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Abstract

In this article we establish the existence of a number of new orbits in
the automorphism group of the computably enumerable sets. The degree
theoretical aspects of these orbits also are examined.

1 Introduction

Despite significant recent advances in our understanding of the automorphism
group of E , the lattice of computably enumerable sets, we are still far from under-
standing the extent to which algebraic properties of a computably enumerable set
determine its degree. One of the reasons for this lack of understanding is the lack
of known orbits for E . So far, the only externally defined orbits we have are the
maximal sets (Soare [24]) and variations such as quasimaximal, the hemimaximal
sets (Downey-Stob [9]), and the creative sets (Harrington-Myhill see [25]). The
goal of the present paper is to extend this collection, extending and giving proofs
of some, more or less, unpublished claims of Herrmann [16].

Our first new orbit is a class of sets we call Herrmann sets, based on the fact
that Herrmann was the first to claim that they formed an orbit. Here we give two
proofs.

The first proof is based on a modification of the automorphism machinery. The
second proof follows ideas of Herrmann and is in some sense based on nonuniform
“static” methods. We discuss exactly what this notion of “static” means, and
believe that it is highly useful to have two apparently differing proofs side by side.

We remark that the proofs give insight into other arguments based on the au-
tomorphism machinery introduced by Soare [24], since the so-called A to B part
is based on a modification of the order-preserving enumeration theorem. But this
uses the congruence =D in place of =∗. That is, our sets are D-maximal, rather
than maximal. Here we say that A is D-maximal iff for all c.e. C ⊇ A, either
there is a c.e. set D disjoint from A with C = A ∪ D or there is a c.e. set D
disjoint from A with C ∪ D = ω.

D-maximal and, more generally, D-hyperhypersimple sets are of independent
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interest since they are precisely the sets that are not versions of K , (the standard
code of the halting set), under some Friedberg enumeration (see Kummer [18]).
These sets and their degrees have been previously examined by Kummer [18] and
Herrmann and Kummer [17]. Herrmann sets are ones that are D-maximal and
have an additional property (strong R-separability).

Our proof of the fact that Herrmann sets form an obit, admits some further
modifications. For instance, we are able to prove orbits for various variations
such as “quasi-”Herrmann, and analogs of hhs-sets, as well as “hemi”-Herrmann
sets. Again, this gives insight into how the machinery works and points towards
understanding its limitations.

We also look at various degree-theoretical aspects of Herrmann sets, such as
jump inversion, highness and the like, and relate their degrees to various known
classes such as prompt sets and the hemimaximal sets as well as the degrees an-
alyzed by Downey and Harrington [8] in the “no fat orbit” result. We also obtain
additional results on the possible tardiness of Downey-Harrington sets. Our most
interesting result in this vein is to show that there is a c.e. degree which contain
Herrmann sets but not hemimaximal sets. Hence the orbit of Herrmann sets is
different degree theoretically from the orbit of hemimaxinal sets. The idea is to
try to understand how the information content as measured by degree, and the dy-
namical content, as measured by promptness, relate to its algebraic aspects. We
hope that this material will contribute to the longstanding program of trying to
understand the automorphism group of E .

2 Preliminaries

For a computably enumerable set A, let L(A) denote the lattice of c.e. supersets
of A. Analogously, we let

D(A) = {B : B ∈ L(A) ∧ B − A is computably enumerable}.

We obtain a quotient structure for L(A) via [B]D(A) = {C ∈ L(A) : B ≡

C mod D(A)}. Herrmann and Kummer [17] called a set A D-hyperhypersimple
iff L(A)/D(A) is a boolean algebra and a set A D-maximal iff L(A)/D(A) is
the 2 element boolean algebra.
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While such sets seem at first glance bizarre, in fact they are related to a central
topic in computability theory. Harrington proved that K = {e; ϕe(e) ↓}, and
hence any creative set, is definable. Kummer was led to investigate diagonal sets
which are the sets of the form {e : ψe(e) ↓} for some computable enumeration
{ψe : e ∈ ω} of the partial computable functions. Kummer [18] and Herrmann-
Kummer [17] proved the amazing result that a computably enumerable set A is
not diagonal iff it is computable, or is D-hhs. As a consequence, being diagonal is
elementary lattice theoretic. We also remark that the structure of L(A)/D(A) is
used extensively in all known undecidability proofs of the first order theory of E .
As best we can tell, the first author to study L(A)/D(A), and define D-maximal
and D-quasimaximal in terms of this structure, even in passing, was Degtev [7],
but the first systematic study can be found in Herrmann [15].

We remark that an equivalent formulation of D-quasimaximality is that L(A)/D(A)
is finite.

Theorem 2.1 L(A)/D(A) is finite iff L(A)/D(A) is a finite boolean algebra.

Proof. Suppose that L(A)/D(A) is finite. It is a distributive lattice as E is, and
hence we need only prove that it is complemented. So suppose that A ⊆ B with
[B]D(A) non-complemented in L(A). By the fact that L(A)/D(A) is finite we
can suppose that [B] is minimal with this property. We dig the contradiction from
the proof of Herrmann and Kummer [17], Theorem 2.4. They prove that if B has
the property that (everything c.e.)

(∀C ⊇ A)(∀X ⊆ A)[(B ∩ C)− A not c.e. ∨ B ∪ C ∪ X 6= ω],

then B can be split into a pair of sets B1 t B2 = B, both of which have the same
property as B. (An analog of Owings splitting theorem [22].) This is enough for
our purposes since we claim that [B1] <D [B] and is also non-complemented,
contradicting the minimality of [B]. Since [B1] ≤D [B] it can only be that
[B] ≡D [B1]. Suppose that [B] ≡D [B1]. Then there exists a computably enu-
merable set E disjoint from A with B1∪E = B∪E . This implies that B−B1 ⊆ E .
That is, B2 ⊆ E . But this is a contradiction since it implies that B2 ≡D A. 2

The following provides an equivalent but very useful formulation of a set being
D-maximal.

Lemma 2.2 A c.e. noncomputable set A is D-maximal iff for all c.e. W ⊇ A,
either W − A is c.e. or there is a computable R such that A ⊆ R ⊂ W.
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Proof. First suppose that A is noncomputable and D-maximal. Let C ⊇ A, with
C − A not c.e.. Then for some c.e. Q disjoint from A we have C ∪ A ∪ Q = ω.
Now there exist disjoint Ĉ ⊆ C ∪ A and Q̂ ⊆ Q such that Q̂ ∪ Ĉ = ω. But these
sets are computable and we see that if R = Q̂ then A ⊆ R ⊆ C ∪ A.

The other direction is similarly easy. Suppose that A is noncomputable and
satisfies the condition of the lemma. Since A is noncomputable, L(A)/D(A)
contains at least 2 elements. So suppose that C ⊇ A and C − A is not c.e.. Then
there is a computable R such that A ⊆ R ⊆ C . But then R ∪ C = ω and R is
disjoint from A. 2

Recall that a set A is called hemimaximal (Downey-Stob [9]) if there is a non-
computable c.e. set B disjoint from A with A t B maximal. Under our definition,
maximal and hemimaximal sets are D-maximal. Indeed Kummer observed that
if a simple set is D-maximal then it is maximal, and if a quasi-simple set is D-
maximal then it is hemimaximal. This paper is concerned with orbits that are far
away from those generated by the simple sets, and we will need a new guessing
procedure for the superset lattice.

Definition 2.3 (i) We say that a c.e. set A is r-separable if, for all c.e. sets B
disjoint from A, there is a computable set C such that B ⊂ C and A ⊂ C .

(ii) We say that A is strongly r -separable if, additionally, we can choose C so
that C − B is infinite.

(iii) We say that a set A is Herrmann if it is both D-maximal and strongly r -
separable.

For instance, a maximal set is r -separable, but not strongly so. Actually Her-
rmann was concerned with D-maximal, r -separable sets that were additionally
pseudo-creative. Recall that a set A is pseudo-creative iff for all B disjoint from
A, there exists an infinite c.e. set C disjoint from A ∪ B. We remark that if A
is a simple set then A × ω is pseudo-creative and r -separable. (See Rogers [26],
Exercise 8.36). As we will see, not every degree contains Herrmann sets. It is not
difficult to prove that a set A is Herrmann iff it is D-maximal, r -separable and
pseudo-creative.

Lemma 2.4 A is strongly r-separable iff A is r-separable and pseudo-creative.
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Proof. To see this first suppose that A is strongly r -separable. Let B be disjoint
from A. Let C be computable with A ⊂ C and B ⊆ C, and B 6=∗ C . Now
apply strong r -separability to C . There must exist computable D with A ⊂ D
and C ⊂ D and D 6=∗ C . Then C − D is a computable infinite set disjoint from
B ∪ A, and hence A is pseudo-creative. Conversely, suppose that A is r -separable
and pseudo-creative. Suppose that B is disjoint from A. As A is r -separable,
choose computable C with B ⊂ C and A ⊂ C . Now apply pseudo-creativity to
C and A to get an infinite computable D, a subset of C disjoint from A ∪ C . Then
Ĉ = C ∪ D 6=∗ B and contains B with Ĉ ⊃ A. 2

We remark that Degtev (in [7], Theorem 2) was the first to construct a Her-
rmann set. Since this proof is not widely known, and we will be proving various
things about Herrmann sets, We sketch a proof below.

Theorem 2.5 (Degtev [7]) Herrmann sets exist.

Proof. We build A in stages. At each stage s, we let a0,s, a1,s, ... list As in order.
We must meet the two types of requirements below.

Ke : We ∩ A 6= ∅ ∨ (∃Ce)[Ce computable ∧ We ⊆ Ce ∧ A ⊆ Ce].

Ge : We ∩ A 6= ∅ ∨ (∃Xe)(|Xe| = ∞ ∧ Xe ∩ (A ∪ We) = ∅).

Ne : We ⊇ A → [(∃Qe)(Qe ∩ A = ∅) ∧ (Qe ∪ A = We ∨ We ∪ Qe = ω))].

There is a great deal of flexibility in this construction. This flexibility will be
exploited later.

The basic strategy for K0 is simple and finitary. The basic strategy for meeting
K0 is to divide the universe ω into two computable pieces, say 2ω and Ce =

2ω + 1. We build A only in C0 = 2ω. Additionally, if W0 enumerates some
number into C0 we will put such a number into A, causing W0 ∩ A 6= ∅.

The basic strategy for G0 is equally simple and similarly finitary. In the pres-
ence of K0 above, of higher priority, say, it divides the G0 universe, C0 = 2ω,
where A is being built, into two computable pieces. For instance, we choose
4ω, 4ω + 2, and let X0 = (4ω + 2) ∪ C0. The idea is very similar. We build A
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only in X0 = 4ω, unless We enumerates some number x into X0. In that case we
enumerate such an x into A meeting G0 by causing W0 ∩ A 6= ∅.

The basic strategy for N0 is to cohere with (K0 and) G0 above, and monitor
W0,s ∩ As but only on X0. The idea is relatively simple. We will assign states to
elements of X0 ∩ W0,s ∩ As rather like a maximal set construction. However there
are two ways N0 can be met. Suppose initially W0,t ∩ At ∩ X0 = ∅. When we see
some element x0,0 ∈ W0,s ∩ As ∩ X0 at some stage s > t , give the element x0,0 a
high 0-state.

Now we must process the elements {y : y ∈ X 0 ∩ As & y < x0,0}. There are
two things we can do with them:

(i) enumerate them into As+1 − As , as with a maximal set, or

(ii) enumerate them into a set Q0,s+1 − Qs we are building for the sake of N0,
promising to keep Q0 ∩ A = ∅.

It makes no difference which strategy we choose for N0 in the basic construc-
tion, but it will make a significant difference when we wish to control the degrees
of Hermann sets.

Of course once we have x0,0 of the high 0-state we look for x0,1 > x0,0 x0,1 in
W0,u ∩X0∩ Au and then process the elements of y ∈ Au ∪X0 with x0,1 > y > x0,0
either into A or into Q0.

This strategy has two outcomes, the finite outcome f , and the infinite outcome
∞, with ∞ <L f in the usual 52 way. If there are not infinitely integers in the
high state then we say this strategy has the finite outcome, in which case we can
found a Q such that W0 = A ∩ Q and Q is disjoint from A (Q =∗ X0 ∩ W0).
Otherwise, this strategy has the infinite outcome and we can find a Q such that
ω = A ∪ W0 ∪ Q and Q is disjoint from A (Q =∗ Q0 ∪ X0).

Since this strategy has two outcomes, there will be two versions of G1. The
first possibility is that the outcome is f and the requirement simply divides X 0 into
two pieces, calling one X f

1 and building A in X
f
1 ∩ X0. For instance, X f

1 = 4ω+2
could be used, initially.
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The second version of G1 waits for a supply of high state elements; S =

{x0,0, x0,1, . . .}, and uses the set S in the place of X 0. That is, it divides this
computable set into two computable pieces X∞

1 and X
∞

1 .

The construction then proceeds in the usual e-state 52-guessing fashion for
the inductive strategies. �

Remark 2.6 The reader should note that if we choose the option of building Qe
and not enumerating into A, the only requirements that puts anything into A are
the Ge and Ke.

3 Cholak’s Modified Extension Lemma

The beautiful extension theorem of Soare [24] occupies a justifiably central place
in the study of the automorphism group of E . Cholak [2] proved a very useful
variation on this result which allows us to prove results about automorphisms of E

without having to construct effective skeletons1 (as the original extension lemma
needs) nor to apply the whole tree methodology as the Cholak [1] or Harrington-
Soare [13] machinery needs. In the next section, we will use Cholak’s version
to establish that Herrmann sets form an orbit2. First we need some notation and
terminology.

Definition 3.1 {Xn}n<ω is an uniformly computable collection of c.e. sets if there
is a computable function h and for all n, Xn = Wh(n). {Xn}n<ω is an uniformly
0′′-computable collection of c.e. sets if there is a function h such that h ≤T 0′′ and
for all n, Xn = Wh(n). {Xn,s}n,s<ω, is an uniformly 0′′-computable enumeration if
there is a function h such that h ≤T 0′′ and for all n, Xn,s = Wh(n),s .

Definition 3.2 For any e, if we are given uniformly computable enumerations
{Xn,s}n≤e,s<ω and {Yn,s}n≤e,s<ω of c.e. sets {Xn}n≤e and {Yn}n≤e, define the full e-
state of x at stage s, ν(e, x, s) with respect to (w.r.t.) {Xn,s}n,s<ω and {Yn,s}n,s<ω

1Recall that a collection {Xe : e ∈ ω} is called a skeleton iff for all e there is a i such that
We =∗ X i . The skeleton is effective if there is a computable function f such that X i = W f (i) for
all i , as enumerations.

2It also would be possible to use Soare’s forthcoming New Extension Theorem.
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to be the triple

ν(e, x, s) = 〈e, σ (e, x, s), τ (e, x, s)〉

where

σ(e, x, s) = {i : i ≤ e ∧ x ∈ X i,s}

and

τ (e, x, s) = {i : i ≤ e ∧ x ∈ Yi,s}.

Definition 3.3 Given any collection of c.e. sets {Xn}n<ω and {Yn}n<ω, define the
final e-state of x, ν(e, x) with respect to {Xn}n<ω and {Yn}n<ω to be the triple

ν(e, x) = 〈e, σ (e, x), τ (e, x)〉

where

σ(e, x) = {i : i ≤ e ∧ x ∈ X i }

and

τ (e, x) = {i : i ≤ e ∧ x ∈ Yi }.

Definition 3.4 Given computable enumerations {X s}x<ω and {Ys}x<ω of X and
Y , we define

(i) X\Y = {z : (∃s)(z ∈ Xs − Ys)},

(ii) X ↘ Y = (X\Y ) ∩ Y .

Definition 3.5 Given states ν = 〈e, σ, τ 〉 and ν ′ = 〈e′, σ ′, τ ′〉, we define

(i) ν is an initial segment of ν ′ (ν 4 ν ′) iff e ≤ e′, σ = σ ′ ∩ {0, 1, . . . , e}, and
τ = τ ′ ∩ {0, 1, . . . , e}.

(ii) The length of ν, |ν|, is e.
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(iii) ν = ν ′ � e iff v 4 v′ and |v| = e.

(iv) ν covers ν ′ (ν ≥ ν ′) iff e = e′, σ ⊇ σ ′ and τ ⊆ τ ′.

Definition 3.6 Assume {Ts}s<ω is a uniformly computable enumeration of T , an
infinite c.e. set. For any e, if we are given uniformly computable enumerations
{Xn,s}n≤e,s<ω and {Tn,s}n≤e,s<ω of c.e. sets {Xn}n≤e and {Yn}n≤e, for each full
e-state ν, define the c.e. set

DT
ν = {x : ∃t such that x ∈ Tt − Tt−1 ∧ ν = ν(e, x, t) w.r.t

{Xn,s}n≤e,s<ω and {Yn,s}n≤e,s<ω} (3.1)

If x ∈ DT
ν , we say that ν is the entry e-state of x w.r.t. {Xn,s}n≤e,s<ω and

{Yn,s}n≤e,s<ω into T . We say that DT
ν is measured w.r.t. {Xn,s}n≤e,s<ω and

{Yn,s}n≤e,s<ω.

Theorem 3.7 (Cholak’s Modified Extension Theorem [2]) Assume {Ts}s<ω, {T̂s}s<ω,
{Un,s}n,s<ω, {V̆n,s}n,s<ω, {Ŭn,s}n,s<ω, and {Vn,s}n,s<ω are uniformly 0′′-computable
enumerations of the infinite c.e. sets T and T̂ and the uniformly 0′′-computable
collection of c.e. sets {Un}n<ω, {V̆n}n<ω, {Ŭn}n<ω and {Vn}n<ω satisfying the fol-
lowing Conditions:

∀n[T ↘ Ŭn = T̂ ↘ V̆n = ∅], (3.2)

(∀ν)[DT̂
ν is infinite ⇒ (∃ν ′ ≥ ν)[DT

ν′ is infinite]], and (3.3)

(∀ν)[DT
ν is infinite ⇒ (∃ν ′ ≤ ν)[DT̂

ν′ is infinite]], (3.4)

where for all e-states ν, DT
ν is measured w.r.t. {Un,s}n≤e,s<ω and {V̆n,s}n≤e,s<ω

and D T̂
ν is measured w.r.t. {Ŭn,s}n≤e,s<ω and {Vn,s}n≤e,s<ω. Then there is an

uniformly 0′′-computable collection of c.e. sets {Ŭn}n∈ω and {V̆n}n∈ω such that

Ŭn ∩ T̂ =∗ Ûn ∩ T̂ , V̆n ∩ T =∗ V̂n ∩ T , and (3.5)

∃∞x ∈ T with final e-state ν w.r.t {Un}n<ω and {V̂n}n<ω

iff ∃∞ x̂ ∈ T̂ with final e-state ν w.r.t. {Ûn}n<ω and {Vn}n<ω.
(3.6)

We remark that the statement of Soare’s Extension Theorem [24] is the same as
the statement of Cholak’s Modified Extension Theorem except the first two occur-
rences of “uniformly 0′′-computable” are replaced with “uniformly computable”.
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As Cholak [2] notes, since the array of sets constructed in the Cholak’s Modi-
fied Extension Theorem is an uniformly 0′′-computable collection of c.e. sets, the
automorphism produced is a 13-automorphism.

4 Herrmann sets form an orbit; a dynamic proof

Theorem 4.1 Herrmann sets form an orbit.

Let M1 and M2 be Herrmann sets. We show that M1 and M2 are automorphic
in the lattice of computably enumerable sets. We base this proof on a modification
of Cholak’s proof [2] that Maximal Sets form a orbit.

Since Mi is Herrmann we know that there is a c.e. D disjoint from Mi such
that either We ∪ Mi ∪ D = ω or We = Mi ∪ D and furthermore deciding whether
We ∪ Mi ∪ D = ω or We = Mi ∪ D can be done computably in 0′′. As always
we will consider ω̂ as a copy of ω; integers from ω̂ will always wear hats; M1 is a
subset of ω; and M2 is a subset of ω̂.

Since we are using Cholak’s Modified Extension Theorem it is enough to
find uniformly 0′′-enumerations {M1,s}s<ω, {M2,s}s<ω, {Un,s}n,s<ω, {V̆n,s}n,s<ω,
{Ŭn,s}n,s<ω, and {Vn,s}n,s<ω of the (hopefully) uniformly 0′′-computable collec-
tion of c.e. sets M1, M2, {Un}n<ω, {V̆n}n<ω, {Ŭn}n<ω, and {Vn}n<ω satisfying the
following Conditions:

∀n[M1 ↘ Ŭn = M2 ↘ V̆n = ∅] (4.1)

(∀ν)[DM2
ν is infinite ⇒ (∃ν ′ ≥ ν)[DM1

ν′ is infinite]], and (4.2)

(∀ν)[DM1
ν is infinite ⇒ (∃ν ′ ≥ ν)[DM2

ν′ is infinite]], (4.3)

if n = 2m then Un =∗ Wm and Vn = ∅ and
if n = 2m + 1 then Vn =∗ Wm and Un = ∅,

(4.4)

∃∞x ∈ M1 with final e-state ν w.r.t. {Un}n<ω and {V̂n}n<ω

iff ∃∞ x̂ ∈ M2 with final e-state ν w.r.t. {Ûn}n<ω and {Vn}n<ω,
(4.5)

where for all e-states ν, DM1
ν is measured w.r.t. {Un,s}n≤e,s<ω and {V̆n,s}n≤e,s<ω

and DM2
ν is measured w.r.t {Ŭn,s}n≤e,s<ω and {Vn,s}n≤e,s<ω (in this section M1
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will play the role of T and M2 that of T̂ ).

Before we construct this enumeration, we will show that this is enough to con-
clude that these sets are automorphic. First, by the Modified Extension Theorem,
there is as uniformly 0′′-computable collection of c.e. sets {Ûn}n∈ω and {V̂n}n∈ω

such that
Ŭn ∩ M2 =∗ Ûn ∩ M2, V̆n ∩ M1 =∗ V̂n ∩ M1, (4.6)

and

∃∞x ∈ M1 with final e-state ν w.r.t. {Un}n<ω and {V̂n}n<ω

iff ∃∞ x̂ ∈ M2 with final e-state ν w.r.t. {Ûn}n<ω and {Vn}n<ω.
(4.7)

From (4.5), (4.6), and (4.7), we have that

∃∞x ∈ ω with final e-state ν w.r.t. {Un}n<ω and {V̂n}n<ω

iff ∃∞ x̂ ∈ ω̂ with final e-state ν w.r.t. {Ûn}n<ω and {Vn}n<ω.
(4.8)

By (4.4), it is easy to see

∃∞x ∈ ω with final e-state ν w.r.t. {We}e<ω and {V̂2e+1}e<ω

iff ∃∞ x̂ ∈ ω̂ with final e-state ν w.r.t. {Û2e}e<ω and {We}e<ω,
(4.9)

and hence 8(We) = Û2e and 8−1(We) = V̂2e+1 defines an automorphism of
the lattice of the computably enumerable sets modulo the finite sets such that
8(M1) =∗ M2. 8 can be easily converted into an automorphism 9 of the lattice
of the computably enumerable sets such that 9(M1) = M2 (see [24, 25]).

We will now focus on meeting (4.1) through (4.5). We will just pick any
enumeration of M1 and M2. To meet (4.1), we will not enumerate integers into
Ŭn (V̆n) once they have entered M2 (M1). Since we will meet (4.4), we can let
Ŭ2e+1 = V̆2e = ∅.

To meet (4.5), the basic idea is the following. Consider U2e, e.g. U0. As M1
is D-maximal, there is a set Q2e disjoint from M1 such that either U2e ∪ M1 =

M1 ∪ Q2e or U2e ∪ M1 ∪ Q2e = ω.

In the first case, by r -separability, there is a computable set X2e such that
M1 ⊂ X2e and Q2e ⊂ X2e. In this case, the idea is to use the strong r -separability
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of M2 to choose a computable X̂2e from ω̂ with M2 ⊂ X̂2e, and ω̂ − X̂2e infinite.
We would then map X2e 7→ X̂2e, making the isomorphism g2e computable, hence
carrying Q2e to a Q̂2e =def g2e(Q2e). Hence, in the final automorphism, we will
have U2e 7→ C2e t Q̂2e where C2e is a subset of M2 determined by the extension
machinery.

The second case is similar. This time U2e ∪ M1 ∪ Q2e = ω. Hence, by r -
separability, there is a computable X2e with Q2e ⊂ X2e. Again we can use strong
r -separability to get a corresponding X̂2e on the ω̂ side, and map X2e 7→ X̂2e,
making the isomorphism g2e computable, hence carrying U2e ∩ X2e to a Ê2e =def
g2e(U2e ∩ X2e). This time the automorphism maps U2e 7→ C2e t Ê2e where C2e =

(X̂2e − M2) ∪ J2e where J2e is determined by the extension machinery.

Actually, of course, the above is more than just a basic module for 2e = 0, in
the sense that once we have processed U0 we will have fixed the automorphism
on X0, where X0 ∩ M1 is empty. Therefore the inductive strategy will not use ω
and ω̂ as its universes but those provided by earlier strategies. For instance, U2e

would, in fact, use the computable universe X2e−1 in place of ω, and X̂2e−1 in
place of ω̂. This refinement makes no real difference but should be kept in mind
in the ensuing discussion.

A first (failed) attempt to meet (4.5) would be to naively implement the above
without caring for the enumerations. For instance, if U2e ∪ M1 ∪ Q2e = ω then
take some X2e with X2e ⊃ Q2e, let Ŭ2e = X2e, otherwise let Ŭ2e = ∅, and if
V2e+1 ∪ M2 ∪ Y2e = ω then let V̆2e+1 = Y2e, otherwise let V̆2e+1 = ∅ (without
choosing any enumeration of these sets). Since M1 and M2 are both Herrmann,
this will meet (4.5) but as we will see this fails to meet the entry Conditions (4.2)
and (4.3). Assume that U0 ∪ M1 ∪ Q0 = ω (even if, e.g. Q0 = ∅) and we have
the bad luck to enumerate U0, V̆0, Ŭ0, and V0 such that when we only consider
0-states DM1

ν is infinite (measured w.r.t. the bad enumeration of U0 and V̆0) iff
ν ∈ {〈0, ∅, ∅〉, 〈0, {0}, ∅〉} and DM2

ν is infinite iff ν ∈ 〈0, {0}, ∅〉 (measured w.r.t.
the enumeration of Ŭ0 and V0). Hence (4.3) is not met if ν = 〈0, ∅, ∅〉. We must
ensure that our entry states cohere; this will be done by carefully controlling the
enumerations of the desired sets.

We will do this by induction on e ∈ ω ∪ {−1}. Assume that we have enu-
merations {Un,s}n≤e,s<ω, {V̆n,s}n≤e,s<ω, {Ŭn,s}n≤e,s<ω, and {Vn,s}n≤e,s<ω, such
that Conditions (4.1) through (4.5) are satisfied when restricted to e-states and
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n ≤ e. Assume that we have computable sets X2n : 2n ≤ e, X̂2n : 2n ≤ e,
Y2n+1 : 2n + 1 ≤ e and Ŷ2n+1 : 2n + 1 ≤ e with X−1 = ω and X̂−1 = ω̂, such
that

X−1 ⊃ X0 ⊃ Ŷ1 ⊃ X2 ⊃ Ŷ3... ⊃ M1 and,

X̂−1 ⊃ X̂0 ⊃ Y1 ⊃ X̂2 ⊃ Y3... ⊃ M2 and such that

the following hold. In the following we let Zn denote Xn if n is even and denote
Ŷn if n is odd and similarly for Ẑ2n .

Additionally, we will have constructed a computable partial bijection gm with
domain Zm and range Ẑm .

We assume that for all n ≤ e, we have sets F and P of n-states

ν ∈ Fn iff DM1
ν is infinite iff DM2

ν is infinite, and (4.10)

ν ∈ Pn iff ∃∞x ∈ M1 ∩ Zn, ν(n, x) = ν iff ∃∞ x̂ ∈ M2 ∩ Ẑn, ν̂(n, x̂) = ν iff

for all x ∈ M1 ∩ Zn, if there exists a stage s such that ν(n, x, s) = ν,

then ν(n, x) = ν

for all x̂ ∈ M2 ∩ Ẑn, if there exists a stage s such that ν̂(n, x̂, s) = ν,

then ν̂(n, x̂) = ν

(4.11)

(where DM1
ν and ν(n, x, s) are measured w.r.t. {Un,s}n≤e,s<w and {V̆n,s}n≤e,s<ω,

ν(n, x) w.r.t. {Un}n≤e and {V̆n}n≤e, DM2
ν and ν̆(n, x̂, s) w.r.t. {Ŭn,s}n≤e,s<ω and

{Vn,s}n≤e,s<ω, and ν̆(n, x̂) w.r.t. {Un}n≤e and {V̆n}n≤e. If n = −1, let F−1 =

P−1 = {〈−1, ∅, ∅〉}. Given this we will define the enumeration of Ue+1, V̆e+1,
Ŭe+1, and Ve+1, as follows:

Assume that e + 1 = 2m. Hence we must ensure that Ue+1 =∗ Wm . For all
s, let V̆e+1,s = Ve+1,s = ∅. Let F ∗

e+1 = {〈e + 1, σ, τ 〉 : 〈e, σ, τ 〉 ∈ Fe} and
P ∗

e+1 = {〈e + 1, σ, τ 〉 : 〈e, σ, τ 〉 ∈ Pe}. There is some Q disjoint from M1 such
that either Wm ∪ M1 ∪ Q ⊇ Ze or (Wm ∪ M1) ∩ Ze = M1 ∪ Q.

If (Wm ∪ M1) ∩ Ze = M1 ∪ Q, then we can computably separate Q from
M1 via some L1. That is, M1 ⊂ L1 and Q ⊆ L1. Then we will define Ze+1 and
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Xe+1 to be L1 ∩ Ze. In the ω̂ side, we take an infinite computable subset S of Ẑe

disjoint from M2 and let Ẑe+1 = Ẑe − S and X̂e+1 = Ẑe+1. We let Fe+1 = F ∗
e+1,

Pe+1 = P ∗
e+1, Ue+1,s+1 = (Wm,s+1∩Ze+1)t(Wm,s+1∩M1,s), and Ŭe+1,s+1 = ∅.

Now assume Wm ∪ M1 ∪ Q ⊇ Ze. Again we can computably separate Q
from M1 via some L1, so that M1 ⊂ L1 and Q ⊆ L1. Then again we will define
Ze+1 = Xe to be L1 ∩ Ze. In the ω̂ side, we take an infinite computable subset S
of Ẑe disjoint from M2 and let Ẑe+1 = Ẑe − S.

For all x , x̂ and stages s do the following: Assume x 6∈ Ue+1,s . We will add
x to Ue+1 at stage s + 1 iff x ∈ Wm,s+1 and one of the following three conditions
holds.

• x ∈ Ze+1,

• x ∈ M1,s or

• ν(e + 1, x, s) ∈ P ∗
e+1 and for all ν ∈ F ∗

e+1, |DM1
ν,s+1| ≥ x .

Assume x̂ 6∈ Ŭe+1,s .

We will add x̂ to Ŭe+1 at stage s + 1 iff x̂ 6∈ M2,s ,and either

• for some z ∈ Ze+1,s+1, ge+1(z) = x̂ , or

• ν̆(e + 1, x̂, s) ∈ P ∗
e+1, and for all ν ∈ F ∗

e+1, |DM2
ν,s+1| ≥ x̂ . (Where ν(e +

1, x, s) and DM1
ν are measured w.r.t. {Un,s}n≤e+1,s<ω and {V̆n,s}n≤e+1,s<ω ,

and ν̆(e+1, x̂, s) and DM2
ν are measured w.r.t. {Ŭn,s}n≤e+1,s<ω and {Vn,s}n≤e+1,s<ω.)

Let Pe+1 = {〈e+1, σ∪{e+1}, τ 〉 : 〈e, σ, τ 〉 ∈ Pe} and Fe+1 = F ∗
e+1 ∪Pe+1.

By our enumeration if ν ∈ F ∗
e+1 then DM1

ν and DM2
ν are infinite. Since Pe is

the set of maximal e-states and M1 and M2 are Herrmann sets, Pe+1 is the set of
maximal (e + 1)-states within Ze+1, and hence (4.11) holds. Since M1 and M2
are D-maximal, if ν ∈ Pe+1 then DM1

ν and DM2
ν are infinite. Since for an integer

x to be raised into a maximal (e + 1)-state, x must be in a maximal e-state, (4.10)
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holds for Fe+1. From (4.10) and (4.11) it is easy to see that the rest of the induction
hypothesis holds. The case where e + 1 is odd is done in a similar fashion. Hence
the enumeration of {Un}n<ω, {V̆n}n<ω, {Ŭn}n<ω, and {Vn}n<ω constructed in this
manner will satisfy Conditions (4.1) through (4.5). Conditions (4.10) and (4.11)
are exactly the special properties of Herrmann sets which allow us to conclude
that all Herrmann sets are automorphic.

Finally in either case, we will extend ge to ge+1 by defining it upon L1 in any
obvious way. For instance, we can map the n-th element of L1 ∩ Ze to the n-th
element of S.

As with Cholak [2], it remains to observe that this enumeration can be rep-
resented as an uniformly 0′′-enumeration? It is clear that there are functions
q0, q1, q2, and q3 computable in 0′′ such that for all e and s, Ue,s = Wq0(e,s),
V̆e,s = Wq1(e,s), Ŭe,s = Wq2(e,s), and Ve,s = Wq3(e,s). We need functions
q0, q1, q2, and q3 computable in 0′′ such that for all e and s, Ue,s = Wq0(e),s ,
V̆e,s = Wq1(e),s , Ŭe,s = Wq2(e),s , and Ve,s = Wq3(e),s . Following the maximal set
case, to find such a function we must do the above construction on a tree and use
the Recursion Theorem as follows:

Let T r = 2<ω. At α ∈ T r , we will construct c.e. sets Uα, V̆α, Ŭα, Vα,
Ẑα and Zα, and an enumeration of these sets (we build Uα and its enumeration
in a similar manner to the way we built Ue+1 and its enumeration). The details
of this construction are as follows: We will do this by induction on α ∈ T r . If
α = λ, let Fα = Pα = {〈−1, ∅, ∅〉} and for all s, Uα,s = V̆α,s = Ŭα,s = Vα,s = ∅.
Assume that we have enumerations {Uβ,s}β⊂α,s<ω, {V̆β,s}β⊂α,s<ω, {Ŭβ,s}β⊂α,s<ω,
{Vβ,s}β⊂α,s<ω, {Ẑβ,s}β⊂α,s<ω, {Zβ,s}β⊂α,s<ω, functions {gβ,s}β⊂α,s<ω, and sets
Fβ and Pβ of |β|-states. Assume that |α| − 1 = 2m. We will ensure that Uα =∗

Wm . For all s, let V̆α,s = Vα,s = ∅. Let F ∗
α = {〈|α|, σ, τ 〉 : 〈e, σ, τ 〉 ∈ Fα−}

and Pα = {〈|α|, σ, τ 〉 : 〈e, σ, τ 〉 ∈ Pα−}. There are ω∗ + ω∗ many cases: either
α = α−ˆ(0, i, j) or α = α−ˆ(1, i, j) (this will be used to code whether Wm ∪

M1 =D ω or Wm ∪ M1 =D M1). Here i is the guess as to the witnessing set
Wi with (e.g. Wm ∪ M1 = M1 t Wi ) and similarly the j is the index for the
witnessing computable Zα.) In either case we can generate the appropriate Zα
and gα as above. If α = α−ˆ(0, i, j), then let Fα = F ∗

α , Pα = P ∗
α , Uα,s+1 =

(Wm,s+1 ∩ M1,s ∩ Zα,s) t (Wm,s+1 ∩ Zα,s), and Ŭα,s+1 = gα,s(Wm,s+1 ∩ Zα,s).
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Assume α = α−ˆ(1, i, j). For all x , x̂ , and stages s, do the following: Assume
x 6∈ Uα,s . We will add x to Uα at stage s + 1 iff x ∈ Wm,s+1 and either x ∈ Zα,s;
or x ∈ M1,s or x ∈ Zα,s and ν(|α|, x, s) ∈ P ∗

α and for all ν ∈ F ∗
α , |DM1

ν,s+1| ≥ x .
Assume x̂ 6∈ Ŭα,s . We will add x̂ to Ŭα at stage s + 1 iff x̂ 6∈ M2,s , and either
x̂ ∈ gα,s(Zα,s ∩ Wm,s), or x̂ ∈ Ẑα,s, and ν̆(|α|, x̂ , s) ∈ P ∗

α , and for all ν ∈ F ∗
α ,

|DM2
ν,s+1| ≥ x̂ . (Where DM1

ν and ν(|α|, x, s) are measured w.r.t. {Uβ,s}β⊆α,s<ω

and {Ŭβ,s}β⊆α,s<ω, and DM2
ν and ν̆(|α|, x̂ , s) are measured w.r.t. {Ŭβ,s}β⊆α,s<ω

and {Vβ,s}β⊆α,s<ω.). Let Pα = {〈|α|, σ ∪{|α|}, τ 〉 : 〈e, σ, τ 〉 ∈ Pα} and F ∗
α ∪Pα.

By the Recursion Theorem there are computable functions h0, h1, h2, and h3
from T r into ω such that Uα,s = Wh0(α),s , V̆α,s = Wh1(α),s, Ŭα,s = Wh2(α),s ,
and Vα,s = Wh3(α),s . (And similarly for the auxiliary sets Zα and functions gα.)
Using 0′′ choose an infinite branch f through T r as follows: λ ⊆ f , if α ⊆ f and
|α| = 2m then αˆ(1, i, j) ⊆ f iff Wm ∪ M2 =D ω with least witnesses i, j . (And
similarly for the (0, i, j) option.) If α ⊂ f and |α| = e + 1 then Ue,s = Wh0(α),s ,
V̆e,s = Wh1(α),s , Ŭe,s = Wh2(α),s , and Ve,s = Wh3(α),s . Hence we have found
an uniformly 0′′-enumeration of {M1,s}s<ω, {M2,s}s<ω, {Un,s}n,s<ω, {V̆n,s}n,s<ω,
{Ŭn,s}n,s<ω and {Vn,s}n,s<ω satisfying Conditions (4.1) through (4.5).

Therefore M1 and M2 are automorphic sets since, as noted earlier, the M1 to
M2 part is done by piecing together with the Zα and this can be extended to an
automorphism since we have satisfied conditions (4.1) through (4.5). 2

5 Herrmann sets form an orbit; a “static” proof

We also will give a second proof or the fact that the Herrmann sets form an orbit
which is “static” in the sense that we do not dynamically satisfy the hypotheses
of the extension lemma, but piece the automorphism together. The proof is based
on unpublished material of the last author. It is interesting to compare the two
proofs. We remark that in some sense the proofs are kind of the same since there
is a hidden use of the extension machinery in the following theorem of Soare.

Lemma 5.1 (Soare’s Lemma, Soare [25]) Let Z be c.e. and let S(Z) denote the
structure {Y : Y is c.e. and either Y ∪ Z = ω or Y ⊆∗ Z} with inclusion rela-
tion. Let S∗(Z) be S(Z) modulo the finite sets. Then for any two infinite c.e.
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noncomputable sets, A and B,

S∗(A) ∼=10
3
S∗(B).

We remark that the lemma above is actually what the proof of the maximal set
automorphism theorem achieves. The point is that the order preserving enumera-
tion theorem gives the isomorphism on the A to B part for those sets in S(A) and
S(B), and then the extension theorem allows the extension to an isomorphism.
The fact that the sets used by Soare are maximal means that the isomorphism is in
fact an automorphism.

For a c.e. set Z let
(S(Z),RZ)

denote expansion of S(Z) by the unary predicate satisfied by the collection of
computable subsets of Z . Let (S∗(Z),R∗

Z) be (S(Z),RZ) modulo the finite sets.
The following provides us with a strengthing of Soare’s lemma.

Lemma 5.2 (S∗(A),R∗
A)

∼= (S∗(B),R∗
B) iff S∗(A) ∼= S∗(B).

Proof. The implication from left to right is clear. Assume that ψ is an isomor-
phism between S∗(A) ∼= S∗(B). Let R be a computable subset of A. Then
A ∪ R = ω. Hence ψ(R

∗
) exists. Now since R ∪ R = ω and R ∩ R =

∅,ψ(R∗) ∪ ψ(R
∗
) =∗ ω and ψ(R∗) ∩ ψ(R

∗
) =∗ ∅. Similarly for ψ−1. Hence ψ

is an isomorphism between (S∗(A),R∗
A)

∼= (S∗(B),R∗
B). 2

Let D1(A) = {B : B is an infinite c.e. set and B ∩ A = ∅} ordered by the
inclusion relation. Let D∗

1 (A) be D1(A) modulo the finite sets. This is almost
an automorphism invariant for D-maximal sets, but not quite (we will later prove
this; see Lemma 6.4). Let

(D1(A),RA)

be an expansion of D1(A) by a unary predicate satisfied by all the computable
sets in D1(A). (Note that is is the same as the above except that Z replaces Z .)
Let (D∗

1 (A),R
∗
A
) be (D1(A),RA)modulo the finite sets. The next lemma shows

that this structure characterizes precisely when D-maximal sets are automorphic.

Lemma 5.3 (Herrmann) Suppose that A and B are D-maximal. Then A and B
are automorphic iff

(D∗
1 (A),R

∗
A)

∼= (D∗
1 (B),R

∗
B).
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Proof. One direction is clear. So suppose that (D∗
1 (A),R

∗
A
) ∼= (D∗

1 (B),R
∗
B
)

via the isomorphism ϕ. Let ψ denote the isomorphism from (S∗(A),R∗
A) to

(S∗(B),R∗
B). We show that the isomorphismϕ taking (D∗

1 (A),R
∗
A
) to (D∗

1 (B),R
∗
B
)

can be extended with ψ to an automorphism8.

For notation ease in what follows we will drop the “∗” (or modulo the finite
sets). Hence we consider ψ as an isomorphism from (S(A),RA) to (S(B),RB),
ϕ as an isomorphism from (D1(A),RA) to (D1(B),RB) and we will build an
automorphism of E , 8. Once this simplification is understood, it is easy to add
back in the “∗”.

Let C be a computably enumerable. There are two cases: one if C − A is c.e.
and one otherwise. Define

8(C) = ψ(C ∩ A) t ϕ(C − A) if C − A is c.e..

Now assume that C − A is infinite and not c.e.. Since A is D-maximal, there is a
computable set R with A ⊆ R ⊂ A ∪ C . There are sets C ′ ⊂ C and A′ ⊂ A such
that A′ ∩ C ′ = ∅, A′ ∪ C ′ = A ∪ C and A′ ∩ R = A′. Hence,

(A′ ∪ C ′) ∩ R = R = (A′ ∩ R) ∪ (C ′ ∩ R).

Thus A′ is a computable subset of A. Therefore,

C = (C − R) t (A′ ∩ R) t (C ∩ A′).

We define

8(C) = ϕ(C − R) t (ψ(A′) ∩ ϕ(R)) t ψ(C ∩ A′).

We must show that this definition is well defined. Clearly it is well-defined
for C such that C − A is c.e.. Let R0 and A′

0 another pair of sets that satisfy the
above equations. WLOG we can assume that R0 ⊂ R and A′

0 ⊂ A′ (if not take the
intersection of R0 and R and similarly for the A′’s and note that these intersections
also satisfy the above equations). We must show

Claim 5.4

ϕ(C−R)t(ψ(A′)∩ϕ(R))tψ(C∩A′) = ϕ(C−R0)t(ψ(A′
0)∩ϕ(R0))tψ(C∩A′

0).
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Proof. ϕ(C − R) ⊂ ϕ(C − R0) and their difference ϕ(C − R0)−ϕ(C − R) is
ϕ(R− R0)which is a subset of (ψ(A′)∩ϕ(R)) (this uses that ϕ is an isomorphism
and that B ⊂ ψ(A′)).

We break the second clause into two pieces: the part in B and the part in B.

(ψ(A′)∩ϕ(R)∩ B) contains (ψ(A′
0)∩ϕ(R0)∩ B) and their difference ϕ(R −

R0) which is a subset of ϕ(C − R0) (again this uses that ϕ is an isomorphism,
B ⊂ ψ(A′) and B ⊂ ψ(A′

0)).

(ψ(A′)∩ϕ(R)∩ B) is contained in (ψ(A′
0)∩ϕ(R0)∩ B) and their difference

ψ(A′ − A′
0) which is a subset of ψ(C ∩ A′) (this uses that ψ is an isomorphism,

B ⊂ ϕ(R) and B ⊂ ϕ(R0)).

ψ(C ∩ A′
0) ⊂ ψ(C ∩ A′) and their difference is ψ(A′− A′

0) which is contained

in (ψ(A′
0) ∩ ϕ(R0) ∩ B) (this uses that ψ is an isomorphism). �

So 8 is well defined. In a similar fashion, we can show 8−1 is well defined.

It remains to show that 8 and 8−1 preserves inclusion. Assume that X ( Y .
If Y − A is c.e. then 8(X) = ψ(X ∩ A) t ϕ(X − A) ( 8(Y ) = ψ(Y ∩ A) t

ϕ(Y − A) since ψ and ϕ are isomorphisms which preserve inclusion. Otherwise
Y = (Y −R)t(A′∩R)t(Y ∩ A′) for some R and A′. If X −R ( Y −R then, since
ϕ is an isomorphism of (D1(A),RA) to (D1(B),RB), 8(X) ( 8(Y ). Similarly
if X ∩ A′ ( Y ∩ A′. If either of these two cases fail then X ′ = X ∩ (A′ ∩ R) (

(A′∩ R) < Y . If X ′− A is c.e. then8(X ′) ( (ψ(A′)∩ϕ(R)) < 8(Y ). Otherwise
X ′ = (X ′−R1)t(A′

1∩R1)t(X ′∩ A′
1) for some R1 and A′

1. R1 ⊂ R and A′ ⊂ A′
1.

So either (X ′ − R1) ( Y or (X ′ ∩ A′
1) ( Y . In either case, 8(X) ( 8(Y ). In a

similar fashion, we can show 8−1 preserves inclusion.

Hence we have defined an automorphism of E . 2

Now we can give the alternative proof of theorem 4.1. It relies on the following
characterization of D1(A) for A Herrmann.

Lemma 5.5 Suppose that A is Herrmann. Then D1(A) is isomorphic to the weak
sum, ⊕i∈ωE , of countably many computable copies of E . (That is, the lattice of c.e.
sets which can be presented as functions { f : f : ω 7→ E such that (a.a.n)[ f (n) =
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∅] and where f ⊆ g iff ∀n( f (n) ⊆ g(n)).) Let 8 : D1(A) 7→ ⊕i∈ωE denote the
isomorphism above. Let fX be the image of X under 8. Then X ∈ RA holds iff
(∀n)[ fX (n) is computable ]. Consequently, (D1(A),RA)

∼= (D1(B),RB).

Proof. The proof is straightforward. Let Vi : i ∈ ω list the c.e. sets in D1(A).
Now, as above, V0 is a subset of an infinite computable set R0 disjoint from A. We
map R0 to ω by a computable bijection g0. Now the set V1 can be split into two
sets V1 − R0 and V1 ∩ R0. We can separate V1 − R0 by putting it into a computable
set R1 disjoint from A and R0, and then mapping R1 by a computable bijection
g1 to ω, so that the image of V1 is given by g1(V1 ∩ R1) ∪ g0(R0 ∩ V1), etc. This
does the job. Note the isomorphism is 10

3. 2

6 Variations on the Theme

As with the maximal set case, the above allows one to manufacture further orbits.
For instance, call a set A quasi-Herrmann of rank n if L(A)/D(A) is a finite
boolean algebra with n atoms.

Theorem 6.1 Suppose that A and B are quasi-Herrmann of rank n. Then A is
automorphic to B.

Proof: We do the case n = 2, the others being entirely analogous. There are two
Herrmann sets C , D with C 6=D(A) D, C ∩ D =D(A) A and C ∪ D =D(A) ω.

There exists a c.e. set W such that C ∪ D ∪ W = ω and W ∩ A = ∅. By
the separation principle, there are disjoint computable sets C ′, D′,W ′ such that
C ′ t D′ t W ′ = ω. Now observe that C ′ ∩ A is Herrmann inside C ′ and similarly
D′ ∩ A inside D′. Similarly find Herrmann Ĉ and D̂ on the hatted side and from
these sets define Ĉ ′, D̂′, and Ŵ ′. Then map C ′ 7→ Ĉ ′, D′ 7→ D̂′ and W ′ 7→ Ŵ ′.
Use Theorem 4.1 to map C ′ ∩ A 7→ Ĉ ′ ∩ B and similarly D. make the map from
W to Ŵ ′ computable. This clearly induces an automorphism of E taking A to B.
2

One can with a lot of work also prove the analog of Maass’s Theorem on hhs-
sets with 60

3 isomorphic lattices of supersets. The proof is entirely analogous to
the proof of Theorem 4.1 and the corresponding result of Maass. We omit this.

21



Theorem 6.2 Suppose that A and B are D-hhs, and there is a 60
3 isomorphism

from L(A)/D(A) to L(B)/D(B). The A and B are automorphic.

Another variation is obtained via the ideas of Downey and Stob [9]. Recall that
for a property P of c.e. sets, we say that a noncomputable c.e. set A is hemi-P if
there a noncomputable c.e. set B disjoint from A such that A t B has property P .
Also a set A is half-P if there is a splitting A1 t A2 = A such that A1 has property
P . Downey and Stob proved that hemimaximal sets formed an orbit. There are
two proofs that hemimaximal sets form an orbit. One is due to Downey and Stob
[9], and is based on modifying the extension lemma for pairs. The other is due to
Herrmann and can be found in Downey-Stob [11], is much shorter, and relieves
on Theorem 5.3. Since it is very short and provides an interesting reflection on
Lemma 5.3, we will provide another version here.

Theorem 6.3 The hemimaximal sets form an orbit.

Proof. Let A and Â be hemimaximal sets. They are D-maximal. Hence it is
enough to show (D∗

1 (A),R
∗
A
) ∼= (D∗

1 ( Â),R
∗

Â
). Let M and B be c.e. sets such

that M is maximal and A t B = M (similarly for Â). Let W ∈ D1. So W is
disjoint from A. Either W ∪ B ∪ A =∗ ω or W ⊂∗ B. If W ∪ B ∪ A =∗ ω

then A is computable (if x ∈ W ∪ B then x /∈ A). Hence W ⊂∗ B. Let ψ be
an one-to-one onto computable function from B to B̂. ψ is an isomorphism from
(D∗

1 (A),R
∗
A
) to (D∗

1 ( Â),R
∗

Â
). 2

Lemma 6.4 D∗
1 (A) is not automorphism invariant. That is there are sets A and

Â such that D∗
1 (A) is isomorphic to D∗

1 ( Â) but A is not automorphic to Â.

Proof. Let A be hemimaximal. Let R be a coinfinite infinite computable set. Let
Â be maximal in R. A and Â are not automorphic. Let M and B be c.e. sets such
that M is maximal and A t B = M . Let ψ be an one-to-one onto computable
function from B to R. ψ is an isomorphism from D∗

1 (A) to D∗
1 ( Â). 2

Theorem 6.5 Hemi-Herrmann sets form an orbit.

Proof. We will provide two proofs: The first is shorter and is based on the above
work of Herrmann. The second is based on work due to Downey and Stob [9].

22



Let A and Â be hemi-Herrmann sets. They are D-maximal. Hence it is enough
to show (D∗

1 (A),R
∗
A
) ∼= (D∗

1 ( Â),R
∗

Â
). Let H and B be c.e. sets such that H

is Herrmann and A t B = H (similarly for Â). Let ψ be an one-to-one onto
computable function from B to B̂. Using Lemma 5.5, let ϕ be the isomorphism
between (D∗

1 (H),R
∗
H
) and (D∗

1 (Ĥ),R
∗

Ĥ
). Let W be in D1(A). So W is disjoint

from A. Assume there is a computable set R such that A t B = H ⊂ R ⊂ W t A.
Therefore A ∪ B ∪ W ∪ R = ω and A is computable (if x ∈ B ∪ W ∪ R then
x /∈ A). Since A is not computable and H is Herrmann, W − B = W − H is c.e..
Let8(W ∗) = ϕ((W − B)∗)tψ(W ∩ B). Clearly this is well-defined. (Similarly
for the hatted side and8−1.) 8 is the desired isomorphism from (D∗

1 (A),R
∗
A
) to

(D∗
1 ( Â),R

∗

Â
).

Now we turn to the proof based on Downey and Stob [9]. Two applications
of Cholak’s extension lemma (first to A0, Â0 and second to A1, Â1) yields the
following two set version of Cholak’s extension lemma, directly analogous to
Downey-Stob [9], Lemma 2.

Lemma 6.6 (Modified Downey-Stob extension lemma) Let A and Â be infinite
c.e. sets with splittings A = A0 t A1 and Â = Â0 t Â1. Assume {Ai,s}s<ω,
{ Âi,s}s<ω, {Un,s}n,s<ω, {V̆n,s}n,s<ω, {Ŭn,s}n,s<ω, and {Vn,s}n,s<ω are uniformly
0′′-computable enumerations of the infinite c.e. sets Ai,s and Âi,s and the uni-
formly 0′′-computable collection of c.e. sets {Un}n<ω, {V̆n}n<ω, {Ŭn}n<ω and
{Vn}n<ω satisfying the following Conditions:

∀n, i [Ai ↘ Ŭn = Âi ↘ V̆n = ∅], (6.1)

(∀ν)[D Âi
ν is infinite ⇒ (∃ν ′ ≥ ν)[D Ai

ν′ is infinite]], and (6.2)

(∀ν)[D Ai
ν is infinite ⇒ (∃ν ′ ≤ ν)[D Âi

ν′ is infinite]], (6.3)

where for all e-states ν, D Ai
ν is measured w.r.t. {Un,s}n≤e,s<ω and {V̆n,s}n≤e,s<ω

and D Âi
ν is measured w.r.t. {Ŭn,s}n≤e,s<ω and {Vn,s}n≤e,s<ω. Then there is an

uniformly 0′′-computable collection of c.e. sets {Ŭn}n∈ω and {V̆n}n∈ω such that
for i = 0, 1,

Ŭn ∩ Âi =∗ Ûn ∩ Âi , V̆n ∩ Ai =∗ V̂n ∩ Ai , and (6.4)

∃∞x ∈ Ai with final e-state ν w.r.t {Un}n<ω and {V̂n}n<ω

iff ∃∞ x̂ ∈ Âi with final e-state ν w.r.t. {Ûn}n<ω and {Vn}n<ω.
(6.5)
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To complete the proof that hemi-Herrmann sets form an orbit, need only de-
scribe how to fulfill the requirements of the modified Downey-Stob extension
lemma. This is entirely analogous to the proof of theorem 4.1, and the analogous
result in Downey-Stob ([9], Lemma 4) In view of this we will only sketch the main
idea, the formal details being left to the reader. So suppose that M1 = A0 t A1
and M2 = Â0 t Â1 with Mi Herrmann and the splittings c.e.noncomputable.

To meet the analog of (4.5), the basic idea is is modified as follows. Consider
U2e, e.g. U0. As M1 is D-maximal, there is a set Q0 disjoint from M1 such that
either U0 = M1 ∪ Q0 or U0 ∪ M1 ∪ Q0 = ω.

In the first case, by r -separability, there is a computable set X0 such that
M1 ⊂ X0 and Q0 ⊂ X0. Again use the strong r -separability of M2 to choose
a computable X̂0 from ω̂ with M2 ⊂ X̂0, and ω̂ − X̂0 infinite. We would then
map X0 7→ X̂0, making the isomorphism g0 computable, hence carrying Q0
to a Q̂0 =def g0(Q0). Hence, in the final automorphism, we will have U0 7→

C0
0 t C1

0 t Q̂0 where C i
0 are subsets of Âi determined by the modified Downey-

Stob extension machinery. (So the strategy will be to have Ŭ0 ∩ X0 = ∅, as in the
proof of Theorem 4.1.)

As with Theorem 4.1, in the second case we have U0 ∪ M1 ∪ Q0 = ω. Hence,
by r -separability, there is a computable X0 with Q0 ⊂ X0. Again we can use
strong r -separability to get a corresponding X̂0 on the ω̂ side, and map X0 7→ X̂0,
making the isomorphism g0 computable, hence carrying U0 ∩ X0 to a Ê0 =def
g0(U0 ∩ X0). This time the automorphism maps U0 7→ C0 t E0 where C0 =

(X̂0 − M2) ∪ J 0
0 ∪ J 1

0 where J i
0 is a subset of Âi is determined by the modified

Downey-Stob extension machinery. The crucial thing we need to notice is that
since X0 ⊃ M1 is computable and the Ai ’s are a non-trivial splitting of M1,
X0 ↘ Ai is infinite. Hence we can cause, in the 0′′-enumerations, infinitely
many elements to enter both A0 and A1 from X0. (This is the main trick for
the hemimaximal set case.) Thus again we can make sure that all state flows are
covered, by splitting all flows from M1 entering M1, as described. The remaining
details are entirely analogous to the proof of Theorem 4.1 2

We remark that hemi-Herrmann sets obey all the degree results for Hermann
sets. The proofs are analogous to the hemimaximal case and the Herrmann proofs
of the next section.
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Theorem 6.7 (i) All high c.e. degrees are hemi-Herrmann.

(ii) All jump classes contain hemi-Herrmann sets.

(iii) Below each nonzero c.e. degree there is a hemi-Herrmann degree.

There are other ways Herrmann sets resemble hemi-Herrmann sets.

Theorem 6.8 Suppose that A is D-maximal, and A0 t A1 = A is a nontrivial
splitting of A. Then Ai is D-maximal.

Proof. Suppose that B ⊇ A0. Then there is a W disjoint from A such that either
A ∪ B ∪ W = ω or A ∪ B = A ∪ W . In the first case B ∪ (A1 ∪ W ) = ω and in
the second, B = ((A1 ∩ B) ∪ W ) t A0. 2

However, the notions are separate since r -separability is not inherited by split-
tings.

Theorem 6.9 Suppose that A0 t A1 = A is a Friedberg splitting of a non-
computable set. Then Ai ’s are not r-separable.

Proof. Assume that R ⊇ A1 with R computable and disjoint from A0. Then
R − A is not computably enumerable. Since the splitting is a Friedberg splitting,
R ∩ A0 6= ∅. So we cannot computably separate the Ai ’s. 2

The original use of hemimaximal sets by Downey and Stob was to demonstrate
that certain classes of c.e. sets were automorphic to complete sets. Since each
hemimaximal set is automorphic to a complete one, any half-hemimaximal c.e.
set would be automorphic to a complete set. A consequence of this result was
that (Downey and Stob [9], Theorem 12) the following classes of c.e. sets were
half-hemimaximal and hence automorphic to complete sets:

(i) all low2 simple sets.

(ii) all semilow1.5 simple sets.

(iii) every d-simple set with a maximal superset.

25



Naturally we could use the same reasoning for both half-Herrmann and half-
hemi-Herrmann sets. It would be interesting to know if there was a wide class
of sets to which the reasoning for hemimaximal sets could not be applied but the
Herrmann reasoning could be applied. The intuition is that Herrmann sets are in
some sense small whereas hemimaximal sets are large. However the dynamics of
their respective constructions are very similar.

7 Degrees of Herrmann Sets

In this section we will look at the possible degrees of Hermann sets, and compare
them with the invariant classes realized by a single orbit. First, given the nature of
one strategy (non-enumeration) for the Ne requirements of the proof of Theorem
2.5, it is perhaps not surprising that the Herrmann degrees are downward dense.

Theorem 7.1 Let a 6= 0 be computable enumerable. Then there exists a Her-
rmann degree b ≤ a.

Proof. We modify the proof of Theorem 2.5 by adding simple permitting.
That is, we choose the option of always putting the y in A of the low state between
xi,s and xi+1,s into Qe,s+1 − Qe,s , instead of enumerating into A. In that case, as
we noted in Remark 2.6, the only requirements which with to enumerate elements
into A are the Ge, and Ke. These wish to enumerate a single element into A,
from a computable list of potential winning candidates. Adding simple permitting
causes no problem and gives the result at hand. �

The other operation (enumeration) allows for a lot of coding.

Theorem 7.2 Let a be any high computably enumerable degree. Then a is Her-
rmann.

Proof. Now we choose the “enumeration” option, in the satisfaction of the
Ne. This is very similar to a maximal set construction, and naturally combines
with high permitting and coding. (See also Theorem 8.10.) �

Despite the fact that the Herrmann degrees and the hemimaximal degrees are
different, they do exhibit a number of similarities. Up to the present paper, the
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hemimaximal degrees were the only known elementary definable orbit realizing
all possible jumps (Downey and Stob [10]). Herrmann sets share this property.

Theorem 7.3 Let S be c.e. in and above ∅′. Then there is a Herrmann set A with
A′ ≡T S.

Proof. The argument is similar to Downey-Stob [10], Theorem 2.1. It is a
combination of ideas from the Sacks jump theorem and from Theorem 2.5.

Let B be an r.e. set with B(y) an initial segment of ω(y) (= {〈x, y〉 : x ∈ ω})
such that

y ∈ S ⇔ |B(y)| < ∞ and y 6∈ S ⇔ |B(y)| = ∞ ⇔ B(y) = ω(y)

At each stage s, let {ai,s : i ∈ ω} enumerate As in order of magnitude. We need to
meet the requirements Ke, Ne and Ge from Theorem 2.5, and the requirements
below.

Pe : code B(e) into A,
Fe : lim

s
ae,s = ae exists.

And we try to meet the “pseudo-requirement” (terminology of Soare [25])

F̂e : ∃∞s(8e,s(As; e) ↓⇔ 8e(A; e) ↓). (7.1)

Of course strictly speaking we need only ensure that we meet F̂e along the true
path of the construction; that is where the computations are B-correct. We let the
hat convention apply and let r̂(e, s) be the usual restraint preserving the left hand
side of 7.1. The basic idea is to define a A-computable functional λ(A, x, y) in
such a way that A′ can code B(y) via the limit lemma (in relativized form).

The idea is that at some stage s, we enumerate an axiom saying “λ(A, x, y) =

0” for 〈x, y〉 6∈ Bs . We set the use of this to be an(x,y),s for some large n. If we
later see 〈x, y〉 ∈ Bt we can correct the computation by putting some z ≤ an(x,y),s
into At+1 − At and hence set λ(A, s, y) = 1. Provided that we succeed for al-
most all y, the limit lemma will make the value of limy λ(A, x, y) computable
in A′ and hence S computable in A′. All of this is subject to the restraints
R̂(y, s) = max{r̂(p, s) : p ≤ y} (to keep the jump down). Our construction
is rather different from the jump theorem in that we have rather less control over
the “markers” an,s that we use for coding.
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The basic coding module

For a single Pe the basic idea is to assign some an,s = a〈s,e〉,s (> R̂(e, s)) to
the least 〈x, e〉 6∈ Bs for the coding of B(e). For this an,s , until we see 〈x, e〉 ∈ Bt
every time the j -state machinery (for j < e) causes us to make an,s+1 6= an,t we
enumerate some z ≤ an,t+1 into At+1. For instance, for N j from Theorem 2.5,
we would await several numbers in the high j -state, then Pe would request that
the low state numbers not be put into Qe, but at least one enter At+1 so that A
can comprehend the marker movement and be able to (later) correct λ(A, x, e).
Of course, here we will not reset λ(A, x, e) unless 〈x, e〉 ∈ Bt , but simply change
the use. For any y > n, if ay,s is in the low state and is being ejected, we can
put ay,s into Qe (or A as desired). Here, in particular, we would be concerned
with those y associated with Pe via some z > x . It is then easy to see that if
lims R̂(e, s) exists, then for |B(e)| < ∞ we will get stuck on some an = lims an,s
with n = n(q, e) (for some q) since any particular an,s is only reset finitely often
by j -state machinery. Once an,s reaches the high j -state, the only reason for
change is due to the action of P2k of higher priority or due to Pe.

The α-module

Of course, there are a couple of problems with the above in the actual con-
struction, since we only know that lim infs R̂(e, s) < ∞ and lims R̂(e, s) may
not exist. We will modify the above to give the “α-correct” version allowing all
the requirements to cohere with one another. This is of course the heart of a 52
argument.

The first problem is that initially we might assign an,s to Pe as the cod-
ing maker of B(e) as above. Implicitly note that Pe is guessing the value of
lim(inf)R̂(e, s). While we await 〈x, e〉 to occur in B (e) we may see a stage where
R̂(e, t) > R̂(e, s) and R̂(e, t) > an,s . Since this may be the correct value of
lims R̂(e, s) we must begin a new Pe strategy based on this new guess. Hence at
stage t we would pick a new 〈x̂, e〉(x̂ > x) and a new an(x̂,e),t and by the way we
choose makers, we would choose n(x̂, e) = 〈t, e〉. If the R̂(e, u) drops down to
(e.g.) R̂(e, s) at some stage u > t we would abandon an(x̂,e),t (forever) and hope-
fully return to an(x,e),s . Here we say “hopefully” since we are ignoring the effect
of the N j . Assuming that the N j does not affect things, the idea above will mean
that, as in the jump theorem, we will return to some maker via the non-deficiency
window infinitely often, and hence succeed in meeting Pe.
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We finally have to consider how this all interacts with the N j . If j ≥ e, then
R̂(e, s) can assert control over N j and ask that only the k-states (k < e) change
for those am,s < R̂(e, s). Again at non-deficiency stages we get to maximize
j -states for those am > lim infs R̂(e, s).

The problem is that the j -states for j < e are more or less out of control
for R̂(e, s) and cannot be “guessed” (consider making A low – this is not really
a tree argument). That is, we cannot “wait to act until the correct j -state” since
B ′ should control R̂(y, s). Therefore if a j -state requirement N j requests us to
declare the A position of some z < R̂(e, s) (because it is in the low state), by
putting it into A or Q j , we really must put it into Q j for the sake of F̂e.

Now we come to the crux of the whole construction; consider j < e < f .
Suppose that P f has a maker an,s devoted to coding 〈 f, x〉. We are faced with the
following timing problem. At stage s, suppose an,s > R̂(e, s) which is, say, equal
to lim infs R̂(e, s). At stage s1 > s, 〈 f, x〉 6∈ Bs1, but R̂(e, s1) > an,s = an,s1. At
stage s2 > s1 R̂(e, s2) = R̂(e, s1) but some z ≤ an,s enters As2+1 ∪ Q j,s2+1 for the
sake of the Ne (the e-state machinery). Say z = an,s . As e < f , we must put an,s

into Q j,s2+1 and not As2+1. But at some stage s3 > s2 we see R̂(e, s3) = R̂(e, s).
Now suppose we have 〈 f, x〉 ∈ B − Bs. Obviously we want to code this fact into
A. But alas, an,s ∈ Q j and hence not available for A.

Our solution to the problem above is to make it possible for A to realize an,s 6=

an,t at any stage t during the window when R̂(e, t) drops down. Since an,s may
have been enumerated (e.g. at stage s2 above), our only recourse is to enumerate
the largest ai,t ≤ an,s from Xe,s ∪ Qe,s , into At+1 for the sake of Pe. Because of
this it is our duty to ensure that the following does not occur: an,s ∈ X e,s ∪ Qe,s
and, say, an−1,s = an−1,s2 as above and an,s2 is in the high j -state. Now at stage t
(=s3) we enumerate an−1,t . In turn, this process might cause us to drop the j -state
of an−1,t or an,t . We must be careful to ensure that this process does not repeat
itself infinitely often causing A ∪ Xe ∪ Qe = ω.

The obvious solution to the dilemma above is to delay the enumeration of
an−1,t (or more generally an,s) until we see a window stage u > t where all of
an,u, . . . , an+t,u have the same f -state as an−1,t and many are in X f . In that case
there is no injury to N j . It will be then clear that the α-correct version of P f
will succeed in meeting the requirement since almost all of A in X e has the same
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f -state.

The remaining details are more or less routine52 implementation and are left
to the reader. �

However, not every degree is Herrmann. This is an immediate consequence of
the following theorem of Downey and Harrington:

Theorem 7.4 (Downey and Harrington [8]) Let S(A) denote the property be-
low: (everything c.e.)

(∃C)(∀X ⊆ C)[A ∪ X ⊇ C →

(∃B ⊆ X)[A ∪ B ⊇ X ∧ (∀Y )(A ∪ Y = ω → |(X ∩ Y )− B| = ∞)]].

Then

(i) there exists a high2 degree e such that if B has degree ≤ e then ¬S(B)

(ii) there exists a low degree c and high2 degree b with c < b such that if B has
degree between c and b then S(B).

In particular, note that the Downey-Harrington result above implies that no
member of the highn–lown hierarchy3 is definable by a single orbit except high1.
For our purposes, Theorem 7.1 implies that if A is Herrmann then ¬S(A). In fact
one does not need all of the properties defining Herrmann sets.

Theorem 7.5 Suppose that A satisfies S(A). Then A is not D-maximal.

Proof. Let C be the relevant set in property S(A). Consider A ∪ C .

Claim 7.6 (A ∪ C)− A not computably enumerable.

Proof of Claim. To see claim 7.6, suppose otherwise. Let X = (A ∪ C)− A.
Then X ⊆ C and A ∪ X ⊇ C . Hence, since S(A), there exists B ⊆ X such that

A ∪ B ⊇ X ∧ (∀Y )(A ∪ Y = ω → |(X ∩ Y )− B| = ∞.

3That is, no degree whose n-th jump is either 0n or 0n+1.
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Since A∪ B ⊇ X and X is disjoint from A, yet B ⊆ X , it can only be that X = B.
But then (∀Y )(Y ⊇ A ⇒ (X ∩ Y ) = (B ∩ Y ))), a contradiction. �

Therefore, if A is D-maximal, then there must exist W such that

(i) W ∩ A = ∅, and

(ii) (C ∪ A) ∪ W = ω.

Let X = C . Then (∃B)(B ⊆ X (= C)&A ∪ B = A ∪ C). Hence B ⊃ W ∩ C and
note (W ∩ C) ∩ A = ∅ as W ∩ A = ∅.

Let Y = W . Since X ∩ Y = C ∩ W ⊆ B, we see X ∩ Y ⊆ B, a contradiction
to S(A). �

Corollary 7.7 There is a low set a and a high2 set b with a < b such that no set in
the interval [a, b] is D-maximal (and hence neither Herrmann nor hemimaximal).

Actually, S(A) is an extremely interesting property in the following sense. It
is a program of Harrington and Soare to try to understand computably enumerable
sets in terms of their dynamical properties, perhaps relative to some skeleton. For
instance, they show [13] that every “almost prompt” (more later) set is automor-
phic to a complete set. Sets satisfying S(A) exhibit a number of similar properties
and we explore their degrees in the next section.

Returning to Herrmann sets, as we have seen the result above implies a num-
ber of restrictions on their possible degrees. We have the following theorem of
Kummer [18].

Theorem 7.8 (Kummer [18], Theorem 6) Let c < d be low. Then there are a, b
with c ≤ a < b ≤ d such that no set of degree in [a, b] is D-hhs.

One possible conjecture is that the hemimaximal degrees and the Herrmann
degrees coincide. This is not true.

Theorem 7.9 There is a non-hemimaximal (non hemi-hhs) degree containing a
Herrmann set.
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Proof. The argument is finite injury. We build A. To make its degree not
hemi-hhs we next need the requirements

He : (0A
e = Ve ∧1Ve = A ∧ We ∩ Ve = ∅) ⇒ We t Ve is not hhs.

To meet He we use some auxiliary sets {De,i : i ∈ ω}, a weak array, and must
ensure that if

0A = Ve ∧1Ve = A ∧ We ∩ Ve = ∅

then we need meet He,i for some i :

He,i : De,i 6⊆ Ve.

Let `(e, s) denote the A-controllable length of agreement for He. That is

`(e, s) = max{x : (∀y < x)(1Ve
e � y = A � y ∧ 0A

e � δe(y) = Ve � δe(y))[s]}

where δe(y) denotes the1e-use and we have used the usual convention of append-
ing [s] to denote the state s situation.

¿From Downey and Stob [9], the fundamental idea used to meet He is the fol-
lowing. First assume We ∩ Ve = ∅, because as soon as some z enters We,s ∩ Ves
we get a global win on He. To meet He,i (assuming `(e, s) → ∞), when He,i
becomes “active”’ say at stage u, we will wait for a stage t where `(e, t) > u and
initialize all lower priority requirements. We pick a follower x = x(e, i, t) > t
and wait until `(e, s) > x . At this stage we initialize all lower priority require-
ments so, once He,i has priority, we can know that the only number below s which
can enter A will be x(e, i, s). Now, the idea is to put into De,i,s+1 all numbers z
with δe(u)[s] ≤ z ≤ δe(x)[s].

The claim is that this is enough. For suppose De,i,s+1 ⊆ We t Ve, and He.i
is not initialized. Then the stage s situation is unchanged for all s ′ > s. So if
De,i,s+1 ⊆ We t Ve we will see a stage s0 > s where De,i ⊆ We t Ve[s0]. At such
a stage s0, we can get a global win on He by enumerating x into A and otherwise
restraining A with priority e.

The point is that if `(e, s1) > x for some s1 > s0, We � δe(x)[s] 6= We �

δe(x)[s], so We,s1 must have changed on some z with δe(u)[s] ≤ z ≤ δe(x). This
is impossible if We ∩ Ve = ∅ since all such z are in De.i ⊆ We ∪ Ve.
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Additionally, we must make A Herrmann. We meet the requirements of The-
orem 2.5

Ke : We ∩ A 6= ∅ ∨ (∃Ce)[Ce computable ∧ We ⊆ Ce ∧ A ⊆ Ce].

Ge : We ∩ A 6= ∅ ∨ (∃Xe)(|Xe| = ∞ ∧ Xe ∩ (A ∪ We) = ∅).

Ne : We ⊇ A → [(∃Qe)(Qe ∪ A = We ∨ We ∪ Qe = ω)].

Naturally we will be using the non-enumeration strategy for meeting the Ne.

The key is the the only time we act for some He,i by enumeration is to get a
global win for He. Thus all positive action is finitary.

The way this coheres with the Gi and Ni is now described. It is easiest to
construct this as a tree argument. We already know the strategy for the Ni and
Ge. We will have some top node τ devoted to measuring if We ∩ Ve = ∅, and
measuring if `(e, s) → ∞. It has three outcomes. s <L ∞ < f where s denotes
the “stop” global win outcome.

The He,i are spread out in the tree below the outcome ∞.

Suppose that τ is on the true path and we have Kσ0 , Nσ1 and Gσ2 above τ
(here trees grow downwards). Assuming both are infinitary (the most difficult
case). Kσ0 , Gσ1 insist that certain elements don’t enter A (so that A is built from
the “other half”) and Nσ2 processes elements putting some into Qσ2 and the rest
will be a well behaved stream all in the high σ2-state.

He and hence He,i will choose followers from this stream and hence cannot
injure Nσ1 or Gσ2 . We ask that all versions of He,i occur at some fixed level below
|τ |, and furthermore along any path there is a fixed collection of H f, j , Kn and Gk
of higher priority. The point of this is that this convention means that enumeration
can cause initialization of He,i at most finitely often.

All other activity is negative. The apparent problem is really the following.
We have a version of He,i sitting at some level ρ below τ . At some stage it might
well be the case that we assign to He,i some follower x which is good from the
point of view of τ and hence acceptable to Kσ0 , Gσ1 and Nσ2 .

However, x might well be bad from the point of view of, say, Nγ for some γ
below τ . Perhaps x is not in the correct γ -state, and at some stage γ acts, putting
x into Qσ2 at stage s. This could appear to be bad from He,i ’s point of view.
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However, our solution is to not initialize this He,i setup, but to regard it as
assigned to ρ̂ where ρ̂ ⊃ γ is the string of the same length as ρ (such a ρ̂ is
assigned to He,i via the convention above).

The idea is that x will be reassigned to ρ̂ and so its restraint will assume
priority ρ̂ in place of ρ. The point to notice is that x won’t be put into A anyway,
unless we put a win at τ (not at ρ̂). If we get a win at τ we can injure γ anyway!

It is important to note that, while x might be assigned to ρ̂, it can be reassigned
to some ρ1, for γ ⊃ ρ1 ⊃ ρ̂, which is associated with some H f, j . This is okay
since it corresponds to finite injury. �

8 Degrees of S(A)

As we mentioned in the last section, the degrees associated with S(A) are related
to certain dynamical considerations. To facilitate our discussion, we briefly review
the methodology used to construct a set satisfying S(A).

To build a set satisfying S(A) we must build c.e. sets A, C and BX that satisfy
the requirements below:

RX : A∪X ⊇ C → (∃BX)(A∪BX ⊇ X∧(∀Y )(A∪Y = ω → |(X∩Y )−B| = ∞)).

We break these into

RX :A ∪ X ⊇ C → (∃BX)(A ∪ BX ⊇ X ∧ (∀Y, i)(RX,Y,i )), where
RX,Y,i :A ∪ Y = ω → |(X ∩ Y )− B| ≥ i.

The strategy for satisfying RX is fairly simple, and for a single A (rather than a
degree), the strategies work independently. Any c targeted C not associated with
RX (but for RX̂ for some X̂ 6= X ) will be put into BX . So we can concentrate
upon a single RX .

To meet a single RX,Y,i (assuming we have met RX,Y,i−1), we pick a witness
x .

We keep x out of A ∪ C until x enters Y . If this does not happen, A ∪ Y 6= ω

with witness x . If Y responds, eating x , then at some stage we can put x into
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C , and wait for X to eat x . If X does not respond, then we get a global X -win
since then A ∪ X 6⊇ C . If x enters X at stage s, we can immediately put x into A
increasing the count of (X ∩ Y )− BX .

It would seem reasonable to believe that the construction above involves the
notion of promptness since the witness x “promptly” enters A. The reader should
recall that a set B is called promptly simple if there is a computable function g
such that

(∀e)(|We | = ∞ ⇒ (∃x, s)(x ∈ We at s ∧ x ∈ Ag(s))).

A set is called prompt if it has promptly simple degree. Alternatively, C is prompt
iff there is a computable h such that

(∀e)(|We| = ∞ ⇒ (∃x, s)(x ∈ We at s � Ah(s) ↑ x 6= Ax � x)).

Clearly the construction above seems to make A prompt. One is naturally lead
to investigate how promptness and S(A) relate.

We remark that promptness considerations are central to recent investigations
about orbits and complete sets (e.g. Cholak, Downey, Stob [4], Cholak [1, 2],
Harrington-Soare [12, 13, 14], Wald [27]). We need the following definition.

Definition 8.1 We say a set A is effectively S if A satisfies S(A) and moreover,
this is an effective procedure to compute an index for BX from one for X .

The construction outlined above clearly makes a set that is effectively S. Our
intuition concerning promptness is realized via:

Theorem 8.2 Suppose A is effectively S. Then A is prompt.

Proof. We assume that A is effectively S. We build a computable g to meet
the requirements

Re : |We| = ∞ → (∃x)(∃s)(x ∈ We,s → Ag(s) � x 6= As � x).

To facilitate this, for a fixed e, we build a set Ye.

We have our set C and given enumeration of A. C − A is infinite. As well we
have a computable function f such that for all n, if Wn is an index for a set with
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Wn ⊂ C ∪ A and Wn ∪ A ⊇ C , then W f (n) has the role of BWn . Of course, we
can assume that at each stage s, BWn,s ⊆ Wn,s , and run the enumerations so that
Wn,s ∩ As = BWn,s ∩ As .

The argument is no injury argument. We build X = Xe and Y = YX for the
sake of Re. For the sake of Re, for the n + 1-st try, let us assume that we have
previously used the numbers y1, ..., yn . Also we have defined Y so that at the
current stage s we have As ∪ Ys ⊇ {y : y ≤ yn}. Now Re requires attention if it is
not currently met, and we see some element yn+1 > yn enter We,s . Now Re will
assert control of Xe,s � yn+1.

We will immediately put into Y all of {z : yn < z ≤ yn+1} not yet in As .
(Of course here, and below, we pretend that we can put numbers directly into
a set whereas, we will have some computably overheads given by the s-m-n or
recursion theorem. For simplicity we pretend that there are no such overheads.)
Now put into Xe,s all numbers c with c ≤ yn+1 and c 6∈ As . Wait till the least
stage t ≥ s such that

As ∪ Xe,t � yn+1 = As ∪ BXe,t � yn+1.

We force such a stage to occur by additionally making (Xe,u ∩ Au)(z) = (Cu ∩

Au)(z) for u ≥ s, and z ≤ u, while we are waiting for t . Notice that we cannot
wait forever, since this action will force Xe ∩ A = C ∩ A. Hence since A is
effectively S, BXe ∩ A = Xe ∩ A.

• If At � yn+1 6= As � yn+1 declare Re as met.

• Otherwise, enumerate no further numbers into Y , or X until Re again gets
a candidate.

We claim first that Re is met. If we suppose otherwise then since yn are
monotone increasing, and computable, Y ∪ A = ω. Since we never meet Re, all
numbers entering Xe from Y must enter B before they enter A. This contradicts
property S.

Finally we need to argue that A is prompt. This is achieved by dovetailing the
constructions above for many e. For instance, we only allow an attack to begin
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for Re at a stage s ≥ e. Then define h(s) to be the maximum of s and all of the
t’s corresponding to attacks begun at stage s. �

Notice that by Harrington and Soare [12], we have the corollary:

Corollary 8.3 Suppose that A is effectively S. Then A is automorphic to a com-
plete set.

Proof. Harrington and Soare proved that all prompt sets are automorphic to com-
plete sets. 2

We’d like to improve the theorem above to sets satisfying S, rather than ef-
fectively S. However, this is not possible, meaning that the relationship between
promptness and S is quite obscure. Harrington and Soare introduced the notion of
tardiness to explain various phenomena from the automorphism machinery.

We need some definitions.

Definition 8.4 (Harrington and Soare [13]) Let e = 〈e1, ..., en〉. Then define a
standard enumeration of n-c.e. sets via

Xn
e,s = (We1,s − We2,s) ∪ (We3,s − We4,s) ∪ ...,

where the last part of the union is either Wen ,s if n is odd, and Wen−1,s − Wen if n
is even. The we say a c.e. set A is

(i) almost prompt if there is a nondecreasing computable function p such that
for all n and e,

X e
n = A → (∃x, s)[x ∈ Xn

e,s ∧ x ∈ A p(s)].

(ii) very tardy if A is not almost prompt.

(iii) n-tardy if there for every nondecreasing computable function p, there exists
an e such that

X e
n = A ∧ (∀y)(∀s)[y ∈ Xn

e,s → y 6∈ A p(s)].
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We remark that the difference between very tardy and n-tardy is that the fixed
n kills all potential p. As Harrington and Soare pointed out, A is 0-tardy iff A = ω

and A is 1-tardy iff A is computable. So the first place A can be nontrivially very
tardy is 2-tardy. Harrington and Soare demonstrated that a certain E -definable
property Q(A) implies that A is 2-tardy. The point of this result is the following.

Theorem 8.5 (Harrington and Soare [12, 13]) Suppose that A is 2-tardy. Then
A is not Turing complete.

Theorem 8.6 There is a set A with S(A) holding and such that A is 2-tardy.

Proof sketch. This is a straightforward combination of the tree method and the
S(A) construction. In view of this result as having only technical interest, we
only sketch the proof. We need to meet the RX as before, and also the 2-tardy
requirements below.

Te : ϕe nondecreasing and total → (∃W, V )[Z =def W − V = A∧

(∀y)(∀s)[y ∈ Zs → y 6∈ Aϕe(s)]

To meet the requirement Te, we process numbers through a node γ devoted to
slowing down their enumeration into A. We will be currently maintaining Z s =

As � r(e, s). Some requirement R will desire to put some number x into A. The
action is simple. We take x out of Z at stage s (by putting it into V ). Now we do
not put x into A at all unless a stage t occurs where ϕe,t (s ′) ↓ for all s ′ ≤ s, and
nondecreasing on all such s ′, and t > ϕe(s). The x is free to enter A at any stage
t ′ ≥ t . At stage t we increase r(e, t) to t , and make Z t = At � r(e, t). Thus if ϕe
is increasing and total, γ has the infinite outcome, then r(e, t) → ∞ and hence
Z = A. Otherwise γ has the finite outcome.

We concentrate the RX at a single node σ on the tree. We will use σ to encode
whether A∩C = A∩ X . If σ believes that A∩C = A∩ X , we will build a version
of BX at σ . The σ nodes devoted to RX,Y,i for various Y, i will be spread out in
the tree below the infinitary outcome of τ , in the usual 0′′′ way. (Although this is
a finite injury 0′′ argument like a minimal pair.) Thus a single node σ devoted to
meeting RX,Y,i runs through the cycle of
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(i) picking an element x

(ii) waiting till x enters Y (realization),

(iii) (eventually) putting x into C ,

(iv) when x enters X , putting x “immediately” into A.

The thing to notice here is that nothing is committed until we get beyond step (iii).
Once x is realized at σ it can begin its journey up the tree being processed by the
needed γ nodes one at a time, in increasing order of priority. Remember, these γ
nodes are guessing that τ has the infinitary outcome, and hence guess that this x
will eventually get into A. If x gets stuck then we win γ and no harm is done to
RX , since x is not yet in C . So suppose then we work our way back up the tree
and get to τ where we are building X . It is here that we will put x into C . x will
reside here unless it enters X . Now (iv) must happen. However, what we do is
release x to continue its journey up the tree. If τ really is on the true path then x
will enter A. 2

Corollary 8.7 There are sets satisfying S(A) but not effectively S(A).

We remark that one can also have a set A satisfying ¬S(A) that is 2-tardy,
since one can have a 2-tardy maximal set. (Harrington and Soare [13], Theo-
rem 3.11.) It would be interesting to know if one can have sets A, B satisfying
Harrington and Soare’s Q(−) as well as S(A) and ¬S(B).

We remark that one can use promptness to solve a question implicit in Downey-
Harrington [8]. As we have seen, there it is proven that each highn-lown class con-
tains degrees whose members are either purely S(A) or purely ¬S(A). Theorem
8.10, below, says that the strongest possible extension of this fact would be that
for any degree c 6= 0′′ computable enumerable in and above 0′ there are degrees
a and b such that a′ = b′ = c, and for all A ∈ a and all B ∈ b, S(A) and ¬S(B).
Unfortunately, this attractive conjecture fails.

Theorem 8.8 (i) Suppose that ¬S(A) holds for all A of degree a. Then a is tardy.

(ii) There is a degree c 6= 0′′ computable enumerable in and above 0′, such
that if a′ = c, then there is a set A in a with S(A).
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Proof. (i) It is a routine finite injury argument to construct a promptly simple
set N with a semilow complement satisfying S(A). By Maass [19], such sets are
all automorphic, and hence, all promptly simple sets with semilow complements
satisfy S(A). Of course all prompt degrees contain promptly simple sets with
semilow complements.

(ii) Cooper [6], and independently, Shore [23] constructed a degree c 6= 0′′

computable enumerable in, and above 0′, such that if a′ = c, then a is prompt.
The result follows by (i). �

Another result relating promptness to S(A) is the following.

Theorem 8.9 (i) Suppose that a is low and prompt. Then S(A) holds for all
A ∈ a.

(ii) Suppose that A is hemimaximal and has low degree. The A is not prompt.

Proof. We begin by constructing a low prompt a such that for all A ∈ a, S(A)
holds. The theorem will then follow by a result of Wald [27] who proved that if a
and b are low and prompt, then every set in a can be sent to one in b.

We turn to the proof that there are low prompt S(A) degrees.

To prove Theorem 8.9, we build sets D,Ci and Be,i (the sets Ae and Xi are
given to us by the requirements) with D promptly simple, in stages to satisfy the
requirements Re, j below.

Re,i : 0D
e = Ae ∧1Ae

e = D → (∀ j)Re,i, j , where

Re,i, j : Xi ⊆ Ce ∧ Xi ∪ Ae ⊇ Ce →

(Be,i ⊆ Xi ∧ Ae ∪ Be,i ⊇ Xi ∧ Xi ∪ Y j = ω → |(Xi ∩ Y j )− Be,i | = ∞).

To make D promptly simple, we will ensure the requirements below are met.

Pe : |We| = ∞ → ∃s, x(x ∈ We,at s ∧ x ∈ Ds+1).
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This is done in the standard fashion. When we see some unrestrained x enter
We at stage s, we simply put it into D at the very next stage. The construction
below is easily seen to be amenable to lowness, so it remains to say how we meet
the Re,i and then how this coheres with the promptly simple requirements.

First we recall the strategy from Downey-Harrington [8]. Let `(e, s) denote
the D-controllable length of agreement between D and Ae. That is

`(e, s) = max{x : ∀y ≤ x[1
Ae,s
e,s = Ds(y) ∧ (∀z ≤ δe,s(y)[0Ds

e,s (z) = Ae,s(z)]]}

Naturally we regard D as indirectly controlling Ae and hence once x ≤ `(e, s)
then Ae,s � δe,s(x) is fixed unless we change Ds on some argument ≤ γe,s(δe,s(x)).
We break the Re,i, j into infinitely many subrequirements of the form Re,i, j,k
which are the same as the Re,i, j except that they assert that |(X i ∩Y j)− Be,i | ≥ k
instead of |(X i ∩Y j)− Be,i | = ∞. Clearly if we meet all the Re,i, j,k for all k then
Re,i, j will be met too.

We meet the requirements Re,i, j,k using the finite injury method. It will essen-
tially suffice to describe the strategy for a single requirement. Thus we will drop
the subscript “e” from the sets and functionals. Clearly if lim sup `(e, s) 6→ ∞

we are done and since we are using a finitary methods we can thus without loss of
generality suppose that `(e, s) → ∞. Furthermore there is an easy win on Re,i, j
if we ever see X i\C 6= ∅. This is because we control C and we can thus win Re,i, j
by simply restraining any element of X i,s − Cs from entry to C thereby negating
one of the hypotheses of Re,i, j . (For instance, we will do this if we see a win for
Re,i, j with priority 〈e, i〉.) Therefore, without loss of generality we will suppose
that |Xi\C | = 0. The cycle for a single Re,i, j,k requirement is a follows.

8.1. Pick a follower d targeted for D which is large. Do this at an e-expansionary
stage. (Namely when `(e, s) exceeds m = m`(e, s) which denotes the
maximum of `(e, t) for t < s.)

8.2. Freeze D � d and C until a stage s1 where `(e, s1) > d. The region J =

[δs(m) + 1, δs1(d)] now becomes Re,i, j,k’s critical region. At stage s1,
Re,i, j,k continues to restrain C � δs1(d) as well as D � s1 but otherwise
imposes no further restraint. (This it why the other requirements can be
met.)
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8.3. Wait for a stage s2 such that As2 ∪ Y j,s2 ⊇ {0, ..., δs1(d)}. If such a stage s2
does not occur then A ∪ Y j 6= ω and hence we win Re,i, j . At this stage s2
we declare that Re,i, j,k is active.

8.4. Put all of the interval [δs(m)+ 1, δs1(d)] into C but still continue to freeze
D � s1.

8.5. Wait for a stage s3 where X i,s3 ⊇ (Cs3 ∪ As3) � s1. If such a stage s3 does
not occur then we win Re,i, j .

8.6. When s3 occurs then put d into Ds3 but continue to restrain D � d − 1.

8.7. Wait for the next e-expansionary stage s3. Notice that some number n, say,
from (Cs1−As1)∩[δ(m)+1, δs1(d)] must have entered As3. Furthermore no-
tice that n ∈ Y j,s3 since we knew in Step 8.3 that A ∪ Y j,s2 ⊇ {0, ..., δs1(d)}
and since As1 � δs1(d) = As2 � δs1(d) by D-restraint, we know that, in
particular, n must have entered Y j since it was not in A. Our action is to
put into Bi,s3 the least collection of elements to cause As3 ∪ Bi,s3 ⊃ Cs3 for
arguments less than or equal to `(e, s3).

The key point is that n will not enter Bi and hence we have increased the
value of |(X i,s3 ∩ Y j,s3) − Bi,s3| by one since stage s, the beginning of the cycle.
In this way we force |X i − Bi | → ∞. Notice that we only put elements into C
in response to Y j gaining new elements. Moreover, whenever we put elements
into C provided that X i responds by making X i ∪ A ⊇ C (locally), we will later
ensure that Bi ∪ A ⊇ Xi . Of course, for any i ′ 6= i , while we are attacking
some Re,i, j,k we simply make Bi ′ = Xi ′ locally with no effect on Re,i, j,k . Thus
the requirements cohere exactly by a standard application of the bounded injury
priority method.

Finally, observe that adding prompt simplicity has no effect since all the ac-
tions are totally finitary, and any injuries from below are simply dumped into B.
�

We close this paper with one final demonstration that there is no simple re-
lationship between S(A) and previously considered promptness considerations.
The theorem below was stated, without proof, in Downey-Harrington [8].

Theorem 8.10 (Downey and Harrington [8]) Let a be any high degree. There
exist sets A and E in a such that S(A) and ¬S(E).
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Proof. Since Herrmann (and Hemimaximal) sets obey ¬S(E) and exist in
all high degrees, we see a contains a set E satisfying ¬S(E). For A we will use
permitting and high coding. Actually, we first observe that high coding is enough.

Lemma 8.11 Suppose that a < b and a contains a set satisfying S(A). Then so
does b.

Proof. Suppose that S(A) holds with witness C . Then for any set B, S(A⊕B)
holds with witness C ⊕ ∅. �

Recall that to meet the RX via the RX,Y,i we pick x outside of C ∪ A, wait
till x enters Y , put x into C , and wait for x to enter X . At that stage, we would
put x into A (and not B) increasing the count on (X ∩ Y )− B. If we fail to put x
into B, because we are awaiting some permission, then we run the risk of having
x 6∈ A ∪ BX . However it is clear that S(A) holds iff A only meets the definition
of S(A) but with A ∪ B ⊇∗ X in place of A ∪ B ⊇ X . Thus we are okay provided
that we can guarantee that for almost all x following some RX,Y,i , if x enters C
and then X we will put x into A. This is the familiar high permission scenario.

Let D be c.e. with D’s computation function dominant, as in Soare [25], Ch
XI, say Exercise 2.15 (or Theorem 2.1). (That is, Cooper’s proof that each high
c.e. degree bounds a minimal pair.) One can then think of the RX,Y,i separately for
each Y , as trying to eliminate followers from a hole. When x some such follower
x is realized into Y we wait for a normal permission from D to allow us to put
it into C . While we wait we will pick a new follower x ′, etc. Now of course, C
is acting like a gate in a pinball construction. Namely we will wait for x inside
of C to enter X as before. Let x1, x2, ... be the elements arriving into C for the
sake of RX . When xn arrives in C at stage sn we are waiting for tn > sn for xn
to enter X . When this happens we define fX(sn) = tn, and we, as usual, wait for
dv+1

sn
6= dvsn

, precisely as in Soare [25], Ch XI, say Exercise 2.15. If such a stage
occurs then we can put xn into A. We then complete fX to a computable function
by defining fX (z) = 0 if z 6∈ {sn : n ∈ ω}. Then D can always compute the final
position of a follower, since D permission is needed to move a follower. Finally,
the dominance of D makes sure that almost all xn enter A, since fX is computable
and D’s computation function is dominant. �
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