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Abstract. Suppose thaf : [N]k — N. AsetA C Nis freefor f if for all xq,..., X € Awith x; <
Xo < oo < Xy F(Xq,.en, xi) € Aimplies f (xq, ..., XK) € {X1, ..., xk}. The free settheorem asserts that every
function f has an infinite free set. This paper addresses the compuytaihdoretic content and logical strength
of the free set theorem. In particular, we prove that Ransséygorem for pairs implies the free set theorem for
pairs, and show that every computalfle [N]k — N has an infinite‘lg free set.

81. Introduction. We will analyze the strength of the free set theorem usinp-tec
niques from computability theory and reverse mathema#icgosting of H. Friedman
in the FOM email list [5] and the section on open problems ee Bets in [7] sparked
our interest in this topic.

The purpose of Reverse Mathematics is to study the role @ésstence axioms, try-
ing to establish the weakest subsystem of second ordemagiiihin which a theorem of
ordinary mathematics can be proved. The basic referendkifgprogram is Simpson’s
monograph [15]. While we assume familiarity with the deysieent of mathematics
within subsystems of second order arithmetic, we brieflaileéhe definition ofRCAp,
WKLg, andACAy.

RCAp includes some algebraic axioms, an induction scheme:foformulas, and
comprehension for sets defined hﬂ formulas, i.e. formulas which are equivalent both
to aEf and to aI‘Itl’ formula. WKLo extendsRCAq by adding weak Konig's lemma,
asserting that ifT is a subtree of 2 with no infinite path, therT is finite. ACAg
consists 0RCAq plus set comprehension for arbitrary arithmetical forrsula

Let X be a set equipped with a linear ordering (notice that, sine@se working in
subsystems of arithmetic, all sets have an underlying tinedering). The expression
[X]¥ denotes the set of all increasikguples of elements oK. We are now ready to
give the precise statement of the free set theorem, orlgidak to Friedman.

STATEMENT 1.1 (FS - free set theorem)Let k € N and let f: [N]K — N. Then
there exists an infinite & N suchthatforall x, ..., xx € Awithxy < X2 < - < Xk,
if f(x1,...,%k) € Athen f(xq,...,Xk) € {X1,...,Xk}. We use F&) to denote the
statement F S restricted to a fixedk1.
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Natural analogs of free sets include sets of linearly inddpat elements in a vector
space, sets of algebraically independent elements in a &nltisets of indiscernibles
in any appropriate structure [12]. These analogs diffemffriedman’s concept of free
set in that they concern closure under operations as opgosadingle application
of a function. The following definition and examplshould help in pointing out this
important difference.

There is a notion of a “free set” in a model theoretic settif], (2], [3]). Let
M = (M, R, fj, c) be a structure and lét # A € M. By M(A) we denote the
substructure ofM generated byA. A is free for M if and only if for all A’ € A,
MAYNA=A.

Let M = (N, f) wheref(x) = x + 1 for all x. Let A be the set of even numbers.
A is free for f in the sense of Statement 1.1. But if we itbe the set of numbers
divisible by 4, thenM (A") = N, henceM(A) N A= A # A’. SoAis not free forM.

However we can show that if a s&tC M is free for.M then, for allj, Ais free for
fj in the sense of Statementl. Let f; : MK — M and letA’ be a subset oA of
cardinalityk;j. Since, by definitionM(A) N A = A’ if ais ak;-tuple of elements of
A’, we have that iffj (@) € A, thenfj@) € {ay, ..., a }. HenceA s free for fj.

82. Proof-theoreticresults. In this section, we present some basic results about free
sets. Some of them were already stated without explicitforof®] and [7].

THEOREM 2.1 RCAg proves the following:

(1) If Ais afree set for f then every subset of A is a free set for f.
(2) Alisafreesetfor f if and only if any finite subset of A is a freefer f.

Proor. The proofs of the first item and the implication from left tght in the sec-
ond item are immediate from the definitions. To prove the iiaing implication, as-

sume that every finite subsé& of A is free. Pick anyk-tuple x1,...,xx € A. If
f(X1,...,%k) € Awearedone. Iff (X1, ..., xk) € A, takeB = {x1, ..., Xk, f(X1,..., XK}
SinceB is free by hypothesis anfi(xy, ..., Xx) € B, we havef (x1, ..., Xx) € {X1, ..., X}
HenceA is free. —

THEOREM 2.2 [7]. RCAq proves F $1).

Proor. Let f : N — N. If f is bounded by somke € N, a free set forf is given by
A={n|n> Kk}

Assume thatf is unbounded, i.evyax f(x) > y. We define the free seA =
{Xo0, X1, ...} by induction. Letxg = 0 € A. Inductively, forn > 0 definex, to be
the least natural number > x,_1 such thatz ¢ {f(xp), f(x1),..., f(Xp—1)} and
f(2) ¢ {Xo0, X1, ..., Xn—1}. Such az exists becausé is unbounded. We claim thak
is a free set forf . By constructionf (x,) # xj andx, # f(X;) whenevei < n. Thus
Xi # f(xXj) wheneveii # j. It follows thatA = {xg, X1, ...} is free for f, andAis
infinite because, > xn—1 foralln > 0. —

THEOREM 2.3, (RCAp). For any fixed k, F& + 1) implies F k)

ProoF. Let f : [N]K - N be given. We want to find a free set fér Let us define
g: [Nk & N asg(xg, X2, ..., Xk+1) = f(X2, ..., Xk+1). By hypothesisg has a

1we would like to thank Friedman and the anonymous referethfsrexample.
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free set, sayB. Letm = min(B) and defineA = B\ {m}. We prove thatA is a free

setforf. Letxy,...,xk € A. If f(X1,...,x) € A thenalsa(m, x1,...,Xk) € AC
B. SinceB is free forg it follows g(m, X1, ..., Xx) € {mM, X1, ..., Xk}. But actually
g(m, X1, ...,Xk) # mbecausen ¢ A. Henceg(m, X1, ...,Xk) € {X1,..., Xk} and
thereforef (xg, ..., Xk) € {X1, ..., Xk} as required. —

The following technical lemma shows that giverS, infinite free sets can be found
within any infinite set. In this respect, free sets resembéeiomogeneous sets of
Ramsey'’s theorem.

Lemma 2.4. (RCAp). For each ke N, the following are equivalent:

(1) FSK).

(2) Suppose that X is an infinite subsefofnd f : [X]k — N. Then X contains
an infinite subset A which is free for f.

Proor. To prove that statement)implies statementl], simply setX = N in State-
ment Q).

The proof of the converse is slightly more involved. AssuRt&\o andF S(k). Let
X and f be as in the hypothesis and enumerétesettingX = {x1, X2, ... }. Define a
function f* : [N]K - N by

a if f(Xa,...,%Xa) =Xa

f*(ag, ..., = )
@ &) 0 if f(Xay,...,%Xa) & X.

Let A* be an infinite free set fof*. Since every subset of a free set is free, without
loss of generality we may assume thag 0A*. Let A = {xa | a € A*}. Aiis obviously

a subset ofX. To complete the proof, we will show that thatis free for f. Suppose
thatxa,, ..., Xa, € A, and thatf (xa,, ..., Xa) € A. By the definition ofA, there is an

a € A* such thatf (Xa,, . .., Xa) = Xa. From the definition off *, f*(ay, ..., &) = a,
and sincea € A* and A* is free for f*, we havea € {a,...,a}. Consequently
Xa € {Xay, . - -, Xa }, cOmpleting the proof thaA is free for f. -

83. A weak version of the free set theorem. The following weakened version of
the free set theorem, known as the thin set theorem, waslinteal by Friedman in [5].

STATEMENT 3.1 (T S— thin set theorem)Let k e N and let f: [N]K — N. Then
there exists an infinite &= N such that f[A]%) # N. We denote by T(®) the state-
ment T S for a fixed k 1. We call a set Ahin (for f) if f ([A]K) # N.

The next two results of Friedman show tHag is weak in the sense that it follows
easily fromF S. We conjecture thal S(k) does not implyF S(k).

THEOREM 3.2 (RCAp). For any ke N, FS(k) implies T k)

ProoF. Let f : [N]¥ — N. Let A be an infinite free set fof . Let B be a nonempty
subset ofA such thatA \ B is infinite. We show thaf \ B is a set which fulfillsT S(k).
Assume, for a contradiction, that for alle N there exisiy, ..., Xk € A\ B such that
f(X1,...,Xk) = n. Taken € B. In particular, we have also € A. SinceAis free, it
follows thatn € {x1, ..., xk}. Hence there is some< k such that; = n € B, which
contradictsxy, ..., xx € A\ Bforalli <k. —

Corollary3.3follows immediately from Theorerf.2
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CoroLLARY 3.3 (RCAp). FS implies T S.
Now we will show that an analog of TheorehB holds for the thin set theorem.
THEOREM 3.4. (RCAp). For any fixed k, T & + 1) implies T gk).

ProoF. Let f : [N]¥ — N be given. We want to find a sétsuch thatf ([A]K) # N
holds. Let us defing : [Nkl - N as og(X1, ..., Xk+1) = f(X1,...,%k). Since
T Sk + 1) holds, there exists an infinite sAtC N such thag([A]k“) # N. Because
A is infinite and every increasirigtuple from A is an initial segment of an increasing
(k 4+ 1)-tuple fromA, we havef ([A]¥) € g([A]*t1). ThusA is an infinite set which is
thin for f, as needed. =

T Sasserts the existence of a ¥esuch that the complement 6{[X]¥) is nonempty.

Requiring that the complement 6f([X1¥) is infinite results in a statement of precisely
the same logical strength. This result is implicit in [7].

THEOREM 3.5. (RCAg). For each ke N, the following are equivalent:

(1) TSK): If f : [N]K — N, then there is an infinite set X such tha{ X]¥) # N.

(2) TS(k): If f : [N]K — N, then there is an infinite set X such that, f ([X]¥)
is infinite. More formally, there are infinite sets X and Y sticht for all
X1,...,Xk € XWithxg <Xo < -+ <X¢, T(Xg,...., %) ¢ Y.

Proor. The proof thafl S(k) implies T Sk) follows immediately from the fact that
whenN \ f([X]¥) is infinite, f ([X]¥) # N. To prove the converse, assulR€Aq and
T Sk), and letf : [N]JK — N. Let p; denote thé!" prime number, so that in particular
we havepg = 2. Define a new coloring map by setting

if f(x1,...,xx) = pi" forsomen > 1,

i
X1, ..., XK) = ,
9(xa k) f(X1,...,Xk) otherwise.

Applying T S(k) to g, we can find an infinite seX and aj € N such thatj ¢ g([X]X).
If for some(xy, ..., Xk) € [X]K and somen > 1 we havef(xq, ..., Xx) = p?, then
g(X1, ..., %) = j, contradictingj ¢ g([X]%). ThusN \ f([X]¥) contains the infinite
set{ pJn | n > 1}, proving T S(K). -

As a corollary, we can show that a relativized versio &is provably equivalent to
the original version.

CoroLLARY 3.6. (RCAp). For each ke N, the following are equivalent:

1) TSK).

(2) Let X be an infinite subset &f. If the range of f: [X]¥ — N is unbounded in
N, then there exists an infinite set@ X such that f[X]¥) \ f([A]) is infinite.

Proor. Clearly the second statement implieésS(k), taking X = N. To show that
T Sk) implies the second statement, suppose that the rande:dfX]¥ — N is un-
bounded inN. RCAg suffices to prove that there is an infinite ¥etvhich is a subset
of the range off. Letg : N — X andh : Y — N be increasing, one-to-one and onto
functions. Consideg* : [N]K — N defined as

h(f(g(x1), ..., 9(x))) if f(g(x),....9(x) €Y

(X1 ..., XK) = i
g (xa ) 0 otherwise.
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Using T S, which is equivalent tol S by Lemma3.5, there is a seA* € N such
thatN \ g*([A*]¥) is infinite. Let A = g(A*). We claim thatf ([X]¥) \ f([A]X) is
infinite. If this is not the casef ([X1¥) \ f([g(A*)]¥) should be finite and hence also
N\ h(f ([g(A*)]k)) should be finite, which is a contradiction. —

84. Lower bounds on the strength of FS. In this section we show that, in contrast
to Theorem?.2, if k > 2 then neitheRCAg nor WKLy is sufficiently strong to prove
F S(k). ForRCAy, this is immediate consequence of the following theorem. vilie
show in Propositiorb.5 that this result is best possible with respect to the aritiame
hierarchy.

THEOREM 4.1 For each k> 2 there is a computable function f[N]K — N such
that no infinite= set is thin for f.

Proor. The proof is very similar to the proof of the correspondingulefor Ram-
sey’s Theorem, i.e. Theorem 5.1 of [10]. This result is ptbirerelativized form by
induction onk, starting ak = 2.

For the base step, we prove the resultfce 2 in unrelativized form for notational
convenience, since relativization is routine. Since eudigite Eg sethasan infinite\g
subset and every subset of a thin set is thin, it suffices tev $hat there is a computable
function f : [N]? — N such that no infiniteﬁg set is thin for f. By the proof of
the Limit Lemma, there is a computalfi@ 1}-valued functiorh(e, n, s) such that for
everyAg set A there exist® with A(n) = limgh(e, n, s) for all n. Fix such arh, and
for eache let A be the uniqueA with A(n) = limsh(e, n, s) for all n, provided that
such a sefA exists. If no suchA exists (i.e. lim h(e, n, s) fails to exist for somen), let
Ae be undefined. Thus the setg with Ae defined are precisely thﬂg sets. It suffices
to define a computable functioh: [N]? — N which meets the following requirements
Reeiy for all eandi.

Reiy : If Aeis defined and infinite, theine f([Ae]z)

If Aeis defined and has more thé® i) elements, leFe; be the finite set consisting
of the leaste, i)+ 1 elements ofe. Let Fe s be the natural computable approximation
to Fe; at stages, i.e. if there are more thafe, i ) numbersr < swith h(e, n, s) =1, let
Fei.s consist of the firste, i) + 1 such numbers, and otherwise Ft; s be undefined.
Clearly, if Fe; is defined, there j s = Fe; for all sufficiently larges.

The construction off is carried out in stages, anfdn, s) is defined at stags for
eachn < s. Stages hass+ 1 substages,.d, ...s, andf is defined on at most one new
argument at each substage s. The construction is as follows:

Stage ssubstagee, i) < s. This substage is dedicated to meeting the requirement
Reeiy. If Fei,s is not defined, proceed to the next substége) + 1 without taking any
action. If Fej s is defined, lene i s be the least elementof Fe; s with f (n, s) not yet
defined, and sef (nei s, S) = i. (Such a numben exists becausieis| = (e, i) + 1,
and f (k, s) has been defined for at most one valu&k @t each of the previoug, i)
substages. Note also thati s < s because ma¥eis) < s by the definition ofFe s.)

Go to substagée, i) + 1.

At the final substage of stages, setf (n, s) = 1 for alln < ssuch thatf (n, s) is as

yet undefined. This completes the construction.
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To see that each requiremeRf i) is met, assume thake is defined and infinite.
ThenFg; is defined, andrej s = Fei C Ae for all sufficiently larges. It follows by
construction that € f([Fe;i U {s}1?) for all sufficiently larges. SinceAg is infinite,

i € f([Ae]® as required. This completes the proof koe 2.

(Note that we are not claiming that line; s exists for alle andi, as there might
exist(€,i’) < (e i) such thatFy i is not defined bufe j s is defined for infinitely
manys.

Indeed, it is impossible that ligmei s exists for alle andi. To see this, assume
that lims ne i s exists for alle andi. Then one can easily show by induction wthat
lims f(n, s) exists for alln, i.e. f is stable as in [1], Definition 3.4. But iff is
stable, there exists an infinimg set which is thin forf, which is impossible by our
construction.)

For the inductive step, assume that for each)et o there is anX-computable
function f : [N]¥ — N such thatno infinite:lc(]’x setis thin. To prove the corresponding
result fork+1, letX be given. Using the inductive hypothesis, choosX&aoomputable
function f : [N]¥ — N such that no infinite:E’x/ setis thin and hence no infini@&rx1

set is thin. By the Limit Lemma, there is at-computable functiory : [N]K*1 —

N with limsg(x1, ..., Xk, S) = f(X1, X2, ..., Xy for all (x1,...Xk) € [N]K. Every
set thin forg is thin for f, so noZE;:(l set is thin forg, as required to complete the
induction. =

CoroLLARY 4.2 Letk> 2. Then there is a computable function fN]K — N with
no infinite 22 free set.

Proor. Let f : [N]¥ — N be a computable function with no infini@f() thin set. If
f had an infiniteEE free setA, then foranya € A, A\ {a} would be an infiniteEE thin
set for f, by the proof of Theorer3.2. =

CoRrOLLARY 4.3 [5]. There is a computable function :f[N]2 — N with no com-
putable free set.

SinceN together with the computable sets form a modeR&iAo the preceding
corollary shows that there is a modelREA which is not a model of S(2). We can
translate this into a proof theoretic result as follows.

CoroLLARY 4.4. RCAg does not prove F@).

The preceding result can be improved to show WWa€Ly does not prove-S(2).
This was announced by Friedman in [5] and proved in [6]. Ire@man’s original
proof, a computable functioffi is constructed such that no function that is primitive
recursive in K can dominate any function that enumeratedwisn to T S(2) for f.
This f witnesses the failure of S2) in any w-model of WKLo whose functions are
all primitive recursive in K. Our proof uses iteration in asféon similar to that of
Friedman, but uses almost computable sets. Afsé almost computablé every
function computable frormA is majorized by a computable function.

LeEmMa 4.5 There is a computable function:gN1? — N such that for any infinite
set A, if A is almost computable, the([g]z) is cofinite.

Proor. Let (he)ec, be a computable listing of the computable partial functioie
will write he y(n) to denote the value die(n) computed by stagg, and writehe y(n) |
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if that value is defined. Define the functiax(n, y) : [N]2 — N by
A(n,y) =max({hjym | j <nAm=nahjym J}U{n+1}).
Note that for eacim andy, A(n, y) is defined, and )I/imﬁ(n, y) exists for eachn. Let

A'(n, y) denote theé!" iteration of A calculated for a fixeq. For exampleA2(n, y) =
A(A(n, ), y). Defineg : [N]2 — N by setting

g(n, y) = ui <n(A'(0,y) = n).
Note thatg(n, y) is computable, and for eachliym g(n, y) exists. Furthermore, viewed
as a function of, Ii;n g(n, y) is nondecreasing and unbounded\in

Suppose thaf is an infinite almost computable set. L{@t)i<, be the enumeration
of A in increasing order. This enumeration may not be computdhlesinceA is
almost computable, we may fixkeso that for almost all € N, hg(i) > a. Our goal is
to show thag([A]) is cofinite.

Since Ii/m g(n, y) is nondecreasing and unbounded, we can chgose large that

Ii;n g(aj,y) > k. Let Ii§n g(aj, y) = t. For any sufficiently large value of € A,

g(aj, y) = t, which implies thata(0, y) > aj. If y is also so large thaiy y(a;j) |,
then

A0, y) = AA'O, ), ) = A@j, Y) = (@) = aj41,
SO Ii)[n g(@aj+1,y) < t+1. Because )!irrg(aj“, y) > Iig/n g(aj,y) = t, we have

t < Ii{/n g(aj+1,y) <t+ 1. Indeed, for anyn > j,
Iign g@m,y) < Iign g@mn+1, y) < Iign g@m,y) + 1.

Since Ing(n, y) is unbounded, and for ead:hliym 9(@ai, y) € g([A]?), we have that
[t, 00) C g([A]?), showing thag([A]?) is cofinite. ~

THEOREM 4.6. (Friedman) There is anw-model ofWKLg which is not a model of
TS2).

Proor. Using Corollary VI111.2.22 of [15], select am-modelM of WKLg such that
for all X € M, X is almost computable. The functi@nof the preceding lemma is in
M, but for every infinite seA € M, g([A]?) is cofinite, and hence not co-infinite. Thus
T S(2) fails in M, and sinceRCAg proves thafl S2) is equivalent taT S(2), T S(2)
also fails inM. Alternatively, this result can be proved by choosingzamodelM of
WKLg such that every seX € M is low. Such anM exists by Corollary VIII.2.18 of
[15]. ThenM is not a model off §(2) by Theoren¥.1, since every low set i§)g. =

Friedman has also found lower bounds for the strength®&ndT S The article [7]
contains a proof thahCAg does not implyT S which by an application of Lemma2
also shows thaACAg does not implyF S.

85. Upper boundson the strength of FSand the arithmetical complexity of free
sets. In this section we will show that every computable colorifigeduples has an in-
finite H(k’ free set. (By Corollaryt.2, this result is optimal with respect to the arithmetic
hierarchy fork > 2.) The proof of this result will also show that Ramsey’s tfezo for
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for 2-colorings ofk-tuples (as formalized in the following definition) impli€sS(k) in
RCAp. This implication is due to Harvey Friedman [5] for> 3, but is new fok = 2.

STATEMENT 5.1 (RTX). Given f: [N]K — n, an n-coloring of the k-tuples o,
there is an infinite set X N such that f is constant opX]¥. We use the notation
RTK_ to denote¥n)RTX, and RT to denotévn)(vk) RTX.

THEOREM 5.2 Let f : [N]¥ — N be computable. Then there is an infinﬂ[§ setC
which is free for f.

Proor. If w is an ordered-tuple and 1< j < k, we write (w); for the jth compo-
nent ofw.

Define

S={KeNF: fX) <@k & X ¢{®.... K
ForX e S, leti(X) be the leasf such thatf (X) < (X)j. (Such aj exists because
f(X) < (X))

ForX € S, leth(X) be the increasing-tuple which results frork by replacingX);
by f(X). Hence, foX € S, (h(X))ix) < X)ix)-

ForX € S, letc(X) be the leasf € w such thah()(X) ¢ Sori(h® (X)) #i(X).
Hereh() is the j-fold iteration ofh. Note thatc(X) is defined for eaclk € S. (If
not, then(X); x), (h(X))ix), (h(z)(f())i(;(), ... is an infinite descending chain of natural
numbers by a remark in the previous paragraph.)

Define a computable functiom: [N]¥ — 2k + 2 as follows:

0 if f(X) € {(X)1, X2, ..., Xk}
gx) =11 if f(X) > (X
2iX)+j ifXeS j<1l andc(X)=| mod?2

By [10], Theorem 5.5 there is an infiniﬂéck’ set A which is homogeneous fa. We
will show that there is an infinite s <t A such thatB is free for f. Of course,
this suffices to prove that there is an infini.’s%rl set which is free forf. In order to
obtain the stronger result that there is an infir]ﬁt%set which is free forf , we impose
the additional requirement thatbe retraceable by a total functign<t 0k~ (This
is shown to be possible for the case thas a c.e. 2-coloring ofN1¥ in [9], Theorem

3.1, and a similar argument works for computable coloringh any finite number of
colors.)

Case 1. g([AJ¥) = {0}. ThenAis free for f .

Case 2. g([A]%) = {1}. Define an increasing sequengg} of elements ofA by
recursion onj. Letcg be the least element &. Givenc;, letcj,1 be the leask € A
such thak > cj andx ¢ f([{co, Cy, ...,c,—}]k). Thenc; is defined for every because
Ajis infinite. LetC = {cj : j € w}. ThenC is infinite becausep < c1 < .... Also
Cis free forf. (If X € [CI¥, thenf (X) > (X)x because& € [AlX and f ([A]%) = {1]}.
But each element of C is chosen so that it is not of the forf(X) whereX is any
increasing-tuple of elements o€, all smaller tharz.)

To complete the proof in this case, it suffices to show @ 1‘[2. This is proved by
virtually the same argument as used in Theorem 3.1 of [9] tavahat the set denoted
C there isl‘[(k’. We repeat the argument here for the convenience of the reByehe
retraceability hypothesis oA, there exists a functiogq <7t 0%~ such that, for all
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X € A, Dgx) = {z € A: z < x}, whereD; is the finite set with canonical index Now
let T be the set of numberswhose membership i@ follows from the hypothesis that
{ze A:z < x} = Dgq. (Thatis, to determine whetha&re T carry out the above
recursive definition ofcj} using Dq(x) in place of A until a j is found such that; is
not defined. Them is in T if and only if somec; generated in this way is equal xo)
Note thatT <t g <7 0%~ s0T is AD. Finally, observe that = AN T, soC is ITY,
as needed to complete this case.

Case 3. f([A¥) = 2i + j wherei > 1 andj < 1. We claim that in this case
A itself is free, which suffices to complete the proof. Suppose and fixX € [A]
with f(X) € A. It follows from the case hypothesis thate S. Also h(X) € [A]¥,
by definition ofh and the hypothesis thdt(X) € A. Hence, by the case hypothesis,
f(hX)) = 2 + ] = f(X), soc(X) = c(h(X)) mod 2. This is impossible because
c(X) = c(h(X)) + 1. To see this, recall thatX) is the number of times thadt must
be applied taX to obtain a vectoib such thatw ¢ Sori(w) # i(X). Asi(X) =i =
i (h(X)), c(h(X)) is computed in the same way, but starting whi¢x) instead of with
X, so one fewer iteration df is required. Note also tha(X) > 1 sinceh(X) € Sand
(X)) =i =ih)). ~

CoroLLARY 5.3 (H. Friedman [5] for k> 3). (RCAp). (Vk)[RT2‘<k+2:> FSk)].

Proor. AssumingRCAg and RT2kk+2, emulate the proof of Theoref2 (omitting
the second paragraph of case 2). The existence of the cgplpisprovable inRCAy,
and the existence of a homogeneousAétllows from Ramsey’s theorem. The proofs
that A is free in cases 1 and 3 can be formalizedRiAg. Finally, RCAg suffices to
prove that the set C of case 2 exists and is free.

There is an alternative proof that works well for standatdgersk > 3. SinceRT23
implies ACAg and ACAg implies RTXL, it suffices to useRTKZ! to deduceF S(k).

<o !
Given f : [N]K — N, defineg : [Nkt — k + 2 by settingg(x1, .. ., Xk+1) equal to
the leastj such thatf (xq, ..., Xj—1, Xj+1, ..., Xk+1) = Xj, and equal to 0 if no such
exists. Any homogeneous set is free for f. —

A number of corollaries follow immediately from the theoreia applications of the
substantial body of results on the strengthR)TZZ. One immediate corollary is that
every w-model of RT22 is anw-model of FS(2). This statement can also be proved
by a forcing argument adapted from the proof in [1] tﬁﬁAo+RT22+ IES is I‘[%-
conservative oveRCAg+1 2.

CoroLLARY 5.4 (1) For each k, it is provable ilRCAq that R'lg< implies FSk)
and that F $k) implies T k).

(2) OverRCAp, FS(2) does not implACA..

(3) OverRCAo, FS(2) does notimply R%,_.

(4) Suppose k= 2 and let f: [N]¥ — N be a computable function. Then f has an
infinite free set A with A<t 0®.

(5) FS(2) is I‘[%-conservative oveRCAp+1 Eg.

Proor. The first statement in ParL) follows from Corollary5.3 and the fact that,
for eachn andk, RTZk implies RTnk over RCAg. The second statement is immediate
from the proof of Theorer3.2.
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The next two parts follow from the facts tthTz2 cannot provéACAg [14], and that
RT2,, is strictly stronger thaR T2 [1].

Part @) follows by applying the existence of infinite homogeneais 8 with A” <t
0% for computable colorings diN]¥ with finitely many colors [1], Theorem 3.1, and
the remark in the proof of Theorem?2 that for each infinite seA homogeneous fog
there is an infinite set free for f with C <1 A.

The last part follows from the fact th&CAo+ RT22+ IES is H%-conservative over
RCAo+1 29 [1]. 4

The following result shows that Theorefrl is optimal with respect to the arithmeti-
cal hierarchy.

ProposiTiON 5.5, Let f : [N] — N be computable. Then there is an infinii§ set
A which is thin for f.

Proor. Defineg: [N]K — {0, 1} by g(X) = 0 if f(X) = 0 andg(X) = 1 otherwise.
Theng is a computable 2-coloring gN1¥ so by [10], Theorem 5.5, there is an infinite
1‘[8 set which is homogeneous fgrand hence thin foff . Alternatively, the proposition
follows from Theorend.2 =

Since for each standard natural numkeACAg proves Ramsey’s theorem féir
tuples, we have the following corollary which appears in [5]

CoroLLARY 5.6. [5]. For each ke w, ACAg proves F $k).

CoroLLARY 5.7. [5]. Every arithmetical function f has an arithmetical infinited
set.

Proor. This is immediate from a relativized form of Theorén®. For a different
proof, note that the model of second order arithmetic ctingi®f w together with the
arithmetical sets is a model &CAg. By Corollary5.6, this is also a model of S(k)
for each standard numbkr Every function in the model must have a free set in the
model. =

The previous corollary led us to conjecture and to provetiiatdegrees of the free
sets are closed upwards. The proof uses a result of Jocklikftinpt we recall here for
the reader.

THEOREM 5.8 [11]. If & is a property of infinite sets which is hereditary under
inclusion and enjoyed by some arithmetical set, then thesctd-degrees is closed
upwards.

CoroLLARY 5.9, For every arithmetical function f, the degrees of the fres &ear f
are closed upwards.

Proor. Since every infinite subset of a free set is free (Rentatkand Corollary
5.7 witnesses that there exist arithmetical free sets, thdtriesmediately follows from
Theoremb.8. =

It is known thatRT is equivalent toACAg over RCAg, where the systerACAo’ is
defined aACAp+V¥n VX (the " Turing jump of X exists From Corollary5.3
we know thatRT implies F Sand consequently we have the following corollary, which
appearsin [7].

COROLLARY 5.10Q [7]. ACA¢ implies FS.
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We now consider freeness fpartial functions, which is defined in the obvious way
below. This will lead to a proof that a certain result holdkatige to 0 whereas the
result itself remains open.

DeriNiTION 5.11 A setAis freefor a partial function) on [N]K if there do not exist
X1 < X2 < --- < X¢ With eachx; in A, andy (X1, ..., Xk) € A—{X1,..., X}

CoroLLARY 5.12 The following resul{x) holdswhen relativized to 0
(%) For every computable partial functiof on[N]? there is an infinitd‘lg free set.

ProoF. Supposey is a 0-computable partial function defined N]2. Letg be a 3-
place computable function so thata, b) = lims g(a, b, s) for all (a, b) in the domain
of . (Such ag exists by the proof of the Limit Lemma.) L& be an infinitel‘[g free

set forg. ThenAis also an infinitel‘lg’K free set fony. =

It follows from the above corollary thdt) cannot be refuted by a relativizable argu-
ment. On the other hand, we have not been able to pgeveln particular, the proof
of Theoremb.2 does not seem to adapt to partial functions, and an indepéodpub-
lished proof of Theorem.2for the cas&k = 2 (not based on Ramsey’s theorem) does
not seem to adapt to partial functions either.

We close this section with a version BfS that is equivalent to Ramsey’s theorem.
The reader may wish to compare the following theorem to danyB.6.

THeOREM 5.13 For all k € w, RCAg proves that the following are equivalent:

(1) RTX

(2) If f : [N]¥ — N is not constant, then there exists an infinitecAN such that
FAAL) # FANTY).

Proor. (1) = (2). Let f : [N]K — N. Fixng € f ([N]¥). Define a 2-coloring

red if f(xg,...,X) =no

g(X1, ..., Xk) = !b|ue otherwise

By RTZk there exists a homogeneous $tt Define A = H. If H is red, we have
g([H1¥) red if and only if f ((H 1) = no, and hencef ([H1¥) % f([N]¥). If H is blue
we havef ((H1%) € N\ {no} # f([N]¥). Therefore in both cases we are done.

(2) = (1). Let f : [N]K - 2 be a 2-coloring. By the stateme(®), there exists
an infinite setA C N such thatf ([A]) # {0, 1}. HenceA is a homogeneous set for
f. -

86. FSfor subsets. In this section, we will prove a variation of the free set theo
rem in which finite sets play the role previously playedistuples. We will need the
following definitions. A sequenc&X = (Xj)ien Of finite subsets ofN is said to be
increasingif for everyi the maximum element oX; is less than the minimum element
of Xj;+1. When the maximum element of is less than the minimum elementXf, 1,
we write X; < Xj;11. The subsystePACAg* consists ofACAq together with an axiom
that asserts thaa() exists for each seA. This system is strictly stronger th&€Ay'.

THEOREM 6.1 (ACAg™). SupposeF : [N]=® — N. There is an infinite increasing
sequenceX = (Xj)ien, Of subsets ofN such that wheneveY is a finite union of
elements ofX, if F(Y) € UX, thenF(Y) €Y.
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We will postpone the proof of Theorefnl until after the statement of the following
result on Milliken’s theorem.

THEOREM 6.2 (ACAp™). Milliken’s Theorem: Suppose thd : [[N]<“]® — k
is a finite coloring of increasing triples of finite subsetshen there is a value and
an infinite sequencX of increasing subsets 6f such that wheneveXy, Y1, Y2 is an
increasing triple consisting of finite unions of elementsirX, thenF (Yp, Y1, Y2) = c.

ComMENT: Milliken’s theorem first appears in [13]. A proof of Millikésitheorem
(for n-tuples) inACAq™ appears as corollary 7.24 in [8]. The basic idea is that Mil-
liken’s theorem is equivalent to a version of Hindman'’s tle@o for countable collec-
tions of colorings. =

ProoF oF THEOREM 6.1: Suppose- : [N]<® — N. We will use the following cases
to define an auxiliary function.

Case 1:F(Yp) € Yi1. Case 3FF(YoU Y2) € Y.
Case 2:F (Y1) € Yp. Case 4: None of the above.

Define the functiorG : [[N]<?]® — {1, 2, 3, 4} on increasing triples of finite subsets
by settingG(Yo, Y1, Y2) to the number of the least case that holds. As noted above,
within ACAg™ we may apply Milliken’s theorem, and findcabetween 1 and 4 and an
infinite sequence of increasing s&s= (X )jen such that wheneveéf, Y1 andY, form
an increasing sequence of finite unions of elements,ahenG(Yy, Y1, Y2) = c.

Let Xp, X1, X2, andX3 be the least elements &f. If c = 1, thenG(Xp, X1, X3) =
G(Xo, X2, X3) = 1, soF(Xp) is in bothX; andX». But X is an increasing sequence,
so0 X1 and X3 are disjoint. Thug # 1. A similar argument shows that# 2.

If ¢ = 3, thenG(Xp, X1, X3) = G(Xq, X2, X3) = 3, SOF(Xg U X3) is in both Xy
andX,. These sets are disjoint, sa# 3. Thusc = 4.

Let Yo, ... Yn be any increasing list of elements Xf and letY = Uj<nYi. Assume
that F(Y) € UX. Suppose by way of contradiction thatY) ¢ Y. Then there is a set
T € Xsuchthalf NY = @andF(Y) € T. LetZ be an element oX such thaty,, < Z
andT < Z. If T < Yp, thenG(T,Y, Z) = 2, contradicting the claim that = 4. If
Yn < T, thenG(Y, T, Z) = 1, yielding another contradiction. Finally, if for sone<
nwe haveY; < T < Yj;1, thenG(Ui<;Yi, T, Uj<i<nYi) = 3, contradictingc = 4.
This eliminates all possible locations for, proving thatF (Y) € Y. Summarizing, we
have shown that iF (Y) € UX, thenF(Y) € Y. =

§7. Questions. The preceding work leads us to a number of questions. It was al
ready mentioned in Section 5 that the statenieintin Corollary 5.12 is open. Addi-
tional questions follow.

QuestioN 7.1 (1) Does F$2) imply RT??
(2) Does F$2)+WKLg imply RT??
(3) Does F$2) imply BE? (or equivalently RE_.)?

Notice that Hirst proved thelfth2 impIiesBzg in[8]. SinceWKLg is H%-conservative
over RCAy, a positive answer to eithét.1(1) or 7.1(3) would give another proof of
Friedman’s result tha S(2) fails in anw-model of WKLg (see Theorem.6).

Recall now the statements known@#&C andC O H.
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STATEMENT 7.2 (C AC — Chain or Anti-chain Condition)Every infinite partial or-
der has an infinite chain or an infinite anti-chain.

STATEMENT 7.3 (COH). For any sequence of seiR, )icn there is an infinite set A
such that for all i, either AC* R or A C* R,.

Such a sef is called R -cohesive. X C* Y means that there iskasuch that for all
X, if x € X then eithex € Y orx < k. (For more abou€ O H see [1]).

QuesTioN 7.4, (1) Does F$2) + CAC imply RE?
(2) Does F$2) + COH imply RE?

QuesTioN 7.5, What happens in all the above questions if we replacg2y 8y
F S(k), where k> 2? by T Sk), where k> 2?

QUuEsTION 7.6. Does F k) (or TSKk) or FS or T S) imphACA for k > 3?
QuesTioN 7.7. Does T Sk + 1) imply FSk)?
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