EXTENSION THEOREMS, ORBITS, AND AUTOMORPHISMS
OF THE COMPUTABLY ENUMERABLE SETS

PETER A. CHOLAK AND LEO A. HARRINGTON

ABSTRACT. We prove an algebraic extension theorem for the computably
enumerable sets5. Using this extension theorem and other work we
then show ifA and A are automorphic vial then they are automor-
phic viaA whereA | L*(A) = ¥ andA | §*(A) is Ag. We give an
algebraic description of when an arbitrary geis in the orbit of a com-
putably enumerable sé&t. We construct the first example of a definable
orbit which is not aAg orbit. We conclude with some results which re-
strict the ways one can increase the complexity of orbits. For example,
we show that ifA is simple andA is in the same orbit a4 then they

are in the samag—orbit and furthermore we provide a classification of
when two simple sets are in the same orbit.

1. INTRODUCTION

We will work in the structure of the computably enumerable sets. The
language is just inclusiortz. This structure is called. There have been
a large number of papers, seg B, 19 for some recent surveys, study-
ing & and the interaction withi® among the following four mathematical
concepts:

e Automorphisms: Is there a classification of the orbit€€ofWhich
sets are automorphic, i.e., in the same orbit?

e Definability: What computably enumerable sets can be defined (in
the language of jusic})? Is there a formula which distinguishes
one set from another withi@?

e Dynamic Properties: How fast (or slow) can a set be enumerated
compared to another set? or with respect to the standard enumera-
tion of all computably enumerable sets?

e Complexity: How do sets in an orbit interact with each other via
Turing reducibility? How do the sets in an orbit fit into jump classes,
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2 P. CHOLAK AND L. HARRINGTON

in particular, the low and high, classes? This interaction is part of
our connection to the computably enumerable degrees.

In this paper we focus on automorphisms and orbits although some aspects
of the remaining concepts will arise.

Our understanding of automorphisms&ifs unique to&. In most struc-
tures with nontrivial automorphisms we can construct automorphisms via
the normal “back and forth” argument. But this is not the case ®&itAo
construct automorphisms we use the properties of beielrvisited and
well-resided Well-visited isT1S and not being well-resided &J (we use
the negation). Since the complexity of these properties is at mgxsthe
construction of the desired automorphism can be placed on a tree. (We will
not discuss the details on this placement nor of the construction of an auto-
morphism ofé but direct the reader to Harrington and Soard pr Cholak
[3].) This method is called thag automorphism method. If an automor-
phism® is constructed on a tree th@has a presentation computable in
the true path (which is;xg). Hence all automorphisms constructed in this

way areAg-automorphisms. (In some cases we can make the automorphism
effective.)

One step above using thxg automorphism method is to use @xtension
theorem. Basically, an extension theorem extends an isomorphism between
two substructures & to an automorphism &. The isomorphism between
two substructures o can be given in a number of ways and the same can
be said about the resulting automorphism.

Generally, extension theorems are introduced to prove new automor-
phism results but they also allow us to reflect back and understand old
automorphism results. Our philosophy is to argue modularly as much as
possible. The hope is that an extension theorem provides an “understand-
able” module in the construction of an automorphisng of

The first major automorphism result, Soare’s resliit fhat the maximal
sets form an orbit, used Soare’s Extension Theorem. In Chélals¢v-
eral more extension theorems were introduced and used to show that every
noncomputable computably enumerable set is automorphic to a high set. In
Cholak [7], the Modified Extension Theorem was introduced which allowed
many of the automorphism constructions to be recast as using an extension
theorem. For example, in Cholak][ the results about orbits of hhsimple
sets in Maassl[5] and the result that the hemimaximal sets form an orbit
found in Downey and Stobl[] were recast in this fashion. The Modi-
fied Extension Theorem has a weaker hypothesis than Soare’s Extension
Theorem. Soare has recently proven the “New Extension Theorem” and
in addition to proving several new automorphism results with Harrington
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he has recast almost all known automorphism results using this and similar
theorems (see Soaré] and Soare 9)).

All of these extension theorems share several common features. First
they aIwaysproduceAg automorphisms. All but Soare’s Extension The-
orem used theAg automorphism method as described in Cholakgnd
Harrington and Soarel[]. Soare’s Extension Theorem was done effec-
tively. The isomorphism which these extension theorems extend and the
resulting automorphism are givelynamically

The big issue before applying any extension theorem is to “match” up
“entry states” which is done dynamically. The work done in Secfidn
illustrates what we mean by dynamic, entry states, and matching.

One of the goals of this paper is to prove two new extension theorems
(Theorems3.1and4.9). These two theorems differ from the previous ex-
tension theorems. Theoref allows the possibility that the resulting au-
tomorphism is notAg. Both of them are stated “algebraically” (or “stati-
cally”). We have come up with an algebraic description of entry states and
matching usingextendible Boolean algebraand supports Theorem4.9
follows algebraically from Theorerd.1. However we are not free from the
use of dynamic methods. For example, the proof of Thedrdns dynamic
and uses Soare’s Extension Theorem along with other dynamic theorems.

(One word of caution: We use the word algebraic to mean facts or results
about the structures we are considering. The structures we consider are
Boolean algebras and lattices which are ordered structures where all the
definable relations and functions can be defined just using the order, not
necessarily the structures, a model theorist or algebraist might wish to study.
So a model theorist or algebraist might wish to read “order-theoretic” in
place of “algebraic”.)

Theorem4.9 shows that whether an isomorphism betwe&i{ A) and
L£*(A) can be extended to an automorphism depends on the existence of a
“nice” isomorphism among “some of the entry states”, where “some of the
entry states” corresponds to extendible Boolean algebras and “nice” means
some properties of the presentation of the algebras and the isomorphism.

As with any extension theorem, our extension theorems allow us to both
reflect on old automorphism results and prove new automorphism results. In
Section5, we reprove some of the automorphism results mentioned above
using Theoremgl.9 and5.3. One current shortcoming of our extension
theorem is with results where one is given a computably enumerabke set
and constructs an automorphicwith certain properties (such as highness,
for example); this is what Soare calls a “type 2" automorphism result (see
Soare 19, Section 7]). But this might change.
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By our extension theorems, the main result from Cholak and Harrington
[6] (which depends heavily on Cholak and Harringtd}) find a result about
automorphisms and extendible Boolean algebras which resembles an auto-
morphism construction, we can show thatifand A are automorphic via
W then the isomorphism betweefi(A) and.£*(A) induced via¥ can be
extended into an automorphismwhereA | €*(A) is Ag. In other words
we can convertV into an automorphisnA with some nice properties.

The Conversion Theorem (Theorens.3). If A and A are automorphic via
W then they are automorphic via whereA | L£L*(A) = W andA | §*(A)
is AS.

Hence the complexity of an automorphism comes from the induced iso-
morphism betwee*(A) andL*(A). The impact of this theorem is that if
we want to showA and A are automorphic we are not handicapped by using
an extension theorem or tlzmag automorphism method. If we shatvand A
are automorphic via\, whereA is built using an extension theorem or the
Ag automorphism method, thek [ &*(A) is aIwaysAg. Our result says

if there is an automorphism taking to A then there is an automorphism
taking A to A which is A9 on the inside ofA and A.

As aresult we get an algebraic description, in terms oftheA), L*(A),
and extendible algebras, of when an arbitrary/Aét in the orbit of a com-
putably enumerable s&& (see Theorent.4). Not surprisingly the alge-
braic description i€1; it begins “does there exist an isomorphism between
L*(A) andL*(A).

In Section7, we use our extension theorems to show that there is an
elementary definabl@xg orbit @, which is not an orbit undeAg auto-
morphisms. All the previously known orbits are orbits un@rautomor-
phisms.

What is surprising is that this complexity comes from have O inter-
acts with sets which are disjoint frof It was long thought this complexity
would come from howA interacts with set¥V such thatwv N A #* ¢ and
W — Aiis infinite. For more details see Sectidr8 and Theoreny.17. In
Theorem8.7, we improve Theoren7.17to all A; we show given an ar-
bitrary computably enumerable satthe complexity of the orbit ofA is
determined by the sets disjoint frof

There will be a sequel to this paper. In the forthcoming paper we show
that there are orbits which are orbits unde}. ; automorphisms but not

Ag automorphisms, for all computahie Cholak, Downey, and Harrington
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have shown that the conjecture of Slaman-Woodin bt A) : Ais auto-
morphic toA} is E%-complete Is correct. We hope to use our extension the-
orems to provide an understandable and manageable proof of the Slaman-
Woodin conjecture. In fact, we want to show that there isfasuch that
whetherA is in the orbit of A is ©{-complete. Theorems 17and8.7 will

have great impact on how we approach these forthcoming results; they force
us to use techniques similar to those used in Secfiohdand7.2.5 Our
extension theorems seem the best tool for these tasks since we must build
non-A3 automorphisms in all cases.

Our results certainly justify our philosophy to argue modularly as much
as possible with the use of Soare’s Extension Theorem as a module. It
would be very difficult, if not impossible, to argue that building automor-
phisms of& all at once would be more enlightening.

In Section2, we introduce and discuss the algebraic notations needed for
our extension theorems. The remaining sections have been discussed above.

2. SPLITS OF A

2.1. Notation and definitions. Our notation and definitions are standard
and follow Cholak and Harringtor&] which follows Soare 19].

We will be dealing with isomorphisms between various substructures of
& and automorphisms &. In all cases we will think of the isomorphism
(automorphism) as a map fromto another copy od, . All subsets ofv
will wear hats. We refer ta as thehattedside and sometimes we referdo
as theunhattedside. When we define something on the unhatted side there
is, of course, the hatted dual. We will use this duality frequently without
mention.

2.2. The structure 8% (A). Fix a computably enumerable s&t

Definition 2.1. Let $(A) = {B : 3C(Bu C = A)}. 4(A) is the splits ofA
and$(A) forms a Boolean algebraF (A) is the finite subsets oA and is
an ideal of§(A). Let 8*(A) be the quotient structur& A) modulo F (A).
Let R(A) = {R: R C AandRis computablge R(A) is the computable
subsets ofA and is an ideal o(A). Let 8z (A) be the quotient structure
$(A) moduloR(A).

Let W be in 8(A). Then letW = A — W (a computably enumerable
set) andW?® be the equivalence class W in $z(A). From Cholak and
Harrington p, Lemma 2.2], we know that ifA is noncomputable, then
Sx(A) is the atomless Boolean algebra and hence every Boolean algebra
can be embedded iz (A).
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2.3. Eg Boolean algebras.Recall from Soarell€] the following defini-
tion.

Definition 2.2. A countable Boolean algebt8 = ({Xi}icw, <,U,N,7) is
a Eg Boolean algebraf the listing { X }i <., IS uniformly computable and
there are computable functions and g and azg relation R such that
Xi UXj = X, jy, Xi N Xj = Xgi,j, and Xj < X iff RG, j). (An
element of8 must appear at least once{iX; }i <., but there is no bound on
the number of times an element may apped™i}ics.)

We should be familiar witho Boolean algebras. There is a beauti-
ful theorem of Lachlan (see Soared[ X.7.2]) that says ifB is any Eg
Boolean algebra then there is an hhsimpleesuch that£*(H) is iso-
morphic toB. Let L(H) be the quotient substructure 6 (H) given by
{RN H : Ris computablgmoduloR(H). Clearly, as givenl.(H) is de-
finable in& with a parameter foH. In Cholak and Harringtons) Lemma
11.2], it is shown thatt*(H) and £(H) are isomorphic. Hence there is
a substructure o8z (A) which ranges over al}:?? Boolean algebras a&
ranges over all computably enumerable sets.

All of the Boolean algebras we consider will be substructure$fA),
L*(A), or &. So we will always consider the li$X; }i ., as a list of com-
putably enumerable sets. The operations will be union, intersection, and
complementation on computably enumerable sets; and hence the functions
f andg are clearly computable. The relatiéhwill reflect eitherX C Y,
XCgY,orXC*Y.,

Lemma 2.3. Given two splits X and Y, whether Xz Y is 9.

Proof. Given the index forX, it is possible to find in aﬁg way an index

for X. Similarly for Y. Hence we can find an index fofAY in a Ag
fashion. NowX Cgx Y iff XAY is computable iff there is ahsuch that
W U (XAY) = w. Since 'W U (XAY) = " is l‘[‘z), the last clause in the
above sentence i53. O

Theorem 2.4.Let {X; : i € w} be a uniformly computable list of com-
putably enumerable sets (not necessarily splits of A) amg aet B such
that{X; : i € B} generates a subalgebeg of §z(A). Then there is a list
{Yi : 1 € w} where all the Ys are splits of A, which witnesses thatis

a Eg Boolean algebra. Furthermore there isﬁeg function g from B taw
such that X = Yg(i).

Proof. Basically we are going to pad tr& list, {X; : i € B}, with lots of
finite sets to make it a computable list of computably enumerable sets all of
which are splits ofA. This padding will be done on a tree;2 It will be a
standardT1) tree argument.
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Assume € B iff Jke(i, k), wherep(i, K) is l‘Ig. Assume thaip(i, k) is
(YX)@y)[O, Kk, X, y)], where® is Ag. We define the true path by induc-
tion as follows: Letw C f such thatx| = (i, k). If ¢(i, k) thena™0 C f;
otherwisex™ C f.

The approximation to the true path is also defined by induction. Let
a C fgsuch thaix| = (i, k) and|a| < s. We need a length of agreement
function: I, (s) is the greatest such that for allx < z there is ay with
O, k, X, y). Lett < sbe the last stage thatC fs (if such a stage does not
exist lett = 0). If (1) < 14(S) (ana-expansionary stage) thesi0 C fg;
otherwisex™1 C fs. Itis not too hard to show that = liminfg fs.

At 8 = «"0 we will construct a seY¥j. If g C fs for the first time ever
or the first time after being initialized, choose the lepstich thatyj is not
being constructed and start constructi)g If g < fs andg is buildingYj,
letYj s = Xi s, Wherela| = (i, k). If 8 is to the right offs we will initialize
B at stages (and end the construction of the curréf).

If 8 =a«"0 C f then, by the nature of the tree construction, at some stage
B will be assigned a permaneYif and never be initialized after that stage.
ThenY; = Xj, where|x| = (i, k). If Yj is not permanently assigned to
such ag thenY; is finite. O

Corollary 2.5. 8z (A) is a £J Boolean algebra.

Proof. Given a computably enumerable $g4, it is Eg to decide ifWe is a
split of A (is there aj such thatWe U W = A). O

Definition 2.6. Following Theoren?.4, given8 a Eg Boolean algebra of
Sr(A) (L*(A) or &), if there is a uniformly computable lisX = {X}ico
of computably enumerable sets and:@ set B such that{X; : i € B}
generatesB, we sayX andB is arepresentatiorfor 8. (B might be all of
w.)

2.4. Listings of splits of A. We are concerned with the certain well-
represented subalgebras£#(A). Even if we knowX is a split of A we
still need0” to find aY such thatX LY = A. We want to limit ourselves to
considering just splitS where we can findA — S effectively.

Definition 2.7. A uniformly computable listing = {§ : 1 € w}, of
splits of A is aneffective listingof splits of A iff there is another uniformly
computable listindS : i € w} of splits of Asuchthatg U § = A.

Lemma 2.8. Let § = W, N\ A; this is an entry set. Then the entry sets,
8 ={S : e € w}, is an effective listing of splits.

Proof. (We N\ A) U (A\Wp) = A O
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With an entry set the corresponding split is determined at the mornent
entersA,; eitherx entersAin W, or not. The entry sets are the canonical ex-
ample of an effective listing of splits. This list depends on the enumeration
of A.

Lemma 2.9.Let8 = {§ : i € w} be an effective listing of splits of
A. Then there is an enumeration of A, an effectiveulisting of splits of A,
8 =1{§ :i € v}, and an effective listing of splits of &, = {§ : i € w},
such that, for all i, w.r.t. tpe new enurperation of &="§, AN\ S =10
50§ =§ N A, ANS =0,SuSuUAN{0.1,...i}) = A and if
xeSsuSsthenxe Ssu S forall j <i.

Proof. Let x enterA (under the old enumeration). Wait farto enter§ or

§ fori < x; addingx to § or §, respectively. Then allow to enterA
(under the new enumeration). 5

Clearly8 = {S :i € w}and8 = {S :i € w} are uniformly computable
Ii§tings of splits of A. The uniformly computable listing of splits oA,

{SUAN{0,1,....i}) : i € w}witnesses thaf is an effective listing of
splits. Similarly{S U (AN{0,1,...,i}) : i € w} witnesses tha$ is an
effective listing of splits. O

Remark2.10Q Itis necessary that be an effective listing of splits of\ for
the above lemma to hold. The key point of this lemma is that whenters
A it has been determined whetheris in § or not. SoS L (A\S) = A.

This lemma will be essentiallt is used in Lemma&2.15 which in turn
plays a key role in Sectiod.3. Also see the proof of Lemnias8.

Hence as we vary the enumerationfoive get almost all effective listing
of splits of A as entry sets. However we do not get all (noneffective) listing
of splits this way.

Lemma 2.11. No effective listing of splits of infinite computably enumer-
able set A contains all splits of A.

Proof. We will provide two proofs of this lemma.

Let 8§ = {S : e € w} be an effective list of splits ofA. Let
{ag : 1 € w} be a computable listing of the elements Afwithout re-
peats. LetS={a : & ¢ S} = {a : & € S}. If S= S thena; € Siff
aj € §iff aj ¢ §j. S0S# §j, forall j.

By Lemma2.9, we can assum&§ = § \, Aand§ = § \, A, for
all i. By easily modifying the Friedberg Splitting Theorem (see Soaig [
X.2.1]), we can build a spliBandSsuch that if§ N\, A (S \\ A)is infinite
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thenS \, S(§ \\ 9 is infinite and similarly forS. The splitSis not in
8. O

2.5. Extendible subalgebras.We would like to consider subalgebras of
8% (A) which have a representation that is an effective listing of split&.of

Definition 2.12. A xJ subalgebraB of 8z(A) is extendibleiff there is
representatiod andB of 8 such that§ is an effective listing of splits oA
andB is aAj set.

We will assume that ifB is extendible then the given representation
is always an effective listing of splits oA. From this point further
8 ={S : i € o} will always refer to an effective listing of splits oA
andX = {X; : i € w} to a uniformly computable list of computably
enumerable sets.

Lemma 2.13. The trivial subalgebra o84 (A) is extendible.
Proof. Let Se = ¥, Se = A, Ser1 = A, Ser1 = ¥, andB = . O

Lemma 2.14. The subalgebr&a generated by the entry sets is extendible
(this is what we call an entry set Boolean algebra for A).

Proof. Use the listing from Lemma.8andB = w. O

Lemma 2.15.Let B C Sx(A) be extendible via§ and B. There is an
enumeration of A and an effective listing of splés= {S : i € w}, such
that § and B witness thaB is extendible and, for alli, A, § = ¥ (and

oS U(A\S) = A).

Proof. Apply Lemma2.9to § to get the desired enumeration Afand the
effective listing of splits ofA, 8. {S : i € B} generatesB. U

Hence every extendible Boolean algebra is an extendible subalgebra of
an entry set Boolean algebra. Clearly every extendible Boolean algebrais a
x3 Boolean algebra.

Lemma 2.16.If B8 and B’ are extendible theB & B’ are extendible.

Proof. Let {S }j<, andB witness thatB is extendible and similarly foB’.
LetTy = S andTy11 = §. Then{T}i<, and{2i :i € BJju{2i+1:i € B’}
witness thatB & B’ is extendible. O

Theorem 2.17.There is an extendible algebea of 8 (A) such that

(1) foralli € B, § is computable,
(2) forall R € R(A), thereisie B such that R= §, and
(3) B isinfinite.
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Proof. For this proof fix an enumeration of (with A; = ). The
idea is that if R is a computable split ofA then there ardg,is,i>
such thatR = W,,, A \y W, = ¢ (w.r.t. this fixed enumeration),
Vvio = Vvi11 A \ VVil = 0, VVio,S—i—l U VVil,s+l = AS—|—2| Wio = Py
andW, s+1 € W, s+1, for all s, (beforex entersA determine which oR
orR = W, x is in and addk to W, or Wi, andW,, accordingly). In this
case, we can le&§ = Wi, and§ = W, wherei = (io, i1,i2). But to make
4 a uniformly computable list of computably enumerable sets we must be
more careful.

Leti = (ig,i1,12). Assume tha§ s andé,S have been defined amdhas
not been declarednusable If (A N\, Wiy)st1 = 9, (A N\ Wi)s+1 = 9,
Wig,s+1 U Wi, sr1 = Ast2, VViq,s+1 NW,s+1 =0, andWi; sy1 S W, 541,
then letS sy1 = Wigs+1 andS sy1 = Wi, sy1. Otherwise declareunus-
ableand, foralls' > s, let§ ¢ = Ss andé,s/ = As+1— S5 {Sliew IS
an effective listing of splits oA.

Leti € Biff Wi, u W, = A AN W, =0, A\ W, =0,
\M0,8+1 U VVi]_,S—l—l = AS—|—21 Wio = VVi21 andvvi1,$+1 - \M2,8+11 for all
s. Bis AS.

{S}icw and B represent our extendible algeb#. If i € B then
S =W, é = W,, and§ U W, = w and hence§ is computable. Given
a computable subs& of A, by the first paragraph of this proof, there is an
corresponding € B with R = Wi,. Since there are infinitely many such
R, B is infinite. O

2.6. Isomorphisms.

Definition 2.18. We conside® a partial map between splits éfand splits
of A an isomorphismbetween a substructu® of §z(A) and a substruc-
ture B of $x(A) if © preservesC g, for each equivalence clagy of
B if S e Sz, O exists, and for each equivalence clds of B if
S e 5z, ®1(§) exists. There is a functioh such that® (W) = Wh)
and®~1(W) = Wy 1. If his AJ then so is®.

Definition 2.19. We say two extendible Boolean algebr@sand $ are
extendibly isomorphigia © iff

e there is an effective listing of splitsS }i<,, and aB which witness
that$B is an extendible algebra,

e there ard §}i ., and B which witnesss is an extendible algebra,

e foralli e B, thereis g € B such tha®(S) = §j,

e forall j € Bthereis ar e B such tha®~1(§)) = S, and
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e this partial map induces an isomorphigbetweens and$3 as in
Definition2.18
In this case, we say thét is anextendible isomorphisnThere is a function
h such tha®(S) = $i) and®~1(§) = S, 1. If his AJ then so isB.
We write ©(S) = So() and®~1(§)) = Sy-yj). If Sis notang, for alli,
but Sz € 8 we let®(S) = ®’'(S) and similarly forS. Hence we will also
consider® to be an isomorphism (as in Definitidn18 betweens and 5.

Lemma 2.20. Let B be ax{ substructure o8 (A) and 8 be ax? sub-
structure of8z(A). Assume tha® is a map betweefX; : i € B} and
{Xi :i e B}. Furthermore assume thatforj € B, X; — X; is computable
iff @(Xi) — ©(X;) is computable and, dually, for all jj € B, X; — X;
is computable if©~1(X;) — ©~1(X;) is computable. The® induces an
isomorphisn®’ betweenB and 5.

Proof. ® and®—1 preserveCz. Xj Cg X iff Xj — X is computable iff
O(Xj) — ©(X)) is computable iffo (X;) €z ©(Xj). And similarly for
© 1. GivenSiz € B findi such thatX; € Si and, for allS € Sg, let

O'(S) = O(X|). ©is well defined and preservesy since® does. Define
®~1 dually. O

If ® is an extendible isomorphism and we apply LeminkSto the ef-
fective listing of splits ther® remains an extendible isomorphism between
these two extendible algebras with regard to the new listing of splits.

Lemma 2.21. The trivial subalgebras of%(A) and Sx(A) are effectively
extendibly isomorphic as extendible subalgebrasefA) and $z (A).

Proof. Let {S}i-, be the listing of splits given in Lemma.13 for the
trivial subalgebra of§z(A). Let {é}kw be the listing of splits given in
Lemma2.13 for the trivial subalgebra o8z (A). Let ©(S) = § and
XS =S5. O
Lemma 2.22. Assume thatB and 8 are extendible subalgebras which
are extendibly isomorphic vi®. Assume tha3’ and B’ are extendible
subalgebras which are extendibly isomorphic@a Then, by Lemma.16
BeSB and BB’ are extendible subalgebras which are extendibly isomor-
phic viaA, whereA (Tze) = O(S), A(Tzes1) = O'(S), A~ H(T2e) = 074S),
and A~ (Taer1) = (@)1

3. EXTENSIONS TO ISOMORPHISMS

Recall thaté*(A) is the structurg{We N A : € € w}, €) modulo the
finite sets. An isomorphism betwedt(A) and €*(A) is a one-to-one,
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onto (both of these items are in terms«aéquivalence classes) functiaa,
from{WeN A: e e w} to{Weﬂ A:ecw)suchthaMeN A C* W N A
iff Z(WeN A) C* Z2(W N A). Note theZ is applied toWe N A, notWe.

The goal of this section is to prove and discuss the import of the following
extension theorem.

Theorem 3.1.LetB C 8x(A) andB C S (A) be two extendible Boolean
algebras which arexg extendibly isomorphic vi®. Then there is @& such

that @ is a Ag isomorphism betwee&*(A) and &*(A), for alli e B,
D(S) =% ©(S),andforalli e B, > 1(§) =x ©1§).

What is important about this theorem is that we eatendhe extendible
isomorphism betweet8 and 8 to an isomorphism betwee*(A) and
&*(A).

The first clause of the conclusion should not be very surprising. Af-
ter all, if A and A are infinite then there is an effective isomorphidm
betweeng*(A) and £*(A). Let f be an effective map fromA to A and
W(W) = f(W). Moreover, if A and A are computable thed clearly
computably agrees witt® on all § and hence the second clause of the
conclusion holds withb.

The main use of Theore® 1is in the proof of Theorerd.9 and Theo-
rem5.4. These are the only examples of the use of Thedzeim this pa-
per. However, we will provide several examples of the use of Thedrém
and Theorend.4.

There are several possible ways to prove this theorem. For example, one
could use some of Soare’s recent work on extension theorems. We had used
such a proof in an earlier version of this paper. In this version we will base
our proof on published theorems. However, we will have to use them in
novel ways and, in a few cases, note that these proofs prove more than what
is actually stated.

We will base our proof on a theorem, the Translation Theorem, from
Cholak [2]. The proof will have a few parts. First we will restate the Trans-
lation Theorem in a slightly strengthened form and show why this version
follows from the proof in Cholakd]. Then we construct 8 enumeration
witnessing tha® is an extendible isomorphism and meeting the hypothesis
of the Translation Theorem. Then we apply the modified Translation The-
orem followed by Soare’s original Extension Theorem to this enumeration
to get the desired isomorphism.

The proof of Theoren3.1is one of the few places where we have to go
into the difficult details of actually building an isomorphism by a dynamic
construction and the use of states.
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3.1. The Modified Translation Theorem. These next definitions are are-
peat of the first six definitions in Section 1 of Chola¥ pusing slightly
different notation.

Definition 3.2. (1) {Xn}n<e is auniformly computable collectionf

c.e. sets if there is a computable functibrsuch that for alln,
Xn = Whn).

(2) {Xn}n<e is auniformly0”’-computable collectioof c.e. sets if there
is a functionh <t 0” such that for alh, X, = Wh(n).

(3) {Xn.stn<w.s<w IS auniformly 0”-computable enumeratioaf c.e.
sets if there is a functiommn <t 0” such that for alln and s,
Xn,s = Wh(n),s-

Definition 3.3. For anye, if we are given uniformly computable enumera-
tions of { Xn stn<e.s<w @NA{Yn s}n<es<e Of C.€. SetdXn}n<e aNd{Yn}n<e,
define thefull e-state of x at stage sj(e, X, S), with respect to (w.r.t.)
{Xn,sIh<es<w and{Yn,s}nfe,s«o to be the triple

V(e X,S) = (e, 0(eX,S),7(8X,S))
where

o(ex,8)={i <e:xe Xjs}

and

7(6,X,8) ={i <e:xeYs}.

Definition 3.4. For any collection of c.e. se{Xn}n<e and{Yn}n<e, define
thefinal e-state of xy(e, x), W.r.t { Xn}n<e and{Yn}n<e to be the triple
v(e, X) = (e, o(e X), t(e X))
where
o x)={i <e:xe X}
and
(e, X)={i <e:xeY,}

Definition 3.5. Assume thaf As}s<., iS a uniformly computable enumer-
ation of A, an infinite c.e. set. For arg; assume we are given uniformly
computable enumerations ¢Kn s}n<es<w and{Yn sin<es<e» Of C.€. sets
{Xn}n<e and{Yn}n<e. For each fulle-statev, define the c.e. set

D/ = {x : 3t such thak € As;1 — Asandv = v(e, X, S)
W.ILL {Xn.s}h<es<w and{Yn,s}nge,s<a)}-

If X e DUA, we say thab is the entry stateof x w.r.t. { X, s}n<es<w and
{Yn.s}n<es<w INt0 A. We say thaDﬁ is measured W.r.{.Xn sih<e s<» and
{Yn,s}nge,s<w-
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The following definition is new and is used for notation ease.
Definition 3.6. We write X = Y iff X CYandX =z Y.

Theorem 3.7(The Modified Translation Theorem). Assume tha{tAl}sew,

{Allsewr (Ut shhv.s<or (Vishn<o.s<or {Unshnew.s<o: a0 (Vi shnzo.s<o
are uniformly 0’-computable enumerations of the infinite c.e. sefs A

and AT and the uniformly0’-computable collection of c.e. se{uérT}Mw,
{VnT}n<w, {UrT}n<w, and{VnT}n<w satisfying the following conditions:

(3.1) (YMIATN U] = AT\ V] =1,

(3.2) (vw)[DA" is infinite iff DA" is infinitel,

I. ~
where, for all e-states, p is measured W-r-{[Ur:r,s}nse,s<a) and{VntS}nSe,SW,

and D;)&T is measured W.r.{ljr{s}nfe,sw and{Vnﬁs}nSe,sw.
Then there is a collection of uniformly computable c.e. $&tgn-w,
Vi <o {Ufh<w, and {Vi}n<, and uniformly computable enumera-

tions { As}sew, {As)sew {Un,sth<w,s<w» {\A/r{fs}n<w,s<w, {Or—]i:s}n<w,s<a), and
{Vn.s}h<w.s<w Of these sets such that

(3.3) Ast1 = A;r and As+1 = A;r,
(3.4) VmIAN U = ANV =01,
(3.5) (Ym@en[U, =* Ug,, Vot =& VI, Ud =z U/, and \ff =* Vg1,

(ve)[either[Ug\ A =* V,N\A =" U\ A =* V\ A =* ¢]
(3.6) (hence, by Equatio(8.4), Ul = V" =* #) or
[there is an n such that € &, (from Equation(3.5))]],

(3.7) (Vv)[Df is infinite implies3v’ > v)Dﬁ is infinite],

(3.8) (Vu)[Df is infinite implies(3’ < v)[DvA/ is infinite]],

where, for all e-states, pis measured W.r{lUn stn<e.s<w and{\?ris}nfe,sw,
and D/ is measured w.r{U +Jn<e s<w and{Vh sin<e.s<o-
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3.2. Proving the Modified Translation Theorem. We will show that the
Modified Translation Theorem follows from the version of the Translation
Theorem published in Cholak]l Equations labeled “3.x” refer to the Mod-
ified Translation Theorem and equations labeled “1.x” refer to the Transla-
tion Theorem.

First note that rather thaa®, A, AT, A, U+, andV* the published ver-
sion of the Translation Theorem us&d, T, TT, T, U, andV. So Equa-
tion 3.1is the same as Equation 1.7. Equati®a implies Equations 1.8
and 1.9. Hence this version is weaker than the published version. We could
weaken the hypothesis of this version but for our current uses there is no
need.

In the conclusions, Equatio®.3 is the same as Equation 1.10, Equa-
tion 3.4 is the same as Equation 1.11, Equatiri is the same as Equa-
tion 1.14, and EquatioB.7 is the same as Equation 1.15.

That leaves Equation3.5and3.6. Equations 1.12 and 1.13 are shown
true on page 95 of Cholak] (lines -13 to -11). (Note in Equation 1.12,
the first and only " should be a 1”.) We will start from the middle of
page 95 and show that Equatiof@sd) and 3.6) hold.

Recallg is an onto, one-to-one, computable function franto Tr. In

[2], Ue = Ug(e and similarly forvV+, U+, andV, while Ug(e) = U|L(e)|

and similarly forVT, UT, andVT. If g(e) ¢ f then the first clause of
Equation 8.6) holds. If 8 = g(e) ¢ f andn = |g(e)| then it is enough to
showe = e,. (That s, it is enough to show Equatiod.) holds forn and
e.) So rather than showing! N'A =* V;- N A we must show;" =g Vi
and similarly forU+ and A and we will be done.

By Lemma 2.12 of Cholak”], the fact that for allx, «(x,0) = A (see
Stage 0 of the construction on page 96 9 ,[and if x entersA at stage
s thena(x,s + 1) 1 (see Step 1 on page 97), then, for almostall
there is a least staggg such that eithew(x, sg) 1+ or 8 C a(X, sg). Let
R = {X|x € As}. Ris a computable subset &. Assumex ¢ R enters

Vi = \7(;(9) = \7/;r at stages. Lets' = max(s, sg}. By Equation 8.1) and
the definition ofR, x ¢ Ay and hence8 C «(x,s). Then, by the last

clause of@, (on page 95)x € Vﬁ‘fs/ = \79”?6)’3/ =V By @, V& C Vi,
HenceV =gz V. The proof that)™ =z U, is similar. O

3.3. Meeting the hypothesis of the Modified Translation Theorem.By
the hypothesis of Theorerd.1 and Definition2.19 we can assume that
there are an effective listing of splits &f {S }i <., and aAg setB such that

{Slics generatesB and {S}i <., is a similar listing of splits ofA for B,
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B, andA such tha®(§) = Se) and®1(§) = §-1, is an extendible
isomorphism betwee® and 5.

By Lemmas?2.21and2.22 we can assume that the spliand A appears
as some§ and§ for somei € B. Since{S}i <, is effective we can assume
for all i, Sz.+1 = S andthat 2 € Biff 2i + 1 € B. Slmllarly for
{S}i<w and B. Wlthout loss, we can assume th§-15c. 1) = S- 1(2¢)

and S@>(2e+1) = S@Qe). Since{S}i<w and{S}iSw are effective listings of
splits, ® remainsAg. By Lemmaz2.15 we will also assume that for all
AN, § = ¢, for some fixed enumeration ¢A}s-,,. Dually for {S}iiw
andA.

Furthermore, since at this point we no longer need an effective enumer-
ation of splits, if 2 ¢ B, let S = #, So2i) = ¥, Sis1 = A (with the
enumeration{ As;1}sco S0 AT N\, Si1 = ¥) andSozi 1) = A (with the
enumeratior As; 1}sco SO AT N\ So(2i +1) = ) and dually for{§}i,, and
B.

We want to, using an oracle fd@’, inductively construct an enumer-
ation of the c.e. setéU/ n-w, Vilnew, {Uflnew, and {Vily-, which
meets the two hypotheses of Theor8mi. Let N be the set of2e + 1)-
statesv such thatD” is infinite and DvA is infinite, whereD? is mea-
sured W.I.t.{S s}n<zer1 and {Sg-1() sli<ze+1 and DvA is measured w.r.t.

{S@(n),s}nfzﬂl and{én,s}ifgeﬂ, for all s < w. DeterminingAe is the only
place0Q” is used.
Letx € Asy1 — As. Letv = v(2e + 1, X, s) (as measured above). If

v € Nethen letx € UL iff x € Ses, x € Uk, iff X € Ser1s,

il t
X € Vpgq iff X € Sy- 120). 5 andx e V2e+15 iff X € S@ 1(2e+1),s, We act

dually if X € As+1 — As. For alls, let AS Ag andAS

Since only finitely much information, mainlye, is used in the above
construction of the setsge, U2Te+1, VzTe, V2Te+1’ Uge, UzTe+1' VzTe, andVZTeJrl,
these sets are computably enumerable. He{h&@}n,kw, {VnT,s}n,Sm,
(0] shns<or aNd Vil sln s<o, is @ 0’-enumeration offUbn-w, (Vi tn<o,
(UM -0, and{Vi}n-,, satisfying Condition.1). By induction one, we
can easily show that for alke + 1)-statesv, v € M iff DvAT is infinite
iff DfT is infinite, whereD(ﬁT and DfT are measured as in Theorehy.
Therefore Condition3.2) is satisfied.
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T
Lemma 3.8. For all e, U2e =x Se, UZEJrl =R Sze+1,T e =R SO 1(2¢)»
ar]rdvZe+1 =z So- R Foralle,Uj, =& Soze), Uderq =2 Sozer)
VZE =R SZE! and \ée+1 =R SZG—F].-

Proof. Since® is an isomorphism betwee® and B, for each(2e + 1)-
statev, {X : v(2e+ 1, X) = v} is noncomputable iffX : v(2e + 1, X) = v}
is noncomputable, where(2e + 1, x) is measured wW.r.t{S}i<pe+1 and
{So-1(i)Ji<zer1 and v(2e + 1,X) is measured W.r.t.{é(g(i)}ig%l and
{S}i<zet1.

By our carefully chosen enumerations of splits Af {S s}i s<w, the
set{X : v = v(2e+ 1,X,5) A X € Agi1 — As} is noncomputable iff
{x : v =v(2e+1, x)} is noncomputable, wheng2e+ 1, x, s) is measured
as above. Dually foA.

Let Ae be the set of al(2e + 1)-statesv. Forv € e, let S, be the
set{X :v=v2e+1X,S)AX € Ast1 — AsAX € Ses}. If v & N
then Se,, is computable.Se = |_|veg‘,‘,e Sev. By the above construction,
U;re = uveNe Se.v- HenceUZJre =2 Se. We can argue similarly for the
remaining sets. O

Since® is an isomorphism between substructureg gt A) and$z(A),
A is noncomputable iffA is noncomputable. As we noted shortly after
the statement of Theorefl, Theorem3.1holds whenA and A are com-
putable.

3.4. Constructing the isomorphism ®. In the above section we built
a 0’-enumeration meeting the hypothesis of Theorg@mand satisfying
Lemma3.8 Now apply Theoren3.7to this enumeration. Condition3.4),
(3.7), and @.8) of Theorem3.7 are the three conditions in the hypothesis
of Soare’s original Extension Theorem (see Soarg Theorem XV.4.5).
Now apply Soare’s original Extension Theorem to the enumeration given to
us by Theoren3.7. This gives us the c.e. seliSn}n<w: {Valn<e, {Unln<w,
and{Vn}n<w». The Extension Theorem only adds element!s?,{.‘oto get\7n
and similarly forU,. ®(Up) = U, and®~1(V,)) = V, is an isomorphism
betweeng*(A) and&*(A) (see Soarel[f] Section XV.4 for details).

By Lemma3.g, foralln, Ul =% S andU} =z So@n). By (3.5 of
Theorem3.7, Ug, =* U/l andUg =z UJ. Therefore for alh, Ug, =z S,
Ud =& Som- Since® is an isomorphism® (Ug,) =z O(Sy).

By our careful choice ofS }; -, and our modification o® in Section3.3
we have that for alh, Sn U Sni1 = AandSeen U Soeni1) = A. Hence
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for all n, Ug,, U Ugy,, U Ry = AandU$ uUgd U R, = A, for some
computable setR, and R,.
Since® is an |somorph|sm betwe&?f"(A) and&*(A) and the set§2n

andUe,, , are dISJOInt UeZn UJr C* Ry and®(Sn) — Ue,, <* R

Therefore®(Ue,) =* Ue,, ==z So(zn) and ®(Sn) =g P(Ue,,). SO
®(Sn) =z ©(Sn). We argue similarly to showb (Sni1) =z ©(Snt1)
and®1(§)) =z 671&)). O

4. EXTENSIONS TO AUTOMORPHISMS

Our goal to find an algebraic extension theorem which allows us to find
an automorphisna of € taking A to A if and when possible. Clearly we
will have to add some extra hypotheses to Theogehabout the outside of
AandA.

Recall thatL*(A) is the structure({We U A : e € w}, ©) modulo
the finite sets. A substructuré of £L*(A) is a subcollection of the sets
{We U A : e € w}, ©) modulo the finite sets. An isomorphism between
L*(A) and L*(A) is a one-to-one, onto (both of these items are in terms
of x-equivalence classes) functi@ghfrom {We : e € w} to Me : e € w
such thatV, U A C* W, U Aiff 2(WeU A) C* Z(W U A). Note thatZ is
applied tow U A.

Assume that£*(A) and £*(A) are isomorphic vial and that8 and
B are Ag isomorphic via®. We wish to use the isomorphisd from
Theorem3.1to extend this pair of isomorphisms into an automorphism
of & such thatA (A) = A

Notice thatW = (W — A) u (W N A). It would be nice to define
AW) = W(WUA) — A U dWN A). Clearly this is order preserv-
ing. But why is(W (W U A) — ALdWNA) a computably enumerable
set? To answer that we must explore more carefully the complex relation
betweent*(A) andB.

Definition 4.1. S supports Xff S< X and(X — A) u Sis a computably
enumerable set.

Lemma 4.2. Whether S supports X Eg.

Proof. S supportsX iff there exists are whereW, = (X — A) u Sand
ScC X. O

Lemma 4.3. W N\ A supports W.

Proof W= W —-A uUuWN A UANW and(W - A U W\ A
is the computably enumerable 8@t A. O
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Definition 4.4. An extendible subalgebr® supports.L if for all W € £
there an € B such that§ supports\.

Lemma 4.5. &a supportsL*(A).

Lemma 4.6. If S supports X and T is a split of A such thatd S and
S=g@ T then T supports X.

Proof. (X— A)uSis a computably enumerable setS#T is a computable
setRthen(X—A)UT = ((X— A uS NR)isacomputably enumerable
set. 0

Definition 4.7. Assume that
L*(A) andL*(A) are isomorphic viab,
B and B are isomorphic via®,
B supportsL, and
B SUPPOISL.
Then the isomorphism& and® preservethe supports of and.£ if
e for W* € L, there is ani € B such thatS supportsW and
(WWUA) —ALBOS)isa computably enumerable set, and
e for all W* € £, there is ani € B such that§ supportsW and
(W—YWUA) — A) uO1(§) is a computably enumerable set.
For shorthand we just say isomorphisisand® preserve supports

If § supportsW then§ < W. But if isomorphismsl and® preserve
supports, then, whilel (WU A) — A) L ©(S) is a computably enumerable
set, we do not require thét(S) be contained ik (W). Hence® (§) might
not be a support ot (W).

Theorem 4.8. Assume that
(1) L£L*(A) and L*(A) are isomorphic vial,
(2) 8 and B are extendible algebras which are extendilalg isomor-
phic via®,
(3) B supportsL*(A),
(4) B supportsL*(A),
(5) ¥ and® preserves supports,
(6) @ is an isomorphism betweedt (A) and &*(A) such thatifie B
then®(§) = ©(S) and ifi € B then®1(§) =z @ 14§).
ThenA(W) = (W(W U A) — A) L ®(W N A) is an automorphism of
taking A toA.

Proof. It is enough to show thatt (W U A) — AU CD(WUﬂ A) is a com-
putably enumerable set. First note thEtN A = S U (§ N W), where
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S supportsW andi € B. Since® is an isomorphism betweedi*(A) and
&*(A), ®(WNA) = ®(S)ud(SNW). Since¥ and® preserve supports,
for some supporg of W, (W (WUA) — ALB(S)isa computably enumer-
able set. Sinc®(S) =z ©(S), WWUA)—ALd(F)isa computably
enumerable set. Henc& (W U A) — A) U ®(S) U (S NW) is a com-
putably enumerable set. Similarly we can shaw!(W) is a computably
enumerable set. O

Theorem 4.9. Assume that

(1) L*(A) and L*(A) are isomorphic via,

(2) 8 and B are extendible algebras which are extendilalg isomor-

phic via®,

3) B supports,c*(e\),

(4) B supportsL*(A),

(5) ¥ and® preserve supports.
Then there is an automorphismof & such thatA (A) = A A I L*(A) =V,
andA | €*(A) is AJ.

Proof. Apply Theorem3.1to get®d as required by Theorermh8.6. @ is Ag.
Apply Theorem4.8to getA. O

The way we put together the automorphism in Theo#e#nis very sim-
ilar to the way in which Herrmann showed that the Herrmann sets (along
with the hemimaximal sets and other such orbits) form an orbit (see Cholak
et al. £, Sections 5 and 6]). Both methods are algebraic or “static”.

In Section6, we will show that Theorem.9 can be improved to be an “if
and only if’ statement (see Theore&in)).

5. PRESERVING THE COMPUTABLE SUBSETS

Definition 5.1. A map E from a substructure of < &(A) to § C &(A)
preserves the computable subsé®R € R(A) N G iff E(R) € R(A) N G.

There is no guarantee that any of the maps we have been considering
preserves the computable subsets; this incléglesAnd the same can be
said about Soare’s original Extension Theorem (see SdateXV.4.5])
(applied by itself). To see this: K € R(A) and® is an isomorphism
® betweens*(A) and &*(A), then there is & such thatX UY = A and
OX)uoe) = A but there may not be 2 such tha® (X) U Z = @. Of
course, there is suchzif Ais computable (and dually i is computable).

It might be useful to consider the following example: Afand A are
infinite then there is an effective isomorphigsimbetweenrt*(A) and&*(A)



EXTENSIONS, ORBITS AND AUTOMORPHISMS 21

(let f be an effective map from to A and let (W) = f(W)). If Ais
computable buf\ is not thend cannot preserve the computable subsets.

From this point on we will always considek and A to be noncom-
putable. We will point out that it is known that there is an isomorphism
between&*(A) and &*(A) which preserves the computable subsets (see
Theorem5.3). The goal of this section is to provide another proof of fact
using our methods.

Definition 5.2. C(A) is the set of\, such that eitheA € W, or We C* A.

Theorem 5.3(Soare’s Automorphism Theorem ). Let A andA be two
noncomputable computably enumerable sets.

(1) Then there is aAg isomorphismA between&(A) U C(A) and
€(A) U €(A). Furthermore aAJ-index for A can be found uni-

formly from indexes for A and.
(2) In addition, A preserves the computable subsets of A.

Soare [ 7] explicitly stated Theoren®.3.1. Soare’s result that maximal
sets are automorphic follows sinéeis maximal iff C(A) = &*.

Theorem5.3.2 was observed, in unpublished work, by Herrmann. As-
sume thaR is a computable subset & Herrmann’s observation was that
R e C(A) and hence\ (R)LA(R) =* & and therefore\ mapsR to a com-
putable subset oA. This observation of Herrmann was never published and
is one of the key facts he used in showing that the Herrmann sets form an
orbit; see Cholak et al4].

5.1. Another proof of Theorem 5.3, We would like to show Theorers.3
using the methods of this paper.

First note that an isomorphish betweeng*(A) and&*(A) preserving
the computable subsets induces an isomorphisivetweeng*(A) U C(A)
and&*(A) U C(A) taking Ato A. If A € W thenAUW = w and there
is a computable se® € A (R = A\W) such thatR € W which implies
W = RU (WNR). SoforW € C(A), let A/(W) be A(R) LI (A(W N R)).

We would like to prove a theorem along the lines of Theoretn

Theorem 5.4. Assume that

(1) 8 and B are extendible algebras which amg extendibly isomor-
phic via®;

(2) forall R € R(A), there is an ie B such that Sis computable and
RCS;

(3) for all R € R(A), there is an ie B such that§ is computable and
RCS;
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(4) foralli € B, ®(S) is computable iff Sis computable and for all
i € B, ®1(§) is computable if§ is computable.
Then there is aA such thatA is a Ag isomorphism betweeg™*(A)
and &*(A) which preserves the computable subsets, for alki B,
A(S) =z ©(9), and ifi € B, thenA~1(§) =z 7L §).

Proof. First apply Theoren3.1to get®. We will show that® is the desired

isomorphismA. It is enough to showp preserves the computable subsets.
Let R € R(A). There is an such that§ is computable an®R C §.

®(S) is computable. By Theorem3.1, ®(§) =% ©(S). Hence

®(S) is computable. Therefore, since the set— R is c.e., the set

®(R) =* ©(§) ud(§ N (A— R)) is computably enumerable ada( R)

is computable. The other direction is similar. O

It is actually reasonably easy to meet the hypothesis of the above theo-
rem; it is enough tha# and A both be noncomputable.

Theorem 5.5. Let A andA be two noncomputable computably enumerable
sets. Then there a8 and 8 such that
(1) 8 and B are extendible algebras which amg extendibly isomor-
phic via®;
(2) forall R € R(A), there is an ie B such that Sis computable and
R=3S;
(3) for all R € R(A), there is an ie B such that§ is computable and
R=3§;
(4) for alli € B, ®(S) is computable iff Sis computable and for all
i € B, ®1(S) is computable if§ is computable.

Proof. Apply Theorem2.17 and its dual to get8 and 8. Now both B
and B are infinite andA9. We will inductively defined. If i + 1 € B,
let 6(i + 1) be the least element & which is not yet in the range af.
Otherwised (i + 1) is undefined. Le®(S) = S). Similarly for 1.
Clearly® is AJ.

Since everything irB and B are computable splits oA, 8 and 8 are
classically isomorphic to the trivial Boolean algebra. Thereférmduces

an isomorphism betwee® and 8. Hence® is clearly the desired ex-
tendible isomorphism. O

By combining Theorem$.4 and 5.5 we get another proof of Theo-
rem5.3.

5.2. Some examples of the use of Theoret 3.
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5.2.1. The hemimaximal setd8\Ve include this example as it has not ap-
peared previously in print in this form and it hints of things to come in later
sections. Assumd\; LI A, = A where theA;js are not computable. Du-
ally for A. Assume tha®; is an isomorphism frong*(A;) to £*(A;) that
preserves the computable subsets (from Thedr&n

As with the maximal sets, it is enough to define an isomorphisive-
tweeng*(A) and&*(A) preserving the computable subsetsXI£* Athen
let A(X) = ©1(XNA) LUBO(XNA). LetRe R(A). ThenRN A is
computable. S®; (RN A;j) is computable. Heng®1(RN A1) LO2(RNA2)
is computable. The complexity of the resulting automorphismgs

Downey and Stob’s proof used the fact thabMfJ A = w thenW \ A is
infinite: a very dynamic property. Our proof only relies on algebraic facts.

5.2.2. The atomless Boolean Algeb#yk (A). As we know, all atomless
Boolean Algebras are isomorphic but wiix (A) something stronger is
true.

Theorem 5.6(Nies, see Cholak and Harringtof]). If A and A are non-
computable, thedz (A) and 8z (A) are A isomorphic.

Proof. The isomorphism\, from Theoren®.3, is an isomorphism between
&*(A) and &*(A) preserving the computable sets. Hentanduces an
isomorphism betwee#siz (A) and$z (A). [l

5.3. Extendible Algebras of Computable Sets.This section was added
after the rest of the paper was completed. As we mentioned in the Intro-
duction (third to last paragraph) and last sentence, this paper has a sequel.
The goal of this section is to provide a clear, clean interface between the
two papers. In particular, we will proof a theorem, Theorem( which
we hope we can use as a black box in the sequel.

Theorem5.10is an improved version of Theorem3. In Theorem5.3
the computable sets are preserved. In Theoseld the computable sets
are preserved plus an external isomorphism determines where some of the
computable sets are mapped.

Definition 5.7. An extendible algebraB of 8§z (w) is called anextendible
algebra of computable se#s the splits ofv are the computable sets.

Lemma5.8.If 8 = {R : i € B}is an extendible algebra of computable
setsthenBa = {R N A:i € B} is an extendible algebra &fz (A).

Proof. {R N A : i € o)} witnesses thatR N A : i € w} is an effective
listing of splits of A. U
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Lemma 5.9. Assume thatB and B are extendible subalgebras of com-
putable sets which are extendibly isomorphicMialTo(RNA) = IT(R)NA
is an extendible isomorphism betwe8p and B ;.

Theorem 5.10. Let 8 be a extendible algebra of computable sets and
similarly for B. Assume the two are extendibly isomorphic Mia Then
there is a® such that® is a Ag isomorphism betwee&*(A) and &*(A),

® maps computable subsets to computable subsets, and, for all&
(MI(R) — A)uD(RN A) is computable (and dually).

Proof. Apply Lemmas2.16and2.22to Ba, :[?A, [1a, and the extendible

algebras and extendible isomorphism from Theofefto getB, 8 and
©®. Now apply TheorenB.1to get®. By the proof of Theoren®.4, &
preserves the computable sets.

SincelIl is an isomorphism between extendible algebras of computable
sets,IT1(R) is a computable set. By Theoréirl, ®(RN A)ATIA(R) = Ry
is a computable subset 8f Since®(RNA) is a split of A, ®(RNANRy = Ry
is a computable subset & Similarly, Ta(R) N Ry = Ry is a computable
subset ofA. So®(RN A) = (ITa(R) U Ry) N R,. Hence

(M(R) U R) N Rz =((T(R) — A uTAR) U R) N Ry
—(TI(R) — A)LU®RN A).

So(I(R) — A)u ®(RN A) is computable as desired. The dual is proved
in a similar fashion. O

6. AUTOMORPHISMS BACK TO AUTOMORPHISMS

Assume thatA and A are automorphic vial. HenceL*(A) and L*(A)
are isomorphic vial. SinceA andA are automorphic, the structurég (A)
and 8z (A) are isomorphic structures (since they are definable structures).
In fact, from Cholak and Harringtor®], we know much more is true.

Theorem 6.1 (The RestricAtion Theorem Theorem 1.2 of Cholak and
Harrington []). If A and A are automorphic vial then the structures

Sx(A) and Sz (A) are Ag-isomorphic structures via an isomorphisim
induced by.

In other words there is an isomorphidmbetween$ (A) and Sz (A
such that for all splits ofA, T'(S) =z W(S); for all splits S of A,
r-%S =g ¥18); and aAdfunction f such that forWe € $(A),

Wi =x I'(We). (For more about this theorem we direct the reader to
Cholak and Harringtond].)
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Theorem 6.2. Assume A and\ are automorphic viaIJ.A Let B bg an ex-
tendible algebra (08%(A)). Then there are extendibl® (of $z2(A)) and
® such that

(1) 8 and B are extendiblyrJ-isomorphic via®,

(2) ifi € B and $supports W the®(S) supports¥ (W).

The proof of this theorem appears in Sectioh We should note that we
must argue dynamically in this proof. We can use this result to show the
following theorem.

Theorem 6.3(The Conversion Theoren). If A and A are automorphic via
W then they are automorphic via whereA [ L*(A) = W andA | §*(A)
is AS.

Proof. £*(A) and.L*(A) are isomorphic vial. Recall from Lemm&.14,

€a is the extendible algebra generated by the entry sets. Recall from
Lemmad4.5 &a supportsL*(A). Apply Theorem6.2 to &a to getéa
and® and dually to&; to geté’A and®,. By Lemmas2.16and2.22,

B = Ep® &, andB = €D & are extendible algebrasi-isomorphic via

©. Sinceéa supports£*(A), B does too. Similarly forB and.L*(A). By

the last property of Theoret 2, isomorphismsl and® preserve supports.
Now apply Theoremnd.9. O

Also using Theorerd.9we can algebraically describe an orbitAf

Theorem 6.4. The computably enumerable sets A @hdre automorphic
iff there arew, B, 8, and® such that

(1) L*(A) and L*(A) are isomorphic vial,

(2) 8 and B are extendible algebras which are extendilalg isomor-

phic via®,

(3) B supportsL*(A),

(4) B supportsL*(A),

(5) the isomorphism¥ and® preserve supports.

6.1. Proof of Theorem6.2. To make life notationally easier we will prove
the dual. So let8 be an extendible algebra 6f: (A) and we will build 3.

By Theorem6.1, 8 andI'~1(8B) are xJ algebras which ara3 isomor-
phic vial' L. But Ag images and preimages of extendible algebras need not
be extendible. Hence we cannot Bt= I'"1(8). We will constructB to
be extendible and extendibly isomorphicgovia © (and hence isomorphic
to'~1(8)). In fact we are going to show something stronger; we will show
&a @ B is isomorphic ta™ (Ep) ® B.
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We are going to construcB and® via a standard tree agreement. We
will construct a treeT r. At each nodex of the tree, we will construct the
splits of A, S, andS,. We are going to build these splits as entry sets. So
for all , if X entersA at stages + 1 thenx enters eithef, or §, at stages.

The list{S,}4<T/ IS an effective listing of splitsB = {x|a C fAlx| € B}
is aAg set. So an extendible algeba, is created.

If i € Bthenlet®(s,) = § and®1(§) = S,, wherea c f and
la| = i. If we can show® induces an isomorphism betwegnand 8 then
® will be a AS-extendible isomorphism betweedand 8. Hence without
loss we can assume thaii#t B then§ = ¢ andl' " 1(§) = ¢

For the rest of this proof we will use-splits statesather thare-states.

Definition 6.5. (1) For anye, if we are given a uniform enumera-
tion of splits of A {§ sli<es<w, {S.sli<es<ws {Tisli<es<w, and
{'ﬁ sti<e.s<w define thee-split state of x at stage 85(e, X, s), to be
the full 2e-state ofx W.r.t. { X s}i<2e.s<w and{Yj s}i<oe, S<wr where
Xois = S,s Xoig1s = S s Yois=Ts andYy 15 = TI ,S-

(2) Let vS(a, X, S) = vS(e, X, S) Where|a| = e andvS(e, x, S) is mea-
Sureq W.LE{(W N\ A)sli<e s<wr {IAA\W)shi<es<ws 18,5} sca,s<ws
and{%,s}ﬂga,s<w-

(3) For any collection of splits oA, {S }i <e and{T; }i <e, define thdinal
e-split state of xo be the final full 2-state ofx w.r.t. {X;}i <2e and
{Yili<oe, WhereXy = §, Xoiy1=§, Yo =T, andYz 41 = Tj.

(4) LetvS(e, x) be the finak-split state ok measured w.r.{W, \, A}i<e
and{I'1(S)}i<e. LetDS(e, X) be the finale-split state ofk mea-
sured W.r.t{I'(W, \, A)}i<e and{S}i<e.

(5) LetvS(a, x) be the finala|-split state ok measured w.r.t{(W, \, A)}i<e
and{Ss}sc.. (Careful—this is not the same as(|«|, x).)

(6) Every 2-state is are-split stateandv = (2e, o, 1) is areasonable
e-split statef for all i < e, exactly one of Ror2 + 1isino, and
exactly oneof Ror2 + lisinrt.

(7) For everye-split statev anda such thata| = e, let

D, = {x : 3ssuch thak € As;1 — Asandv = v3(e, X, S)
W.rt {(Wi \{ A)sli<es<ws [(AA\W)sli<e s<w,
{Sﬁ,s}ﬂga,S«o’ and{éﬁ,s}ﬁga,s<w-

Let v be a reasonable-split state. ThenX, = {x|vS(e,x) = v} is
a Boolean combination of splits ok and henceX, is also a split ofA.
" is an isomorphism betweesi (A) and Sz (A) (modulo the computable
subsets ofA). Hencel is an isomorphism betweefa & I'"1(8) and
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I'(€a) ® B (again modulo the computable subsets™df Therefore X, is
computable iffl" (X,) is computable. So, for all reasonal@split states,
{x|vS(e, x) = v} is computable iffX|DS(e, X) = v} is computable.

Since §, are entry setsx € D2, iff vS(a,x) = v. Therefore
{x : vS(a, X) = v is computable iffDﬁa is computable.

By Lemma2.20, to showB is isomorphic via® to 8 it is enough to

show, for allg, y, Sy — S, is computable iffid (Ss) — ©(S,) = Sp — S|
is computable. Led be the longer o8 andy. Then

$ -8 = |(Df :v=al.o.7),21l € 7, and 2y| ¢ 7).

Therefore, it is more than enough to show, for all reasonedsidit states
and alle C f, if || = ethenD2, is computable iff{x|vS(e, x) = v} is
computable.

Hence from this point forward we will just work on constructi§gand
S, such that for all reasonabéesplit states and alle C f, if || = ethen

R D/, is computable iffix|vS(e, x) = v} is computable

(LetOW N A) = T(W \( A andO X T (W N\ A) =W \( A
Then almost the same argument shows thas an isomorphism between
& andI'(€a) and, in fact,ga @ B is isomorphic viad® to I'(Ea) & i§.)

If we succeed in meetin@®, then® will be an isomorphism as desired.
As we will see it turns out to do this it enough to know for which for all
reasonable-splits states and, {x|vS(e, x) = v} is infinite.

Determining whethefx|vS(e, X) = v} is infinite is Ag: Are thereiyx and
jk, for k < e, and infinitely manyx and stages such that for alk < e,
r1(S) = Wi, Wi, = Wj,, x € Wi, s U W, s, andvS(e, X, s) = v, where
vS(e, X, s) is measured W.L{(Wk N\, Alslk<es<or {(AA\Ws}i < s<w»
{Wi, slk<e s<w, and{Wj, slk<es<». RecallT" is Ag and since we know

S= 1S is a split of A we can findS using an oracle fod”. This also
shows thafx|vS(e, x) = v} is a computably enumerable set and a split of
A.

Hence it is straightforward to construct a tree, with a true pathf and
an approximationfs to f such thatf = liminfg fg, if « € Tr thena is
outfitted with a set of reasonable|-split states.M,, and ifa C f then
v € M, iff {x|vS(e, x) = v}is infinite. Furthermore we can assume that if
B C a andv € M, thenv | 2|B| € Mg and that| fs| = s, for all s. In the
interest of space and energy we are not going to go into the details. Similar
constructions with all the details can be found in Sectichg Cholak [3],
Cholak [?], and Weber £0].
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Using the approximation to the true path we will construct a function
a(x,s) forall xands. If s < X, leta(X, s) 1. Leta(x, x) = fyx. Fors > x,
if fsy1 <L a(X,s) then letw(x,s+ 1) = fsy1.

If x entersA at stages+1 look for the greategt C «a(x, s) where we can
enumerate into S, s andS,,s, fory C B, suchthavS(8,x,s) =v € Mg
and, for allg” c g, if we can enumeratg into S, s and éy,s’ fory C B/,
such thatvS(8, X, s) = v/ € Mg then Dj’ﬂ,’s #£ (. If there are several

possiblev, arbitrarily choose the one wheﬁdfﬁﬁs is the smallest. Enumer-

atex such thavS(8, x, s) = v. For ally, if y ¢ B or B does not exist, add
Xt0S,s.

For anyg C f, let sg be such that iffi <. g thent < sg, if
x|vS(|B], x) = v'} is finite andvS(|8],x) = V' thenx < sz, and if
v € Mg then D{jﬁ’s # ¥ (by induction ong it is not hard to show that such
a stage exists). For each> sg we can effectively find a stags x such
that for alls’ > sg x, B € (X, S). Let Rg be the set ok such that either
X < sgandx € Aorx > sg andx € As,,. Rg is a computable subset of
A

Lemma 6.6.1f « C f andv is a reasonablga/|-split state then [}, is
computable iffx|vS(|a|, X) = v} is computable.

Proof. Let || = eandv = (2e, o, 7).

(=) Assume{x|vS(e, x) = v} is not computable. We must shoi",
is not computable. Assume otherwise. Hence there is ane such that
W = D,ﬁa, and A \y W, = #. There must exist a reasonablsplit
statev’ = (2i,0’,7') suchthatt’ [ 2e =0,21 +1 € o', 7' | 286 =1,
and{x|vS(i, x) = v’} is not computable. (Otherwisx|vS(e, x) = v} is
computably contained in a computable 3&t, and hence is computable.)
Therefore{x|vS(i, x) = v/} — Rg is infinite. Hence, by the above construc-
tion, there is ax such tha € D/} ,. This samex is in Dy}, but notinW.
Contradiction.

(«<) Assume{x|vS(e, x) = v} is computable. Hence there is an- e
such thatW, = {x|vS(e,x) = v}, andA \, W, = . Letg c f and
1Bl =i. Forj >i,ifv = (2j,0’,7'),0' | 26=0,2 +1 € o/, and
T | 2e = 1, then{x|vS(j, x) = v/} is not infinite. Hence for aly > B,

V' & M,. Letx € Wi — Rg enterA at stages+1. ThenvS(i, x) = v/ € Mg
andv’ | 2e # v. Hence, by the above constructiof(8, X, S) # v.
Therefore ifx entersA at stages + 1 andvS(8, X, s) = v thenx e Rg or
x € W. ThusDJ}, is computable. O

Therefore® is an isomorphism betweefi and 8. Thus (1) holds. The
next lemma proves (2).
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Lemma 6.7.1f « C f, |a|] = e, and& supportsW, then $ supports
X =v=Hw).

Proof. SinceW is an automorphism a* taking A to A, ¥ ~1(&,) supports
X. Sincer is induced by¥, I'"1(S) supportsX. Leti > e such that
W = (X — A uT1S). HenceW \, AsupportsX. If (W \( A) Cx Y
thenY supportsX. Hence it is enough to shoW, \( A) Cx S,.

Letp c f suchthatig| =i. Forj > 1i,if v = (2],0,7), 2 € o,
and {x|vS(j, x) = v} is infinite then 2 € 7. Hence for ally D B, if
v={(lyl,o,t) e M, and 2 € o then 2 € 7. Letx ¢ Wi — Rg enterA
at stages+ 1. ThenvS(i, x) = v € Mg. Hence, by the above construction,
for almost all suclx, x € §,. Hence(W, \( A) C* §, U Rg. O

7. A DEFINABLE ORBIT WHICH IS NOT A Ag ORBIT

For &*, all the previously known orbits are actually orbits und&-
automorphisms. And a good number of those are also definable in the sense
that there is an elementary formula(X), in the language of* such that
¢(A) iff Aisin the orbit under question. Examples include maximal sets,
creative sets, hemimaximal sets, and quasi-maximal sets.

The following is a definable orb@®, which is not aAg orbit. Itis the first
example of an orbit which is not an orbit undeg-automorphisms. Itis an
orbit underA2-automorphisms.

In the mid 1990s, Cholak and Downey incorrectly claimed to construct
a pair ong-automorphic computably enumerable sets which WereA@et
automorphic. In addition, we show this claim is correct by showing there
are two such sets i@.

7.1. The orbit @. Assume thatA is not computable.

Definition 7.1. F is A-specialif F is not computableF N A = ¢4, and, for
allVv,if VN A=@thenV — F is computably enumerable.

Lemma 7.2. Assume fand F are A-special sets and R is computable set
disjoint from A.

(1) Either i — Fg is computable or A-special.

(2) If FoNn R=@then U R is A-special.

(3) If FoN F1 = @ then lhu F1 is A-special.

(4) FoU Fpis A-special.

(5) If W € R then W is not A-special.

Proof. (1) V — (F1 — Fg) = (V — F)) U(V N Fp). Soif F1 — Fg is not
computable, it isA-special.
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2V —(FouR) = (V — Fg) — R. If Fou Ris computable theffr is
computable.

B)V — (FoU F1) = (V — Fg) — F1. If Fou F1 is computable theffrg
is computable.

(4) FoU F1 = Fou (F1 — Fo). Now apply (1) followed by one of (2) or
(3).

(5) Ifforall V,if VN A = @ thenV —W is computably enumerable then
W=(R-W)UR. O

Definition 7.3. Let ¢(A) be the conjunction of the following 3 statements:

(1) VF if F is A-special thendG such thatG is A-special and
FNG=¢;

(2) YW if WN A = ¢ then3F such thatF is A-special andV <* F

(3) VW3IF such thatF N A = ¢ and eitherW <* F u A or
WUFUA="0w.

Definition 7.4. A list of computably enumerable setg, = {F; : i € w},

is an A-special listiff # is a list of pairwise disjoint noncomputable
sets,Fp = A, and for allW there is ani such thatv c* | |,_; f or
WU | F =% o. We say thatF is al’ A-special listif # is anA-special
list and there is a functior with propertyl” such thats = Wy ).

Note that for anyi, |_|,.; Fi is not computably enumerable and hence
there cannot be an effective special list. The automorphic image under
of an A-special list is ab (A)-special list.

Lemma 7.5. Assume that an A-special list exists and tha X = . Then
V C* | o < Fr, for somei.

Proof. If VU | | F =" o, for somei, then(V U | |o_ i F) UA=" o
and henceA is computable. Contradiction. O

Lemma 7.6. ¢(A) iff an 0 A-special list exists.

Proof. (=) Let Fp = A. Assume, by induction, for O< | < i, that
Fj are defined such that they are pairwise disjoiAtspecial, either
Wi < L RorWUll iR = o and| |o_;_; Fj is A-special.
Since ¢(A) holds the third clause of Definition. 3 holds for W and
hence there is air such thatF N A = ¢ and eitherW, C* F u A or
W U F U A =" w. By the second clause of Definitich3 and the fact that
A-special sets are disjoint frol, we can assumEg is A-special. Hence,
by Lemmar.2 | |;_; Fj U F is A-special and= — | |;_; F; is either com-
putable orA-special. IfF — | [;_; Fj is A-special letF; = F —| |, _; Fj.
Otherwise apply the first clause of Definitioh3 to L]j<i Fj U F to get
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an A-specialG and letF; = G U (F — |_|j<i Fj) which is A-special by
Lemma7.2. Again by Lemma/ .2, | |o_j; Fj is A-special.

If X andY are computably enumerable sets then wheYher X is com-
putably enumerable iﬁg. So whetherF is A-special isl'lg. Sincegp(A)
holds, givenW, there exists a\-special seF such that eitheww C* FUA
orWUF UA =* w. Hence we can try all possibfe using0™® to test if the
F being considered has the correct properties. Since suéhexists this
algorithm will converge and is computable . Going fromF to F; is
also4computable i0®. Hence theA-special list constructed is computable
in 0@,

(<) By Lemma7.2 it is enough to show that for all > 1, Fj is A-
special. To showF; is A-special it is enough to show thatMf N A = ¢
thenV — F; is computably enumerable. Assuren A = ¢. Then, by
Lemma7.5V <* | |o_ i Fi, forsome. SoV —Fj =* VN[ g <jn.j F
is a computably enumerable set. O

Theorem 7.7. Given ana A-special list,#, and ana A-special list, %,
there is a0” & a® a-automorphisn® of &* taking A toA.

Proof. By Theorem5.3 there is an isomorphism®; betweenF; to Ifi
preserving computable sets. Givél define ®(W) as follows: If
We € Lo B then®We) = [ ®(We N F). Otherwise there is
a computable seR such thatR <* [ |,.; F andRU W =* w. For all

| < i, RN F{ is computable. Therefore, siné® preserves computable
sets®(R) = |_],-; ® (RN F) is computable. Let

OWp) = O(R) LU |_|®| MWeN RN F).

I <i

® is an automorphism of* such that®(A) = A. By Theorems5.3,
an index for®; can be found uniformly from indices fdf; andF;. The
remaining division into cases can be done usifj aracle. O

Theorem 7.8. The collection of A such that(A) forms aAg orbit ©.
Proof. This follows from Theoremg.6and7.7. O

Corollary 7.9. If ¥ is an A-special list then, for all i, jHs automorphic to
A.

Proof. The list formed by switchind~ and A is anF;-special list. 0

7.1.1. @ is not aAj orbit.

Theorem 7.10. There are computably enumerable sets A dnsuch that
¢(A) andgp(A), A andA are Ag-automorphic but nong-automorphic.
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This theorem follows from the next two lemmas.
Lemma 7.11. There exists A such thatd A-special list¥ exists.

Lemma 7.12. There existsA such that &0 A-special list¥ exists but no
0” A-special list exists.

The proofs of these lemmas follow in Sectior2.

Proof of Theoren7Y.10from Lemmag.11land7.12 Assume that¥ is the
A-special list given by Lemma.11and £ is the A-special list given by
Lemma7.12 By Lemma7.7, Aand A are in® and areAg-automorphic.
Let f witness thatF is a0” A-special list. Assume thak and A areAg
automorphic viab (We) = Wgy(e then{Wgy((t )i € w}is 0" A-special list.
ThereforeA and A cannot be in the sameg orbit. O

The following lemma and corollary are needed for the proof of Lerirma

Lemma 7.13.If a 0" A-special list¥ = {F : i € w} exists then
there is a function d computable ©f' such that if WN A = ¢ then
Wae N (We U A) = @ and W) is A-special.

Proof. If We N A # @ (whether this occurs is computable 0) then let
d(e) = 0. AssumeWe N A = @. Let f witness thatF is 0’. Then, by
Lemma7.5 We €* | |y i Fi, for some. Using f, the least suchcan be
found computably i0”. Letd(e) = f(i + 1). O

Corollary 7.14. Assume for all e, there aré and d suchthat WN A= 0
and if W, (e qy) is cofinite then either WN (We U A) # © or Wy is not
A-special. Then A does not hav€aA-special list.

Proof. AssumeA has a0” A-special list. Apply Lemma&.13to getg. The
graph ofg is a A set and hence &J set. Cof iszJ-complete. Hence
there is are such that, for alt’, W, d(e)) is cofinite and ifWeg N A = ¢
thenWge)y N (We U A) = ¥ andWy(e) is A-special. Furthermore, since
we are reducing the graph of a function to Cof, forelif d £ d(¢’) then
W, ((e,dy) is not cofinite. Contradiction. O

7.2. Proofs of Lemmas7.11and 7.12. First we will focus on Lemma.11
Rather than focusing oA we will first focus on constructing thA-special
list . This will be a tree argument and very similar to mgtisomorphism
method. At each node € T we will build a computably enumerable set,
F«. The goal is to build thé,s such that i, = F,, fora C f, wheref

is the true path, thei = {F; : i € w}is anA-special list.
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7.2.1. The requirementsWe will construct theF,s as pairwise disjoint
noncomputable sets, far ¢ f. F, must be noncomputable. Hence we
must meet the following requirements for allic f and alle:

Ra.e Fo # We.
In addition, we will meet the following requirement for allc f:
Ny eitherWi, * | | FgorWe U | | Fs =" 0.

BCa BCa

Before we can discuss how we will meet these requirements we need the
following remark.

Remark7.15 (The position functiox (X, s)). Given the approximation to
the true path at stage fs, we will determine the position functiam(x, s)
by the following rules:x is «-legal at stage sf a(x,s — 1) = «~ (recall
a~ is the node before in the tree) x is «~-allowed (defined below) and
for all staged, if x <t < s, thena < f;. If « C fsandxis «-legal then
let «(X, s) = a (movex downward intow). If fs < a(x,s — 1) then let
a(X,8) =a(x,s—1) N fs.

7.2.2. Action for R, .e. MeetingR, e is straightforward. But we are going
to break it into parts, ensuring that there are possible witnesses and actually
taking action to meeR,, e.

Getting witnessesi-or eachp and each stagg we will pick axgs. We
will hold xg s out of all F,, for y O g but allowxg s to possibly entef,,,
for y C B. If xg s enters somé,, at stages (or does not exist yet), then, at
the next stage, such thatg C f; and there is ax with «(x,s) = g and
X ¢ |lget Fp.s, we will choose the least suohasxg ¢; until that stage,
Xg s does not exist. Otherwisg s remains the same from stage to stage.

Placing witnesses into £ Now if o« € fs, WesNFys = 9, || < e, and
there is arx where|a (X, S)| > |a| + €, X € Wes andx ¢ |_|/3eT Fg, then
addx to F, at stages.

Assume that foraly C f, x, = limsX, s exists. Then iff, = We then
it is straightforward to show that at some stagee will add anx to F, to
meetRy e.

Notice that only finitely manyR, e are possibly interested &, s. So if
X, fails to exist it is not due to action far, e but action for somevsg.

7.2.3. Action for A,. We will meet.V,, as follows: First of all no action is
taken at stags if x, s does not exist. Furthermore, we neweallow X, s.
Otherwise the desired action @tbreaks into cases depending on whether
W, is infinite or not, where

W, = {X|3s(e~ C a(X,s) A X isa~-allowed A X € Wig|.s)}.
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If o believesW, is finite we «-allow half of the balls which arrive a&
(hence these balls can move downward) and put all but onedall of the
other half intoF, (like x,_s, the balls inF,, are never-allowed). Assume
o believesW,, is infinite. Half of the balls which arrive at in W, will be
a-allowed immediately. Otherwise if(x,s) = « and there have been
many ballsx-allowed, we will placex into F,.

7.2.4. The Verification.Assume that for ale C f, infinitely many balls
arex-allowed (we will show this later). Then, by induction enc f, it

is straightforward to show thag, exists and henc®g ¢ is met forg C f
and alle. And, again by induction o C f, is straightforward to show,
using the standard facts aboigtanda (x, s) and the above assumption, for
almost allx ¢ | |5, Fg, there is a stage such that eitheentersF, or x

is a-allowed. Hence iW, is finite thenWq <* | |4, Fp and otherwise
Wie| ULLlgc, Fg =" @. Therefore, under the above assumptisf,is met.

Now we will show, by induction orx C f, that infinitely many balls
arec-allowed. Assume this is true far—. Almost all of the balls which
area~-allowed will arrive atee at some later stage (i.e., there is a sthge
such thatx € «a(x, t)). Hence at almost all stages, s exists. Therefore if
W, is finite then half of those balls which arrive @atwill be «-allowed. If
W, is infinite then infinitely many balls arrive atin W,, half of which are
a-allowed.

Hence the only thing needed to complete the proof of Lemiriais to
construct the tre@, the true pathf, and the approximation to the true path
at stages, fs. But since we want to use the same tree and related materials
for the proof of Lemma’.12 we will delay this until Sectiof.2.6

7.2.5. Changes needed for the proof of Lemima2 Rather than proving
Lemma7.12we will prove its unhatted dual. We are going to make use of
Lemma7.14 We must meet the requirements:

there are’ andd such thaWe N A = @ and if W, (e, qy) is cofinite
then eithemVg N (Wg U A) #£ ¢ or Wy is not A-special.

By the Recursion Theorem we can assume there are computable func-
tionsg andh such thaWy) = Fo andWh) = U cpcq Fp, foralla € T
ando # A. Recall) is the empty node an#&;, = A. For alla # A,
Wh(oz) NA=40.
Assume thatr is assigned to me&e. o will use Wh (o) asWe. We want
to look for the leastl andl such thafl, co) € W, ((hw),dy)- We will use
the tree to fink andl and to assig to Qe.
We will define the tree such that there dté where[l, 00) € Wy, ((h(«),d))
iff there is a uniques such thate € g C f andp believes there are

e.
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d,l < |B] such thafl, co) € Wy, ((h(),dy)- We will assume that th&; are
assigned in increasing order modulo finite injury along the true path. The
finite injury along the true path will be discussed below.

Assume thap believes there am, | < || suchthafl, 0o) € Wy ((h(w),d))-
Sinced < |B] there is ay c B with |y| = d. Furthermore, since we will
continue to meedv, , eitherWy c* |_|39/ Fs or Wy U |_|59/ Fs =* w. By
Lemma7.5, if Wy U |_|89/ Fs =" w thenWy N A # ¢ and we have mefe.

If Wy €* | |sc,, Fs then we have me®e. Hence the only case where we
must take action to me@, is whenWy C* Uacagy Fs. In this case we
will force |_|ac59/ Fs to be computable and hence, by Lemima(5), Wy

is not A-special. This means we will have to later reconsider how we form
the A-special list.

Assume thap must take action to meé.. g will take action by chang-
ing how we meetR, ¢, foralla € y € B. Leta € y C B. The action
taken forR, e is revised as follows: iff C fs, WesNF, s = ¥, and there is
anx suchthap ¢ «a(x, s), la(x,s)| > |y|+e x € Wesandx ¢ | |s 1 Fs,
then addx to F, at stages. Now to help with the creation of aA-special
list we must injure allQ; assigned to somg betweenx and . We will
assign then in increasing order to soén@hereg C §. This is finite injury
along the true path.

Ifnoa ¢ B C f believes that it must take action to me2¢ then
the above argument for the verification &, ¢ still holds andF, is not
computable.

Assume that somg C f believes that it must take action to meg§.
From the above verification, we know that almostadiither entet | 5Cp Fs
or areg-allowed. By the above modification of the action f&f, . once a
ball either enteruggﬁ Fs or is p-allowed it cannot be used to meft, e.
HenceF, is computable ande is met.

The issue of amA-special list remains. Using the true pathand 0"
we will inductively show how to construct aA-special list. Assume that
we have built the list up td and have used; C f. Leta™ be such that
a Cat c fand|a™| = |a| + 1. Assume thate is assigned ta™ and
by induction@¢ is not injured from below. Us@” to see if some8 C f
takes action to mee®.. If no B C f must take action to mee?. then
Fi.1 = F,+ is not computable and leti .; = o™. Otherwise there is a
p C f which takes action to me&.. In this caseFg is not computable
and letF 11 = uaicygﬂ F, andaj 1 = B. In either case there is no injury
from below abovey; ;1.

7.2.6. The tree T and related definition¥Ve will define one tree which
can be used for both lemmas. We will defilie the true pathf, and the
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approximation to the true path at stagjefs via induction on the length of
V.
We have to code a few items infio. At a node we must code whether

W is infinite and whether there exists anC g ande, d,l,s < g such
that@e is assigned by, o has not been injured by anywitha C y C 8,
pe((h(@),d) |) = w, [I,00) € Wy, andWy < | |,scp Fs. Since

Fs = Wy, all this information isA$ and hence can be easily coded into

a tree. In the interest of space and energy we are not going to go into the
details of the definition of the tree. Similar constructions with all the de-
tails can be found in Section2.6 Cholak [3], Cholak [2], and Weber 20].

There is one added twisted that there is finite injury along the true path. But
that kink was discussed above and is implemented in the standard fashion.
O

7.3. Reflecting on¢(A) and Theorem 7.10. Theorem7.10 implies that

O is different than any other known orbit. But it might be worthwhile to
reflect on@’s similarity to the orbit formed by the maximal sets or the orbit
formed by the Herrman sets (for a definition of Herrmann sets, see Cholak
et al. [4]). This reflection will also impact how we approach the proof of
Theorem7.1Q

Definition 7.16. D (A) is the ideal generated by the s&such that either
FNA=0orF C* A DA is aE?? ideal of &. Let £p(a) be & modulo
D(A). We write X Cp(p) Y if Xis contained inY moduloD(A). If Ais
understood from the context we drop the\)”.

The last clause op(A) implies thatéyp is the two element Boolean al-
gebra. This is also the case with maximal sets and Herrmann sets. When
this is the case we say thatis H-maximal. It is also possible to consider
A whereé&y is a Boolean algebra, in which caskjs calledD-hhsimple.
(For more onD-hhsimple sets, see Cholak et &l},[Herrmann and Kum-
mer [L7], and Kummer [ 3] in that order.)

Assume tha#l is D-hhsimple. Furthermore assume thét£Ap A. Then
there is aW such thaW N W =45 @ andW U W =5 w. So there is a set
F € D suchthaW NW € F andW UW U F = w. Therefore there is a
computable seR such thaRNF = WN F.

Let L(A) be the definable (i®) quotient substructure ofz(A) given
by {RN H : Ris computablgmoduloR(A). Given the above paragraph,
it is straightforward to verify thai (A) and€&gp areAg-isomorphic.

AssumeA and A are automorphic byp. By Theorem6.1, 8x(A) and
Sz (A) areAg-isomorphic via an isomorphism induced &y So.L(A) and
L(A) areAg-isomorphic via an isomorphism induced By Hence€gpa)
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andé’@(A) areAg-isomorphic. (A similar argument appeared in Section 11
of Cholak and Harringtond].) Hence we have the following theorem.

Theorem 7.17. Assume that A igD-hhsimple. If A andA are automor-
phic via ® then&gpa) and Ep Ay Are Ag-isomorphic via an isomorphism
induced byd.

One should compare this theorem to Theokemwhere the hypothesis
that A be D-hhsimple is removed but the complexity of the isomorphism
increases ta\Q.

Soare showed that the maximal s, do not form an effective orbit
by exploiting the fact that deciding W €* M orWU M =* w is Ag.
Soare built maximal sets! andM such that for each computable function
f there is are with We C* M iff Ws e U M =* . (For more details, see
Soare [ 7] and Cholak [].)

But Theorem7.17implies that we cannot exploit the fact of deciding if
W Cp AorW =9 w is Ag to show there aré\ and A in @ which are
notAg-isomorphic. Hence the proposed approach of Cholak and Downey
(thankfully unpublished) to the proof of TheorehiOjust cannot work. To
show Theoren7.10we exploited the fact that given a $&tdisjoint from A
we cannot always computably @1 find an A-special set disjoint fronmV.

8. ON THE COMPLEXITY OF ORBITS OF &

The goal of this section is to improve Theoré&m.7and add to our com-
ments from Sectiof7.3. We are going to do this by coding whevé, for
W #g5 A, must go under an arbitrary automorphismégfusing various
splits of A. We will break this into two subsections: the first subsection
will focus on the coding and the second subsection will present the results
which use this coding.

8.1. Maximal supports. Fix a computably enumerable s&t A definition
of D(A) can be found in Definitior.16

Definition 8.1. M is maximally supportethy Sif M is supported bys (so
SisasplitofA, SC M and(M — A) u Sis a computably enumerable set)
and for allw, if W is supported bys, thenW Co M U A.

Lemma 8.2. Whether S maximally supports Ml‘@.
Proof. By Lemma4.2, whetherT supportsX is Eg. O

If Sis a maximal support dfV andT =& SthenT is a maximal support
of W.
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Lemma8.3.1fY €5 X, S is a maximal support for X and T is a support
forY thenT¢ S.

Proof. Since S maximally supportsX, S cannot suppor¥. SoT is not a
subset ofS. The same holds modulg (A). O

Note it is possible thaBand T maximally supportV but S #% T. But
this will not cause a problem.

RecallAis promptly simple iff there is a computable functiprsuch that
for all W, if W is infinite, then there is anands such thak € WatsNAps).
Also if Ais simple thenV Cp M iff W C* M U A.

Lemma 8.4. Assume that A is promptly simple. LetcAM. Thereisan S
such that M is maximally supported by S.

Furthermore S= M \( A using{Aps)}sco as the enumeration of A;
i.e., S is the set of x such that x enters M at stage s and X is nogi A
but x isin A.

Proof. M is supported by th& defined above(M — A) L Sis the set o
such thaix entersM at stages andx is not in Ap).

To ensureM is maximally supported b it is enough to show the fol-
lowing conditions are met:

Nei: eitherWe C* MU AorW, # We— A) U S.

AssumeWe £* M U AandW, = (We — A) U S(i.e., that we fail to meet
Nei). ThenW = (We N W)\ (M U A) is infinite. Then there is ar ands
such thatx € Wats N Aps). Now x is in Wi and thus in one oW — A or
S. But x cannot be in either of these two sets. Contradiction. O

It would be nice if we could prove the above lemma for Albut the
above proof heavily relies on the assumption thavas promptly simple.
However we do have the following lemma.

Lemma 8.5. For all W, W, if W #£5 W then there is an M such that M is
maximally supportedby S M \( A, M C W, and MZ o W.

Proof. Fix W andW. ClearlyM \, SsupportsM. So we must buildV to
meet the following requirements:
Nei: eitherWe Cpa) MU AOrW # We— AL S

(i.e., eithel\, is contained infM U A moduloD (A) or S does not support
it) and

Pei: eitherWeNA# @, or WiNA#@, or MUWUAZ WUWUA

(so M is not contained modul@®(A) in W). Assume that these require-
ments are linearly ordered.
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To meetNe; we will hold everything inX = (We N W)\(M U A) out
of M until there is arx € X N Aand hencéM # (We — A) U S. Assume
this fails. ThenX is disjoint from A. So if W, = (We — A) u Sthen
We € M U AU X. And hence we still meebg .

To meetPe; we need to first define a length of agreement function (to
measure mg fact). Letl (s) be the greatest such thatWe sN As) | X = ¢,
(MsUWsUAg) [ X = (Ws U WesU As) [ X, and(WisN Ag) [ X = @,
Letm(0) = 0. If I(s) > m(s — 1) thens is expansionaryfor #¢;) and
m(s) = I (s); otherwisem(s) = m(s — 1).

If there are infinitely many expansionary stages we must take some action
to ensurefe is met. At expansionary stages we will dump everything in
W which is not restricted by higher priority requirements iioand reset
all lower priority requirements.

As we argued above, the sEtof x which is restrained by high priority
requirements is disjoint fronA. Therefore if there are infinitely many ex-
pansionary stages thavt U Z U A = W U Z U A, whereZ is the union
of finitely many Xs from the higher priority negative requirements. Hence
W =5 M =5 W. Hence, under the above hypothesis, there cannot be
infinitely many expansionary stages afig; is met. O

8.2. Coding with maximal supports.

Theorem 8.6. Assume that A and are promptly simple. Then A andl
are automorphic iff A andh are Ag automorphic.

Proof. Assume thatA and A are automorphic via. We can assume that
® | &*(A) is AY. We must show tha® | L*(A) is AJ. We know that
Sx(A) andSz(A) areAg iIsomorphic via an isomorphis induced byd.

Given W, look for a supportS of W, a setW < &, and a supporS of
W such thatS €z ©®1(W \, A) andS Cz ©(W \, A). Such sets exist;
consideW = (W), S= &~ 1(d(W) \ A), andS= (W \, A). Since
such sets exist, we can find them us@icas an oracle.

Since® is induced by the automorphisdn by LemmaB.4, ©~1(W \, A)
maximally support®~1(W). Therefore, by Lemma&.3and the fact that for
simple setsA, =*, and=g agreeW C* ®~1(W). Similarly W <* &(W).
SoW =* &~1(W) andW =* &(W) and hencéVi =* &(W). O

Theorem 8.7.If A and A are automorphic viab then&gpa) and 8@(A) are
Ag-isomorphic via an isomorphism induced &y

Proof. Assume thatA and A are automorphic via. We can assume that
@ | €*(A) is AS. We know thatsz(A) and S8z (A) are A isomorphic via
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an isomorphisn® induced byd. GivenW we must find aV, in a A2 way,
such thatW =g ®(W).

By Lemma8.5, Y Cp Y iff, forall M andX, if M C Y, M is maximally
supported byS = M N\ A, andS supportsX, thenX Cgp Y. Since®
is induced by the automorphisd, W C 5 d)(W) iff for all M and X, if
M € W, M is maximally supported b§ = M N\, A, and®~1($) supports
X, thenX Cp W, al‘[o-statement. And similarlyb (W) Cgp W iff for
all M andX, if M € W, M is maximally supported b = M \ A, and
®(S) supportsX, thenX g W, all2-statement.

Therefore whetheW =5 @ (W) is T12. Since such &V exists, it can be
found usingd® as an oracle. O

Corollary 8.8. If A is simple, then A and\ are automorphic iff A andh
are A2-automorphic.

Proof. Assume thatA and A are automorphic byp where® | &*(A) is
Ag. SinceA is simple, ifW C AthenW is finite. Therefore£*(A) and
Ep(a) are isomorphic, by the identity map. Therefdrel L*(A) is Ag. So
®is A. O

If Ais simple andA c W then where an automorphism 6f takes
W is completely determined by certain splits Af the maximal supports.
Hence the following is a corollary of the proofs of Theorémi (8.6) and
Theorem6.4.

Theorem 8.9. The (promptly) simple sets A ardare automorphic iff there
are W, 8, B8, and® such that

(1) L*(A) and.L*(A) are A-isomorphic A3-isomorphic) viad,

(2) B and B are extendible algebras which are extendiblg Isomor-

phic via®,

3) B8 support&C*(A)

(4) B supports.L*(A),

(5) the isomorphism¥ and® preserve supports.

Ther-maximal sets are simple. $Semaximal sets are automorphic iff
they areAg-automorphic. But this is not a “nice” algebraic classification, at
least forr -maximal sets. It is possible that th&'s ofr-maximal sets have
a nice structure. So we might be able to replace Condition 1 of The®rém
with something more algebraic and easier to understand, like the other con-
ditions. The reader is directed to the last section of Cholak and Njes [
for some suggestions. We should point out that Lempp etld]. have
shown that there is nﬂg classification (“nice” or otherwise) of thé*s of
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r-maximal sets. But this does not rule out a “nice” arithmetic classification
of the L*s.

The results in this section and that of Sectiof drive home the point
that to build sets whose orbits are complex we are forced to use techniques
like those described in Sectiorisl.1and7.2.5 In a forthcoming paper we
will do just that.
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