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Abstract. Suppose thatf : [N]k → N. A set A ⊆ N is free for f if for all x1, . . . , xk ∈ A with x1 <

x2 < · · · < xk , f (x1, . . . , xk) ∈ A implies f (x1, . . . , xk) ∈ {x1, . . . , xk}. The free set theorem asserts that every

function f has an infinite free set. This paper addresses the computability theoretic content and logical strength

of the free set theorem. In particular, we prove that Ramsey’s theorem for pairs implies the free set theorem for

pairs, and show that every computablef : [N]k → N has an infinite50
k free set.

§1. Introduction. We will analyze the strength of the free set theorem using tech-
niques from computability theory and reverse mathematics.A posting of H. Friedman
in the FOM email list [5] and the section on open problems on free sets in [7] sparked
our interest in this topic.

The purpose of Reverse Mathematics is to study the role of setexistence axioms, try-
ing to establish the weakest subsystem of second order arithmetic in which a theorem of
ordinary mathematics can be proved. The basic reference forthis program is Simpson’s
monograph [15]. While we assume familiarity with the development of mathematics
within subsystems of second order arithmetic, we briefly recall the definition ofRCA0,
WKL0, andACA0.

RCA0 includes some algebraic axioms, an induction scheme for60
1 formulas, and

comprehension for sets defined by10
1 formulas, i.e. formulas which are equivalent both

to a60
1 and to a50

1 formula. WKL0 extendsRCA0 by adding weak König’s lemma,
asserting that ifT is a subtree of 2<N with no infinite path, thenT is finite. ACA0
consists ofRCA0 plus set comprehension for arbitrary arithmetical formulas.

Let X be a set equipped with a linear ordering (notice that, since we are working in
subsystems of arithmetic, all sets have an underlying linear ordering). The expression
[X]k denotes the set of all increasingk-tuples of elements ofX. We are now ready to
give the precise statement of the free set theorem, originally due to Friedman.

Statement 1.1. (FS – free set theorem). Let k ∈ N and let f : [N]k → N. Then
there exists an infinite A⊆ N such that for all x1, . . . , xk ∈ A with x1 < x2 < · · · < xk,
if f (x1, . . . , xk) ∈ A then f(x1, . . . , xk) ∈ {x1, . . . , xk}. We use FS(k) to denote the
statement FS restricted to a fixed k≥ 1.
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Natural analogs of free sets include sets of linearly independent elements in a vector
space, sets of algebraically independent elements in a field, and sets of indiscernibles
in any appropriate structure [12]. These analogs differ from Friedman’s concept of free
set in that they concern closure under operations as opposedto a single application
of a function. The following definition and example1 should help in pointing out this
important difference.

There is a notion of a “free set” in a model theoretic setting ([4], [2], [3]). Let
M = (M, Ri , f j , ck) be a structure and let∅ 6= A ⊆ M. By M(A) we denote the
substructure ofM generated byA. A is free for M if and only if for all A′ ⊆ A,
M(A′) ∩ A = A′.

Let M = (N, f ) where f (x) = x + 1 for all x. Let A be the set of even numbers.
A is free for f in the sense of Statement 1.1. But if we letA′ be the set of numbers
divisible by 4, thenM(A′) = N, henceM(A′) ∩ A = A 6= A′. So A is not free forM.

However we can show that if a setA ⊆ M is free forM then, for all j , A is free for
f j in the sense of Statement1.1. Let f j : Mk j → M and letA′ be a subset ofA of
cardinalityk j . Since, by definition,M(A′) ∩ A = A′, if a is ak j -tuple of elements of
A′, we have that iff j (a) ∈ A, then f j (a) ∈ {a1, . . . ,ak j }. HenceA is free for f j .

§2. Proof-theoretic results. In this section, we present some basic results about free
sets. Some of them were already stated without explicit proof in [5] and [7].

Theorem 2.1. RCA0 proves the following:

(1) If A is a free set for f then every subset of A is a free set for f .
(2) A is a free set for f if and only if any finite subset of A is a free set for f .

Proof. The proofs of the first item and the implication from left to right in the sec-
ond item are immediate from the definitions. To prove the remaining implication, as-
sume that every finite subsetB of A is free. Pick anyk-tuple x1, . . . , xk ∈ A. If
f (x1, . . . , xk) 6∈ A we are done. Iff (x1, . . . , xk) ∈ A, takeB = {x1, . . . , xk, f (x1, . . . , xk)}.
SinceB is free by hypothesis andf (x1, . . . , xk) ∈ B, we havef (x1, . . . , xk) ∈ {x1, . . . , xk}.
HenceA is free. a

Theorem 2.2. [7]. RCA0 proves FS(1).

Proof. Let f : N → N. If f is bounded by somek ∈ N, a free set forf is given by
A = {n | n > k}.

Assume thatf is unbounded, i.e.∀y∃x f (x) > y. We define the free setA =
{x0, x1, . . . } by induction. Letx0 = 0 ∈ A. Inductively, forn > 0 definexn to be
the least natural numberz > xn−1 such thatz /∈ { f (x0), f (x1), . . . , f (xn−1)} and
f (z) /∈ {x0, x1, . . . , xn−1}. Such az exists becausef is unbounded. We claim thatA
is a free set forf . By constructionf (xn) 6= xi andxn 6= f (xi ) wheneveri < n. Thus
xi 6= f (x j ) wheneveri 6= j . It follows that A = {x0, x1, . . . } is free for f , and A is
infinite becausexn > xn−1 for all n > 0. a

Theorem 2.3. (RCA0). For any fixed k, FS(k + 1) implies FS(k)

Proof. Let f : [N]k → N be given. We want to find a free set forf . Let us define
g : [N]k+1 → N asg(x1, x2, . . . , xk+1) = f (x2, . . . , xk+1). By hypothesis,g has a

1We would like to thank Friedman and the anonymous referee forthis example.
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free set, sayB. Let m = min(B) and defineA = B \ {m}. We prove thatA is a free
set for f . Let x1, . . . , xk ∈ A. If f (x1, . . . , xk) ∈ A, then alsog(m, x1, . . . , xk) ∈ A ⊆
B. SinceB is free forg it follows g(m, x1, . . . , xk) ∈ {m, x1, . . . , xk}. But actually
g(m, x1, . . . , xk) 6= m becausem 6∈ A. Henceg(m, x1, . . . , xk) ∈ {x1, . . . , xk} and
thereforef (x1, . . . , xk) ∈ {x1, . . . , xk} as required. a

The following technical lemma shows that givenFS, infinite free sets can be found
within any infinite set. In this respect, free sets resemble the homogeneous sets of
Ramsey’s theorem.

Lemma 2.4. (RCA0). For each k∈ N, the following are equivalent:

(1) FS(k).
(2) Suppose that X is an infinite subset ofN and f : [X]k → N. Then X contains

an infinite subset A which is free for f .

Proof. To prove that statement (2) implies statement (1), simply setX = N in State-
ment (2).

The proof of the converse is slightly more involved. AssumeRCA0 andFS(k). Let
X and f be as in the hypothesis and enumerateX, settingX = {x1, x2, . . . }. Define a
function f ? : [N]k → N by

f ?(a1, . . . ,ak) =

{

a if f (xa1, . . . , xak) = xa

0 if f (xa1, . . . , xak) /∈ X.

Let A? be an infinite free set forf ?. Since every subset of a free set is free, without
loss of generality we may assume that 0/∈ A?. Let A = {xa | a ∈ A?}. A is obviously
a subset ofX. To complete the proof, we will show that thatA is free for f . Suppose
thatxa1, . . . , xak ∈ A, and thatf (xa1, . . . , xak) ∈ A. By the definition ofA, there is an
a ∈ A? such thatf (xa1, . . . , xak) = xa. From the definition off ?, f ?(a1, . . . ,ak) = a,
and sincea ∈ A? and A? is free for f ?, we havea ∈ {a1, . . . ,ak}. Consequently
xa ∈ {xa1, . . . , xak}, completing the proof thatA is free for f . a

§3. A weak version of the free set theorem. The following weakened version of
the free set theorem, known as the thin set theorem, was introduced by Friedman in [5].

Statement 3.1. (T S– thin set theorem). Let k ∈ N and let f : [N]k → N. Then
there exists an infinite A⊆ N such that f([A]k) 6= N. We denote by T S(k) the state-
ment T S for a fixed k≥ 1. We call a set Athin (for f ) if f ([A]k) 6= N.

The next two results of Friedman show thatT S is weak in the sense that it follows
easily fromFS. We conjecture thatT S(k) does not implyFS(k).

Theorem 3.2. (RCA0). For any k∈ N, FS(k) implies T S(k)

Proof. Let f : [N]k → N. Let A be an infinite free set forf . Let B be a nonempty
subset ofA such thatA\ B is infinite. We show thatA\ B is a set which fulfillsT S(k).
Assume, for a contradiction, that for alln ∈ N there existx1, . . . , xk ∈ A \ B such that
f (x1, . . . , xk) = n. Taken ∈ B. In particular, we have alson ∈ A. SinceA is free, it
follows thatn ∈ {x1, . . . , xk}. Hence there is somei ≤ k such thatxi = n ∈ B, which
contradictsx1, . . . , xk ∈ A \ B for all i ≤ k. a

Corollary3.3follows immediately from Theorem3.2
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Corollary 3.3. (RCA0). FS implies T S.

Now we will show that an analog of Theorem2.3holds for the thin set theorem.

Theorem 3.4. (RCA0). For any fixed k, T S(k + 1) implies T S(k).

Proof. Let f : [N]k → N be given. We want to find a setA such thatf ([A]k) 6= N

holds. Let us defineg : [N]k+1 → N as g(x1, . . . , xk+1) = f (x1, . . . , xk). Since
T S(k + 1) holds, there exists an infinite setA ⊆ N such thatg([A]k+1) 6= N. Because
A is infinite and every increasingk-tuple from A is an initial segment of an increasing
(k + 1)-tuple fromA, we havef ([A]k) ⊆ g([A]k+1). ThusA is an infinite set which is
thin for f , as needed. a

T Sasserts the existence of a setX such that the complement off ([X]k) is nonempty.
Requiring that the complement off ([X]k) is infinite results in a statement of precisely
the same logical strength. This result is implicit in [7].

Theorem 3.5. (RCA0). For each k∈ N, the following are equivalent:

(1) T S(k): If f : [N]k → N, then there is an infinite set X such that f([X]k) 6= N.
(2) T S′(k): If f : [N]k → N, then there is an infinite set X such thatN \ f ([X]k)

is infinite. More formally, there are infinite sets X and Y suchthat for all
x1, . . . , xk ∈ X with x1 < x2 < · · · < xk, f (x1, . . . , xk) /∈ Y .

Proof. The proof thatT S′(k) impliesT S(k) follows immediately from the fact that
whenN \ f ([X]k) is infinite, f ([X]k) 6= N. To prove the converse, assumeRCA0 and
T S(k), and let f : [N]k → N. Let pi denote thei th prime number, so that in particular
we havep0 = 2. Define a new coloring map by setting

g(x1, . . . , xk) =

{

i if f (x1, . . . , xk) = pn
i for somen ≥ 1,

f (x1, . . . , xk) otherwise.

Applying T S(k) to g, we can find an infinite setX and a j ∈ N such thatj /∈ g([X]k).
If for some(x1, . . . , xk) ∈ [X]k and somen ≥ 1 we havef (x1, . . . , xk) = pn

j , then

g(x1, . . . , xk) = j , contradictingj /∈ g([X]k). ThusN \ f ([X]k) contains the infinite
set{pn

j | n ≥ 1}, provingT S′(k). a

As a corollary, we can show that a relativized version ofT Sis provably equivalent to
the original version.

Corollary 3.6. (RCA0). For each k∈ N, the following are equivalent:

(1) T S(k).
(2) Let X be an infinite subset ofN. If the range of f : [X]k → N is unbounded in

N, then there exists an infinite set A⊂ X such that f([X]k) \ f ([A]k) is infinite.

Proof. Clearly the second statement impliesT S(k), taking X = N. To show that
T S(k) implies the second statement, suppose that the range off : [X]k → N is un-
bounded inN. RCA0 suffices to prove that there is an infinite setY which is a subset
of the range off . Let g : N → X andh : Y → N be increasing, one-to-one and onto
functions. Considerg∗ : [N]k → N defined as

g∗(x1 . . . , xk) =

{

h( f (g(x1), . . . , g(xk))) if f (g(x1), . . . , g(xk)) ∈ Y

0 otherwise.
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Using T S′, which is equivalent toT S by Lemma3.5, there is a setA∗ ⊆ N such
that N \ g∗([A∗]k) is infinite. Let A = g(A∗). We claim that f ([X]k) \ f ([A]k) is
infinite. If this is not the case,f ([X]k) \ f ([g(A∗)]k) should be finite and hence also
N \ h( f ([g(A∗)]k)) should be finite, which is a contradiction. a

§4. Lower bounds on the strength of FS. In this section we show that, in contrast
to Theorem2.2, if k ≥ 2 then neitherRCA0 nor WKL0 is sufficiently strong to prove
FS(k). For RCA0, this is immediate consequence of the following theorem. Wewill
show in Proposition5.5 that this result is best possible with respect to the arithmetic
hierarchy.

Theorem 4.1. For each k≥ 2 there is a computable function f: [N]k → N such
that no infinite60

k set is thin for f .

Proof. The proof is very similar to the proof of the corresponding result for Ram-
sey’s Theorem, i.e. Theorem 5.1 of [10]. This result is proved in relativized form by
induction onk, starting atk = 2.

For the base step, we prove the result fork = 2 in unrelativized form for notational
convenience, since relativization is routine. Since everyinfinite60

2 set has an infinite10
2

subset and every subset of a thin set is thin, it suffices to show that there is a computable
function f : [N]2 → N such that no infinite10

2 set is thin for f . By the proof of
the Limit Lemma, there is a computable{0,1}-valued functionh(e,n, s) such that for
every10

2 set A there existse with A(n) = lims h(e,n, s) for all n. Fix such anh, and
for eache let Ae be the uniqueA with A(n) = lims h(e,n, s) for all n, provided that
such a setA exists. If no suchA exists (i.e. lims h(e,n, s) fails to exist for somen), let
Ae be undefined. Thus the setsAe with Ae defined are precisely the10

2 sets. It suffices
to define a computable functionf : [N]2 → N which meets the following requirements
R〈e,i 〉 for all e andi .

R〈e,i 〉 : If Ae is defined and infinite, theni ∈ f ([Ae]
2)

If Ae is defined and has more than〈e, i 〉 elements, letFe,i be the finite set consisting
of the least〈e, i 〉+1 elements ofAe. Let Fe,i,s be the natural computable approximation
to Fe,i at stages, i.e. if there are more than〈e, i 〉 numbersn < s with h(e,n, s) = 1, let
Fe,i,s consist of the first〈e, i 〉 + 1 such numbers, and otherwise letFe,i,s be undefined.
Clearly, if Fe,i is defined, thenFe,i,s = Fe,i for all sufficiently larges.

The construction off is carried out in stages, andf (n, s) is defined at stages for
eachn < s. Stages hass+1 substages, 0,1, . . . s, and f is defined on at most one new
argument at each substaget < s. The construction is as follows:

Stage s, substage〈e, i 〉 < s. This substage is dedicated to meeting the requirement
R〈e,i 〉. If Fe,i,s is not defined, proceed to the next substage〈e, i 〉 + 1 without taking any
action. If Fe,i,s is defined, letne,i,s be the least elementn of Fe,i,s with f (n, s) not yet
defined, and setf (ne,i,s, s) = i . (Such a numbern exists because|Fe,i,s| = 〈e, i 〉 + 1,
and f (k, s) has been defined for at most one value ofk at each of the previous〈e, i 〉
substages. Note also thatne,i,s < s because max(Fe,i,s) < s by the definition ofFe,i,s.)
Go to substage〈e, i 〉 + 1.

At the final substages of stages, set f (n, s) = 1 for all n < s such thatf (n, s) is as
yet undefined. This completes the construction.
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To see that each requirementR〈e,i 〉 is met, assume thatAe is defined and infinite.
Then Fe,i is defined, andFe,i,s = Fe,i ⊆ Ae for all sufficiently larges. It follows by
construction thati ∈ f ([Fe,i ∪ {s}]2) for all sufficiently larges. SinceAe is infinite,
i ∈ f ([Ae]

2) as required. This completes the proof fork = 2.
(Note that we are not claiming that lims ne,i,s exists for alle and i , as there might

exist
〈

e′, i ′
〉

< 〈e, i 〉 such thatFe′,i ′ is not defined butFe′,i ′,s is defined for infinitely
manys.

Indeed, it is impossible that lims ne,i,s exists for alle and i . To see this, assume
that lims ne,i,s exists for alle andi . Then one can easily show by induction onn that
lims f (n, s) exists for alln, i.e. f is stable, as in [1], Definition 3.4. But if f is
stable, there exists an infinite10

2 set which is thin for f , which is impossible by our
construction.)

For the inductive step, assume that for each setX ⊆ ω there is anX-computable
function f : [N]k → N such that no infinite60,X

k set is thin. To prove the corresponding
result fork+1, letX be given. Using the inductive hypothesis, choose anX′-computable
function f : [N]k → N such that no infinite60,X′

k set is thin and hence no infinite60,X
k+1

set is thin. By the Limit Lemma, there is anX-computable functiong : [N]k+1 →
N with lims g(x1, . . . , xk, s) = f (x1, x2, . . . , xk) for all (x1, . . . xk) ∈ [N]k. Every
set thin forg is thin for f , so no60,X

k+1 set is thin forg, as required to complete the
induction. a

Corollary 4.2. Let k ≥ 2. Then there is a computable function f: [N]k → N with
no infinite60

k free set.

Proof. Let f : [N]k → N be a computable function with no infinite60
k thin set. If

f had an infinite60
k free setA, then for anya ∈ A, A\ {a} would be an infinite60

k thin
set for f , by the proof of Theorem3.2. a

Corollary 4.3. [5]. There is a computable function f: [N]2 → N with no com-
putable free set.

SinceN together with the computable sets form a model ofRCA0 the preceding
corollary shows that there is a model ofRCA0 which is not a model ofFS(2). We can
translate this into a proof theoretic result as follows.

Corollary 4.4. RCA0 does not prove FS(2).

The preceding result can be improved to show thatWKL0 does not proveFS(2).
This was announced by Friedman in [5] and proved in [6]. In Friedman’s original
proof, a computable functionf is constructed such that no function that is primitive
recursive in K can dominate any function that enumerates a solution to T S(2) for f .
This f witnesses the failure ofT S(2) in anyω-model ofWKL0 whose functions are
all primitive recursive in K. Our proof uses iteration in a fashion similar to that of
Friedman, but uses almost computable sets. A setA is almost computableif every
function computable fromA is majorized by a computable function.

Lemma 4.5. There is a computable function g: [N]2 → N such that for any infinite
set A, if A is almost computable, then g([A]2) is cofinite.

Proof. Let 〈he〉e∈ω be a computable listing of the computable partial functions. We
will write he,y(n) to denote the value ofhe(n) computed by stagey, and writehe,y(n) ↓
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if that value is defined. Define the function1(n, y) : [N]2 → N by

1(n, y) = max
(

{h j ,y(m) | j ≤ n ∧ m ≤ n ∧ h j ,y(m) ↓} ∪ {n + 1}
)

.

Note that for eachn andy, 1(n, y) is defined, and lim
y
1(n, y) exists for eachn. Let

1i (n, y) denote thei th iteration of1 calculated for a fixedy. For example,12(n, y) =
1(1(n, y), y). Defineg : [N]2 → N by setting

g(n, y) = µi ≤ n(1i (0, y) ≥ n).

Note thatg(n, y) is computable, and for eachn, lim
y

g(n, y) exists. Furthermore, viewed

as a function ofn, lim
y

g(n, y) is nondecreasing and unbounded inN.

Suppose thatA is an infinite almost computable set. Let〈ai 〉i∈ω be the enumeration
of A in increasing order. This enumeration may not be computable, but sinceA is
almost computable, we may fix ak so that for almost alli ∈ N, hk(i ) ≥ ai . Our goal is
to show thatg([A]2) is cofinite.

Since lim
y

g(n, y) is nondecreasing and unbounded, we can choosej so large that

lim
y

g(a j , y) > k. Let lim
y

g(a j , y) = t . For any sufficiently large value ofy ∈ A,

g(a j , y) = t , which implies that1t (0, y) ≥ a j . If y is also so large thathk,y(a j ) ↓,
then

1t+1(0, y) = 1(1t (0, y), y) ≥ 1(a j , y) ≥ hk(a j ) ≥ a j +1,

so lim
y

g(a j +1, y) ≤ t + 1. Because lim
y

g(a j +1, y) ≥ lim
y

g(a j , y) = t , we have

t ≤ lim
y

g(a j +1, y) ≤ t + 1. Indeed, for anym ≥ j ,

lim
y

g(am, y) ≤ lim
y

g(am+1, y) ≤ lim
y

g(am, y)+ 1.

Since lim
y

g(n, y) is unbounded, and for eachi , lim
y

g(ai , y) ∈ g([A]2), we have that

[t,∞) ⊂ g([A]2), showing thatg([A]2) is cofinite. a

Theorem 4.6. (Friedman). There is anω-model ofWKL0 which is not a model of
T S(2).

Proof. Using Corollary VIII.2.22 of [15], select anω-modelM of WKL0 such that
for all X ∈ M, X is almost computable. The functiong of the preceding lemma is in
M, but for every infinite setA ∈ M, g([A]2) is cofinite, and hence not co-infinite. Thus
T S′(2) fails in M, and sinceRCA0 proves thatT S(2) is equivalent toT S′(2), T S(2)
also fails inM. Alternatively, this result can be proved by choosing anω modelM of
WKL0 such that every setX ∈ M is low. Such anM exists by Corollary VIII.2.18 of
[15]. ThenM is not a model ofT S(2) by Theorem4.1, since every low set is60

2. a

Friedman has also found lower bounds for the strength ofFSandT S. The article [7]
contains a proof thatACA0 does not implyT S, which by an application of Lemma3.2
also shows thatACA0 does not implyFS.

§5. Upper bounds on the strength of FS and the arithmetical complexity of free
sets. In this section we will show that every computable coloring of k-tuples has an in-
finite50

k free set. (By Corollary4.2, this result is optimal with respect to the arithmetic
hierarchy fork ≥ 2.) The proof of this result will also show that Ramsey’s theorem for
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for 2-colorings ofk-tuples (as formalized in the following definition) impliesFS(k) in
RCA0. This implication is due to Harvey Friedman [5] fork ≥ 3, but is new fork = 2.

Statement 5.1. (RTk
n ). Given f : [N]k → n, an n-coloring of the k-tuples ofN,

there is an infinite set X⊆ N such that f is constant on[X]k. We use the notation
RTk

<∞ to denote(∀n)RTk
n , and RT to denote(∀n)(∀k)RTk

n .

Theorem 5.2. Let f : [N]k → N be computable. Then there is an infinite50
k set C

which is free for f .

Proof. If Ew is an orderedk-tuple and 1≤ j ≤ k, we write( Ew) j for the j th compo-
nent of Ew.

Define

S = {Ex ∈ [N]k : f (Ex) < (Ex)k & f (Ex) /∈ {(Ex)1, . . . , (Ex)k}}

For Ex ∈ S, let i (Ex) be the leastj such that f (Ex) < (Ex) j . (Such a j exists because
f (Ex) < (Ex)k.)

For Ex ∈ S, leth(Ex) be the increasingk-tuple which results fromEx by replacing(Ex)i (Ex)
by f (Ex). Hence, forEx ∈ S, (h(Ex))i (Ex) < (Ex)i (Ex).

For Ex ∈ S, let c(Ex) be the leastj ∈ ω such thath( j )(Ex) /∈ S or i (h( j )(Ex)) 6= i (Ex).
Hereh( j ) is the j -fold iteration ofh. Note thatc(Ex) is defined for eachEx ∈ S. (If
not, then(Ex)i (Ex), (h(Ex))i (Ex), (h(2)(Ex))i (Ex), . . . is an infinite descending chain of natural
numbers by a remark in the previous paragraph.)

Define a computable functiong : [N]k → 2k + 2 as follows:

g(Ex) =











0 if f (Ex) ∈ {(Ex)1, (Ex)2, . . . , (Ex)k}

1 if f (Ex) > (Ex)k
2i (Ex)+ j if Ex ∈ S, j ≤ 1, and c(Ex) ≡ j mod 2

By [10], Theorem 5.5 there is an infinite50
k set A which is homogeneous forg. We

will show that there is an infinite setB ≤T A such thatB is free for f . Of course,
this suffices to prove that there is an infinite10

k+1 set which is free forf . In order to

obtain the stronger result that there is an infinite50
k set which is free forf , we impose

the additional requirement thatA be retraceable by a total functionp ≤T 0(k−1). (This
is shown to be possible for the case thatg is a c.e. 2-coloring of[N]k in [9], Theorem
3.1, and a similar argument works for computable colorings with any finite number of
colors.)

Case 1. g([A]k) = {0}. ThenA is free for f .
Case 2. g([A]k) = {1}. Define an increasing sequence{c j } of elements ofA by

recursion onj . Let c0 be the least element ofA. Givenc j , let c j +1 be the leastx ∈ A
such thatx > c j andx /∈ f ([{c0, c1, . . . , c j }]

k). Thenc j is defined for everyj because
A is infinite. LetC = {c j : j ∈ ω}. ThenC is infinite becausec0 < c1 < . . . . Also
C is free for f . (If Ex ∈ [C]k, then f (Ex) > (Ex)k becauseEx ∈ [A]k and f ([A]k) = {1}.
But each elementz of C is chosen so that it is not of the formf (Ex) whereEx is any
increasingk-tuple of elements ofC, all smaller thanz.)

To complete the proof in this case, it suffices to show thatC is50
k. This is proved by

virtually the same argument as used in Theorem 3.1 of [9] to show that the set denoted
C there is50

k. We repeat the argument here for the convenience of the reader. By the
retraceability hypothesis onA, there exists a functionq ≤T 0(k−1) such that, for all
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x ∈ A, Dq(x) = {z ∈ A : z ≤ x}, whereDz is the finite set with canonical indexz. Now
let T be the set of numbersx whose membership inC follows from the hypothesis that
{z ∈ A : z ≤ x} = Dq(x). (That is, to determine whetherx ∈ T carry out the above
recursive definition of{c j } usingDq(x) in place ofA until a j is found such thatc j is
not defined. Thenx is in T if and only if somec j generated in this way is equal tox.)
Note thatT ≤T q ≤T 0(k−1) soT is10

k. Finally, observe thatC = A ∩ T , soC is50
k,

as needed to complete this case.
Case 3. f ([A]k) = 2i + j wherei ≥ 1 and j ≤ 1. We claim that in this case

A itself is free, which suffices to complete the proof. Supposenot, and fixEx ∈ [A]k

with f (Ex) ∈ A. It follows from the case hypothesis thatEx ∈ S. Also h(Ex) ∈ [A]k,
by definition ofh and the hypothesis thatf (Ex) ∈ A. Hence, by the case hypothesis,
f (h(Ex)) = 2i + j = f (Ex), so c(Ex) ≡ c(h(Ex)) mod 2. This is impossible because
c(Ex) = c(h(Ex)) + 1. To see this, recall thatc(Ex) is the number of times thath must
be applied toEx to obtain a vectorEw such thatEw /∈ S or i ( Ew) 6= i (Ex). As i (Ex) = i =
i (h(Ex)), c(h(Ex)) is computed in the same way, but starting withh(Ex) instead of with
Ex, so one fewer iteration ofh is required. Note also thatc(Ex) ≥ 1 sinceh(Ex) ∈ S and
i (Ex) = i = i (h(Ex)). a

Corollary 5.3. (H. Friedman [5] for k≥ 3). (RCA0). (∀k)[RTk
2k+2 =⇒ FS(k)].

Proof. AssumingRCA0 and RTk
2k+2, emulate the proof of Theorem5.2 (omitting

the second paragraph of case 2). The existence of the coloring g is provable inRCA0,
and the existence of a homogeneous setA follows from Ramsey’s theorem. The proofs
that A is free in cases 1 and 3 can be formalized inRCA0. Finally, RCA0 suffices to
prove that the set C of case 2 exists and is free.

There is an alternative proof that works well for standard integersk ≥ 3. SinceRT3
2

implies ACA0 andACA0 implies RTk+1
<∞ , it suffices to useRTk+1

<∞ to deduceFS(k).
Given f : [N]k → N, defineg : [N]k+1 → k + 2 by settingg(x1, . . . , xk+1) equal to
the leastj such thatf (x1, . . . , x j −1, x j +1, . . . , xk+1) = x j , and equal to 0 if no suchj
exists. Any homogeneous set forg is free for f . a

A number of corollaries follow immediately from the theoremvia applications of the
substantial body of results on the strength ofRT2

2 . One immediate corollary is that
everyω-model of RT2

2 is anω-model of FS(2). This statement can also be proved
by a forcing argument adapted from the proof in [1] thatRCA0+RT2

2 + I60
2 is 51

1-
conservative overRCA0+I60

2.

Corollary 5.4. (1) For each k, it is provable inRCA0 that RTk
2 implies FS(k)

and that FS(k) implies T S(k).
(2) OverRCA0, FS(2) does not implyACA0.
(3) OverRCA0, FS(2) does not imply RT2<∞.
(4) Suppose k≥ 2 and let f : [N]k → N be a computable function. Then f has an

infinite free set A with A′′ ≤T 0(k).
(5) FS(2) is51

1-conservative overRCA0+I60
2.

Proof. The first statement in Part (1) follows from Corollary5.3 and the fact that,
for eachn andk, RTk

2 implies RTk
n overRCA0. The second statement is immediate

from the proof of Theorem3.2.
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The next two parts follow from the facts thatRT2
2 cannot proveACA0 [14], and that

RT2
<∞ is strictly stronger thanRT2

2 [1].
Part (4) follows by applying the existence of infinite homogeneous setsA with A′′ ≤T

0(k) for computable colorings of[N]k with finitely many colors [1], Theorem 3.1, and
the remark in the proof of Theorem5.2 that for each infinite setA homogeneous forg
there is an infinite setC free for f with C ≤T A.

The last part follows from the fact thatRCA0+RT2
2 + I60

2 is 51
1-conservative over

RCA0+I60
2 [1]. a

The following result shows that Theorem4.1is optimal with respect to the arithmeti-
cal hierarchy.

Proposition 5.5. Let f : [N]k → N be computable. Then there is an infinite50
k set

A which is thin for f .

Proof. Defineg : [N]k → {0,1} by g(Ex) = 0 if f (Ex) = 0 andg(Ex) = 1 otherwise.
Theng is a computable 2-coloring of[N]k so by [10], Theorem 5.5, there is an infinite
50

k set which is homogeneous forg and hence thin forf . Alternatively, the proposition
follows from Theorem5.2. a

Since for each standard natural numberk, ACA0 proves Ramsey’s theorem fork-
tuples, we have the following corollary which appears in [5].

Corollary 5.6. [5]. For each k∈ ω, ACA0 proves FS(k).

Corollary 5.7. [5]. Every arithmetical function f has an arithmetical infinite free
set.

Proof. This is immediate from a relativized form of Theorem5.2. For a different
proof, note that the model of second order arithmetic consisting of ω together with the
arithmetical sets is a model ofACA0. By Corollary5.6, this is also a model ofFS(k)
for each standard numberk. Every function in the model must have a free set in the
model. a

The previous corollary led us to conjecture and to prove thatthe degrees of the free
sets are closed upwards. The proof uses a result of Jockusch [11] that we recall here for
the reader.

Theorem 5.8. [11]. If P is a property of infinite sets which is hereditary under
inclusion and enjoyed by some arithmetical set, then the class ofP -degrees is closed
upwards.

Corollary 5.9. For every arithmetical function f , the degrees of the free sets for f
are closed upwards.

Proof. Since every infinite subset of a free set is free (Remark2.1) and Corollary
5.7witnesses that there exist arithmetical free sets, the result immediately follows from
Theorem5.8. a

It is known thatRT is equivalent toACA0
′

overRCA0, where the systemACA0
′

is
defined asACA0+∀n ∀X (the nth T uring jump of X exists). From Corollary5.3
we know thatRT implies FSand consequently we have the following corollary, which
appears in [7].

Corollary 5.10. [7]. ACA0
′
implies FS.
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We now consider freeness forpartial functions, which is defined in the obvious way
below. This will lead to a proof that a certain result holds relative to 0′ whereas the
result itself remains open.

Definition 5.11. A set A is freefor a partial functionψ on [N]k if there do not exist
x1 < x2 < · · · < xk with eachxi in A, andψ(x1, . . . , xk) ↓∈ A − {x1, . . . , xk}.

Corollary 5.12. The following result(∗) holdswhen relativized to 0′:
(∗) For every computable partial functionψ on [N]2 there is an infinite50

2 free set.

Proof. Supposeψ is a 0′-computable partial function defined on[N]2. Let g be a 3-
place computable function so thatψ(a,b) = lims g(a,b, s) for all (a,b) in the domain
of ψ. (Such ag exists by the proof of the Limit Lemma.) LetA be an infinite50

3 free

set forg. ThenA is also an infinite50,K
2 free set forψ. a

It follows from the above corollary that(∗) cannot be refuted by a relativizable argu-
ment. On the other hand, we have not been able to prove(∗). In particular, the proof
of Theorem5.2does not seem to adapt to partial functions, and an independent unpub-
lished proof of Theorem5.2 for the casek = 2 (not based on Ramsey’s theorem) does
not seem to adapt to partial functions either.

We close this section with a version ofFS that is equivalent to Ramsey’s theorem.
The reader may wish to compare the following theorem to Corollary 3.6.

Theorem 5.13. For all k ∈ ω, RCA0 proves that the following are equivalent:

(1) RTk
2

(2) If f : [N]k → N is not constant, then there exists an infinite A⊆ N such that
f ([A]k) 6= f ([N]k).

Proof. (1) H⇒ (2). Let f : [N]k → N. Fix n0 ∈ f ([N]k). Define a 2-coloring

g(x1, . . . , xk) =

{

red if f (x1, . . . , xk) = n0

blue otherwise

By RTk
2 there exists a homogeneous setH . Define A = H . If H is red, we have

g([H ]k) red if and only if f ([H ]k) = n0, and hencef ([H ]k) 6= f ([N]k). If H is blue
we havef ([H ]k) ⊆ N \ {n0} 6= f ([N]k). Therefore in both cases we are done.
(2) H⇒ (1). Let f : [N]k → 2 be a 2-coloring. By the statement(2), there exists

an infinite setA ⊆ N such thatf ([A]k) 6= {0,1}. HenceA is a homogeneous set for
f . a

§6. FS for subsets. In this section, we will prove a variation of the free set theo-
rem in which finite sets play the role previously played byk-tuples. We will need the
following definitions. A sequenceX = 〈Xi 〉i∈N of finite subsets ofN is said to be
increasingif for every i the maximum element ofXi is less than the minimum element
of Xi+1. When the maximum element ofXi is less than the minimum element ofXi+1,
we write Xi < Xi+1. The subsystemACA0

+ consists ofACA0 together with an axiom
that asserts thatA(ω) exists for each setA. This system is strictly stronger thanACA0

′.

Theorem 6.1. (ACA0
+). SupposeF : [N]<ω → N. There is an infinite increasing

sequenceX = 〈Xi 〉i∈N, of subsets ofN such that wheneverY is a finite union of
elements ofX, if F(Y) ∈ ∪X, thenF(Y) ∈ Y.
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We will postpone the proof of Theorem6.1until after the statement of the following
result on Milliken’s theorem.

Theorem 6.2. (ACA0
+). Milliken’s Theorem: Suppose thatF : [[N]<ω]3 → k

is a finite coloring of increasing triples of finite subsets. Then there is a valuec and
an infinite sequenceX of increasing subsets ofN such that wheneverY0, Y1, Y2 is an
increasing triple consisting of finite unions of elements from X, thenF(Y0,Y1,Y2) = c.

Comment: Milliken’s theorem first appears in [13]. A proof of Milliken’s theorem
(for n-tuples) inACA0

+ appears as corollary 7.24 in [8]. The basic idea is that Mil-
liken’s theorem is equivalent to a version of Hindman’s theorem for countable collec-
tions of colorings. a

Proof of Theorem 6.1: SupposeF : [N]<ω → N. We will use the following cases
to define an auxiliary function.

Case 1:F(Y0) ∈ Y1. Case 3:F(Y0 ∪ Y2) ∈ Y1.
Case 2:F(Y1) ∈ Y0. Case 4: None of the above.

Define the functionG : [[N]<ω]3 → {1,2,3,4} on increasing triples of finite subsets
by settingG(Y0,Y1,Y2) to the number of the least case that holds. As noted above,
within ACA0

+ we may apply Milliken’s theorem, and find ac between 1 and 4 and an
infinite sequence of increasing setsX = 〈Xi 〉i∈N such that wheneverY0, Y1 andY2 form
an increasing sequence of finite unions of elements ofX, thenG(Y0,Y1,Y2) = c.

Let X0, X1, X2, andX3 be the least elements ofX. If c = 1, thenG(X0, X1, X3) =
G(X0, X2, X3) = 1, soF(X0) is in bothX1 andX2. But X is an increasing sequence,
so X1 andX2 are disjoint. Thusc 6= 1. A similar argument shows thatc 6= 2.

If c = 3, thenG(X0, X1, X3) = G(X0, X2, X3) = 3, soF(X0 ∪ X3) is in bothX1
andX2. These sets are disjoint, soc 6= 3. Thusc = 4.

Let Y0, . . .Yn be any increasing list of elements ofX, and letY = ∪i≤nYi . Assume
that F(Y) ∈ ∪X. Suppose by way of contradiction thatF(Y) /∈ Y. Then there is a set
T ∈ X such thatT ∩Y = ∅ andF(Y) ∈ T . Let Z be an element ofX such thatYn < Z
andT < Z. If T < Y0, thenG(T,Y, Z) = 2, contradicting the claim thatc = 4. If
Yn < T , thenG(Y, T, Z) = 1, yielding another contradiction. Finally, if for somej <
n we haveYj < T < Yj +1, thenG(∪i≤ j Yi , T,∪ j<i≤nYi ) = 3, contradictingc = 4.
This eliminates all possible locations forT , proving thatF(Y) ∈ Y. Summarizing, we
have shown that ifF(Y) ∈ ∪X, thenF(Y) ∈ Y. a

§7. Questions. The preceding work leads us to a number of questions. It was al-
ready mentioned in Section 5 that the statement(∗) in Corollary 5.12 is open. Addi-
tional questions follow.

Question 7.1. (1) Does FS(2) imply RT2
2 ?

(2) Does FS(2)+WKL0 imply RT2
2 ?

(3) Does FS(2) imply B60
2 (or equivalently RT1<∞)?

Notice that Hirst proved thatRT2
2 impliesB60

2 in [8]. SinceWKL0 is51
1-conservative

over RCA0, a positive answer to either7.1(1) or 7.1(3) would give another proof of
Friedman’s result thatFS(2) fails in anω-model ofWKL0 (see Theorem4.6).

Recall now the statements known asC AC andC O H.



FREE SETS 13

Statement 7.2. (C AC – Chain or Anti-chain Condition). Every infinite partial or-
der has an infinite chain or an infinite anti-chain.

Statement 7.3. (C O H). For any sequence of sets(Ri )i∈N there is an infinite set A
such that for all i , either A⊆∗ Ri or A ⊆∗ Ri .

Such a setA is called
−→
R -cohesive.X ⊆∗ Y means that there is ak such that for all

x, if x ∈ X then eitherx ∈ Y or x ≤ k. (For more aboutC O H see [1]).

Question 7.4. (1) Does FS(2)+ C AC imply RT22 ?
(2) Does FS(2)+ C O H imply RT2

2 ?

Question 7.5. What happens in all the above questions if we replace FS(2) by
FS(k), where k> 2? by T S(k), where k≥ 2?

Question 7.6. Does FS(k) (or T S(k) or FS or T S) implyACA0 for k ≥ 3?

Question 7.7. Does T S(k + 1) imply FS(k)?
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