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The global structure of computably enumerable sets

Peter A. Cholak

Abstract. We will work in the structure of the computably enumerable sets. The lan-
guage is just inclusion, ⊆. This structure is called E . Our quest is to partially survey
our current understanding of the global structure of E and the relationship between E and
the computably enumerable degrees and to pose questions whose answers should provide
further insight.

1. Introduction

There are four themes that run throughout most work on E : Definability, or-
bits/automorphisms/isomorphic substructures, computational complexity, and dynamic
properties. Clearly, definability is a general theme throughout all of mathematical logic.
The study of orbits and automorphisms (in general) dates from the 1870’s and earlier.
Mainly we will use Turing reducibility, Turing jump and the related jump classes (lown
and highn classes) as a measure of computational complexity. This is part of our con-
nection to the computably enumerable degrees. The dynamic properties are more hidden
but we will try to highlight them. What is so nice in E is how all four themes interrelate
with each other. At present this is just a bold claim but, in this paper, we will provide
elaboration and justification of this claim.

1.1. Preliminaries. Before we start this journey we must deal with some preliminar-
ies. First, this is not the only paper on E in this collection. Soare [2000] also focuses on
E .

All sets will be computably enumerable noncomputable sets and all degrees will be
computably enumerable and noncomputable, unless otherwise noted. Our notation and
definitions are standard and follow Soare [1987]; however we will try to provide some
definitions and notational niceties throughout the text so the reader need not consult Soare
[1987].

The sets and relations 0, 1, ∩ and ∪ are definable from ⊆. Hence E can be considered
as a lattice. “X is computable” is definable; “X is computable” iff X is complemented. “X
is finite” is definable in E ; “X is finite” iff all subsets of X are computable (it takes a little
computability theory to show if X is infinite then X has an infinite noncomputable subset).
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We will also consider the quotient structure E modulo the ideal of finite sets, E
∗. E

∗ is
a definable quotient structure of E . We use A∗ to denote the equivalence class of A modulo
the ideal of finite sets. If there is an automorphism, 8∗, of E

∗ such that 8∗(A∗) = B∗,
then there is an automorphism, 8, of E such that 8(A) = B (in which case we say A
and B are automorphic) [see Soare, 1987, XV.2.7]. Given this, we will blur the difference
between E and E

∗.

2. A beautiful example

Perhaps the example we are about to present is overworked but it still highlights our
four themes in an excellent fashion.

M is maximal if for all W either W ⊆∗ M or M ∪ W =∗ ω. Friedberg [1958] showed
that there is a maximal set [see Soare, 1987, X.3.3].

Theorem 2.1 (Soare [1974]). If M1 and M2 are maximal sets then there is an auto-
morphism 8 of E such that 8(M1) = M2. Hence the maximal sets form an orbit.

Theorem 2.2 (Martin [1966]). A degree h is high iff there is a maximal set M such
that M ∈ h.

Definition 2.3. A class D of degrees is invariant if there is a class S of (c.e.) sets
such that

(i) d ∈ D implies there is a W in S and d,
(ii) W ∈ S implies deg(W ) ∈ D , and

(iii) S is closed under automorphic images.

Corollary 2.4. The high degrees are invariant.

Let’s see how our four themes come into play. Theorem 2.1 implies that the maxi-
mal sets are a nonempty elementarily definable orbit. (By elementarily definable we will
mean definable by a formula in Lω,ω , an elementary formula.) Clearly, Corollary 2.4
involves computational complexity (measured in terms of jump classes). The proofs of
Theorems 2.1 and 2.2 rely on dynamic properties.

We say that a function f is dominant if f dominates every computable function. The
proof of Theorem 2.2 breaks up into two parts: First one shows that the principal function
of the complement of a maximal set is a dominant function, and then, one shows that a
computably enumerable degree d is high iff d contains a dominant function. The idea is
that lots of numbers must enter a maximal set.

The proof of Theorem 2.1 relies, in part, on the following: There is a list of computably
enumerable sets Ui where Ui = W f (e) and f is computable in 0′′ such that

• for all e there is an i such that We =∗ Ui ,
• for all e there is a σe such that σe is the e-state of M w.r.t. {Ui}i∈ω (σ(i) = 1 iff

M ⊆∗ Ui ) [dymanic isomorphism], and
• if Xσ = ∩{Ui : σ(i) = 1} then Xσ ↘ M = {x : ∃s, t[x ∈ (Xσ,s − Ms) ∩ Mt ]}

is infinite iff σ = σe, for some e (or an empty extension of some σe) [replete].

These facts can be established using the fact that M is maximal. Several proofs of this can
be found, all using some version of Soare’s Extension Theorem [see Soare, 1987, XV.4.5].
For example, see Soare [1987, XV.4-6] or Cholak [1994b]. Soare has announced another
proof of this using another version of the Extension Theorem which he is calling the New
Extension Theorem, see Soare [2000] for more details.
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3. Orbits and 1-types

The creative sets (Harrington, see Soare [1987, XV.1.4]); the maximal sets; the quasi-
maximal sets of rank k, for any k (Soare, see Soare [1987, XV.4.8]); the Herrmann sets
(Herrmann, see Cholak and Downey [n.d.]); the quasi-Herrmann sets of rank k, for any k
(Cholak and Downey [n.d.]); the hemi-maximal sets (Downey and Stob [1990]); the hemi-
quasi-maximal sets of rank k, for any k (Downey and Stob [1990]); the hemi-Herrmann
sets (Cholak and Downey [n.d.]); and the hemi-quasi-Herrmann sets of rank k, for any k,
(Cholak and Downey [n.d.]) are all elementarily definable orbits. (The actual definition of
these sets is not important, just the fact that they are elementarily definable.) Since each
of these orbits is elementarily definable, the defining formula describes a principal type.
Hence there are infinitely many 1-types of E

∗ and so E
∗ is not ℵ0-categorical. Clearly E

has infinitely many 1-types: “X has n elements” is a 1-type in E .

Question 3.1. (i) Show that these (the above list) are the only elementarily
definable orbits.

(ii) Show these are the only principal types.
(iii) Describe all orbits.

The key to all of the above results is that we have some control over the complement
of the set. So to show that the above list is not the complete list of elementarily definable
orbits, one should examine the sets where one has some control over the complement.

A set H is hhsimple iff L
∗(H ) (the supersets of H modulo the finite sets) is a Boolean

algebra. In general, the hhsimple sets will not work to extend the above list. As there are
nonautomorphic hhsimple sets whose L

∗s are isomorphic. This is due to Lerman, Shore
and Soare [1978] and was later extended to all possible L

∗s (for all hhsimple sets) by
Herrmann [1989]. So given hhsimple sets whose L

∗s are isomorphic, one could try to
add some additional properties to ensure that the sets are automorphic. Some other good
possibilities to extend the above list are r -maximal sets with a maximal superset and the
major subsets of a maximal set.

However, I conjecture the Question 3.1 has a positive answer; there are no more such
orbits. Even if this conjecture is incorrect, I doubt there is a first-order elementarily de-
finable orbit whose proof is not similar to any of the known results. The next theorem
shows that answering Question 3.1 is bound to be hard and supports my conjecture that the
answer to Question 3.1 is positive.

Theorem 3.2 (Cholak, Downey and Harrington [n.d.]). {(A, B) : A ' B} is 61
1-

complete.

Corollary 3.3. (i) Not all orbits are elementarily definable.
(ii) E is not a prime model (of its theory).

(iii) There is no arithmetical description of all orbits.
(iv) The Scott rank of E is at least ωC K

1 .

But can we actually find examples realizing and extending the above corollary? I.e.:

Question 3.4. (i) Find an orbit which is not a principal orbit.
(ii) For all computable ordinal α, find a pair of computably enumerable sets which

are 10
α-automorphic but not 10

β-automorphic, for β < α. (The definition of
10

α-automorphic appears below.)
(iii) Can we find an orbit O such that membership in O is 61

1 complete?
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Examining types allows us to prove two model-theoretic results: E is not ℵ0-categorical
and is not a prime model. Since, if a model is homogeneous, its Scott rank is at most
ω + 1, E

∗ is not homogeneous or saturated.

4. Automorphisms

The main question here is :

Question 4.1. Describe all automorphisms of E .

However, given the following theorem and Theorem 3.2, this seems like an unanswer-
able question. But we will argue that it is actually an answerable question.

Theorem 4.2 (Lachlan, see Soare [1987, XV.2.2]). There are 2ℵ0 automorphisms of
E .

We can sidestep Lachlan’s result since all these automorphisms are similar. They
just move computably enumerable subsets of almost cohesive sets. There is a tower of
computable sets Ri such that for every e, either We ⊆ Re or We ⊆ Re. Let Sn be an
infinite coinfinite computably enumerable subset of Rn+1 − Rn . Given a function f , let
8 f be the automorphism of E induced by sending 8 f (Sn) to (Rn+1 − Rn) − Sn and
8 f ((Rn+1 − Rn) − Sn) to Sn if f (n) = 1; otherwise 8 f (actually the permutation which
induces 8 f ) is the identity on Rn+1 − Rn. But even without Lachlan’s result we still would
not have an arithmetical description of all automorphisms by Theorem 3.2.

Our understanding of automorphisms of E is unique to E . In most structures with
nontrivial automorphisms we can construct automorphisms via the normal “back and forth”
argument. But this is not the case with E . To construct automorphisms of E we use the
properties of being well-visited and well-resided. Well-visited is 50

2 and not being well-
resided is 60

3 (we use the negation). Since the complexity of these properties is at most
60

3 , the construction of the desired automorphism can be placed on a tree. (We will not
discuss the details on this placement nor of the construction of an automorphism of E but
direct the reader to Harrington and Soare [1996b] or Cholak [1995].)

But before we can continue we need some notation: We will need a way to classify
the complexity of automorphisms of E . Let 8 be an automorphism of E . We say 8 is
a 10

n-automorphism if there is a 10
n function f such that 8(We) =∗ W f (n). Then f

is called a presentation of 8. Two sets A and B are 10
3-automorphic iff there is a 10

3-
automorphism 8 such that 8(A) = B. This method of classification can also be used for
isomorphisms between L

∗(A) and L
∗(B). L

∗(A) and L
∗(B) are 10

3-isomorphic (written
L

∗(A) '10
3

L
∗(B)) iff there is an isomorphism 8∗ between L

∗(A) and L
∗(B) and a 10

3
function f such that 8∗(W ∗

e ) = W ∗
f (e).

If an automorphism 8 is constructed on a tree then 8 has a presentation computable
in the true path (which is 10

3). Hence all automorphism constructed in this way are 10
3-

automorphisms (or even effective automorphisms). All of the known results except Theo-
rems 3.2 and 4.2 involving automorphisms use 10

3-automorphisms.
The structure E has 2ℵ0 automorphisms. Hence, there must be automorphisms which

are not 10
3. Even with Lachlan’s result there was some slight hope that the relation of

whether two sets are automorphic would be 10
3 or at least arithmetical. But Theorem 3.2

shows this is not the case. Therefore we know that there are useful non-10
3-automorphisms.

But the proof of Theorem 3.2 does not allow us to clearly lay our hands on any such
automorphisms. The automorphisms constructed for this theorem are based on complex



COMPUTABLY ENUMERABLE SETS 5

arrangements of 10
3-isomorphisms. (The automorphisms constructed in Lachlan’s proof

are complex arrangements of effective isomorphisms.) Thus there is some hope that all
automorphisms are just complex arrangements of 10

3-isomorphisms. The next collection
of results provides us with some factual basis for this hope.

Let S(A) = {B : ∃C(B t C = A)}. S(A) is the set of splits of A and S(A) forms
a Boolean algebra. R(A) = {R : R ⊆ A and R is computable}. R(A) is the set of
computable subsets of A and is an ideal of S(A). SR(A) is the quotient structure S(A)

modulo R(A). If W ∈ S(A) then let W R(A) be the equivalence class of W in SR(A).
SR(A) is a Boolean algebra and is definable in E with a parameter for A. If A and B
are automorphic then the structures SR(A) and SR(B) are isomorphic structures. But
something much stronger is true.

Theorem 4.3 (Cholak and Harrington [n.d.a]). If A and B are automorphic then the
structures SR(A) and SR(B) are 10

3-isomorphic structures (that is there is an isomor-
phism 9 between SR(A) and SR(B) and a 10

3-function f such that for We ∈ S(A), W f (e)

is in 9(WR(A)); and we will write this as SR(A) '10
3

SR(B)).

By Theorem 3.2 we cannot go from a 10
3 isomorphism from SR(A) to SR(B) to an

automorphism of E taking A to B. But there is the hope that we can add extra conditions
to this 10

3 isomorphism to help construct the desired automorphism. Theorem 4.3 also
provides evidence that we are limited to our current methods in how we can construct
automorphisms of E . This is certainly the case for hhsimple sets:

Theorem 4.4. Let H1 and H2 be hhsimple. H1 and H2 are automorphic iff they are
10

3-automorphic iff L
∗(H1) '

10
3

L
∗(H2).

Theorem 4.3 will also have an impact in showing that certain sets cannot be automor-
phic. Most such results go more or less as follows: First show that the sets A and B cannot
be 10

3-automorphic. Then use the failure to be 10
3-automorphic to find a definable property

P true of A but not of B. By using Theorem 4.3, perhaps we can formalize this process. If
not then at least we can use Theorem 4.3 to diagonalize against all 10

3-isomorphisms and
show that certain sets are not automorphic without producing a definable difference.

An announcement of Theorems 4.3 and 4.4 and some other interesting results and
examples can be found in Cholak and Harrington [n.d.b].

Perhaps our current understanding of automorphisms of E may be helpful in other
areas, such as the computably enumerable degrees. In our constructions we have a notion
of an e-state; enough information, if correctly acted on, to build a partial automorphism
between the first e sets. We know that if we act properly, i.e. make moves to copy the
well-visited and well-resided states, we can extend our actions to handle all (e + 1)-states.

As we mentioned earlier, the normal back and forth argument fails. Back and forth
arguments fail because we do not know anything about the n-types of E .

Question 4.5. Describe the n-types of E .

The next definition captures α moves of the standard back and forth argument (see
Barwise [1973] or Ash and Knight [2000]).

Definition 4.6. (i) EA ≤1 EB iff every 61 formula realized by EB is realized by
EA.

(ii) EA ≤β
EB iff for all ED, δ if 1 ≤ δ < β there is a EC such that EB, ED ≤δ

EA, EC .

Question 4.7 (Knight). When is EA ≤β
EB?
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If for all computable α, A ≡α B (A ≤α B and B ≤α A) then A and B are automor-
phic (see Ash and Knight [2000]). So, by Theorem 3.2, for all computable α, there are
automorphic A and B such that A 6≡α B.

5. Upward and downward cones

We want to turn to computational complexity issues. First, we will consider the prop-
erty of being automorphic to a complete set. This issue first arose because of Post’s Pro-
gram. One version of Post’s Program is to find a definable property Q in E such that if
Q(A) then Q is incomplete. By Harrington and Soare [1991] this has a positive solution:
There is a property Q(A) such that there is an A where Q(A) holds and if Q(A) holds then
A is not automorphic to a complete set.

Theorem 5.1. All sets listed in the first paragraph of Section 3 (the references are
the same as the references listed there) and the almost prompt sets (Harrington and Soare
[1996b]) are automorphic to a complete set B.

This gives rises to the question of which sets are automorphic to complete sets.

Question 5.2. (i) Characterize all sets automorphic to complete sets.
(ii) Is {e : We is automorphic to a complete set} 61

1 -complete?

In terms of the automorphism results, sending A to a complete set B means that we
can add numbers to B at any time and continue to build the automorphism. Harrington
showed [see Harrington and Soare, 1996b] that for all incomplete d and all noncomputable
A, there is a B such that A and B are automorphic and B �T d. But this construction
also involves adding things to B. Cholak [1995] and, independently, Harrington and Soare
[1996b] showed that every noncomputable set is automorphic a high set B. Hence we
can pump up the degree in terms of jump class. Again this construction involved adding
numbers to B. Given a random A, we have very little control over the actual degree of
B. Controlling the degree of B would involve restraining numbers from B. The question
remains: Can we avoid downward cones?

Question 5.3. Let A be incomplete. Does there exists a B such that A ' B and
A �T B?

One might ask what is the complexity of the index set of those As that are automorphic
to a B which cannot Turing compute A? In fact, we can always turn most of our questions
into index set questions.

6. Invariant degree classes

Martin [1966] showed that the degrees of the maximal sets are exactly the high de-
grees. Lachlan [1968a] and Shoenfield [1976] showed that the degrees of sets without
maximal supersets are exactly the nonlow2 degrees. So the high degrees and the nonlow2
degrees are invariant. In addition, L0 = 0 and L0 = R − 0 are invariant as witnessed by
the computable sets and noncomputable sets, respectively.

Harrington in unpublished work showed that the property of being creative is elemen-
tarily definable in E [see Soare, 1987, XV.1.1]. Hence H0 is invariant. Harrington and
Soare [1996b] showed that every prompt set is automorphic to a complete set and hence
H0 is noninvariant. Maass, Shore and Stob [1981] showed that there is a definable class of
sets (the promptly simple sets – see below) which splits all jump classes. Also, in as yet
unpublished work, Harrington and Soare [see Harrington and Soare, 1996a, Corollary 4.4]
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have shown that L1 is not invariant. They prove this by showing there is a properly low2
degree d such that if A ≤T d then there is a low B such that A and B are automorphic.
(Note the similarities between this and Question 6.5.) The theorem that every noncom-
putable set is automorphic to a high set implies that no downward closed jump class is
invariant.

It is known that the prompt degrees are invariant: Maass [1983] showed that all
promptly simple sets with semilow complements are automorphic. Maass et al. [1981]
show that every promptly simple set has the splitting property (a definable property, see
Maass et al. [1981] for details) and every set which has the splitting property is prompt.
Now it is enough to show that there is a promptly simple set with semilow complement in
every prompt degree. One such proof can be found in Wald [1999, Theorem 1.4.1]. We
cannot help but point out that the prompt degrees have a dynamic definition and are nat-
urally definable in the computably enumerable degrees [for more details see Soare, 1987,
XIII].

The most recent result on invariant jump classes is:

Theorem 6.1 (Cholak and Harrington [n.d.c]). For all n ≥ 2, the highn (lown) com-
putably enumerable degrees are invariant.

We would like to look slightly closer at this result and some of its corollaries. (See the
paper Cholak and Harrington [n.d.c] or the announcement Cholak and Harrington [n.d.b]
for more details.)

Theorem 6.2 (Cholak and Harrington [n.d.c]). Let C = {a : a is the Turing degree of
a 60

3 set J ≥T 0′′}. Let D ⊆ C be such that D is upward closed. Then there is an L(A)

property ϕD(A) such that D′′ ∈ D iff there is an A such that A ≡T D and ϕD (A).

Corollary 6.3. Let F be a class of computably enumerable degrees such that if
a ∈ F and a′′ ≤T b′′ then b ∈ F . Then F is invariant.

Corollary 6.4. If a′′ > b′′ then there is an A ∈ a such that for all B ∈ b, A 6' B
(in fact, L(A) and L(B) are not isomorphic).

More or less we have shown that the double jump can be encoded into E . What about
the single jump? The following question is the strongest possible negation of encoding the
single jump in the above fashion (see Corollary 6.4) and is a generalization of the result of
Harrington and Soare that L1 is noninvariant.

Question 6.5. Let J be computably enumerable in and above 0′′. There are degrees
a and b such that a′ 6= b′, a′′ ≡T b′′ ≡T J , and for all A ≤T a there is a B such that
B ≤T b and A ' B.

The “no fat orbit” result of Downey and Harrington [1996] (this result will be dis-
cussed later) says that the degrees in the above conjecture most likely are both prompt or
both tardy (not prompt). So the fact that the prompt degrees are invariant provides some
evidence that the conjecture should be true. In addition, we have some partial results in
this direction: For example, in Cholak [1995], it is shown, for all A and for all H1 degrees
h there is a B ∈ h such that L

∗(A) ' L
∗(B). Recently Harrington has announced a

generalization of the above theorem:

Theorem 6.6 (Harrington). For all A and degrees d if A′ ≤T d′ there is a B ∈ d such
that L

∗(A) ' L
∗(B).
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One might also want to try to combine a positive answer to Question 6.5 with Shore’s
noninversion theorem for the jump [Shore, 1988] or the result of Cooper [1989] that there
is a degree computably enumerable in and above 0′ which is not the jump of a tardy degree.
In addition, one could add other degree theoretic conditions on a and b.

By Corollary 6.3, Hω = ∪n∈ωHn is invariant. Solovay has shown Hω is 60
ω+1-complete

and hence nonarithmetical [see Soare, 1987, XII.4.14]. Let C be the class of computably
enumerable sets witnessing that Hω is invariant. So a computably enumerable degree d is
in Hω if there is a computably enumerable set A in both d and C. Whether A is in d is
arithmetical. So whether A is in C cannot be arithmetical. Hence C is not definable in E

by a Lω,ω formula. (Otherwise it would be arithmetical.)
The above class C provides another1 negative answer to Shoenfield’s question if every

class C of computably enumerable sets closed under automorphic images is definable in E

by a Lω,ω formula. We note that such a C is definable in E by a Lω1,ω formula: C is a
countable union of orbits. Each orbit is definable by a Lω1,ω formula. So C is definable
by the countable disjunction the formulas defining the orbits in C.

The formula ϕD(A) in Theorem 6.2 is a Lω1,ω formula. One might ask if this formula
can be improved to an elementary formula. The above work concerning Hω shows that in
general this is not possible. But it leaves open the possibility that the complexity of the
defining formula can be decreased in some cases. Call a class D of computably enumerable
degrees an elementarily definable invariant degree class if D is invariant and the class C of
computably enumerable sets witnessing D is invariant is elementarily definable. The high
degrees and the nonlow2 degrees are both elementarily definable invariant degree classes.
Are the high2 degrees an elementarily definable invariant degree class?

Corollary 6.3 shows that any class of degrees F such that if a ∈ F and a′′ = b′′

then b ∈ F is invariant. This is not true for the single jump, for example as the nonlow
degrees are not invariant. But this says nothing about classes which are unrelated to the
jump operator.

Question 6.7. Characterize the (elementarily definable) invariant degree classes.

In particular:

Question 6.8. Are the array noncomputable degrees invariant?

As evidence that the above question might have a positive answer, we note that in the
collection of all 50

1 classes, Cholak, Coles, Downey and Herrmann [n.d.] have recently
shown that the anc degrees are invariant.

But how should we approach this question? Downey, Jockusch and Stob [1990]
showed that every nonlow2 degree is anc but there are low2 anc degrees. The nonlow2
degrees are invariant. There are two proofs of this: First Lachlan [1968a] and Shoenfield
[1976] showed that the degrees of atomless sets are exactly the nonlow2 degrees and sec-
ond, via Theorem 6.1. One could try to find another definable property which exactly
describes the anc degrees. Or one could try to push the second proof through to work for
the anc degrees. Both of these plans seem unlikely. The most likely outcome is there is
an anc degree d such that every A ∈ d is automorphic to a nonanc set. This is similar to
Question 6.5 and Harrington and Soare’s result that there is properly low2 degree d such
that every A ∈ d is automorphic to a low set.

Downey and Harrington [1996] have shown that there is no fat orbit. That is, they
showed there is a definable property S(A), a prompt L1 degree d1, a prompt H2 degree

1The work in Lempp [1987] and Nies [1997] also provides negative answers.
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d2 greater than d1, and a tardy H2 degree e such that for all E ≤T e, ¬S(E) and if
d1 ≤T D ≤T d2 then S(D). This result points out the dichotomy between the prompt and
tardy degrees. A corollary is that, except for the high degrees, no single orbit can witness
that a member of the Hn, Ln hierarchy is invariant. Downey and Harrington ask whether
their result can be extended to include the case when e is high. Harrington and Cholak
conjecture that this is not the case:

Conjecture 6.9 (Cholak-Harrington). For every noncomputable degree a there is a
set A whose orbit contains every high degree.

All of the above theorems and questions explore invariant degree classes and orbits
containing only degrees in these classes. The “no fat orbit” theorem says that we can
separate certain degrees via orbits: we can separate some prompt degree from a tardy
degree. A positive answer to the above conjecture implies that we cannot separate a random
degree from any high degree via orbits. The following question generalizes this idea.

Question 6.10. Is there a tardy (Ln, Hn) set A whose orbit contains a set of every
prompt (Ln, Hn) degree?

7. Decidability and coding issues

Harrington and Herrmann developed various coding methods in E
∗. They both were

able to use their methods to show that the theory of E
∗ is undecidable [Herrmann, 1984;

Harrington, 1983]. Harrington was able to extend his methods to show that the theory of
E

∗ has degree 0(ω) [see Cholak, 1994a; Harrington and Nies, 1998]. The coding method
used for this result has been further developed in Harrington and Nies [1998], where is it
is shown that the structure (ω, +, ×, 0, 1, ≤) can be coded in E

∗ with parameters but one
cannot code a linear order into E

∗ without parameters. Nies [1998] later sharpened this
result to show that the standard model of arithmetic can be coded in E

∗ with 5 alternations
of quantifiers and the 56-theory of E

∗ is undecidable.

Question 7.1. How many alternations of quantifiers does it take to define a model of
arithmetic? 4 or less?

On the decidable side, Lachlan [1968b] showed that the ∃∀-theory of E
∗ is decidable

(he included 0, 1, ∪ and ∩ in the language). This was later slightly expanded by Lerman
and Soare [1980]. See Soare [1987, XVI.2] for an overview of these results.

Question 7.2. Is the ∀∃∀-theory of E
∗ decidable? At what exact level does the theory

of E
∗ fail to be decidable?

We should mention that the proofs of Theorems 4.3 and 6.2 involve a new definable
encoding. The actual details of this coding are complex. These details and some theorems
concerning this coding will appear in Cholak and Harrington [n.d.c]. We feel that this
coding has great potential. This coding is simpler to decode than the previous coding.
More or less, it can be decoded at the 6 A

3 level. Perhaps it can be used to answer the above
two questions.

8. Connections with the computably enumerable degrees?

Even given Cooper’s claim that there is an automorphism of the computably enumer-
able degrees, the biinterpretability conjecture with parameters remains a strong possibility
to globally understand the computably enumerable degrees (R) [see Cooper, 1999; Shore,
1999; Slaman, 1999].
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One of the corollaries of the biinterpretability conjecture with parameters is that the
underlying structure has at most countably many automorphisms. We know that E has
2ℵ0 automorphisms; hence the biinterpretability conjecture with parameters for E fails. It
would be nice to suggest a global paradigm for E .

It is still open if R has 2ℵ0 automorphisms. If so, we suggest that any paradigm
to describe the computably enumerable degrees can be used to describe the computably
enumerable sets and vice-versa.

We will close by pointing out one of the many similarities between the computably
enumerable sets and degrees. By Corollary 6.3, any class of computably enumerable de-
grees closed under the double jump is invariant in E . Nies, Shore and Slaman [1998] have
shown that any relation on the computably enumerable degrees which is invariant (used in
a different sense) under the double jump is definable in R iff it is definable in first order
arithmetic. See Shore [2000] for more details.

References
Ash, C. J. and Knight, J. F. [2000]. Computable structures and the hyperarithmetical hierarchy. In prepartion.
Barwise, J. [1973]. Back and forth through infinitary logic, pp. 5–34. MAA Studies in Math., Vol. 8.
Cholak, P. [1994a]. Notes on 3 theorems by Leo Harrington. Handwritten Notes.
Cholak, P. [1994b]. The translation theorem, Arch. Math. Logic 33: 87–108.
Cholak, P. [1995]. Automorphisms of the lattice of recursively enumerable sets, Mem. Amer. Math. Soc.

113(541): viii+151.
Cholak, P., Coles, R., Downey, R. and Herrmann, E. [n.d.]. Automorphisms of the lattice of 50

1 classes; perfect
thin classes and anc degrees. Submitted, Draft available.

Cholak, P. and Downey, R. [n.d.]. Some orbits for E
∗. Preprint Available.

Cholak, P., Downey, R. and Harrington, L. A. [n.d.]. Automorphisms of the computably enumerable sets: 61
1 -

completeness. In preparation.
Cholak, P. and Harrington, L. A. [n.d.a]. 10

3-automorphisms of the computably enumerable sets. In preparation.
Cholak, P. and Harrington, L. A. [n.d.b]. Definable encodings in the computably enumerable sets. Submitted,

Draft available.
Cholak, P. and Harrington, L. A. [n.d.c]. On the definability of the double jump in the computably enumerable

sets. Submitted, Draft available.
Cooper, S. [1999]. Local degree theory, in E. R. Griffor (ed.), Handbook of computability theory, Vol. 140 of

Studies in Logic, North–Holland Publishing Co., chapter 4, pp. 121–154.
Cooper, S. B. [1989]. A jump class of noncappable degrees, J. Symbolic Logic 54: 324–353.
Downey, R. G., Jockusch, Jr., C. G. and Stob, M. [1990]. Array nonrecursive sets and multiple permitting argu-

ments, in K. Ambos-Spies, G. H. Muller and G. E. Sacks (eds), Recursion Theory Week, Oberwolfach 1989,
Vol. 1432 of Lecture Notes in Mathematics, Springer–Verlag, Heidelberg, pp. 141–174.

Downey, R. G. and Stob, M. [1990]. Automorphisms and splittings of recursively enumerable sets, Proceedings
of the Fourth Asian Logic Conference, CSSK Centre, pp. 75–87.

Downey, R. and Harrington, L. [1996]. There is no fat orbit, Ann. Pure Appl. Logic 80(3): 277–289.
Friedberg, R. M. [1958]. Three theorems on recursive enumeration. I. decomposition. II. maximal set. III. enu-

meration without duplication., J. Symbolic Logic 23: 309–316.
Harrington, L. A. [1983]. The undecidability of the lattice of recursively enumerable sets. Handwritten Notes.
Harrington, L. A. and Nies, A. [1998]. Coding in the partial order of enumerable sets, Adv. Math. 133(1): 133–

162.
Harrington, L. A. and Soare, R. I. [1991]. Post’s program and incomplete recursively enumerable sets, Proc. Nat.

Acad. Sci. U.S.A. 88: 10242–10246.
Harrington, L. A. and Soare, R. I. [1996a]. Definability, automorphisms, and dynamic properties of computably

enumerable sets, Bull. Symbolic Logic 2(2): 199–213.



COMPUTABLY ENUMERABLE SETS 11

Harrington, L. A. and Soare, R. I. [1996b]. The 10
3-automorphism method and noninvariant classes of degrees,

J. Amer. Math. Soc. 9(3): 617–666.
Herrmann, E. [1984]. The undecidability of the elementary theory of the lattice of recursively enumerable sets,

Frege conference, 1984 (Schwerin, 1984), Akademie-Verlag, Berlin, pp. 66–72.
Herrmann, E. [1989]. Automorphisms of the lattice of recursively enumerable sets and hyperhypersimple sets,

Logic, methodology and philosophy of science, VIII (Moscow, 1987), North-Holland, Amsterdam, pp. 179–
190.

Lachlan, A. H. [1968a]. Degrees of recursively enumerable sets which have no maximal supersets., J. Symbolic
Logic 33: 431–443.

Lachlan, A. H. [1968b]. The elementary theory of the lattice of recursively enumerable sets, Duke Math. J.
35: 123–146.

Lempp, S. [1987]. Hyperarithmetical index sets in recursion theory, Trans. Amer. Math. Soc. 303: 559–583.
Lerman, M., Shore, R. A. and Soare, R. I. [1978]. r-maximal major subsets, Israel J. Math. 31(1): 1–18.
Lerman, M. and Soare, R. I. [1980]. A decidable fragment of the elementary theory of the lattice of recursively

enumerable sets, Trans. Amer. Math. Soc. 257(1): 1–37.
Maass, W. [1983]. Characterization of recursively enumerable sets with supersets effectively isomorphic to all

recursively enumerable sets, Trans. Amer. Math. Soc. 279: 311–336.
Maass, W., Shore, R. A. and Stob, M. [1981]. Splitting properties and jump classes, Israel J. Math. 39: 210–224.
Martin, D. A. [1966]. Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grund-

lag. Math. 12: 295–310.
Nies, A. [1997]. Intervals of the lattice of computably enumerable sets and effective boolean algebras, Bull. Lond.

Math. Soc. 29: 683–92.
Nies, A. [1998]. Coding methods in computability theory and complexity theory. Habilitationsschrift, Universität

Heidelberg.
Nies, A., Shore, R. A. and Slaman, T. A. [1998]. Interpretability and definability in the recursively enumerable

degrees, Proc. London Math. Soc. (3) 77(2): 241–291.
Shoenfield, J. R. [1976]. Degrees of classes of recursively enumerable sets, J. Symbolic Logic 41: 695–696.
Shore, R. [1999]. The recursively enumerable degrees, in E. R. Griffor (ed.), Handbook of computability theory,

Vol. 140 of Studies in Logic, North–Holland Publishing Co., chapter 6, pp. 169–198.
Shore, R. [2000]. Natural definability in degree structures, in P. Cholak, S. Lemmp, M. Lerman and R. Shore (eds),

Computability Theory and Its Applications: Current Trends and Open Problems, American Mathematical
Society.

Shore, R. A. [1988]. A noninversion theorem for the jump operator, Ann. Pure Appl. Logic 40: 277–303.
Slaman, T. [1999]. The global structure of the Turing degrees, in E. R. Griffor (ed.), Handbook of computability

theory, Vol. 140 of Studies in Logic, North–Holland Publishing Co., chapter 5, pp. 155–168.
Soare, R. I. [1974]. Automorphisms of the lattice of recursively enumerable sets I: maximal sets, Ann. of Math.

(2) 100: 80–120.
Soare, R. I. [1987]. Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Omega

Series, Springer–Verlag, Heidelberg.
Soare, R. I. [2000]. Extensions, automorphisms, and definability, in P. Cholak, S. Lemmp, M. Lerman and

R. Shore (eds), Computability Theory and Its Applications: Current Trends and Open Problems, Ameri-
can Mathematical Society.

Wald, K. [1999]. Automorphism and noninvariant properites of the computably enumerable sets, PhD thesis,
University of Chicago.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5659

E-mail address: Peter.Cholak.1@nd.edu


	1. Introduction
	2. A beautiful example
	3. Orbits and 1-types
	4. Automorphisms
	5. Upward and downward cones
	6. Invariant degree classes
	7. Decidability and coding issues
	8. Connections with the computably enumerable degrees?
	References

