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Abstract. We prove an algebraic extension theorem for the computably
enumerable sets,E . Using this extension theorem and other work we
then show ifA and Â are automorphic via9 then they are automor-
phic via3 where3 � L∗(A) = 9 and3 � E∗(A) is 10

3. We give an

algebraic description of when an arbitrary setÂ is in the orbit of a com-
putably enumerable setA. We construct the first example of a definable
orbit which is not a10

3 orbit. We conclude with some results which re-
strict the ways one can increase the complexity of orbits. For example,
we show that ifA is simple andÂ is in the same orbit asA then they
are in the same10

6-orbit and furthermore we provide a classification of
when two simple sets are in the same orbit.

1. Introduction

We will work in the structure of the computably enumerable sets. The
language is just inclusion,⊆. This structure is calledE . There have been
a large number of papers, see [7, 8, 19] for some recent surveys, study-
ing E and the interaction withinE among the following four mathematical
concepts:

• Automorphisms: Is there a classification of the orbits ofE . Which
sets are automorphic, i.e., in the same orbit?

• Definability: What computably enumerable sets can be defined (in
the language of just{⊂})? Is there a formula which distinguishes
one set from another withinE?

• Dynamic Properties: How fast (or slow) can a set be enumerated
compared to another set? or with respect to the standard enumera-
tion of all computably enumerable sets?

• Complexity: How do sets in an orbit interact with each other via
Turing reducibility? How do the sets in an orbit fit into jump classes,
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in particular, the lown and highn classes? This interaction is part of
our connection to the computably enumerable degrees.

In this paper we focus on automorphisms and orbits although some aspects
of the remaining concepts will arise.

Our understanding of automorphisms ofE is unique toE . In most struc-
tures with nontrivial automorphisms we can construct automorphisms via
the normal “back and forth” argument. But this is not the case withE . To
construct automorphisms we use the properties of beingwell-visitedand
well-resided. Well-visited is50

2 and not being well-resided is60
3 (we use

the negation). Since the complexity of these properties is at most60
3, the

construction of the desired automorphism can be placed on a tree. (We will
not discuss the details on this placement nor of the construction of an auto-
morphism ofE but direct the reader to Harrington and Soare [11] or Cholak
[3].) This method is called the10

3 automorphism method. If an automor-
phism8 is constructed on a tree then8 has a presentation computable in
the true path (which is10

3). Hence all automorphisms constructed in this
way are10

3-automorphisms. (In some cases we can make the automorphism
effective.)

One step above using the10
3 automorphism method is to use anextension

theorem. Basically, an extension theorem extends an isomorphism between
two substructures ofE to an automorphism ofE . The isomorphism between
two substructures ofE can be given in a number of ways and the same can
be said about the resulting automorphism.

Generally, extension theorems are introduced to prove new automor-
phism results but they also allow us to reflect back and understand old
automorphism results. Our philosophy is to argue modularly as much as
possible. The hope is that an extension theorem provides an “understand-
able” module in the construction of an automorphism ofE .

The first major automorphism result, Soare’s result [17] that the maximal
sets form an orbit, used Soare’s Extension Theorem. In Cholak [3], sev-
eral more extension theorems were introduced and used to show that every
noncomputable computably enumerable set is automorphic to a high set. In
Cholak [2], the Modified Extension Theorem was introduced which allowed
many of the automorphism constructions to be recast as using an extension
theorem. For example, in Cholak [2], the results about orbits of hhsimple
sets in Maass [15] and the result that the hemimaximal sets form an orbit
found in Downey and Stob [10] were recast in this fashion. The Modi-
fied Extension Theorem has a weaker hypothesis than Soare’s Extension
Theorem. Soare has recently proven the “New Extension Theorem” and
in addition to proving several new automorphism results with Harrington
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he has recast almost all known automorphism results using this and similar
theorems (see Soare [19] and Soare [16]).

All of these extension theorems share several common features. First
they alwaysproduce10

3 automorphisms. All but Soare’s Extension The-
orem used the10

3 automorphism method as described in Cholak [3] and
Harrington and Soare [11]. Soare’s Extension Theorem was done effec-
tively. The isomorphism which these extension theorems extend and the
resulting automorphism are givendynamically.

The big issue before applying any extension theorem is to “match” up
“entry states” which is done dynamically. The work done in Section3.1
illustrates what we mean by dynamic, entry states, and matching.

One of the goals of this paper is to prove two new extension theorems
(Theorems3.1 and4.9). These two theorems differ from the previous ex-
tension theorems. Theorem4.9allows the possibility that the resulting au-
tomorphism is not10

3. Both of them are stated “algebraically” (or “stati-
cally”). We have come up with an algebraic description of entry states and
matching usingextendible Boolean algebrasand supports. Theorem4.9
follows algebraically from Theorem3.1. However we are not free from the
use of dynamic methods. For example, the proof of Theorem3.1is dynamic
and uses Soare’s Extension Theorem along with other dynamic theorems.

(One word of caution: We use the word algebraic to mean facts or results
about the structures we are considering. The structures we consider are
Boolean algebras and lattices which are ordered structures where all the
definable relations and functions can be defined just using the order, not
necessarily the structures, a model theorist or algebraist might wish to study.
So a model theorist or algebraist might wish to read “order-theoretic” in
place of “algebraic”.)

Theorem4.9 shows that whether an isomorphism betweenL∗(A) and
L∗(Â) can be extended to an automorphism depends on the existence of a
“nice” isomorphism among “some of the entry states”, where “some of the
entry states” corresponds to extendible Boolean algebras and “nice” means
some properties of the presentation of the algebras and the isomorphism.

As with any extension theorem, our extension theorems allow us to both
reflect on old automorphism results and prove new automorphism results. In
Section5, we reprove some of the automorphism results mentioned above
using Theorems4.9 and 5.3. One current shortcoming of our extension
theorem is with results where one is given a computably enumerable setA
and constructs an automorphicÂ with certain properties (such as highness,
for example); this is what Soare calls a “type 2” automorphism result (see
Soare [19, Section 7]). But this might change.
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By our extension theorems, the main result from Cholak and Harrington
[6] (which depends heavily on Cholak and Harrington [5]) and a result about
automorphisms and extendible Boolean algebras which resembles an auto-
morphism construction, we can show that ifA and Â are automorphic via
9 then the isomorphism betweenL∗(A) andL∗(Â) induced via9 can be
extended into an automorphism3 where3 � E∗(A) is 10

3. In other words
we can convert9 into an automorphism3 with some nice properties.

The Conversion Theorem (Theorem6.3). If A and Â are automorphic via
9 then they are automorphic via3 where3 � L∗(A) = 9 and3 � E∗(A)

is 10
3.

Hence the complexity of an automorphism comes from the induced iso-
morphism betweenL∗(A) andL∗(Â). The impact of this theorem is that if
we want to showA andÂ are automorphic we are not handicapped by using
an extension theorem or the10

3 automorphism method. If we showA andÂ
are automorphic via3, where3 is built using an extension theorem or the
10

3 automorphism method, then3 � E∗(A) is always10
3. Our result says

if there is an automorphism takingA to Â then there is an automorphism
taking A to Â which is10

3 on the inside ofA and Â.
As a result we get an algebraic description, in terms of theL∗(A), L∗(Â),

and extendible algebras, of when an arbitrary setÂ is in the orbit of a com-
putably enumerable setA (see Theorem6.4). Not surprisingly the alge-
braic description is61

1; it begins “does there exist an isomorphism between
L∗(A) andL∗(Â)”.

In Section7, we use our extension theorems to show that there is an
elementary definable10

5 orbit O, which is not an orbit under10
3 auto-

morphisms. All the previously known orbits are orbits under10
3 automor-

phisms.
What is surprising is that this complexity comes from howA ∈ O inter-

acts with sets which are disjoint fromA. It was long thought this complexity
would come from howA interacts with setsW such thatW ∩ A 6=

∗
∅ and

W − A is infinite. For more details see Section7.3 and Theorem7.17. In
Theorem8.7, we improve Theorem7.17 to all A; we show given an ar-
bitrary computably enumerable setA the complexity of the orbit ofA is
determined by the sets disjoint fromA.

There will be a sequel to this paper. In the forthcoming paper we show
that there are orbits which are orbits under10

α+1 automorphisms but not
10

α automorphisms, for all computableα. Cholak, Downey, and Harrington
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have shown that the conjecture of Slaman-Woodin that{(A, Â) : A is auto-
morphic toÂ} is 61

1-complete is correct. We hope to use our extension the-
orems to provide an understandable and manageable proof of the Slaman-
Woodin conjecture. In fact, we want to show that there is anA such that
whetherÂ is in the orbit ofA is 61

1-complete. Theorems7.17and8.7will
have great impact on how we approach these forthcoming results; they force
us to use techniques similar to those used in Sections7.1.1and7.2.5. Our
extension theorems seem the best tool for these tasks since we must build
non-10

3 automorphisms in all cases.
Our results certainly justify our philosophy to argue modularly as much

as possible with the use of Soare’s Extension Theorem as a module. It
would be very difficult, if not impossible, to argue that building automor-
phisms ofE all at once would be more enlightening.

In Section2, we introduce and discuss the algebraic notations needed for
our extension theorems. The remaining sections have been discussed above.

2. Splits of A

2.1. Notation and definitions. Our notation and definitions are standard
and follow Cholak and Harrington [8] which follows Soare [18].

We will be dealing with isomorphisms between various substructures of
E and automorphisms ofE . In all cases we will think of the isomorphism
(automorphism) as a map fromω to another copy ofω, ω̂. All subsets ofω̂
will wear hats. We refer tôω as thehattedside and sometimes we refer toω

as theunhattedside. When we define something on the unhatted side there
is, of course, the hatted dual. We will use this duality frequently without
mention.

2.2. The structure SR(A). Fix a computably enumerable setA.

Definition 2.1. Let S(A) = {B : ∃C(B t C = A)}. S(A) is the splits ofA
andS(A) forms a Boolean algebra.F (A) is the finite subsets ofA and is
an ideal ofS(A). Let S∗(A) be the quotient structureS(A) moduloF (A).
Let R(A) = {R : R ⊆ A andR is computable}. R(A) is the computable
subsets ofA and is an ideal ofS(A). Let SR(A) be the quotient structure
S(A) moduloR(A).

Let W be in S(A). Then letW̆ = A − W (a computably enumerable
set) andWR be the equivalence class ofW in SR(A). From Cholak and
Harrington [6, Lemma 2.2], we know that ifA is noncomputable, then
SR(A) is the atomless Boolean algebra and hence every Boolean algebra
can be embedded inSR(A).
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2.3. 60
3 Boolean algebras.Recall from Soare [18] the following defini-

tion.

Definition 2.2. A countable Boolean algebraB = ({Xi }i ∈ω, ≤, ∪, ∩, ¯) is
a 60

3 Boolean algebraif the listing {Xi }i ∈ω is uniformly computable and
there are computable functionsf and g and a60

3 relation R such that
Xi ∪ X j = X f (i, j ), Xi ∩ X j = Xg(i, j ), and Xi ≤ X j iff R(i, j ). (An
element ofB must appear at least once in{Xi }i ∈ω but there is no bound on
the number of times an element may appear in{Xi }i ∈ω.)

We should be familiar with60
3 Boolean algebras. There is a beauti-

ful theorem of Lachlan (see Soare [18, X.7.2]) that says ifB is any60
3

Boolean algebra then there is an hhsimple setH such thatL∗(H) is iso-
morphic toB. Let L̃(H) be the quotient substructure ofSR(H) given by
{R ∩ H : R is computable} moduloR(H). Clearly, as given,̃L(H) is de-
finable inE with a parameter forH . In Cholak and Harrington [6, Lemma
11.2], it is shown thatL∗(H) andL̃(H) are isomorphic. Hence there is
a substructure ofSR(A) which ranges over all60

3 Boolean algebras asA
ranges over all computably enumerable sets.

All of the Boolean algebras we consider will be substructures ofSR(A),
L∗(A), or E . So we will always consider the list{Xi }i ∈ω as a list of com-
putably enumerable sets. The operations will be union, intersection, and
complementation on computably enumerable sets; and hence the functions
f andg are clearly computable. The relationR will reflect eitherX ⊆ Y,
X ⊆R Y, or X ⊆

∗ Y.

Lemma 2.3. Given two splits X and Y , whether X⊆R Y is60
3.

Proof. Given the index forX, it is possible to find in a10
3 way an index

for X̆. Similarly for Y. Hence we can find an index forX4Y in a 10
3

fashion. NowX ⊆R Y iff X4Y is computable iff there is anl such that
Wl t (X4Y) = ω. Since “Wl t (X4Y) = ω” is 50

2, the last clause in the
above sentence is60

3. �

Theorem 2.4. Let {Xi : i ∈ ω} be a uniformly computable list of com-
putably enumerable sets (not necessarily splits of A) and a60

3 set B such
that {Xi : i ∈ B} generates a subalgebraB of SR(A). Then there is a list
{Yi : i ∈ ω} where all the Yi s are splits of A, which witnesses thatB is
a 60

3 Boolean algebra. Furthermore there is a10
3 function g from B toω

such that Xi = Yg(i ).

Proof. Basically we are going to pad the60
3 list, {Xi : i ∈ B}, with lots of

finite sets to make it a computable list of computably enumerable sets all of
which are splits ofA. This padding will be done on a tree, 2<ω. It will be a
standard50

2 tree argument.
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Assumei ∈ B iff ∃kϕ(i, k), whereϕ(i, k) is 50
2. Assume thatϕ(i, k) is

(∀x)(∃y)[2(i, k, x, y)], where2 is 10
0. We define the true path by induc-

tion as follows: Letα ⊂ f such that|α| = 〈i, k〉. If ϕ(i, k) thenαˆ0 ⊂ f ;
otherwiseαˆ1 ⊂ f .

The approximation to the true path is also defined by induction. Let
α ⊆ fs such that|α| = 〈i, k〉 and|α| ≤ s. We need a length of agreement
function: lα(s) is the greatestz such that for allx ≤ z there is ay with
2(i, k, x, y). Let t < s be the last stage thatα ⊆ fs (if such a stage does not
exist lett = 0). If lα(t) < lα(s) (anα-expansionary stage) thenαˆ0 ⊆ fs;
otherwiseαˆ1 ⊆ fs. It is not too hard to show thatf = lim infs fs.

At β = αˆ0 we will construct a setYj . If β ⊆ fs for the first time ever
or the first time after being initialized, choose the leastj such thatYj is not
being constructed and start constructingYj . If β ⊆ fs andβ is buildingYj ,
let Yj,s = Xi,s, where|α| = 〈i, k〉. If β is to the right of fs we will initialize
β at stages (and end the construction of the currentYj ).

If β = αˆ0 ⊂ f then, by the nature of the tree construction, at some stage
β will be assigned a permanentYj and never be initialized after that stage.
ThenYj = Xi , where|α| = 〈i, k〉. If Yj is not permanently assigned to
such aβ thenYj is finite. �

Corollary 2.5. SR(A) is a60
3 Boolean algebra.

Proof. Given a computably enumerable setWe, it is 60
3 to decide ifWe is a

split of A (is there aj such thatWe t Wj = A). �

Definition 2.6. Following Theorem2.4, givenB a 60
3 Boolean algebra of

SR(A) (L∗(A) or E ), if there is a uniformly computable listX = {Xi }i ∈ω

of computably enumerable sets and a60
3 set B such that{Xi : i ∈ B}

generatesB, we sayX andB is arepresentationfor B. (B might be all of
ω.)

2.4. Listings of splits of A. We are concerned with the certain well-
represented subalgebras ofSR(A). Even if we knowX is a split of A we
still need0′′ to find aY such thatX t Y = A. We want to limit ourselves to
considering just splitsSwhere we can findA − Seffectively.

Definition 2.7. A uniformly computable listing,S = {Si : i ∈ ω}, of
splits of A is aneffective listingof splits of A iff there is another uniformly
computable listing{S̆i : i ∈ ω} of splits of A such thatSi t S̆i = A.

Lemma 2.8. Let Se = We ↘ A; this is an entry set. Then the entry sets,
S = {Se : e ∈ ω}, is an effective listing of splits.

Proof. (We ↘ A) t (A\We) = A. �
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With an entry set the corresponding split is determined at the momentx
entersA; eitherx entersA in We or not. The entry sets are the canonical ex-
ample of an effective listing of splits. This list depends on the enumeration
of A.

Lemma 2.9. Let S = {Si : i ∈ ω} be an effective listing of splits of
A. Then there is an enumeration of A, an effective listing of splits of A,

S̃ = {S̃i : i ∈ ω}, and an effective listing of splits of A,˘̃S = {
˘̃Si : i ∈ ω},

such that, for all i , w.r.t. the new enumeration of A,S̃i =
∗ Si , A ↘ S̃i = ∅

(so S̃i = S̃i ↘ A), A ↘
˘̃Si = ∅, S̃i t

˘̃Si t (A ∩ {0, 1, . . . i }) = A, and if

x ∈ S̃i,s t
˘̃Si,s then x∈ Sj,s t S̆j,s, for all j ≤ i .

Proof. Let x enterA (under the old enumeration). Wait forx to enterSi or

S̆i for i < x; addingx to S̃i or ˘̃Si , respectively. Then allowx to enterA
(under the new enumeration).

ClearlyS̃ = {S̃i : i ∈ ω} and ˘̃S = {
˘̃Si : i ∈ ω} are uniformly computable

listings of splits of A. The uniformly computable listing of splits ofA,

{
˘̃Si ∪ (A ∩ {0, 1, . . . , i }) : i ∈ ω} witnesses that̃S is an effective listing of

splits. Similarly{S̃i ∪ (A ∩ {0, 1, . . . , i }) : i ∈ ω} witnesses that˘̃S is an
effective listing of splits. �

Remark2.10. It is necessary thatS be an effective listing of splits ofA for
the above lemma to hold. The key point of this lemma is that whenx enters
A it has been determined whetherx is in S̃i or not. SoS̃i t (A\S̃i ) = A.

This lemma will be essential.It is used in Lemma2.15 which in turn
plays a key role in Section3.3. Also see the proof of Lemma3.8.

Hence as we vary the enumeration ofA we get almost all effective listing
of splits of A as entry sets. However we do not get all (noneffective) listing
of splits this way.

Lemma 2.11. No effective listing of splits of infinite computably enumer-
able set A contains all splits of A.

Proof. We will provide two proofs of this lemma.
Let S = {Se : e ∈ ω} be an effective list of splits ofA. Let

{ai : i ∈ ω} be a computable listing of the elements ofA without re-
peats. LetS = {ai : ai /∈ Si } = {ai : ai ∈ S̆i }. If S = Sj thena j ∈ S iff
a j ∈ Sj iff a j /∈ Sj . SoS 6= Sj , for all j .

By Lemma2.9, we can assumeSi = Si ↘ A and S̆i = S̆i ↘ A, for
all i . By easily modifying the Friedberg Splitting Theorem (see Soare [18,
X.2.1]), we can build a splitSandS̆such that ifSi ↘ A (S̆i ↘ A) is infinite
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thenSi ↘ S (S̆i ↘ S) is infinite and similarly forS̆. The splitS is not in
S. �

2.5. Extendible subalgebras.We would like to consider subalgebras of
SR(A) which have a representation that is an effective listing of splits ofA.

Definition 2.12. A 60
3 subalgebraB of SR(A) is extendibleiff there is

representationS andB of B such thatS is an effective listing of splits ofA
andB is a10

3 set.

We will assume that ifB is extendible then the given representation
is always an effective listing of splits ofA. From this point further
S = {Si : i ∈ ω} will always refer to an effective listing of splits ofA
and X = {Xi : i ∈ ω} to a uniformly computable list of computably
enumerable sets.

Lemma 2.13.The trivial subalgebra ofSR(A) is extendible.

Proof. Let S2e = ∅, S̆2e = A, S2e+1 = A, S̆2e+1 = ∅, andB = ω. �

Lemma 2.14. The subalgebraEA generated by the entry sets is extendible
(this is what we call an entry set Boolean algebra for A).

Proof. Use the listing from Lemma2.8andB = ω. �

Lemma 2.15. Let B ⊆ SR(A) be extendible viaS and B. There is an
enumeration of A and an effective listing of splits,S̃ = {S̃i : i ∈ ω}, such
that S̃ and B witness thatB is extendible and, for all i , A↘ S̃i = ∅ (and
so S̃i t (A\S̃i ) = A).

Proof. Apply Lemma2.9 to S to get the desired enumeration ofA and the
effective listing of splits ofA, S̃. {S̃i : i ∈ B} generatesB. �

Hence every extendible Boolean algebra is an extendible subalgebra of
an entry set Boolean algebra. Clearly every extendible Boolean algebra is a
60

3 Boolean algebra.

Lemma 2.16. If B andB ′ are extendible thenB ⊕ B ′ are extendible.

Proof. Let {Si }i ∈ω andB witness thatB is extendible and similarly forB ′.
Let T2i = Si andT2i +1 = S′

i . Then{T}i ≤ω and{2i : i ∈ B}∪{2i +1 : i ∈ B′
}

witness thatB ⊕ B ′ is extendible. �

Theorem 2.17.There is an extendible algebraB of SR(A) such that

(1) for all i ∈ B, Si is computable,
(2) for all R ∈ R(A), there is i∈ B such that R= Si , and
(3) B is infinite.
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Proof. For this proof fix an enumeration ofA (with A1 = ∅). The
idea is that if R is a computable split ofA then there arei0, i1, i2
such thatR = Wi0, A ↘ Wi0 = ∅ (w.r.t. this fixed enumeration),
W̆i0 = Wi1, A ↘ Wi1 = ∅, Wi0,s+1 t Wi1,s+1 = As+2, Wi0 = Wi2,
andWi1,s+1 ⊆ Wi2,s+1, for all s, (beforex entersA determine which ofR
or R = Wi2 x is in and addx to Wi0 or Wi1 andWi2 accordingly). In this
case, we can letSi = Wi0 andS̆i = Wi1, wherei = 〈i0, i1, i2〉. But to make
S a uniformly computable list of computably enumerable sets we must be
more careful.

Let i = 〈i0, i1, i2〉. Assume thatSi,s andS̆i,s have been defined andi has
not been declaredunusable. If (A ↘ Wi0)s+1 = ∅, (A ↘ Wi1)s+1 = ∅,
Wi0,s+1 t Wi1,s+1 = As+2, Wi0,s+1 ∩ Wi2,s+1 = ∅, andWi1,s+1 ⊆ Wi2,s+1,
then letSi,s+1 = Wi0,s+1 and S̆i,s+1 = Wi1,s+1. Otherwise declarei unus-
ableand, for alls′ > s, let Si,s′ = Si,s and S̆i,s′ = As′+1 − Si,s. {Si }i ∈ω is
an effective listing of splits ofA.

Let i ∈ B iff Wi0 t Wi1 = A, A ↘ Wi0 = ∅, A ↘ Wi1 = ∅,
Wi0,s+1 t Wi1,s+1 = As+2, Wi0 = Wi2, and Wi1,s+1 ⊆ Wi2,s+1, for all
s. B is 10

3.
{Si }i ∈ω and B represent our extendible algebraB. If i ∈ B then

Si = Wi0, S̆i = Wi1, andSi t Wi2 = ω and henceSi is computable. Given
a computable subsetR of A, by the first paragraph of this proof, there is an
correspondingi ∈ B with R = Wi0. Since there are infinitely many such
R, B is infinite. �

2.6. Isomorphisms.

Definition 2.18. We consider2 a partial map between splits ofA and splits
of Â an isomorphismbetween a substructureB of SR(A) and a substruc-
ture B̂ of SR(Â) if 2 preserves⊆R, for each equivalence classSR of
B if S ∈ SR, 2(S) exists, and for each equivalence classŜR of B̂ if
Ŝ ∈ ŜR, 2−1(Ŝ) exists. There is a functionh such that2(Wi ) = Ŵh(i )

and2−1(Ŵi ) = Wh−1(i ). If h is 10
3 then so is2.

Definition 2.19. We say two extendible Boolean algebrasB and B̂ are
extendibly isomorphicvia 2 iff

• there is an effective listing of splits{Si }i ∈ω and aB which witness
thatB is an extendible algebra,

• there are{Ŝi }i ∈ω and B̂ which witnessB̂ is an extendible algebra,
• for all i ∈ B, there is aj ∈ B̂ such that2(Si ) = Ŝj ,
• for all j ∈ B̂ there is ani ∈ B such that2−1(Ŝj ) = Si , and
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• this partial map induces an isomorphism2′ betweenB andB̂ as in
Definition2.18.

In this case, we say that2 is anextendible isomorphism. There is a function
h such that2(Si ) = Ŝh(i ) and2−1(Ŝi ) = Sh−1(i ). If h is 10

3 then so is2.

We write2(Si ) = Ŝ2(i ) and2−1(Ŝj ) = S2−1( j ). If S is not anSi , for all i ,

but SR ∈ B we let2(S) = 2′(S) and similarly forŜ. Hence we will also
consider2 to be an isomorphism (as in Definition2.18) betweenB andB̂.

Lemma 2.20. Let B be a60
3 substructure ofSR(A) and B̂ be a60

3 sub-

structure ofSR(Â). Assume that2 is a map between{Xi : i ∈ B} and
{X̂i : i ∈ B̂}. Furthermore assume that for i, j ∈ B, Xi − X j is computable
iff 2(Xi ) − 2(X j ) is computable and, dually, for all i, j ∈ B̂, X̂i − X̂ j

is computable iff2−1(X̂i ) − 2−1(X̂ j ) is computable. Then2 induces an
isomorphism2′ betweenB andB̂.

Proof. 2 and2−1 preserve⊆R. X j ⊆R Xi iff X j − Xi is computable iff
2(X j ) − 2(Xi ) is computable iff2(X j ) ⊆R 2(Xi ). And similarly for
2−1. Given SR ∈ B find i such thatXi ∈ SR and, for allS ∈ SR, let
2′(S) = 2(Xi ). 2′ is well defined and preserves⊆R since2 does. Define
2−1 dually. �

If 2 is an extendible isomorphism and we apply Lemma2.15to the ef-
fective listing of splits then2 remains an extendible isomorphism between
these two extendible algebras with regard to the new listing of splits.

Lemma 2.21. The trivial subalgebras ofSR(A) andSR(Â) are effectively
extendibly isomorphic as extendible subalgebras ofSR(A) andSR(Â).

Proof. Let {Si }i <ω be the listing of splits given in Lemma2.13 for the
trivial subalgebra ofSR(A). Let {Ŝi }i <ω be the listing of splits given in
Lemma2.13 for the trivial subalgebra ofSR(Â). Let 2(Si ) = Ŝi and
2−1(Ŝi ) = Si . �

Lemma 2.22. Assume thatB and B̂ are extendible subalgebras which
are extendibly isomorphic via2. Assume thatB ′ and B̂ ′ are extendible
subalgebras which are extendibly isomorphic via2′. Then, by Lemma2.16,
B⊕B ′ andB̂⊕B̂ ′ are extendible subalgebras which are extendibly isomor-
phic via1, where1(T2e) = 2(Se), 1(T2e+1) = 2′(S′

e), 1
−1(T̂2e) = 2−1(Ŝe),

and1−1(T̂2e+1) = (2′)−1(Ŝ′
e).

3. Extensions to isomorphisms

Recall thatE∗(A) is the structure({We ∩ A : e ∈ ω}, ⊆) modulo the
finite sets. An isomorphism betweenE∗(A) and E∗(Â) is a one-to-one,
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onto (both of these items are in terms of∗-equivalence classes) function,4,
from {We ∩ A : e ∈ ω} to {Ŵe ∩ Â : e ∈ ω} such thatWe ∩ A ⊆

∗ Wi ∩ A
iff 4(We ∩ Â) ⊆

∗ 4(Wi ∩ Â). Note the4 is applied toWe ∩ A, notWe.
The goal of this section is to prove and discuss the import of the following

extension theorem.

Theorem 3.1.LetB ⊆ SR(A) andB̂ ⊆ SR(Â) be two extendible Boolean
algebras which are10

3 extendibly isomorphic via2. Then there is a8 such

that 8 is a 10
3 isomorphism betweenE∗(A) and E∗(Â), for all i ∈ B,

8(Si ) =R 2(Si ), and for all i ∈ B̂, 8−1(Ŝi ) =R 2−1(Ŝi ).

What is important about this theorem is that we canextendthe extendible
isomorphism betweenB and B̂ to an isomorphism betweenE∗(A) and
E∗(Â).

The first clause of the conclusion should not be very surprising. Af-
ter all, if A and Â are infinite then there is an effective isomorphism9
betweenE∗(A) andE∗(Â). Let f be an effective map fromA to Â and
9(W) = f (W). Moreover, if A and Â are computable then9 clearly
computably agrees with2 on all Si and hence the second clause of the
conclusion holds with9.

The main use of Theorem3.1 is in the proof of Theorem4.9 and Theo-
rem5.4. These are the only examples of the use of Theorem3.1 in this pa-
per. However, we will provide several examples of the use of Theorem4.9
and Theorem5.4.

There are several possible ways to prove this theorem. For example, one
could use some of Soare’s recent work on extension theorems. We had used
such a proof in an earlier version of this paper. In this version we will base
our proof on published theorems. However, we will have to use them in
novel ways and, in a few cases, note that these proofs prove more than what
is actually stated.

We will base our proof on a theorem, the Translation Theorem, from
Cholak [2]. The proof will have a few parts. First we will restate the Trans-
lation Theorem in a slightly strengthened form and show why this version
follows from the proof in Cholak [2]. Then we construct a0′′ enumeration
witnessing that2 is an extendible isomorphism and meeting the hypothesis
of the Translation Theorem. Then we apply the modified Translation The-
orem followed by Soare’s original Extension Theorem to this enumeration
to get the desired isomorphism.

The proof of Theorem3.1 is one of the few places where we have to go
into the difficult details of actually building an isomorphism by a dynamic
construction and the use of states.
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3.1. The Modified Translation Theorem. These next definitions are a re-
peat of the first six definitions in Section 1 of Cholak [2] using slightly
different notation.

Definition 3.2. (1) {Xn}n<ω is a uniformly computable collectionof
c.e. sets if there is a computable functionh such that for alln,
Xn = Wh(n).

(2) {Xn}n<ω is auniformly0′′-computable collectionof c.e. sets if there
is a functionh ≤T 0′′ such that for alln, Xn = Wh(n).

(3) {Xn,s}n<ω,s<ω is a uniformly 0′′-computable enumerationof c.e.
sets if there is a functionh ≤T 0′′ such that for alln and s,
Xn,s = Wh(n),s.

Definition 3.3. For anye, if we are given uniformly computable enumera-
tions of {Xn,s}n≤e,s<ω and{Yn,s}n≤e,s<ω of c.e. sets{Xn}n≤e and{Yn}n≤e,
define thefull e-state of x at stage s,ν(e, x, s), with respect to (w.r.t.)
{Xn,s}n≤e,s<ω and{Yn,s}n≤e,s<ω to be the triple

ν(e, x, s) = 〈e, σ (e, x, s), τ (e, x, s)〉

where
σ(e, x, s) = {i ≤ e : x ∈ Xi,s}

and

τ(e, x, s) = {i ≤ e : x ∈ Yi,s}.

Definition 3.4. For any collection of c.e. sets{Xn}n≤e and{Yn}n≤e, define
thefinal e-state of x,ν(e, x), w.r.t {Xn}n≤e and{Yn}n≤e to be the triple

ν(e, x) = 〈e, σ (e, x), τ (e, x)〉

where
σ(e, x) = {i ≤ e : x ∈ Xi }

and
τ(e, x) = {i ≤ e : x ∈ Yi }.

Definition 3.5. Assume that{As}s<ω is a uniformly computable enumer-
ation of A, an infinite c.e. set. For anye, assume we are given uniformly
computable enumerations of{Xn,s}n≤e,s<ω and {Yn,s}n≤e,s<ω of c.e. sets
{Xn}n≤e and{Yn}n≤e. For each fulle-stateν, define the c.e. set

DA
ν = {x : ∃t such thatx ∈ As+1 − As andν = ν(e, x, s)

w.r.t. {Xn,s}n≤e,s<ω and{Yn,s}n≤e,s<ω}.

If x ∈ DA
ν , we say thatν is theentry stateof x w.r.t. {Xn,s}n≤e,s<ω and

{Yn,s}n≤e,s<ω into A. We say thatDA
ν is measured w.r.t.{Xn,s}n≤e,s<ω and

{Yn,s}n≤e,s<ω.
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The following definition is new and is used for notation ease.

Definition 3.6. We write X
.
=R Y iff X ⊆ Y andX =R Y.

Theorem 3.7(The Modified Translation Theorem). Assume that{A†
s}s∈ω,

{Â†
s}s∈ω, {U†

n,s}n<ω,s<ω, {V̂†
n,s}n<ω,s<ω, {Û†

n,s}n<ω,s<ω, and{V†
n,s}n<ω,s<ω

are uniformly 0′′-computable enumerations of the infinite c.e. sets A†

and Â† and the uniformly0′′-computable collection of c.e. sets{U†
n}n<ω,

{V̂†
n }n<ω, {Û†

n}n<ω, and{V†
n }n<ω satisfying the following conditions:

(3.1) (∀n)[Â†
↘ Û†

n = A†
↘ V̂†

n = ∅],

(3.2) (∀ν)[DA†

ν is infinite iff DÂ†

ν is infinite],

where, for all e-states, DA
†

ν is measured w.r.t{U†
n,s}n≤e,s<ω and{V̂†

n,s}n≤e,s<ω,

and DÂ†

ν is measured w.r.t{Û†
n,s}n≤e,s<ω and{V†

n,s}n≤e,s<ω.
Then there is a collection of uniformly computable c.e. sets{Un}n<ω,

{V̂+
n }n<ω, {Û+

n }n<ω, and {Vn}n<ω and uniformly computable enumera-
tions {As}s∈ω, {Âs}s∈ω, {Un,s}n<ω,s<ω, {V̂+

n,s}n<ω,s<ω, {Û+
n,s}n<ω,s<ω, and

{Vn,s}n<ω,s<ω of these sets such that

(3.3) As+1 = A†
s and Âs+1 = Â†

s,

(3.4) (∀n)[Â ↘ Û+

n = A ↘ V̂+

n = ∅],

(3.5) (∀n)(∃en)[U
†
n =

∗ Uen, V̂+

en

.
=R V̂†

n , Û+

en

.
=R Û†

n , and V†
n =

∗ Ven],

(∀e)[either[Ue\A =
∗ V̂+

e \A =
∗ Û+

e \Â =
∗ V\Â =

∗
∅]

(hence, by Equation(3.4), Û+

e = V̂+

e =
∗

∅) or

[there is an n such that e= en (from Equation(3.5))]],

(3.6)

(3.7) (∀ν)[D Â
ν is infinite implies(∃ν′

≥ ν)DA
ν′ is infinite],

(3.8) (∀ν)[DA
ν is infinite implies(∃ν′

≤ ν)[D Â
ν′ is infinite]],

where, for all e-states, DAν is measured w.r.t{Un,s}n≤e,s<ω and{V̂+
n,s}n≤e,s<ω,

and DÂ
ν is measured w.r.t{Û+

n,s}n≤e,s<ω and{Vn,s}n≤e,s<ω.
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3.2. Proving the Modified Translation Theorem. We will show that the
Modified Translation Theorem follows from the version of the Translation
Theorem published in Cholak [2]. Equations labeled “3.x” refer to the Mod-
ified Translation Theorem and equations labeled “1.x” refer to the Transla-
tion Theorem.

First note that rather thanA†, A, Â†, Â, Û+, andV̂+ the published ver-
sion of the Translation Theorem usedT†, T , T̂†, T̂ , Û , andV̂ . So Equa-
tion 3.1 is the same as Equation 1.7. Equation3.2 implies Equations 1.8
and 1.9. Hence this version is weaker than the published version. We could
weaken the hypothesis of this version but for our current uses there is no
need.

In the conclusions, Equation3.3 is the same as Equation 1.10, Equa-
tion 3.4 is the same as Equation 1.11, Equation3.7 is the same as Equa-
tion 1.14, and Equation3.7 is the same as Equation 1.15.

That leaves Equations3.5 and3.6. Equations 1.12 and 1.13 are shown
true on page 95 of Cholak [2] (lines -13 to -11). (Note in Equation 1.12,
the first and only “∪” should be a “∩”.) We will start from the middle of
page 95 and show that Equations (3.5) and (3.6) hold.

Recallg is an onto, one-to-one, computable function fromω to Tr . In
[2], Ue = Ug(e) and similarly forV̂+, Û+, andV , while U†

g(e) = U†
|g(e)|

and similarly for V̂†, Û†, and V†. If g(e) 6⊂ f then the first clause of
Equation (3.6) holds. Ifβ = g(e) ⊂ f andn = |g(e)| then it is enough to
showe = en. (That is, it is enough to show Equation (3.5) holds forn and
e.) So rather than showinĝV†

n ∩ A =
∗ V̂+

e ∩ A we must showV̂+
e

.
=R V̂†

n

and similarly forÛ+ and Â and we will be done.
By Lemma 2.12 of Cholak [2], the fact that for allx, α(x, 0) = λ (see

Stage 0 of the construction on page 96 of [2]), and if x entersA at stage
s then α(x, s + 1) ↑ (see Step 1 on page 97), then, for almost allx,
there is a least stagesβ such that eitherα(x, sβ) ↑ or β ⊆ α(x, sβ). Let
R = {x|x ∈ Asβ }. R is a computable subset ofA. Assumex ∈ R enters

V̂†
n = V̂†

g(e) = V̂†
β at stages. Let s′

= max{s, sβ}. By Equation (3.1) and
the definition ofR, x 6∈ As′ and henceβ ⊆ α(x, s′). Then, by the last
clause ofQα (on page 95),x ∈ V̂+

β,s′ = V̂+

g(e),s′ = V̂+

e,s′. By Qα, V̂+
e ⊆ V̂†

n .

HenceV̂+
e

.
=R V̂†

n . The proof thatÛ+
e

.
=R Û†

n is similar. �

3.3. Meeting the hypothesis of the Modified Translation Theorem.By
the hypothesis of Theorem3.1 and Definition2.19, we can assume that
there are an effective listing of splits ofA, {Si }i ≤ω, and a10

3 setB such that
{Si }i ∈B generatesB and {Ŝi }i ≤ω is a similar listing of splits ofÂ for B̂,
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B̂, and Â such that2(Si ) = Ŝ2(i ) and2−1(Ŝi ) = Ŝ2−1(i ) is an extendible

isomorphism betweenB andB̂.
By Lemmas2.21and2.22, we can assume that the split∅ andA appears

as someSi andS̆i for somei ∈ B. Since{Si }i ≤ω is effective we can assume
for all i , S2i +1 = S̆2i and that 2i ∈ B iff 2 i + 1 ∈ B. Similarly for
{Ŝi }i ≤ω and B̂. Without loss, we can assume thatS2−1(2e+1) = S̆2−1(2e)

and Ŝ2(2e+1) =
˘̂S2(2e). Since{Si }i ≤ω and{Ŝi }i ≤ω are effective listings of

splits,2 remains10
3. By Lemma2.15, we will also assume that for alli ,

A ↘ Si = ∅, for some fixed enumeration of{A}s≤ω. Dually for {Ŝi }i ≤ω

and Â.
Furthermore, since at this point we no longer need an effective enumer-

ation of splits, if 2i 6∈ B, let S2i = ∅, Ŝ2(2i ) = ∅, S2i +1 = A (with the
enumeration{As+1}s∈ω so A†

↘ S2i +1 = ∅) and Ŝ2(2i +1) = Â (with the
enumeration{Âs+1}s∈ω so Â†

↘ Ŝ2(2i +1) = ∅) and dually for{Ŝi }i ≤ω and
B̂.

We want to, using an oracle for0′′, inductively construct an enumer-
ation of the c.e. sets{U†

n}n<ω, {V̂†
n }n<ω, {Û†

n}n<ω, and {V†
n }n<ν which

meets the two hypotheses of Theorem3.7. Let Ne be the set of(2e + 1)-
statesν such thatDA

ν is infinite and D Â
ν is infinite, whereDA

ν is mea-

sured w.r.t.{Sn,s}n≤2e+1 and {S2−1(n),s}i ≤2e+1 and D Â
ν is measured w.r.t.

{Ŝ2(n),s}n≤2e+1 and{Ŝn,s}i ≤2e+1, for all s < ω. DeterminingNe is the only
place0′′ is used.

Let x ∈ As+1 − As. Let ν = ν(2e + 1, x, s) (as measured above). If
ν ∈ Ne then letx ∈ U†

2e,s iff x ∈ S2e,s, x ∈ U†
2e+1,s iff x ∈ S2e+1,s,

x ∈ V̂†
2e,s iff x ∈ S2−1(2e),s, andx ∈ V̂†

2e+1,s iff x ∈ S2−1(2e+1),s. We act

dually if x̂ ∈ Âs+1 − Âs. For alls, let A†
s = As and Â†

s = Âs.
Since only finitely much information, mainlyNe, is used in the above

construction of the setsU†
2e, U†

2e+1, V̂†
2e, V̂†

2e+1, Û†
2e, Û†

2e+1, V†
2e, andV†

2e+1,

these sets are computably enumerable. Hence{U†
n,s}n,s<ω, {V̂†

n,s}n,s<ω,
{Û†

n,s}n,s<ω, and V†
n,s}n,s<ω, is a 0′′-enumeration of{U†

n}n<ω, {V̂†
n }n<ω,

{Û†
n}n<ω, and{V†

n }n<ω satisfying Condition (3.1). By induction one, we
can easily show that for all(2e + 1)-statesν, ν ∈ Ne iff DA†

ν is infinite

iff D Â†

ν is infinite, whereDA†

ν and D Â†

ν are measured as in Theorem3.7.
Therefore Condition (3.2) is satisfied.
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Lemma 3.8. For all e, U†
2e

.
=R S2e, U†

2e+1
.
=R S2e+1, V̂†

2e
.
=R S2−1(2e),

and V̂†
2e+1

.
=R S2−1(2e+1). For all e, Û†

2e
.
=R Ŝ2(2e), Û†

2e+1
.
=R Ŝ2(2e+1),

V†
2e

.
=R Ŝ2e, and V†

2e+1
.
=R Ŝ2e+1.

Proof. Since2 is an isomorphism betweenB andB̂, for each(2e + 1)-
stateν, {x : ν(2e+ 1, x) = ν} is noncomputable iff{x̂ : ν̂(2e+ 1, x̂) = ν}

is noncomputable, whereν(2e + 1, x) is measured w.r.t.{Si }i ≤2e+1 and
{S2−1(i )}i ≤2e+1 and ν(2e + 1, x̂) is measured w.r.t.{Ŝ2(i )}i ≤2e+1 and

{Ŝi }i ≤2e+1.
By our carefully chosen enumerations of splits ofA, {Si,s}i,s≤ω, the

set {x : ν = ν(2e + 1, x, s) ∧ x ∈ As+1 − As} is noncomputable iff
{x : ν = ν(2e+1, x)} is noncomputable, whereν(2e+1, x, s) is measured
as above. Dually for̂A.

Let Ae be the set of all(2e + 1)-statesν. For ν ∈ Ae, let S2e,ν be the
set{x : ν = ν(2e + 1, x, s) ∧ x ∈ As+1 − As ∧ x ∈ S2e,s}. If ν 6∈ Ne
thenS2e,ν is computable.S2e =

⊔
ν∈Ae

S2e,ν . By the above construction,

U†
2e =

⊔
ν∈Ne

S2e,ν . HenceU†
2e

.
=R S2e. We can argue similarly for the

remaining sets. �

Since2 is an isomorphism between substructures ofSR(A) andSR(Â),
A is noncomputable iffÂ is noncomputable. As we noted shortly after
the statement of Theorem3.1, Theorem3.1holds whenA and Â are com-
putable.

3.4. Constructing the isomorphism 8. In the above section we built
a 0′′-enumeration meeting the hypothesis of Theorem3.7 and satisfying
Lemma3.8. Now apply Theorem3.7to this enumeration. Conditions (3.4),
(3.7), and (3.8) of Theorem3.7 are the three conditions in the hypothesis
of Soare’s original Extension Theorem (see Soare [18] Theorem XV.4.5).
Now apply Soare’s original Extension Theorem to the enumeration given to
us by Theorem3.7. This gives us the c.e. sets{Un}n<ω, {V̂n}n<ω, {Ûn}n<ω,
and{Vn}n<ω. The Extension Theorem only adds elements toV̂+

n to getV̂n

and similarly forÛn. 8(Un) = Ûn and8−1(Vn) = V̂n is an isomorphism
betweenE∗(A) andE∗(Â) (see Soare [18] Section XV.4 for details).

By Lemma3.8, for all n, U†
n

.
=R Sn and Û†

n
.
=R Ŝ2(n). By (3.5) of

Theorem3.7, Uen =
∗ U†

n andÛ+
en

.
=R Û†

n . Therefore for alln, Uen

.
=R Sn,

Û+
en

.
=R Ŝ2(n). Since2 is an isomorphism,2(Uen) =R 2(Sn).

By our careful choice of{Si }i <ω and our modification of2 in Section3.3
we have that for alln, S2n t S2n+1 = A andŜ2(2n) t Ŝ2(2n+1) = Â. Hence
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for all n, Ue2n t Ue2n+1 t Rn = A andÛ+
e2n

t Û+
e2n+1

t R̂n = Â, for some

computable setsRn andR̂n.
Since8 is an isomorphism betweenE∗(A) andE∗(Â) and the setsS2n

andUe2n+1 are disjoint,Ûe2n − Û+
e2n

⊆
∗ R̂n and8(S2n) − Ûe2n ⊆

∗ R̂n.

Therefore8(Ue2n) =
∗ Ûe2n =R Ŝ2(2n) and 8(S2n) =R 8(Ue2n). So

8(S2n) =R 2(S2n). We argue similarly to show8(S2n+1) =R 2(S2n+1)

and8−1(Ŝn) =R 2−1(Ŝn). �

4. Extensions to automorphisms

Our goal to find an algebraic extension theorem which allows us to find
an automorphism3 of E taking A to Â if and when possible. Clearly we
will have to add some extra hypotheses to Theorem3.1about the outside of
A and Â.

Recall thatL∗(A) is the structure({We ∪ A : e ∈ ω}, ⊆) modulo
the finite sets. A substructureL of L∗(A) is a subcollection of the sets
({We ∪ A : e ∈ ω}, ⊆) modulo the finite sets. An isomorphism between
L∗(A) andL∗(Â) is a one-to-one, onto (both of these items are in terms
of ∗-equivalence classes) function4 from {We : e ∈ ω} to {Ŵe : e ∈ ω}

such thatWe ∪ A ⊆
∗ Wi ∪ A iff 4(We ∪ Â) ⊆

∗ 4(Wi ∪ Â). Note that4 is
applied toW ∪ A.

Assume thatL∗(A) andL∗(Â) are isomorphic via9 and thatB and
B̂ are 10

3 isomorphic via2. We wish to use the isomorphism8 from
Theorem3.1 to extend this pair of isomorphisms into an automorphism3

of E such that3(A) = Â.
Notice thatW = (W − A) t (W ∩ A). It would be nice to define

3(W) = (9(W ∪ A) − Â) t 8(W ∩ A). Clearly this is order preserv-
ing. But why is(9(W ∪ A) − Â) t 8(W ∩ A) a computably enumerable
set? To answer that we must explore more carefully the complex relation
betweenL∗(A) andB.

Definition 4.1. S supports Xiff S ⊆ X and(X − A) t S is a computably
enumerable set.

Lemma 4.2. Whether S supports X is60
3.

Proof. S supportsX iff there exists ane whereWe = (X − A) t S and
S ⊆ X. �

Lemma 4.3. W ↘ A supports W.

Proof. W = (W − A) t (W ↘ A) t (A ↘ W) and(W − A) t (W ↘ A)

is the computably enumerable setW\A. �
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Definition 4.4. An extendible subalgebraB supportsL if for all W ∈ L
there ani ∈ B such thatSi supportsW.

Lemma 4.5. EA supportsL∗(A).

Lemma 4.6. If S supports X and T is a split of A such that T⊆ S and
S =R(A) T then T supports X.

Proof. (X−A)tS is a computably enumerable set. IfS−T is a computable
setR then(X − A)t T = (((X − A)t S)∩ R) is a computably enumerable
set. �

Definition 4.7. Assume that

• L∗(A) andL∗(Â) are isomorphic via9,
• B andB̂ are isomorphic via2,
• B supportsL, and
• B̂ supportsL̂.

Then the isomorphisms9 and2 preservethe supports ofL andL̂ if

• for W∗
∈ L, there is ani ∈ B such thatSi supportsW and

(9(W ∪ A) − Â) t 2(Si ) is a computably enumerable set, and
• for all Ŵ∗

∈ L̂, there is ani ∈ B̂ such thatŜi supportsŴ and
(9−1(Ŵ ∪ Â) − A) t 2−1(Ŝi ) is a computably enumerable set.

For shorthand we just say isomorphisms9 and2 preserve supports.

If Si supportsW thenSi ⊆ W. But if isomorphisms9 and2 preserve
supports, then, while(9(W∪ A)− Â)t2(Si ) is a computably enumerable
set, we do not require that2(Si ) be contained in9(W). Hence2(Si ) might
not be a support of9(W).

Theorem 4.8.Assume that

(1) L∗(A) andL∗(Â) are isomorphic via9,
(2) B andB̂ are extendible algebras which are extendibly10

3 isomor-
phic via2,

(3) B supportsL∗(A),
(4) B̂ supportsL∗(Â),
(5) 9 and2 preserves supports,
(6) 8 is an isomorphism betweenE∗(A) andE∗(Â) such that if i∈ B

then2(Si ) =R 8(Si ) and if i ∈ B̂ then2−1(Ŝi ) =R 8−1(Ŝi ).

Then3(W) = (9(W ∪ A) − Â) t 8(W ∩ A) is an automorphism ofE
taking A toÂ.

Proof. It is enough to show that(9(W ∪ A) − Â) t 8(W ∩ A) is a com-
putably enumerable set. First note thatW ∩ A = Si t (S̆i ∩ W), where
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Si supportsW andi ∈ B. Since8 is an isomorphism betweenE∗(A) and
E∗(Â), 8(W∩ A) = 8(Si )t8(S̆i ∩W). Since9 and2 preserve supports,
for some supportSi of W, (9(W∪ A)− Â)t2(Si ) is a computably enumer-
able set. Since2(Si ) =R 8(Si ), (9(W ∪ A)− Â)t8(Si ) is a computably
enumerable set. Hence(9(W ∪ A) − Â) t 8(Si ) t 8(S̆i ∩ W) is a com-
putably enumerable set. Similarly we can show3−1(Ŵ) is a computably
enumerable set. �

Theorem 4.9.Assume that

(1) L∗(A) andL∗(Â) are isomorphic via9,
(2) B andB̂ are extendible algebras which are extendibly10

3 isomor-
phic via2,

(3) B supportsL∗(A),
(4) B̂ supportsL∗(Â),
(5) 9 and2 preserve supports.

Then there is an automorphism3 ofE such that3(A) = Â,3 � L∗(A) = 9,
and3 � E∗(A) is 10

3.

Proof. Apply Theorem3.1to get8 as required by Theorem4.8.6. 8 is 10
3.

Apply Theorem4.8to get3. �

The way we put together the automorphism in Theorem4.9 is very sim-
ilar to the way in which Herrmann showed that the Herrmann sets (along
with the hemimaximal sets and other such orbits) form an orbit (see Cholak
et al. [4, Sections 5 and 6]). Both methods are algebraic or “static”.

In Section6, we will show that Theorem4.9can be improved to be an “if
and only if’ statement (see Theorem6.4).

5. Preserving the computable subsets

Definition 5.1. A map4 from a substructure ofG ⊆ E(A) to Ĝ ⊆ E(Â)

preserves the computable subsetsif R ∈ R(A) ∩ G iff 4(R) ∈ R(Â) ∩ Ĝ.

There is no guarantee that any of the maps we have been considering
preserves the computable subsets; this includes2. And the same can be
said about Soare’s original Extension Theorem (see Soare [18, XV.4.5])
(applied by itself). To see this: IfX ∈ R(A) and2 is an isomorphism
2 betweenE∗(A) andE∗(Â), then there is aY such thatX t Y = A and
2(X) t 2(Y) = Â but there may not be aZ such that2(X) t Z = ω̂. Of
course, there is such aZ if Â is computable (and dually ifA is computable).

It might be useful to consider the following example: IfA and Â are
infinite then there is an effective isomorphism9 betweenE∗(A) andE∗(Â)
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(let f be an effective map fromA to Â and let9(W) = f (W)). If A is
computable but̂A is not then9 cannot preserve the computable subsets.

From this point on we will always considerA and Â to be noncom-
putable. We will point out that it is known that there is an isomorphism
betweenE∗(A) and E∗(Â) which preserves the computable subsets (see
Theorem5.3). The goal of this section is to provide another proof of fact
using our methods.

Definition 5.2. C(A) is the set ofWe such that eitherA ⊆ We or We ⊆
∗ A.

Theorem 5.3(Soare’s Automorphism Theorem [17]). Let A andÂ be two
noncomputable computably enumerable sets.

(1) Then there is a10
3 isomorphism3 betweenE(A) ∪ C(A) and

E(Â) ∪ C(Â). Furthermore a10
3-index for3 can be found uni-

formly from indexes for A and̂A.
(2) In addition,3 preserves the computable subsets of A.

Soare [17] explicitly stated Theorem5.3.1. Soare’s result that maximal
sets are automorphic follows sinceA is maximal iffC(A) = E∗.

Theorem5.3.2 was observed, in unpublished work, by Herrmann. As-
sume thatR is a computable subset ofA. Herrmann’s observation was that
R ∈ C(A) and hence3(R)t3(R) =

∗ ω̂ and therefore3 mapsR to a com-
putable subset of̂A. This observation of Herrmann was never published and
is one of the key facts he used in showing that the Herrmann sets form an
orbit; see Cholak et al. [4].

5.1. Another proof of Theorem 5.3. We would like to show Theorem5.3
using the methods of this paper.

First note that an isomorphism3 betweenE∗(A) andE∗(Â) preserving
the computable subsets induces an isomorphism3′ betweenE∗(A)∪C(A)

andE∗(Â) ∪ C(Â) taking A to Â. If A ⊆ W then A ∪ W = ω and there
is a computable setR ⊆ A (R = A\W) such thatR ⊆ W which implies
W = R t (W ∩ R). So forW ∈ C(A), let 3′(W) be3(R) t (3(W ∩ R)).

We would like to prove a theorem along the lines of Theorem4.8.

Theorem 5.4.Assume that

(1) B andB̂ are extendible algebras which are10
3 extendibly isomor-

phic via2;
(2) for all R ∈ R(A), there is an i∈ B such that Si is computable and

R ⊆ Si ;
(3) for all R̂ ∈ R(Â), there is an i∈ B̂ such thatŜi is computable and

R̂ ⊆ Ŝi ;
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(4) for all i ∈ B, 2(Si ) is computable iff Si is computable and for all
i ∈ B̂, 2−1(Ŝi ) is computable iff̂Si is computable.

Then there is a3 such that3 is a 10
3 isomorphism betweenE∗(A)

and E∗(Â) which preserves the computable subsets, for all i∈ B,
3(Si ) =R 2(Si ), and if i ∈ B̂, then3−1(Ŝi ) =R 2−1(Ŝi ).

Proof. First apply Theorem3.1to get8. We will show that8 is the desired
isomorphism3. It is enough to show8 preserves the computable subsets.

Let R ∈ R(A). There is ani such thatSi is computable andR ⊆ Si .
2(Si ) is computable. By Theorem3.1, 8(Si ) ≡R 2(Si ). Hence
8(Si ) is computable. Therefore, since the setA − R is c.e., the set
8(R) =

∗ 8(Si ) t 8(Si ∩ (A − R)) is computably enumerable and8(R)

is computable. The other direction is similar. �

It is actually reasonably easy to meet the hypothesis of the above theo-
rem; it is enough thatA and Â both be noncomputable.

Theorem 5.5.Let A andÂ be two noncomputable computably enumerable
sets. Then there areB andB̂ such that

(1) B andB̂ are extendible algebras which are10
3 extendibly isomor-

phic via2;
(2) for all R ∈ R(A), there is an i∈ B such that Si is computable and

R = Si ;
(3) for all R̂ ∈ R(Â), there is an i∈ B̂ such thatŜi is computable and

R̂ = Ŝi ;
(4) for all i ∈ B, 2(Si ) is computable iff Si is computable and for all

i ∈ B̂, 2−1(Ŝi ) is computable iff̂Si is computable.

Proof. Apply Theorem2.17 and its dual to getB and B̂. Now both B
and B̂ are infinite and10

3. We will inductively defineθ . If i + 1 ∈ B,
let θ(i + 1) be the least element of̂B which is not yet in the range ofθ .
Otherwiseθ(i + 1) is undefined. Let2(Si ) = Ŝθ(i ). Similarly for 2−1.
Clearly2 is 10

3.
Since everything inB and B̂ are computable splits ofA, B andB̂ are

classically isomorphic to the trivial Boolean algebra. Therefore2 induces
an isomorphism betweenB and B̂. Hence2 is clearly the desired ex-
tendible isomorphism. �

By combining Theorems5.4 and 5.5 we get another proof of Theo-
rem5.3.

5.2. Some examples of the use of Theorem5.3.
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5.2.1. The hemimaximal sets.We include this example as it has not ap-
peared previously in print in this form and it hints of things to come in later
sections. AssumeA1 t A2 = A where theAi s are not computable. Du-
ally for Â. Assume that2i is an isomorphism fromE∗(Ai ) to E∗(Âi ) that
preserves the computable subsets (from Theorem5.3).

As with the maximal sets, it is enough to define an isomorphism3 be-
tweenE∗(A) andE∗(Â) preserving the computable subsets. IfX ⊆

∗ A then
let 3(X) = 21(X ∩ A1) t 22(X ∩ A2). Let R ∈ R(A). ThenR ∩ Ai is
computable. So2i (R∩ Ai ) is computable. Hence21(R∩ A1)t22(R∩ A2)

is computable. The complexity of the resulting automorphism is10
3.

Downey and Stob’s proof used the fact that ifW∪A = ω thenW ↘ Ai is
infinite: a very dynamic property. Our proof only relies on algebraic facts.

5.2.2. The atomless Boolean AlgebraSR(A). As we know, all atomless
Boolean Algebras are isomorphic but withSR(A) something stronger is
true.

Theorem 5.6(Nies, see Cholak and Harrington [6]). If A and Â are non-
computable, thenSR(A) andSR(Â) are10

3 isomorphic.

Proof. The isomorphism3, from Theorem5.3, is an isomorphism between
E∗(A) and E∗(Â) preserving the computable sets. Hence3 induces an
isomorphism betweenSR(A) andSR(Â). �

5.3. Extendible Algebras of Computable Sets.This section was added
after the rest of the paper was completed. As we mentioned in the Intro-
duction (third to last paragraph) and last sentence, this paper has a sequel.
The goal of this section is to provide a clear, clean interface between the
two papers. In particular, we will proof a theorem, Theorem5.10, which
we hope we can use as a black box in the sequel.

Theorem5.10 is an improved version of Theorem5.3. In Theorem5.3
the computable sets are preserved. In Theorem5.10 the computable sets
are preserved plus an external isomorphism determines where some of the
computable sets are mapped.

Definition 5.7. An extendible algebraB of SR(ω) is called anextendible
algebra of computable setsas the splits ofω are the computable sets.

Lemma 5.8. If B = {Ri : i ∈ B} is an extendible algebra of computable
sets thenBA = {Ri ∩ A : i ∈ B} is an extendible algebra ofSR(A).

Proof. {R̃i ∩ A : i ∈ ω} witnesses that{Ri ∩ A : i ∈ ω} is an effective
listing of splits ofA. �
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Lemma 5.9. Assume thatB and B̂ are extendible subalgebras of com-
putable sets which are extendibly isomorphic via5. 5A(R∩A) = 5(R)∩Â
is an extendible isomorphism betweenBA andBÂ.

Theorem 5.10. Let B be a extendible algebra of computable sets and
similarly for B̂. Assume the two are extendibly isomorphic via5. Then
there is a8 such that8 is a 10

3 isomorphism betweenE∗(A) andE∗(Â),
8 maps computable subsets to computable subsets, and, for all R∈ B,
(5(R) − Â) t 8(R ∩ A) is computable (and dually).

Proof. Apply Lemmas2.16and2.22 to BA, B̂Â, 5A, and the extendible

algebras and extendible isomorphism from Theorem5.5 to getB̃, ˆ̃B and
2̃. Now apply Theorem3.1 to get8. By the proof of Theorem5.4, 8

preserves the computable sets.
Since5 is an isomorphism between extendible algebras of computable

sets,5(R) is a computable set. By Theorem3.1, 2(R∩ A)45A(R) = R0

is a computable subset ofÂ. Since2(R∩A) is a split ofÂ, 2(R∩A)∩R0 = R1

is a computable subset of̂A. Similarly,5A(R) ∩ R0 = R2 is a computable
subset ofÂ. So8(R ∩ A) = (5A(R) t R1) ∩ R2. Hence

(5(R) t R1) ∩ R2 =
(
(5(R) − Â) t 5A(R) t R1

)
∩ R2

=(5(R) − Â) t 8(R ∩ A).

So(5(R) − Â) t 8(R ∩ A) is computable as desired. The dual is proved
in a similar fashion. �

6. Automorphisms back to automorphisms

Assume thatA and Â are automorphic via9. HenceL∗(A) andL∗(Â)

are isomorphic via9. SinceA andÂ are automorphic, the structuresSR(A)

andSR(Â) are isomorphic structures (since they are definable structures).
In fact, from Cholak and Harrington [6], we know much more is true.

Theorem 6.1 (The Restriction Theorem; Theorem 1.2 of Cholak and
Harrington [6]). If A and Â are automorphic via9 then the structures
SR(A) and SR(Â) are 10

3-isomorphic structures via an isomorphism0
induced by9.

In other words there is an isomorphism0 betweenSR(A) andSR(Â)

such that for all splits ofA, 0(S) =R 9(S); for all splits Ŝ of Â,
0−1(Ŝ) =R 9−1(Ŝ); and a10

3-function f such that forWe ∈ S(A),
Wf (e) =R 0(We). (For more about this theorem we direct the reader to
Cholak and Harrington [6].)
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Theorem 6.2. Assume A and̂A are automorphic via9. Let B̃ be an ex-
tendible algebra (ofSR(A)). Then there are extendiblêB (of SR(Â)) and
2 such that

(1) B̂ andB̃ are extendibly10
3-isomorphic via2,

(2) if i ∈ B̃ and Si supports W then2(Si ) supports9(W).

The proof of this theorem appears in Section6.1. We should note that we
must argue dynamically in this proof. We can use this result to show the
following theorem.

Theorem 6.3(The Conversion Theorem). If A and Â are automorphic via
9 then they are automorphic via3 where3 � L∗(A) = 9 and3 � E∗(A)

is 10
3.

Proof. L∗(A) andL∗(Â) are isomorphic via9. Recall from Lemma2.14,
EA is the extendible algebra generated by the entry sets. Recall from
Lemma 4.5, EA supportsL∗(A). Apply Theorem6.2 to EA to get ÊA

and2A and dually toEÂ to get ÊÂ and2Â. By Lemmas2.16 and2.22,
B = EA⊕ ÊÂ andB̂ = ÊA⊕EÂ are extendible algebras10

3-isomorphic via
2. SinceEA supportsL∗(A), B does too. Similarly forB̂ andL∗(Â). By
the last property of Theorem6.2, isomorphisms9 and2 preserve supports.
Now apply Theorem4.9. �

Also using Theorem4.9we can algebraically describe an orbit ofA.

Theorem 6.4. The computably enumerable sets A andÂ are automorphic
iff there are9, B, B̂, and2 such that

(1) L∗(A) andL∗(Â) are isomorphic via9,
(2) B andB̂ are extendible algebras which are extendibly10

3 isomor-
phic via2,

(3) B supportsL∗(A),
(4) B̂ supportsL∗(Â),
(5) the isomorphisms9 and2 preserve supports.

6.1. Proof of Theorem6.2. To make life notationally easier we will prove
the dual. So letB̃ be an extendible algebra ofSR(Â) and we will buildB.

By Theorem6.1, B̃ and0−1(B̃) are60
3 algebras which are10

3 isomor-
phic via0−1. But10

3 images and preimages of extendible algebras need not
be extendible. Hence we cannot letB = 0−1(B̃). We will constructB to
be extendible and extendibly isomorphic toB̃ via 2 (and hence isomorphic
to 0−1(B̃)). In fact we are going to show something stronger; we will show
EA ⊕ B is isomorphic to0(EA) ⊕ B̃.
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We are going to constructB and2 via a standard tree agreement. We
will construct a tree,Tr . At each nodeα of the tree, we will construct the
splits of A, Sα and S̆α. We are going to build these splits as entry sets. So
for all α, if x entersA at stages+ 1 thenx enters eitherSα or S̆α at stages.

The list{Sα}α∈Tr is an effective listing of splits.B = {α|α ⊂ f ∧|α| ∈ B̃}

is a10
3 set. So an extendible algebra,B, is created.

If i ∈ B̃ then let2(Sα) = S̃i and2−1(S̃i ) = Sα, whereα ⊂ f and
|α| = i . If we can show2 induces an isomorphism betweenB andB̃ then
2 will be a10

3-extendible isomorphism betweenB andB̃. Hence without
loss we can assume that ifi /∈ B̃ thenS̃i = ∅ and0−1(S̃i ) = ∅.

For the rest of this proof we will usee-splits statesrather thane-states.

Definition 6.5. (1) For any e, if we are given a uniform enumera-
tion of splits of A {Si,s}i ≤e,s<ω, {S̆i,s}i ≤e,s<ω, {Ti,s}i ≤e,s<ω, and
{T̆i,s}i ≤e,s<ω define thee-split state of x at stage s, νS(e, x, s), to be
the full 2e-state ofx w.r.t. {Xi,s}i ≤2e,s<ω and{Yi,s}i ≤2e,s<ω, where
X2i,s = Si,s, X2i +1,s = S̆i,s, Y2i,s = Ti,s, andY2i +1,s = T̆i,s.

(2) Let νS(α, x, s) = νS(e, x, s) where|α| = e andνS(e, x, s) is mea-
sured w.r.t.{(Wi ↘ A)s}i ≤e,s<ω, {(A\Wi )s}i ≤e,s<ω, {Sβ,s}β⊆α,s<ω,
and{S̆β,s}β⊆α,s<ω.

(3) For any collection of splits ofA, {Si }i ≤e and{Ti }i ≤e, define thefinal
e-split state of xto be the final full 2e-state ofx w.r.t. {Xi }i ≤2e and
{Yi }i ≤2e, whereX2i = Si , X2i +1 = S̆i , Y2i = Ti , andY2i +1 = T̆i .

(4) LetνS(e, x) be the finale-split state ofx measured w.r.t.{Wi ↘ A}i ≤e

and{0−1(S̃i )}i ≤e. Let ν̂S(e, x̂) be the finale-split state ofx̂ mea-
sured w.r.t.{0(Wi ↘ A)}i ≤e and{S̃i }i ≤e.

(5) LetνS(α, x) be the final|α|-split state ofx measured w.r.t.{(Wi ↘ A)}i ≤e

and{Sβ}β⊆α. (Careful—this is not the same asνS(|α|, x).)
(6) Every 2e-state is ane-split stateandν = 〈2e, σ, τ 〉 is a reasonable

e-split stateif for all i ≤ e, exactly one of 2i or 2i + 1 is in σ , and
exactly one of 2i or 2i + 1 is in τ .

(7) For everye-split stateν andα such that|α| = e, let

DA
ν,α = {x : ∃s such thatx ∈ As+1 − As andν = νS(e, x, s)

w.r.t. {(Wi ↘ A)s}i ≤e,s<ω, {(A\Wi )s}i ≤e,s<ω,

{Sβ,s}β⊆α,s<ω, and{S̆β,s}β⊆α,s<ω.

Let ν be a reasonablee-split state. ThenXν = {x|νS(e, x) = ν} is
a Boolean combination of splits ofA and henceXν is also a split ofA.
0 is an isomorphism betweenSR(A) andSR(Â) (modulo the computable
subsets ofA). Hence0 is an isomorphism betweenEA ⊕ 0−1(B̃) and
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0(EA) ⊕ B̃ (again modulo the computable subsets ofA). Therefore,Xν is
computable iff0(Xν) is computable. So, for all reasonablee-split statesν,
{x|νS(e, x) = ν} is computable iff{x̂|ν̂S(e, x̂) = ν} is computable.

Since Sα are entry sets,x ∈ DA
ν,α iff νS(α, x) = ν. Therefore

{x : νS(α, x) = ν is computable iffDA
ν,α is computable.

By Lemma2.20, to showB is isomorphic via2 to B̃ it is enough to
show, for allβ, γ , Sβ − Sγ is computable iff2(Sβ) − 2(Sγ ) = S̃|β| − S̃|γ |

is computable. Letα be the longer ofβ andγ . Then

Sβ − Sγ =

⊔
{DA

ν,α : ν = 〈2|α|, σ, τ 〉, 2|β| ∈ τ, and 2|γ | 6∈ τ }.

Therefore, it is more than enough to show, for all reasonablee-split statesν
and allα ⊂ f , if |α| = e then DA

ν,α is computable iff{x|νS(e, x) = ν} is
computable.

Hence from this point forward we will just work on constructingSα and
S̆α such that for all reasonablee-split statesν and allα ⊂ f , if |α| = e then

Rν DA
ν,α is computable iff{x|νS(e, x) = ν} is computable.

(Let 2(Wi ↘ A) = 0(Wi ↘ A) and2−1(0(Wi ↘ A)) = Wi ↘ A.
Then almost the same argument shows that2 is an isomorphism between
EA and0(EA) and, in fact,EA ⊕ B is isomorphic via2 to 0(EA) ⊕ B̃.)

If we succeed in meetingRα then2 will be an isomorphism as desired.
As we will see it turns out to do this it enough to know for which for all
reasonablee-splits states andα, {x|νS(e, x) = ν} is infinite.

Determining whether{x|νS(e, x) = ν} is infinite is10
3: Are thereik and

jk, for k ≤ e, and infinitely manyx and stagess such that for allk ≤ e,
0−1(S̃k) = Wik , W̆ik = Wjk , x ∈ Wik,s t Wjk,s, andνS(e, x, s) = ν, where
νS(e, x, s) is measured w.r.t.{(Wk ↘ A)s}k≤e,s<ω, {(A\Wk)s}i ≤e,s<ω,
{Wik,s}k≤e,s<ω, and {Wjk,s}k≤e,s<ω. Recall0 is 10

3 and since we know
S = 0−1(S̃k) is a split ofA we can findS̆using an oracle for0′′. This also
shows that{x|νS(e, x) = ν} is a computably enumerable set and a split of
A.

Hence it is straightforward to construct a treeTr , with a true pathf and
an approximationfs to f such that f = lim infs fs, if α ∈ Tr thenα is
outfitted with a set of reasonable|α|-split states,Mα, and if α ⊂ f then
ν ∈ Mα iff {x|νS(e, x) = ν} is infinite. Furthermore we can assume that if
β ⊂ α andν ∈ Mα thenν � 2|β| ∈ Mβ and that| fs| = s, for all s. In the
interest of space and energy we are not going to go into the details. Similar
constructions with all the details can be found in Section7.2.6, Cholak [3],
Cholak [2], and Weber [20].



28 P. CHOLAK AND L. HARRINGTON

Using the approximation to the true path we will construct a function
α(x, s) for all x ands. If s < x, letα(x, s) ↑. Letα(x, x) = fx. Fors ≥ x,
if fs+1 <L α(x, s) then letα(x, s + 1) = fs+1.

If x entersA at stages+1 look for the greatestβ ⊆ α(x, s) where we can
enumeratex into Sγ,s andS̆γ,s, for γ ⊆ β, such thatνS(β, x, s) = ν ∈ Mβ

and, for allβ ′
⊂ β, if we can enumeratex into Sγ,s and S̆γ,s, for γ ⊆ β ′,

such thatνS(β, x, s) = ν′
∈ Mβ ′ then DA

ν′,β ′,s 6= ∅. If there are several

possibleν, arbitrarily choose the one whereDA
ν,β,s is the smallest. Enumer-

atex such thatνS(β, x, s) = ν. For allγ , if γ * β or β does not exist, add
x to S̆γ,s.

For any β ⊂ f , let sβ be such that if ft <L β then t < sβ , if
{x|νS(|β|, x) = ν′

} is finite andνS(|β|, x) = ν′ then x < sβ , and if
ν ∈ Mβ thenDA

ν,β,s 6= ∅ (by induction onβ it is not hard to show that such
a stage exists). For eachx ≥ sβ we can effectively find a stagesβ,x such
that for alls′

≥ sβ,x, β ⊆ α(x, s′). Let Rβ be the set ofx such that either
x < sβ andx ∈ A or x ≥ sβ andx ∈ Asβ,x . Rβ is a computable subset of
A.

Lemma 6.6. If α ⊂ f and ν is a reasonable|α|-split state then DAν,α is
computable iff{x|νS(|α|, x) = ν} is computable.

Proof. Let |α| = e andν = 〈2e, σ, τ 〉.
(⇒) Assume{x|νS(e, x) = ν} is not computable. We must showDA

ν,α

is not computable. Assume otherwise. Hence there is ani > e such that
Wi = DA

ν,α, and A ↘ Wi = ∅. There must exist a reasonablei -split
stateν′

= 〈2i, σ ′, τ ′
〉 such thatσ ′ � 2e = σ , 2i + 1 ∈ σ ′, τ ′ � 2e = τ ,

and{x|νS(i, x) = ν′
} is not computable. (Otherwise{x|νS(e, x) = ν} is

computably contained in a computable set,Wi , and hence is computable.)
Therefore{x|νS(i, x) = ν′

} − Rβ is infinite. Hence, by the above construc-
tion, there is anx such thatx ∈ DA

ν′,β
. This samex is in DA

ν,α but not inWi .
Contradiction.

(⇐) Assume{x|νS(e, x) = ν} is computable. Hence there is ani > e
such thatWi = {x|νS(e, x) = ν}, and A ↘ Wi = ∅. Let β ⊂ f and
|β| = i . For j ≥ i , if ν′

= 〈2 j, σ ′, τ ′
〉, σ ′ � 2e = σ , 2i + 1 ∈ σ ′, and

τ ′ � 2e = τ , then{x|νS( j, x) = ν′
} is not infinite. Hence for allγ ⊇ β,

ν′
6∈ Mγ . Let x ∈ Wi − Rβ enterA at stages+1. ThenνS(i, x) = ν′

∈ Mβ

and ν′ � 2e 6= ν. Hence, by the above constructionνS(β, x, s) 6= ν.
Therefore ifx entersA at stages + 1 andνS(β, x, s) = ν thenx ∈ Rβ or
x ∈ Wi . ThusDA

ν,α is computable. �

Therefore2 is an isomorphism betweenB andB̂. Thus (1) holds. The
next lemma proves (2).
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Lemma 6.7. If α ⊂ f , |α| = e, andS̃e supportsŴ , then Sα supports
X = 9−1(Ŵ).

Proof. Since9 is an automorphism ofE∗ taking A to Â, 9−1(S̃e) supports
X. Since0 is induced by9, 0−1(S̃e) supportsX. Let i > e such that
Wi = (X − A)t0−1(S̃e). HenceWi ↘ A supportsX. If (Wi ↘ A) ⊆R Y
thenY supportsX. Hence it is enough to show(Wi ↘ A) ⊆R Sα.

Let β ⊂ f such that|β| = i . For j ≥ i , if ν = 〈2 j, σ, τ 〉, 2i ∈ σ ,
and {x|νS( j, x) = ν} is infinite then 2e ∈ τ . Hence for allγ ⊇ β, if
ν = 〈|γ |, σ, τ 〉 ∈ Mγ and 2i ∈ σ then 2e ∈ τ . Let x ∈ Wi − Rβ enterA
at stages+ 1. ThenνS(i, x) = ν ∈ Mβ . Hence, by the above construction,
for almost all suchx, x ∈ Sα. Hence(Wi ↘ A) ⊆

∗ Sα ∪ Rβ . �

7. A definable orbit which is not a 10
3 orbit

For E∗, all the previously known orbits are actually orbits under10
3-

automorphisms. And a good number of those are also definable in the sense
that there is an elementary formula,ϕ(X), in the language ofE∗ such that
ϕ(A) iff A is in the orbit under question. Examples include maximal sets,
creative sets, hemimaximal sets, and quasi-maximal sets.

The following is a definable orbitO, which is not a10
3 orbit. It is the first

example of an orbit which is not an orbit under10
3-automorphisms. It is an

orbit under10
5-automorphisms.

In the mid 1990s, Cholak and Downey incorrectly claimed to construct
a pair of10

4-automorphic computably enumerable sets which were not10
3-

automorphic. In addition, we show this claim is correct by showing there
are two such sets inO.

7.1. The orbit O. Assume thatA is not computable.

Definition 7.1. F is A-specialif F is not computable,F ∩ A = ∅, and, for
all V , if V ∩ A = ∅ thenV − F is computably enumerable.

Lemma 7.2. Assume F0 and F1 are A-special sets and R is computable set
disjoint from A.

(1) Either F1 − F0 is computable or A-special.
(2) If F0 ∩ R = ∅ then F0 t R is A-special.
(3) If F0 ∩ F1 = ∅ then F0 t F1 is A-special.
(4) F0 ∪ F1 is A-special.
(5) If W ⊆ R then W is not A-special.

Proof. (1) V − (F1 − F0) = (V − F1) ∪ (V ∩ F0). So if F1 − F0 is not
computable, it isA-special.
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(2) V − (F0 t R) = (V − F0) − R. If F0 t R is computable thenF0 is
computable.

(3) V − (F0 ∪ F1) = (V − F0) − F1. If F0 t F1 is computable thenF0
is computable.

(4) F0 ∪ F1 = F0 t (F1 − F0). Now apply (1) followed by one of (2) or
(3).

(5) If for all V , if V ∩ A = ∅ thenV − W is computably enumerable then
W = (R − W) ∪ R. �

Definition 7.3. Let ϕ(A) be the conjunction of the following 3 statements:

(1) ∀F if F is A-special then∃G such thatG is A-special and
F ∩ G = ∅;

(2) ∀W if W ∩ A = ∅ then∃F such thatF is A-special andW ⊆
∗ F ;

(3) ∀W∃F such thatF ∩ A = ∅ and eitherW ⊆
∗ F t A or

W ∪ F ∪ A =
∗ ω.

Definition 7.4. A list of computably enumerable sets,F = {Fi : i ∈ ω},
is an A-special list iff F is a list of pairwise disjoint noncomputable
sets,F0 = A, and for all W there is ani such thatW ⊆

∗
⊔

l≤i Fl or
W∪

⊔
l≤i Fl =

∗ ω. We say thatF is a0 A-special listif F is anA-special
list and there is a functionf with property0 such thatFi = Wf (i ).

Note that for anyi ,
⊔

l≥i Fl is not computably enumerable and hence
there cannot be an effectiveA-special list. The automorphic image under8

of an A-special list is a8(A)-special list.

Lemma 7.5. Assume that an A-special list exists and that V∩ A = ∅. Then
V ⊆

∗
⊔

0<l≤i Fl , for some i.

Proof. If V ∪
⊔

l≤i Fl =
∗ ω, for somei , then(V ∪

⊔
0<l≤i Fl ) t A =

∗ ω

and henceA is computable. Contradiction. �

Lemma 7.6. ϕ(A) iff an 0(4) A-special list exists.

Proof. (⇒) Let F0 = A. Assume, by induction, for 0< j < i , that
F j are defined such that they are pairwise disjoint,A-special, either
Wj ⊆

∗
⊔

l≤ j Fl or Wj ∪
⊔

l≤ j Fl =
∗ ω, and

⊔
0< j <i F j is A-special.

Since ϕ(A) holds, the third clause of Definition7.3 holds for Wi and
hence there is anF such thatF ∩ A = ∅ and eitherWi ⊆

∗ F t A or
Wi ∪ F ∪ A =

∗ ω. By the second clause of Definition7.3and the fact that
A-special sets are disjoint fromA, we can assumeF is A-special. Hence,
by Lemma7.2,

⊔
j <i F j ∪ F is A-special andF −

⊔
j <i F j is either com-

putable orA-special. IfF −
⊔

j <i F j is A-special letFi = F −
⊔

j <i F j .
Otherwise apply the first clause of Definition7.3 to

⊔
j <i F j ∪ F to get
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an A-specialG and letFi = G t (F −
⊔

j <i F j ) which is A-special by
Lemma7.2. Again by Lemma7.2,

⊔
0< j ≤i F j is A-special.

If X andY are computably enumerable sets then whetherY − X is com-
putably enumerable is60

3. So whetherF is A-special is50
4. Sinceϕ(A)

holds, givenW, there exists anA-special setF such that eitherW ⊆
∗ F ∪ A

or W∪ F ∪ A =
∗ ω. Hence we can try all possibleF using0(4) to test if the

F being considered has the correct properties. Since such anF exists this
algorithm will converge and is computable in0(4). Going fromF to Fi is
also computable in0(4). Hence theA-special list constructed is computable
in 0(4).

(⇐) By Lemma7.2, it is enough to show that for allj ≥ 1, F j is A-
special. To showF j is A-special it is enough to show that ifV ∩ A = ∅

thenV − F j is computably enumerable. AssumeV ∩ A = ∅. Then, by
Lemma7.5, V ⊆

∗
⊔

0<l≤i Fl , for somei . SoV−F j =
∗ V∩

⊔
0<l≤i ∧l 6= j Fl

is a computably enumerable set. �

Theorem 7.7. Given ana A-special list,F , and anâ Â-special list,F̂ ,
there is a0′′

⊕ a⊕ â-automorphism2 of E∗ taking A toÂ.

Proof. By Theorem5.3, there is an isomorphism2i betweenFi to F̂i
preserving computable sets. GivenWe define 2(We) as follows: If
We ⊆

∗
⊔

l≤i Fl then 2(We) =
⊔

l≤i 2l (We ∩ Fl ). Otherwise there is
a computable setR such thatR ⊆

∗
⊔

l≤i Fl and R ∪ We =
∗ ω. For all

l ≤ i , R ∩ Fl is computable. Therefore, since2l preserves computable
sets,2(R) =

⊔
l≤i 2l (R ∩ Fl ) is computable. Let

2(We) = 2(R) t

⊔
l≤i

2l (We ∩ R ∩ Fl ).

2 is an automorphism ofE∗ such that2(A) = Â. By Theorem5.3,
an index for2i can be found uniformly from indices forFi and F̂i . The
remaining division into cases can be done using a0′′ oracle. �

Theorem 7.8.The collection of A such thatϕ(A) forms a10
5 orbit O.

Proof. This follows from Theorems7.6and7.7. �

Corollary 7.9. If F is an A-special list then, for all i , Fi is automorphic to
A.

Proof. The list formed by switchingFi andA is anFi -special list. �

7.1.1. O is not a10
3 orbit.

Theorem 7.10.There are computably enumerable sets A andÂ such that
ϕ(A) andϕ(Â), A andÂ are10

4-automorphic but not10
3-automorphic.
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This theorem follows from the next two lemmas.

Lemma 7.11.There exists A such that a0′′ A-special listF exists.

Lemma 7.12. There existsÂ such that a0′′′ Â-special listF̂ exists but no
0′′ Â-special list exists.

The proofs of these lemmas follow in Section7.2.

Proof of Theorem7.10from Lemmas7.11and7.12. Assume thatF is the
A-special list given by Lemma7.11 and F̂ is the Â-special list given by
Lemma7.12. By Lemma7.7, A and Â are inO and are10

4-automorphic.
Let f witness thatF is a0′′ A-special list. Assume thatA and Â are10

3

automorphic via8(We) = Wg(e) then{Wg(( f (i ))|i ∈ ω} is 0′′ Â-special list.
ThereforeA and Â cannot be in the same10

3 orbit. �

The following lemma and corollary are needed for the proof of Lemma7.12.

Lemma 7.13. If a 0′′ A-special listF = {Fi : i ∈ ω} exists then
there is a function d computable in0′′ such that if We ∩ A = ∅ then
Wd(e) ∩ (We ∪ A) = ∅ and Wd(e) is A-special.

Proof. If We ∩ A 6= ∅ (whether this occurs is computable in0′′) then let
d(e) = 0. AssumeWe ∩ A = ∅. Let f witness thatF is 0′′. Then, by
Lemma7.5, We ⊆

∗
⊔

0<l≤i Fl , for somei . Using f , the least suchi can be
found computably in0′′. Let d(e) = f (i + 1). �

Corollary 7.14. Assume for all e, there are e′ and d such that We′ ∩ A = ∅

and if Wϕ(〈e′,d〉) is cofinite then either Wd ∩ (We′ ∪ A) 6= ∅ or Wd is not
A-special. Then A does not have a0′′ A-special list.

Proof. AssumeA has a0′′ A-special list. Apply Lemma7.13to getg. The
graph ofg is a 10

3 set and hence a60
3 set. Cof is60

3-complete. Hence
there is ane such that, for alle′, Wϕ(〈e′,d(e′)〉) is cofinite and ifWe′ ∩ A = ∅

thenWd(e′) ∩ (We′ ∪ A) = ∅ andWd(e′) is A-special. Furthermore, since
we are reducing the graph of a function to Cof, for alle′, if d 6= d(e′) then
Wϕ(〈e′,d〉) is not cofinite. Contradiction. �

7.2. Proofs of Lemmas7.11and7.12. First we will focus on Lemma7.11.
Rather than focusing onA we will first focus on constructing theA-special
list F . This will be a tree argument and very similar to the10

3-isomorphism
method. At each nodeα ∈ T we will build a computably enumerable set,
Fα. The goal is to build theFαs such that ifFi = F|α|, for α ⊂ f , where f
is the true path, thenF = {Fi : i ∈ ω} is anA-special list.
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7.2.1. The requirements.We will construct theFαs as pairwise disjoint
noncomputable sets, forα ⊂ f . Fα must be noncomputable. Hence we
must meet the following requirements for allα ⊂ f and alle:

Rα,e: Fα 6= We.

In addition, we will meet the following requirement for allα ⊂ f :

Nα: eitherW|α| ⊆
∗

⊔
β⊆α

Fβ or W|α| ∪

⊔
β⊆α

Fβ =
∗ ω.

Before we can discuss how we will meet these requirements we need the
following remark.

Remark7.15 (The position functionα(x, s)). Given the approximation to
the true path at stages, fs, we will determine the position functionα(x, s)
by the following rules:x is α-legal at stage sif α(x, s − 1) = α− (recall
α− is the node beforeα in the tree),x is α−-allowed (defined below) and
for all stagest , if x ≤ t ≤ s, thenα ≤L ft . If α ⊆ fs andx is α-legal then
let α(x, s) = α (movex downward intoα). If fs <L α(x, s − 1) then let
α(x, s) = α(x, s − 1) ∩ fs.

7.2.2. Action forRα,e. MeetingRα,e is straightforward. But we are going
to break it into parts, ensuring that there are possible witnesses and actually
taking action to meetRα,e.

Getting witnesses:For eachβ and each stages, we will pick a xβ,s. We
will hold xβ,s out of all Fγ , for γ ⊃ β but allowxβ,s to possibly enterFγ ,
for γ ⊆ β. If xβ,s enters someFγ at stages (or does not exist yet), then, at
the next staget , such thatβ ⊆ ft and there is anx with α(x, s) = β and
x /∈

⊔
β∈T Fβ,s, we will choose the least suchx asxβ,t ; until that staget ,

xβ,s does not exist. Otherwisexβ,s remains the same from stage to stage.
Placing witnesses into Fα: Now if α ⊆ fs, We,s ∩ Fα,s = ∅, |α| ≤ e, and

there is anx where|α(x, s)| ≥ |α| + e, x ∈ We,s andx /∈
⊔

β∈T Fβ , then
addx to Fα at stages.

Assume that for allγ ⊂ f , xγ = lims xγ,s exists. Then ifFα = We then
it is straightforward to show that at some stages we will add anx to Fα to
meetRα,e.

Notice that only finitely manyRα,e are possibly interested inxγ,s. So if
xγ fails to exist it is not due to action forRα,e but action for someNβ .

7.2.3. Action forNα. We will meetNα as follows: First of all no action is
taken at stages if xα,s does not exist. Furthermore, we neverα-allow xα,s.
Otherwise the desired action atα breaks into cases depending on whether
Wα is infinite or not, where

Wα = {x|∃s(α−
⊆ α(x, s) ∧ x is α−-allowed ∧ x ∈ W|α|,s)}.
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If α believesWα is finite weα-allow half of the balls which arrive atα
(hence these balls can move downward) and put all but one ball,xα,s, of the
other half intoFα (like xα,s, the balls inFα, are neverα-allowed). Assume
α believesWα is infinite. Half of the balls which arrive atα in Wα will be
α-allowed immediately. Otherwise ifα(x, s) = α and there have beenx
many ballsα-allowed, we will placex into Fα.

7.2.4. The Verification.Assume that for allα ⊂ f , infinitely many balls
areα-allowed (we will show this later). Then, by induction onα ⊂ f , it
is straightforward to show thatxα exists and henceRβ,e is met forβ ⊂ f
and alle. And, again by induction onα ⊂ f , is straightforward to show,
using the standard facts aboutfs andα(x, s) and the above assumption, for
almost allx /∈

⊔
β⊂α Fβ , there is a stage such that eitherx entersFα or x

is α-allowed. Hence ifWα is finite thenW|α| ⊆
∗

⊔
β⊂α Fβ and otherwise

W|α| ∪
⊔

β⊆α Fβ =
∗ ω. Therefore, under the above assumption,Nα is met.

Now we will show, by induction onα ⊂ f , that infinitely many balls
areα-allowed. Assume this is true forα−. Almost all of the balls which
areα−-allowed will arrive atα at some later stage (i.e., there is a staget
such thatα ⊆ α(x, t)). Hence at almost all stages,xα,s exists. Therefore if
Wα is finite then half of those balls which arrive atα will be α-allowed. If
Wα is infinite then infinitely many balls arrive atα in Wα, half of which are
α-allowed.

Hence the only thing needed to complete the proof of Lemma7.11is to
construct the treeT , the true pathf , and the approximation to the true path
at stages, fs. But since we want to use the same tree and related materials
for the proof of Lemma7.12, we will delay this until Section7.2.6.

7.2.5. Changes needed for the proof of Lemma7.12. Rather than proving
Lemma7.12we will prove its unhatted dual. We are going to make use of
Lemma7.14. We must meet the requirements:

there aree′ andd such thatWe′ ∩ A = ∅ and if Wϕ(〈e′,d〉) is cofinite

then eitherWd ∩ (We′ ∪ A) 6= ∅ or Wd is not A-special.
Qe:

By the Recursion Theorem we can assume there are computable func-
tionsg andh such thatWg(α) = Fα andWh(α) =

⋃
λ⊂β⊆α Fβ , for all α ∈ T

andα 6= λ. Recallλ is the empty node andFλ = A. For all α 6= λ,
Wh(α) ∩ A = ∅.

Assume thatα is assigned to meetQe. α will use Wh(α) asWe′. We want
to look for the leastd andl such that[l , ∞) ⊆ Wϕe(〈h(α),d〉). We will use
the tree to findk andl and to assignα to Qe.

We will define the tree such that there ared, l where[l , ∞) ⊆ Wϕe(〈h(α),d〉)

iff there is a uniqueβ such thatα ⊂ β ⊂ f and β believes there are
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d, l < |β| such that[l , ∞) ⊆ Wϕe(〈h(α),d〉). We will assume that theQi are
assigned in increasing order modulo finite injury along the true path. The
finite injury along the true path will be discussed below.

Assume thatβ believes there ared, l < |β| such that[l , ∞) ⊆ Wϕe(〈h(α),d〉).
Sinced < |β| there is aγ ⊂ β with |γ | = d. Furthermore, since we will
continue to meetNγ , eitherWd ⊆

∗
⊔

δ⊆γ Fδ or Wd ∪
⊔

δ⊆γ Fδ =
∗ ω. By

Lemma7.5, if Wd ∪
⊔

δ⊆γ Fδ =
∗ ω thenWd ∩ A 6= ∅ and we have metQe.

If Wd ⊆
∗

⊔
δ⊆α Fδ then we have metQe. Hence the only case where we

must take action to meetQe is whenWd ⊆
∗

⊔
α⊂δ⊆γ Fδ. In this case we

will force
⊔

α⊂δ⊆γ Fδ to be computable and hence, by Lemma7.2 (5), Wd

is not A-special. This means we will have to later reconsider how we form
the A-special list.

Assume thatβ must take action to meetQe. β will take action by chang-
ing how we meetRγ,e, for all α ⊆ γ ⊆ β. Let α ⊆ γ ⊆ β. The action
taken forRγ,e is revised as follows: ifγ ⊆ fs, We,s∩ Fγ,s = ∅, and there is
anx such thatβ * α(x, s), |α(x, s)| ≥ |γ |+e, x ∈ We,s andx /∈

⊔
δ∈T Fδ,

then addx to Fγ at stages. Now to help with the creation of anA-special
list we must injure allQi assigned to someγ betweenα andβ. We will
assign then in increasing order to someδ whereβ ⊂ δ. This is finite injury
along the true path.

If no α ⊂ β ⊂ f believes that it must take action to meetQe then
the above argument for the verification ofRγ,e still holds andFγ is not
computable.

Assume that someβ ⊂ f believes that it must take action to meetQe.
From the above verification, we know that almost allx either enter

⊔
δ⊆β Fδ

or areβ-allowed. By the above modification of the action forRγ,e once a
ball either enters

⊔
δ⊆β Fδ or is β-allowed it cannot be used to meetRγ,e.

HenceFγ is computable andQe is met.
The issue of anA-special list remains. Using the true pathf and0′′′

we will inductively show how to construct anA-special list. Assume that
we have built the list up toi and have usedαi ⊂ f . Let α+ be such that
α ⊂ α+

⊂ f and|α+
| = |α| + 1. Assume thatQe is assigned toα+ and

by inductionQe is not injured from below. Use0′′′ to see if someβ ⊂ f
takes action to meetQe. If no β ⊂ f must take action to meetQe then
Fi +1 = Fα+ is not computable and letαi +1 = α+. Otherwise there is a
β ⊂ f which takes action to meetQe. In this caseFβ is not computable
and letFi +1 =

⊔
αi ⊂γ⊆β Fγ andαi +1 = β. In either case there is no injury

from below aboveαi +1.

7.2.6. The tree T and related definitions.We will define one tree which
can be used for both lemmas. We will defineT , the true pathf , and the
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approximation to the true path at stages, fs via induction on the length of
γ .

We have to code a few items intoT . At a nodeβ we must code whether
Wβ is infinite and whether there exists anα ⊂ β ande, d, l , s < β such
thatQe is assigned byα, α has not been injured by anyγ with α ⊂ γ ⊆ β,
ϕe(〈h(α), d〉 ↓) = w, [l , ∞) ⊆ Ww, and Wd ⊆

⊔
α⊂δ⊆β Fδ. Since

Fδ = Wg(δ), all this information is10
3 and hence can be easily coded into

a tree. In the interest of space and energy we are not going to go into the
details of the definition of the tree. Similar constructions with all the de-
tails can be found in Section7.2.6, Cholak [3], Cholak [2], and Weber [20].
There is one added twisted that there is finite injury along the true path. But
that kink was discussed above and is implemented in the standard fashion.
�

7.3. Reflecting onϕ(A) and Theorem 7.10. Theorem7.10 implies that
O is different than any other known orbit. But it might be worthwhile to
reflect onO’s similarity to the orbit formed by the maximal sets or the orbit
formed by the Herrman sets (for a definition of Herrmann sets, see Cholak
et al. [4]). This reflection will also impact how we approach the proof of
Theorem7.10.

Definition 7.16. D(A) is the ideal generated by the setsF such that either
F ∩ A = ∅ or F ⊆

∗ A. D(A) is a60
3 ideal ofE . Let ED(A) beE modulo

D(A). We write X ⊆D(A) Y if X is contained inY moduloD(A). If A is
understood from the context we drop the “(A)”.

The last clause ofϕ(A) implies thatED is the two element Boolean al-
gebra. This is also the case with maximal sets and Herrmann sets. When
this is the case we say thatA is D-maximal. It is also possible to consider
A whereED is a Boolean algebra, in which case,A is calledD-hhsimple.
(For more onD-hhsimple sets, see Cholak et al. [4], Herrmann and Kum-
mer [12], and Kummer [13] in that order.)

Assume thatA is D-hhsimple. Furthermore assume thatW 6=D A. Then
there is aW̃ such thatW ∩ W̃ =D ∅ andW ∪ W̃ =D ω. So there is a set
F ∈ D such thatW ∩ W̃ ⊆ F andW ∪ W̃ ∪ F = ω. Therefore there is a
computable setR such thatR ∩ F = W ∩ F .

Let L̃(A) be the definable (inE ) quotient substructure ofSR(A) given
by {R ∩ H : R is computable} moduloR(A). Given the above paragraph,
it is straightforward to verify that̃L(A) andED are10

3-isomorphic.
AssumeA and Â are automorphic by8. By Theorem6.1, SR(A) and

SR(Â) are10
3-isomorphic via an isomorphism induced by8. SoL̃(A) and

L̃(Â) are10
3-isomorphic via an isomorphism induced by8. HenceED(A)
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andED(Â)
are10

3-isomorphic. (A similar argument appeared in Section 11
of Cholak and Harrington [6].) Hence we have the following theorem.

Theorem 7.17.Assume that A isD-hhsimple. If A andÂ are automor-
phic via8 thenED(A) andED(Â)

are 10
3-isomorphic via an isomorphism

induced by8.

One should compare this theorem to Theorem8.7 where the hypothesis
that A beD-hhsimple is removed but the complexity of the isomorphism
increases to10

6.
Soare showed that the maximal sets,M , do not form an effective orbit

by exploiting the fact that deciding ifW ⊆
∗ M or W ∪ M =

∗ ω is 10
3.

Soare built maximal setsM andM̂ such that for each computable function
f there is ane with We ⊆

∗ M iff Wf (e) ∪ M̂ =
∗ ω. (For more details, see

Soare [17] and Cholak [1].)
But Theorem7.17implies that we cannot exploit the fact of deciding if

W ⊆D A or W =D ω is 10
3 to show there areA and Â in O which are

not 10
3-isomorphic. Hence the proposed approach of Cholak and Downey

(thankfully unpublished) to the proof of Theorem7.10just cannot work. To
show Theorem7.10we exploited the fact that given a setW disjoint from A
we cannot always computably in0′′ find anA-special set disjoint fromW.

8. On the complexity of orbits of E

The goal of this section is to improve Theorem7.17and add to our com-
ments from Section7.3. We are going to do this by coding whereW, for
W 6=D A, must go under an arbitrary automorphism ofE , using various
splits of A. We will break this into two subsections: the first subsection
will focus on the coding and the second subsection will present the results
which use this coding.

8.1. Maximal supports. Fix a computably enumerable setA. A definition
of D(A) can be found in Definition7.16.

Definition 8.1. M is maximally supportedby S if M is supported byS (so
S is a split ofA, S ⊆ M and(M − A) t S is a computably enumerable set)
and for allW, if W is supported byS, thenW ⊆D M ∪ A.

Lemma 8.2. Whether S maximally supports M is50
4.

Proof. By Lemma4.2, whetherT supportsX is 60
3. �

If S is a maximal support ofW andT =R S thenT is a maximal support
of W.
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Lemma 8.3. If Y *D X, S is a maximal support for X and T is a support
for Y then T*R S.

Proof. SinceS maximally supportsX, S cannot supportY. SoT is not a
subset ofS. The same holds moduloR(A). �

Note it is possible thatS andT maximally supportW but S 6=R T . But
this will not cause a problem.

RecallA is promptly simple iff there is a computable functionp such that
for all W, if W is infinite, then there is anx ands such thatx ∈ Wats∩Ap(s).
Also if A is simple thenW ⊆D M iff W ⊆

∗ M ∪ A.

Lemma 8.4. Assume that A is promptly simple. Let A⊆ M. There is an S
such that M is maximally supported by S.

Furthermore S= M ↘ A using{Ap(s)}s∈ω as the enumeration of A;
i.e., S is the set of x such that x enters M at stage s and x is not in Ap(s)
but x is in A.

Proof. M is supported by theSdefined above;(M − A) t S is the set ofx
such thatx entersM at stages andx is not in Ap(s).

To ensureM is maximally supported byS it is enough to show the fol-
lowing conditions are met:

Ne,i : eitherWe ⊆
∗ M ∪ A or Wi 6= (We − A) t S.

AssumeWe 6⊆
∗ M ∪ A andWi = (We − A) t S (i.e., that we fail to meet

Ne,i ). ThenW = (We ∩ Wi )\(M ∪ A) is infinite. Then there is anx ands
such thatx ∈ Wats ∩ Ap(s). Now x is in Wi and thus in one ofWe − A or
S. But x cannot be in either of these two sets. Contradiction. �

It would be nice if we could prove the above lemma for allA but the
above proof heavily relies on the assumption thatA was promptly simple.
However we do have the following lemma.

Lemma 8.5. For all W, W̃ , if W 6=D W̃ then there is an M such that M is
maximally supported by S= M ↘ A, M ⊆ W, and M*D W̃ .

Proof. Fix W andW̃. ClearlyM ↘ SsupportsM . So we must buildM to
meet the following requirements:

Ne,i : eitherWe ⊆D(A) M ∪ A or Wi 6= (We − A) t S.

(i.e., eitherWe is contained inM ∪ A moduloD(A) or S does not support
it) and

Pe,i : eitherWe∩ A 6= ∅, or Wi ∩ A 6= ∅, or M ∪ Wi ∪ A * W̃ ∪ We∪ A

(so M is not contained moduloD(A) in W̃). Assume that these require-
ments are linearly ordered.
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To meetNe,i we will hold everything inX = (We ∩ Wi )\(M ∪ A) out
of M until there is anx ∈ X ∩ A and henceWi 6= (We − A) t S. Assume
this fails. ThenX is disjoint from A. So if Wi = (We − A) t S then
We ⊆ M ∪ A ∪ X. And hence we still meetNe,i .

To meetPe,i we need to first define a length of agreement function (to
measure a50

2 fact). Letl (s) be the greatestx such that(We,s∩ As) � x = ∅,
(Ms ∪ Wi,s ∪ As) � x = (W̃s ∪ We,s ∪ As) � x, and(Wi,s ∩ As) � x = ∅.
Let m(0) = 0. If l (s) > m(s − 1) thens is expansionary(for Pe,i ) and
m(s) = l (s); otherwisem(s) = m(s − 1).

If there are infinitely many expansionary stages we must take some action
to ensurePe,i is met. At expansionary stages we will dump everything in
W which is not restricted by higher priority requirements intoM and reset
all lower priority requirements.

As we argued above, the setX of x which is restrained by high priority
requirements is disjoint fromA. Therefore if there are infinitely many ex-
pansionary stages thenM ∪ Z ∪ A = W ∪ Z ∪ A, whereZ is the union
of finitely manyXs from the higher priority negative requirements. Hence
W =D M =D W̃. Hence, under the above hypothesis, there cannot be
infinitely many expansionary stages andPe,i is met. �

8.2. Coding with maximal supports.

Theorem 8.6. Assume that A and̂A are promptly simple. Then A and̂A
are automorphic iff A and̂A are10

3 automorphic.

Proof. Assume thatA and Â are automorphic via8. We can assume that
8 � E∗(A) is 10

3. We must show that8 � L∗(A) is 10
3. We know that

SR(A) andSR(Â) are10
3 isomorphic via an isomorphism2 induced by8.

Given W, look for a supportS of W, a setW̃ ⊆ ω̂, and a support̃S of
W̃ such thatS ⊆R 2−1(W̃ ↘ Â) andS̃ ⊆R 2(W ↘ A). Such sets exist;
considerW̃ = 8(W), S = 8−1(8(W) ↘ Â), andS̃ = 8(W ↘ A). Since
such sets exist, we can find them using0′′ as an oracle.

Since2 is induced by the automorphism8, by Lemma8.4, 2−1(W̃ ↘ Â)

maximally supports8−1(W̃). Therefore, by Lemma8.3and the fact that for
simple sets,A, =∗, and=D agree,W ⊆

∗ 8−1(W̃). Similarly W̃ ⊆
∗ 8(W).

SoW =
∗ 8−1(W̃) andW̃ =

∗ 8(W) and henceW̃ =
∗ 8(W). �

Theorem 8.7. If A and Â are automorphic via8 thenED(A) andED(Â)
are

10
6-isomorphic via an isomorphism induced by8.

Proof. Assume thatA and Â are automorphic via8. We can assume that
8 � E∗(A) is 10

3. We know thatSR(A) andSR(Â) are10
3 isomorphic via
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an isomorphism2 induced by8. GivenW we must find aW̃, in a10
6 way,

such thatW̃ =D 8(W).
By Lemma8.5, Y ⊆D Ỹ iff, for all M andX, if M ⊆ Y, M is maximally

supported byS = M ↘ A, andS supportsX, then X ⊆D Ỹ. Since2

is induced by the automorphism8, W̃ ⊆D 8(W) iff for all M̃ and X, if
M̃ ⊆ W̃, M̃ is maximally supported bỹS = M̃ ↘ Â, and2−1(S̃) supports
X, then X ⊆D W, a 50

5-statement. And similarly,8(W) ⊆D W̃ iff for
all M and X̃, if M ⊆ W, M is maximally supported byS = M ↘ A, and
2(S) supportsX̃, thenX̃ ⊆D W̃, a50

5-statement.
Therefore whether̃W =D 8(W) is 50

5. Since such aW̃ exists, it can be
found using0(5) as an oracle. �

Corollary 8.8. If A is simple, then A and̂A are automorphic iff A and̂A
are10

6-automorphic.

Proof. Assume thatA and Â are automorphic by8 where8 � E∗(A) is
10

3. SinceA is simple, ifW ⊆ A thenW is finite. ThereforeL∗(A) and
ED(A) are isomorphic, by the identity map. Therefore8 � L∗(A) is 10

6. So
8 is 10

6. �

If A is simple andA ⊂ W then where an automorphism ofE takes
W is completely determined by certain splits ofA, the maximal supports.
Hence the following is a corollary of the proofs of Theorem8.7 (8.6) and
Theorem6.4.

Theorem 8.9.The (promptly) simple sets A and̂A are automorphic iff there
are9, B, B̂, and2 such that

(1) L∗(A) andL∗(Â) are10
6-isomorphic (10

3-isomorphic) via9,

(2) B andB̂ are extendible algebras which are extendibly10
3 isomor-

phic via2,
(3) B supportsL∗(A),
(4) B̂ supportsL∗(Â),
(5) the isomorphisms9 and2 preserve supports.

The r -maximal sets are simple. Sor -maximal sets are automorphic iff
they are10

6-automorphic. But this is not a “nice” algebraic classification, at
least forr -maximal sets. It is possible that theL∗s of r -maximal sets have
a nice structure. So we might be able to replace Condition 1 of Theorem8.9
with something more algebraic and easier to understand, like the other con-
ditions. The reader is directed to the last section of Cholak and Nies [9]
for some suggestions. We should point out that Lempp et al. [14] have
shown that there is no10

3 classification (“nice” or otherwise) of theL∗s of
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r -maximal sets. But this does not rule out a “nice” arithmetic classification
of theL∗s.

The results in this section and that of Section7.3 drive home the point
that to build sets whose orbits are complex we are forced to use techniques
like those described in Sections7.1.1and7.2.5. In a forthcoming paper we
will do just that.
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