Dv−1. In this case, we do not take any

action for (i) or (ii) happening for m(σj) at stage v; and before ending stage v, for

all injured m(σj), we redefine m(σj) to be greater than any number yet mentioned

in the construction. Then we proceed with the construction.
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Verification of the strategy for a positive requirement.

Lemma 92. If Q is constructed in accord with the strategy just given for the

positive requirement R, and strategies for requirements of higher priority than R

act only finitely often, then R is satisfied, and the strategy for R acts only finitely

often.

Proof. Assume, contrary to R, that Φe : U → Q ∧ S. By Lemma 88, R has

infinitely many expansionary stages. Let s� be a stage after which no strategy

for a requirement of higher priority than R acts. Let X ∈ U . We describe, in a

uniform way, how to compute Y ∈ S from X. This contradicts the assumption of

the requirement R that U �s S.

By assumption, we have ΦX
e ∈ Q ∧ S. If ΦX

e (0) = 1, then Y ∈ S, where

1�Y = ΦX
e .

If ΦX
e (0) = 0, then Z ∈ Q, where 0�Z = ΦX

e . We use Z to compute Y ∈ S.

Set τ0 = ∅, the empty string. Inductively assume we have τn ∈ S̃n. We uniformly

describe how to compute that τn
�0 ∈ S̃ or that τn

�1 ∈ S̃. First, we determine

the value of m(τn) at stage s�, if any. If m(τn) is undefined at stage s�, there is a

stage s > s� at which it is defined, because there are infinitely many expansionary

stages, by Lemma 88. Note that once m(τn) is defined at or after stage s�, it is

ever after defined with the same value, by our choice of s�.

Case 1: Suppose Z(m(τn)) = 1. Then m(τn) /∈ D, because Z ∈ Q = S(C, D).

Thus if (ii) from our strategy for R happened for τn, it happened after (i), or at

the same stage as (i). Since τn is extendible in S, it cannot be that both (i) and

(ii) happened. So (ii) did not happen. Hence τn
�1 ∈ S̃. Set τn+1 = τn

�1.

Case 2: Suppose Z(m(τn)) = 0. Then m(τn) /∈ C. Thus if (i) from our

strategy for R happened for τn, it happened after (ii). Since τn is extendible in
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S, it cannot be that both (i) and (ii) happened. Hence (i) did not happen. So

τn
�0 ∈ S̃. Set τn+1 = τn

�0.

Define Y = ∪nτn. Since τn ∈ S̃ for each n, it follows that Y ∈ S. So, we have

shown U ≥s S, as was required. Hence R is satisfied.

By Lemma 89 there are only finitely many expansionary stages for R. Since

the strategy defines finitely many markers at each expansionary stage, and acts

on a marker at most once, it acts only finitely often.

Proposition 93. In a construction of a Π0
1 class Q consisting of a computable list

of strategies for positive and negative requirements carried out as just described,

each of the corresponding positive and negative requirements is satisfied.

Proof. By induction on the ordering of priority for the requirements, and

Lemmas 91 and 92.

All that remains is to show that the requirements we need to satisfy in our

construction for Q can be stated as positive and negative requirements in the

sense of Definition 90.

Lemma 94. To satisfy the requirements I.Ne, I.Pe, II.Pe,i, III.Ne,i, and IV.Ne,x,y

given at the beginning of Section 3.8, it suffices to satisfy the following, slightly

simplified, requirements.

For each e ∈ ω.

I.N �
e ≡ Φe : Q ∨Qb �→ Qa.

I.P �
e ≡ Φe : Qb �→ Q ∧Qa.
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II.P �
e,i ≡ Φe : Qi �→ Q ∧Qa.

where i ∈ Ink+1
(Nk,≤N ).

III.N �
e,i ≡ Φe : Q ∨Qb �→ Qi,

where i ∈ Ink+1
(Nk,≤N ).

IV.N �
e,x,y ≡ Φe : Q ∨Qb ∨Qx �→ Qy,

where x, y ∈ �Nk are such that Qb ∨Qx �s Qy.

V.P �
e,x,y ≡ Φe : Qy �→ Q ∧Qa ∧Qx,

where x, y ∈ �Nk are such that Qa ∧Qx �s Qy.

Proof. Notice that when trying to show U �s V , it suffices to prove the inequality

with U � substituted for U if U � ≥s U , or with V � substituted for V if V � ≤s V .

Proposition 95. There is a Π0
1 class Q that meets the requirements described at

the beginning of Section 3.8.

Proof. Apply Lemma 94. We shall show how the requirements given by

Lemma 94 are in the form of positive and negative requirements in the sense of

Definition 90. To show this, for each requirement we describe what to take for S

and U or V . For each of the first four requirements, we also make use of one of

the three inequalities from Lemma 68: Qb �s Qa,Qi �s Qa, and Qb �s Qi, for

all i ∈ Ink+1
(Nk,≤N ).
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For I.N �
e take S = Qb and V = Qa. Note Qb �s Qa.

For I.P �
e take U = Qb and S = Qa. Note Qb �s Qa.

For II.P �
e,i take U = Qi and S = Qa. Note Qi �s Qa.

For III.N �
e,i take S = Qb and V = Qi. Note Qb �s Qi.

For IV.N �
e,x,y, where x, y ∈ �Nk are such that Qb∨Qx �s Qy, take S = Qb∨Qx and

V = Qy. The condition on x, y is exactly what we need for this to be a negative

requirement.

For V.P �
e,x,y, where x, y ∈ �Nk are such that Qa ∧ Qx �s Qy, take U = Qy and

S = Qa ∧ Qx. The condition on x, y is exactly what we need for this to be a

positive requirement.

An application of Proposition 93 completes the proof.

Proposition 95 completes the proof of Lemma 66, which completes the proof

of the central result of this chapter, Theorem 58.
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CHAPTER 4

OTHER VIEWS OF THE ∀∃-THEORY OF Ps.

4.1 A model-theoretic understanding

Another way to way to state the solution to the extension of embeddings prob-

lem for Ps in the language L = {0, 1,≤} is given in the following theorem. It will

be helpful to recall our conventions stated in Section 3.1.1. We only need to

consider L-structures that are actually partial orders with greatest and least ele-

ments; �L structures are in the language {0, 1,≤,∧,∨} and are actually distributive

lattices in which ∨ and ∧ are defined by ≤.

Theorem 96. Let M ⊆ N be L-structures. Every embedding of M into Ps

extends to an embedding of N into Ps

iff

For every �L-structure �M that minimally extends M and in which 0 is non-

branching, there is an �L-structure �N that extends �M and into which N embeds.

For Ps is as accommodating as could possibly be hoped. To begin with, any

L-structure does embed into Ps, and in every conceivable �L-way (so long as 0 is

non-branching); then, an extension is impossible, only if it is algebraically impos-

sible.
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4.2 A proof-theoretic characterization of the ∀∃-theory

Definition 97. A positive ∃-sentence is one which is in prenex normal form and

contains only existential quantifiers. Note that a positive ∃-sentence cannot begin

with a negation symbol before the string of existential quantifiers. It may, of

course, use the negation symbol after the block of existential quantifiers. An

∃-sentence is either a positive ∃-sentence, or the negation of a positive ∃-sentence.

Definition 98. Similarly a positive ∀∃-sentence is one which is in prenex normal

form and has a block of universal quantifiers followed by a block of existential

quantifiers.

Example 99. If ϕ(x, y) is a quantifier-free formula, then ∀x∃yϕ(x, y) is a positive

∀∃-sentence. On the other hand, ¬∀x∃yϕ(x, y) is not.

Recall L = {0, 1,≤} and �L = {0, 1,≤,∧,∨}. We define a collection of �L

sentences: T = {ϕ : Ps |= ϕ & ϕ is an ∃-sentence}.

Proposition 100. Suppose ψ is a positive ∀∃-sentence in the language L.

Then Ps |= ψ ⇐⇒ T does not refute ψ.

Proof. (⇒) Suppose Ps |= ψ. Since Ps |= T , T does not refute ψ.

(⇐) We show the contrapositive. Suppose Ps �|= ψ. We must show T refutes

ψ. Using completeness, we prove that if �P is an �L structure and �P |= T , then

�P |= ¬ψ.

By the proof of Proposition 44, there are finitely many instances of the multi-

extension of embeddings problem in the language L,

(M0,N00, . . . ,N0k0), . . . , (Mt,Qt0, . . . ,Qtkt), so that an L-structure P satisfies ψ

just in case each of these instances of the multi-extension of embeddings problem

has an affirmative answer for P .

84



Fix an �L-structure �P |= T ; of course, it is also an L-structure.

By supposition, Ps �|= ψ. Thus, Ps has a negative answer for one of the

above-mentioned instances of the multi-extension of embeddings problem, say

(M0,N00, . . . ,N0k0). Thus, there is an embedding f : M0 �→ �M0 �→ Ps that

does not extend to an embedding into Ps of any N00, . . . ,N0k0 . (Where �M0 is an

�L-structure minimally extending M0 and isomorphic to the closure of the image

of M0 in Ps, as described in Definition 37 and Proposition 39.)

Now, we apply the proof of Theorem 60 to obtain the following condition,

which we label (∗). For every 0 ≤ i ≤ k0 either

1. There are n1, n2 ∈ N0i so that (n1, n2) is a degenerate pair for �M0 or

2. There is n ∈ N0i−M0 so that C( �M0,M0,≤N0i , n) does not hold, where C

is as in Definition 55.

Let M0 = {m0, . . . ,mr}. Let θ(x0, . . . , xr) be an �L-formula so that

θ(f(m0), . . . , f(mr)) is the “complete atomic �L diagram of f(m0), . . . , f(mr) in

Ps.” The quotation marks are necessary, because, in reality, the existence of the

function symbols ∧ and ∨ in �L means the complete atomic diagram is infinite.

However, the distributive laws for Ps ensure the existence of a normal form for each

element named by a term. Therefore, we may take θ to be a conjunction of atomic

formulas of the form
�

n

�
i∈Jn

xi ≤
�

n�
�

i∈Jn�
xi where each Jn, Jn� ⊆ {0, . . . , r}

and
�

n

�
i∈Jn

f(mi) ≤
�

n�
�

i∈Jn�
f(mi) holds in Ps, or the negation of such a

formula, such that the negation of the corresponding statement holds in Ps.

Let ϕ be the ∃-sentence ∃x0 . . . ∃xr(θ(x0, . . . , xr)). Ps |= ϕ, so ϕ ∈ T , and so

�P |= ϕ.

Note that {“xa ≤ xb”: ma ≤ mb} ∪ {“xa � xb”: ma � mb} is a subset of the

atomic sentences that comprise θ and expresses that x0, . . . , xr are able to be the
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image of an L-embedding of M0. So let g : M0 �→ �Mg
0 �→ �P . (Again, �Mg

0 is as

in Definition 37 and Proposition 39.) Since θ gives a complete atomic �L diagram,

we must be able to construct g so that �Mg
0 is isomorphic to �M0. Hence, we may

write g : M0 �→ �M0 �→ �P .

Now, since (∗) depends only on M0 and �M0, (∗) still holds relative to the

embedding g. Hence, we may conclude from Theorem 60 that g : M0 �→ �P does

not extend to any embedding of any N00, . . . ,N0k0 into �P . Then, �P has a neg-

ative answer for the instance (M0,N00, . . . ,N0k) of the extension of embeddings

problem. Hence, �P �|= ψ, as desired.

86



CHAPTER 5

SOME RESULTS IN Pw.

We do not know the Turing degree of the elementary theory of Pw. In this

chapter, we say something about index sets related to it, and a little that is

known about the question of density. This first result suggests that the degree of

the theory may actually achieve the natural upper bound.

To help with this section, a review of the concept of a homeomorphism in the

context of descriptive set theory can be found in [12]. A review of Kleene’s O and

of the computation of the complexity of sentences with function quantifiers may

be found in [2].

5.1 Index sets related to Pw.

The material in this Section is the result of joint work with

Stephen G. Simpson [7].

Definition 101. Let Φe(σ) = Φσ
e � n, where n is the greatest number such that

Φσ
e,|σ|(m) is defined for all m < n.

Definition 102. A treemap is a function TM : ω<ω → ω<ω such that

F (σ)�i ⊆ F (σ�i) for all σ ∈ ω<ω and all i ∈ ω.

Definition 103. If S ⊆ ω<ω but is not necessarily a tree, let

[S] = [{σ : ∃τ ∈ S,σ ⊆ τ}].
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Remark 104. Let TM be a treemap, and let T ⊆ ω<ω be a tree. Then,

h ∈ [TM(T )] ⇐⇒ ∃f ∈ [T ] so that
�

n TM(f � n) = h.

Definition 105. For τ, σ ∈ ω<ω, we say τ is a substring of σ if there are strings

σ0, . . . ,σ|τ |, each allowed to be the emptystring, so that

σ = τ(0)�σ0
�τ(1)�σ1

�τ(2)�σ2
� . . . �τ(|τ |)�σ|τ |.

Remark 106. Suppose TM is a treemap. If τ is minimal so that σ ⊆ TM(τ),

then τ is a substring of σ.

Proposition 107. Given Π0
1 sets P ,Q ⊆ ωω such that Q does not contain a

computable function, we can effectively find a Π0
1 set H(P ,Q) ⊆ ωω that is home-

omorphic to P and such that there are not g ∈ Q and h ∈ H(P ,Q) with g ≤T h.

Proof. We begin by describing HQ(P) ⊆ ωω homeomorphic to P and missing the

cone of Turing degrees above Q. To begin with HQ(P) will be only Π0
2, not Π0

1,

but we will be able to convert it to the desired Π0
1 class H(P ,Q) by a standard

trick.

Let TP ⊆ ω<ω be a computable tree such that [TP ] = P . Let TQ ⊆ ω<ω be

a computable tree such that [TQ] = Q. We shall actually construct a tree map

TM : ω<ω → ω<ω and then take HQ(P) = [TM(TP)]. Note that by Remark 104,

we will have h ∈ HQ(P) ⇐⇒ ∃f ∈ P so that
�

n TM(f � n) = h.

We define TM by induction. Let TM(∅) = ∅. To define TM(σ�i), let e = |σ|

and τ0 = TM(σ)�i. Given τn, let τn+1 be the least τ such that τn ⊂ τ and

Φe(τn) ⊂ Φe(τ) ∈ TQ. If no such τ exists, let τn+1 be undefined. This must

happen for some n; otherwise, we would have Φe(τn) ⊂ Φe(τn+1) ∈ TQ for all n,

and
�

n Φe(τn) would be a computable path in Q, contrary to assumption. So, we

may set TM(σ�i) = τn for the least n such that τn+1 is undefined.
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This construction is similar to the one in the proof of Theorem 2.1 in [4]. This,

in turn, is similar to the argument in the proof of Theorem 4.1 in [11].

Lemma 108. There are not f ∈ ωω and g ∈ Q so that
�

n TM(f � n) ≥T g.

Proof. Suppose f � =
�

n TM(f � n) ≥T g. Let e be such that Φf �
e = g. Consider

σ�i = f � (e + 1), and the definition of TM(σ�i) ⊂ f �. There is no τ ⊃ TM(σ�i)

so that Φe(τ) ⊃ Φe(TM(σ�i)) and Φe(τ) ∈ TQ. Hence, Φf �
e /∈ Q, contrary to the

assumption.

Lemma 109. HQ(P) = [TM(TP)] is a Π0
2 subset of ωω, and a Π0

2 index may be

effectively computed from a Π0
1 index for P.

Proof. From Remark 106, HQ(P) = [TM(TP)] = {f : ∀n∃τ(τ ∈ TP & τ is a

substring of f � n & f � n ⊆ TM(τ))}. Here ∃τ is in effect a bounded quantifier,

because, given n, there are only finitely many substrings of f � n. From its

definition, it can be seen that TM is computable from 0�. Hence HQ(P) is Π0,0�

1 .

We also note that this index is effectively calculated from a Π0
1 index for P . Finally,

we recall that a Π0,0�

1 set is a Π0
2 set and the Π0

2 index can be effectively calculated

from the Π0,0�

1 index.

The following Lemma effectively converts this Π0
2 class into a satisfactory Π0

1

class. The technique is “Skolemization.”

Lemma 110. Let U be a Π0
2 subset of ωω. From a Π0

2 index we can effectively

obtain a Π0
1 index for V ⊆ ωω that is homeomorphic to U , and with the same

Turing degree spectrum as U .
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Proof. Say U = {f : ∀x∃yR(f, x, y)} where R is a computable relation. Consider

V = {f⊕k : ∀xR(f, x, k(x)) & for each x, k(x) is the least y such that R(f, x, y)}.

Note that for each f ∈ U and its corresponding k, f ≡T f ⊕ k ∈ V . Also note

that V is homeomorphic to U (see [12]) and is Π0
1.

To see V is Π0
1: let Φe be a computable functional such that Φf

e (x, y) = 1 if

R(f, x, y) and Φf
e (x, y) = 0 if ¬R(f, x, y). We define a computable tree TV and

claim V = [TV ]. For σ ∈ ω<ω, define fσ, kσ ∈ ω<ω such that σ = fσ ⊕ kσ. If

∃x ≤ |σ| such that Φfσ

e,|σ|(x, kσ(x)) = 0, we set σ /∈ TV . If ∃x ≤ |σ| and ∃y < kσ(x)

such Φfσ

e,|σ|(x, y) = 1, we also set σ /∈ TV . Otherwise, we set σ ∈ TV .

We may apply Lemma 110 to U = HQ(P) to obtain H(P, Q) = V . By this

lemma and Lemma 109, we gain effectivity and the homeomorphism with P as

sought by Proposition 107. Lemma 108 and Lemma 110 ensure that no element

of H(P ,Q) computes an element of Q. This completes the proof of

Proposition 107.

Lemma 111. Let U ⊆ ωω be Σ0
3. Let u be the weak degree of U . Then inf(u,1)

belongs to Pw. Moreover, a Π0
1 index for a representative of inf(u,1) can be

effectively computed from a Σ0
3 index for U .

Proof. This lemma is due to Simpson [21].

Theorem 112. Let {Qi}i∈ω be an effective enumeration of the nonempty Π0
1 sub-

sets of 2ω. For each i let qi be the weak degree of Qi. If j is such that pj > 0, then

the index sets {i : pi = pj} and {i : pi ≥ pj} are Π1
1 complete sets of integers.

Proof. Let {Se}e∈ω be an effective enumeration of all Π0
1 subsets of ωω. By a

result of Kleene and Spector (see [2, Theorem 5.14]), the index set {e : Se = ∅}
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is a Π1
1 complete set of integers. We shall reduce this Π1

1 complete set to each of

the index sets in question. Fix an index j such that qj > 0, which implies Qj has

no computable member. Given an index e, by Proposition 107 we can effectively

find an index h(e, j) such that Sh(e,j) = H(Se,Qj). Also, Lemma 111 tells us that

we can effectively find an index f(e, j) such that Qf(e,j) is weakly equivalent to

Se∪Qj. Combining these two results: given an index e, we can effectively find an

index i = f(h(e, j), j) such that Qi ≡w H(Se,Qj) ∪Qj.

We can see the reduction now. If Se = ∅, then H(Se,Qj) = ∅, hence Qi is

weakly equivalent to Qj. On the other hand, if Se �= ∅, then H(Se,Qj) �= ∅ and

for all h ∈ H(Se,Qj), there is no g ∈ Qj such that g ≤T h, hence Qj is not weakly

reducible to Qi. Thus we see that the Π1
1 complete set {e : Se = ∅} is reducible

to both {i : qi = qj} and {i : qi ≥ qj} via the reduction e �→ f(h(e, j), j).

Definition 113. Let O be Kleene’s O, a Π1
1 complete set of integers.

Proposition 114. An upper bound for the Turing degree of the elementary theory

of (Pw,0,1,≤w) is the degree of O(ω), the ω-th jump of O.

Proof. This proof does not depend on Theorem 112. We note that we think of an

integer n as representing Qn, the n-th nonempty Π0
1 class in our effective listing

of them. We further suppose that Qn = [Tn], where {Tn}n∈ω is an effective listing

of the infinite computable binary-branching trees.

If f ∈ 2ω, then f ∈ Qm ⇐⇒ ∀n(f � n ∈ Tm). This gives a Π0
1 predicate on a

function and a number.

Qm ≤w Qn ⇐⇒ ∀f(f ∈ Qn ⇒ ∃e(Φf
e ∈ Qm)). This gives a Π1

1 predicate on

pairs of numbers.
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Qm ≡w Qn ⇐⇒ Qm ≤w Qn & Qn ≤w Qm. This gives a Π1
1 predicate on

pairs of numbers.

Qm ≡w 0 ⇐⇒ ∀n(Qn ≥w Qm). This gives a Π1
1 predicate on numbers.

Qm ≡w 1 ⇐⇒ ∀n(Qn ≤w Qm). This gives a Π1
1 predicate on numbers.

Thus all atomic sentences about elements of Pw are decidable by a Π1
1 complete

oracle. It then immediately follows that degT (O(ω)) is an upper bound for the

Turing degree of the elementary theory of (Pw,0,1,≤w).

From Theorem 112 and Proposition 114 one can conjecture that the Turing

degree of the elementary theory of Pw in the language {0, 1,≤} is O(ω), the ω-th

jump of Kleene’s O. This is reasonable especially in light of similar results, for

example in [17].

5.2 A note on the downward density of Pw.

We have discussed the proof that Ps is dense; and that its techniques seem

insufficient for showing the density of Pw. Yet, there are a few partial results in

the area. We mention one. We have seen Binns’ [3] result that every non-zero

weak degree splits. This shows that Pw is downward dense, at least: there is a

degree between any degree and 0. It is interesting to note that a proof of the

downward density of Pw is available through classical theorems about c.e. Turing

degrees and Π0
1 classes.

Proposition 115. Pw is downward dense.

Proof. The proof is based on the following two results from a paper by Jockusch

and Soare [10].
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Theorem 116. If P is a Π0
1 class with no computable member, then there exists

a nonzero c.e. Turing degree a such that P has no member of degree ≤ a [10,

Theorem 2].

Theorem 117. If a is a Turing degree and 0 < a ≤ 0�, then a is the degree of a

member of some Π0
1 class with no computable member [10, Corollary 1.1].

Given a Π0
1 class Q with no computable member, by Theorem 116 let a be

a nonzero c.e. Turing degree such that Q has no member of degree ≤ a. By

Theorem 117 there is a Π0
1 class U with an element of degree a and no computable

member. Consider Q∪U . Note that 0 <w Q∪U because neither Q nor U contains

a computable member. Also, Q ∪ U ≤w Q because Q ∪ U ⊇ Q. Now, there is

f ∈ Q ∪ U of degree a. By choice of a, anything computed by f is not in Q.

Hence Q ∪ U �w Q. Thus 0 <w Q ∪ U <w Q, as desired.
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