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Abstract. We study the proof–theoretic strength and effective
content of the infinite form of Ramsey’s theorem for pairs. Let
RTn

k denote Ramsey’s theorem for k–colorings of n–element sets,
and let RTn

<∞ denote (∀k)RTn
k . Our main result on computabil-

ity is: For any n ≥ 2 and any computable (recursive) k–coloring of
the n–element sets of natural numbers, there is an infinite homo-
geneous set X with X ′′ ≤T 0(n). Let IΣn and BΣn denote the Σn

induction and bounding schemes, respectively. Adapting the case
n = 2 of the above result (where X is low2) to models of arithmetic
enables us to show that RCA0 + I Σ2 + RT 2

2 is conservative over
RCA0 + I Σ2 for Π1

1 statements and that RCA0 + I Σ3 + RT 2
<∞ is

conservative over RCA0+I Σ3 for arithmetic statements. It follows
that RCA0 + RT 2

2 does not imply B Σ3. We show in contrast that
RCA0 + RT 2

<∞ does imply B Σ3, and so RT 2
<∞ is strictly stronger

than RT 2
2 over RCA0.

1. Introduction

Ramsey’s theorem was discovered by Ramsey [1930] and used by
him to solve a decision problem in logic. Subsequently it has been an
important tool in logic and combinatorics.

Definition 1.1.

(i) [X]n = {Y ⊆ X : |Y | = n}.
(ii) A k–coloring C of [X]n is a function from [X]n into a set of size

k.
(iii) A set H ⊆ X is homogeneous for a k–coloring C of [X]n if C is

constant on [H]n, i.e. all n–element subsets of H are assigned
the same color by C.

1991 Mathematics Subject Classification. Primary 03F35 03C62 03D30 03D80.
Key words and phrases. Ramsey’s Theorem, conservation, reverse mathematics,

recursion theory, computability theory.
Research partially supported NSF Grants DMS-96-3465 (Cholak), DMS-95-

03398 and DMS-98-03073 (Jockusch), and DMS-97-96121 (Slaman).
1



2 P. CHOLAK, C. JOCKUSCH AND T. SLAMAN

Ramsey’s Theorem. For all k and n, every k-coloring of [N]n has
an infinite homogeneous set.

An extensive treatment of Ramsey’s Theorem, emphasizing its fi-
nite version, may be found in Graham, Rothschild and Spencer [1980],
where many related results and applications are also discussed.

There are (at least) two ways to use the tools of mathematical logic
to analyze Ramsey’s theorem. One is via computability theory (or
equivalently recursion theory): Study the complexity (in terms of the
arithmetical hierarchy or degrees) of infinite homogeneous sets for a
coloring C relative to that of C. (For simplicity, we can assume that
C is computable (recursive) and relativize.) The other is via reverse
mathematics : Study the proof–theoretic strength of Ramsey’s theorem
(and its natural special cases) as a formal statement in second order
arithmetic.

There has been much work done along these lines. For example, con-
sider the independent work by Jockusch [1972], Seetapun, and Slaman
(see Seetapun and Slaman [1995]). Our task in this paper is to review
briefly the work that has been done and further this analysis.

Before getting into details we mention two themes in this work that
we would like to make explicit. The first is that results in computability
theory are sometimes the forerunners of results in reverse mathemat-
ics. This is certainly the case for Weak König’s Lemma and almost
all versions of Ramsey’s Theorem. The second theme is the use of
paths through trees, more specifically Weak König’s Lemma, the Low
Basis Theorem, and Scott sets. Almost all of our results use one or
more of these three items in its statement or proof. Whether this use
is necessary is unknown. In Section 2, there is a brief summary of
previous work on the analysis of König’s Lemma and the infinite form
of Ramsey’s Theorem in terms of computability theory and of reverse
mathematics.

Our starting point is the following result, which refutes an old con-
jecture of Jockusch (see Jockusch [1972, Corollary 4.7] or the second
paragraph after Theorem 2.5).

Theorem 3.1. For any computable coloring of the unordered pairs of
natural numbers with finitely many colors, there is an infinite low2

homogeneous set X, i.e., X ′′ ≤T 0′′.

The proof is not simply an effectivization of the standard proof of
Ramsey’s Theorem. Instead, the first step is to restrict the given com-
putable coloring to a low2 r–cohesive set A, which exists by Jockusch
and Stephan [1993], Theorem 2.5. Since for any a the color of the
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pair {a, b} is independent of b for sufficiently large b ∈ A, the color-

ing induces a coloring of [A]1 which is ∆0,A
2 . Then the relativization

to A of the following new result easily yields the desired infinite low2

homogeneous set.

Theorem 3.7. If A1, A2, . . . , An are ∆0
2 sets and ∪ni=1Ai = N, then

some Ai has an infinite low2 subset.

We give two proofs of the above result, with the common elements
of the two proofs presented in Section 3.

The first proof, which was our original proof, is technically easier
since it uses the Low Basis theorem to reduce the problem of control-
ling the second jump of the constructed set to the easier problem of
controlling the first jump of the constructed set. (A similar approach
was used in Jockusch and Stephan [1993] to construct a low2 r–cohesive
set.) In Section 4 we will present this first proof and also, for the con-
venience of the reader, a construction of a low2 r–cohesive set based on
control of the first jump. This “first jump” method also yields inter-
esting additional information on the jumps of degrees of homogeneous
sets (see Section 12).

Our second proof, which will be presented in Section 5, is more
direct and also somewhat more complicated. It proceeds by direct
control of the second jump of the constructed set. It gives no additional
information on degrees of homogeneous sets, and the reader interested
only in the computability aspect of this paper could well omit reading
it. We also give a construction of a low2 r-cohesive set using direct
control of the second jump. As above, this is more complicated than
the construction used in Jockusch and Stephan [1993]. The reason for
giving these more involved constructions is that they seem to be more
suitable to adapting to models of arithmetic to obtain results in reverse
mathematics as described below.

In Section 6, we quickly introduce the reader to second order arith-
metic. (The reader unfamiliar with second order arithmetic may want
to start there.) A listing of the needed statements of second order arith-
metic and the relationships among them can be found in Section 7. We
will assume that the reader is somewhat familiar with computability
theory; a good introduction is Soare [1987]. In Section 8, we discuss
some results concerning Weak König’s Lemma; a reasonable portion of
this section was known previously but much of it is new.

Sections 9–11 present our conservation theorems for Ramsey’s The-
orem for pairs and related principles. Let X → [X]nk be the statement
“every k-coloring of [X]n has an infinite homogeneous set.” Thus, Ram-
sey’s Theorem states for all k and n, N→ [N]nk . RT n

k is the statement
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in the language of second order arithmetic “for all k-colorings of [N]n

there is an infinite homogeneous set H.”
We adapt the forcing used in the “second jump” constructions to

models of arithmetic to produce a notion of forcing for adding infinite
homogeneous sets to models of second order arithmetic while preserving
the appropriate level of induction. We were led to this notion of forcing
by a conjecture of Slaman (see Conjecture 2.10 or Seetapun and Slaman
[1995]). (We do not know how to do this for the “first jump” proofs.)
Using this notion of forcing we obtain the following result.

Theorem 10.1. RCA0+I Σ2+RT 2
2 is Π1

1-conservative over RCA0+I Σ2.

This means that any Π1
1 statement provable from RCA0 +I Σ2 +RT 2

2

is provable from just RCA0 + I Σ2. The following corollary answers the
second part of Seetapun and Slaman [1995, Question4.3].

Corollary 1.2. RT 2
2 does not imply PA over RCA0.

This improves Seetapun’s result (see Seetapun and Slaman [1995])
that RT 2

2 does not imply ACA0 over RCA0. In the same paper, Slaman
showed in Theorem 3.6 that RCA0 + RT 2

2 is not Π0
4–conservative over

RCA0.
It turned out that our proof–theoretic results (but not the corre-

sponding results in computability theory) are sensitive to whether our
colorings use two colors or an arbitrary finite number of colors.
X → [ω]n<∞ is the statement that “for all k, for all k-colorings of

[X]n there is an infinite homogeneous set.” Ramsey’s Theorem implies
for all k and n, N → [ω]n<∞. RT n

<∞ is the statement in the language
of second order arithmetic “for all k, for all k-colorings of [N]n there is
an infinite homogeneous set H.”

Using a modification of the above mentioned notion of forcing (work-
ing over a Scott set), we proved the following result.

Theorem 11.1. RCA0 + I Σ3 + RT 2
<∞ + Weak König’s Lemma is

conservative over RCA0 + I Σ3 for arithmetic statements.

Thus any arithmetic statement provable from RCA0+I Σ3+RT 2
<∞+

Weak König’s Lemma is provable from just RCA0 + I Σ3. So RT 2
<∞

does not imply PA over RCA0. In addition, we improve some work of
Mytilinaios and Slaman [1994] to obtain the following result.

Corollary 11.5. RCA0 + RT 2
<∞ ` B Σ3.

Since I Σ2 is stricter weaker than B Σ3 (over RCA0) (see Kaye [1991]
or Hájek and Pudlák [1993]), it follows that RT 2

2 does not imply RT 2
<∞

over RCA0.
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Theorem 3.1 also leads to further results on computability and Ram-
sey’s theorem which are covered in Section 12. For example, the fol-
lowing result is obtained for colorings of n–tuples:

Theorem 12.1. For each n ≥ 2 and each computable 2-coloring of
[N]n, there is an infinite homogeneous set A with A′′ ≤T 0(n).

Other results on computability include a characterization of the de-
grees d such that every computable 2–coloring of [N]2 has an infinite
homogeneous set with jump of degree d (Corollary 12.6) and a result
combining cone avoidance with some control of the first jump of an
infinite homogeneous set (Theorem 12.2).

We do not succeed in obtaining a complete understanding of the
proof–theoretic strength of Ramsey’s theorem for pairs or of the degrees
of infinite homogeneous sets for computable 2–colorings of pairs. A
number of open questions are listed in the final section.

One theme of this paper is the close relationship between results in
computability theory and results in reverse mathematics. Of course,
this relationship has turned up in many other contexts, too. We hope
that readers will be interested in both aspects of this paper. However,
the reader interested only in the computability aspect need read only
Sections 1–4 and 12–13. The reader interested only in the reverse
mathematics aspect need read only Sections 1–3, 5–11, and 13.

2. History

This paper continues a stream of work on analysis of the effective
content of mathematical statements and corresponding work on the
strength of these statements within second order arithmetic. Here we
give a brief summary of some closely related previous work in this area.
For further information, see Simpson [1999].

See Section 6 for a summary of the subsystems of second–order arith-
metic we shall consider. More extensive treatments may be found in
Friedman [1975] and Simpson [1999]. Here we briefly remind the reader
that our base theory is RCA0, which is based on algebraic axioms and
the schemes of ∆0

1–comprehension and Σ1 induction. The ω–models of
RCA0 are those nonempty subsets of P(N) closed under ⊕ and closed
downwards under ≤T . The stronger system ACA0 includes the arith-
metic comprehension scheme ACA. The ω–models of ACA0 are the ω
models of RCA0 which are closed under the jump operation.

Before getting to the analysis of Ramsey’s theorem, we consider
König’s lemma, which in fact will play an important role in this pa-
per. Of course, König’s lemma is the assertion that any infinite, finite
branching tree has an infinite path. We shall actually be concerned
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with the case where there is an effective bound on the branching. Let
Weak König’s Lemma be the assertion that every infinite tree in 2<ω

has an infinite path, and let WKL0 be RCA0+ Weak König’s Lemma .
It is easy to construct infinite computable trees in 2<ω with no infinite

computable paths, using, for example, the existence of disjoint com-
putably enumerable sets which are not separable by any computable
set. From this it follows that Weak König’s Lemma cannot be proved
in RCA0.

In the other direction G. Kreisel proved the Kreisel basis theorem:
Any infinite computable tree in 2<ω has an infinite path computable
from the halting problem 0′. The corresponding result in reverse math-
ematics, due to Steve Simpson, is that Weak König’s Lemma can be
proved in the system ACA0.

Theorem 2.1 (Jockusch and Soare [1972]). For any noncomputable
sets C0, C1, . . . and any infinite computable tree T ⊆ 2<ω there is an
infinite path f through T such that (∀i)[Ci 6≤T f ].

The corresponding result in reverse mathematics is the following.

Corollary 2.2 (Simpson [1999]). Arithmetic Comprehenson is not
provable in WKL0.

The following result, due to Jockusch and Soare, is known as the
Low Basis Theorem.

Theorem 8.1. Jockusch and Soare [1972], Theorem 2.1 Any infinite
computable tree in 2<ω has an infinite low path f , i.e., f ′ ≤T 0′.

The forcing conditions used to prove the above result are trees, and
this forcing was adapted by Leo Harrington to obtain the following
result.

Theorem 8.4. (Harrington, see Simpson [1999]). Any Π1
1 statement

provable from WKL0 is provable from just RCA0.

Since Σ2 induction (without parameters) is not provable in RCA0 (see
Hájek and Pudlák [1993]), it follows that Σ2–induction is not provable
from WKL0.

We now consider the analysis of Ramsey’s Theorem. The first re-
sult concerning the effective content of the infinite form of Ramsey’s
Theorem was obtained in Specker [1971].

Theorem 2.3 (Specker [1971]). There is a computable 2–coloring of
[N]2 with no infinite computable homogeneous set.

Since the family of computable sets is an ω–model of RCA0, there is
an immediate corollary.
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Corollary 2.4 (Specker [1971]). RT 2
2 is not provable in RCA0.

The next work in the area was due to Jockusch.

Theorem 2.5 (Jockusch [1972]).

(i) For any n and k, any computable k–coloring of [N]n has an
infinite Π0

n homogeneous set.
(ii) For any n ≥ 2, there is a computable 2–coloring of [N]n which

has no infinite Σ0
n homogeneous set.

(iii) For any n and k and any computable k–coloring of [N]n, there
is an infinite homogeneous set A with A′ ≤T 0(n).

(iv) For each n ≥ 2, there is a computable 2–coloring of [N]n such
that 0(n−2) ≤T A for each infinite homogeneous set A.

The first part was proved by induction on n, using a finite injury
priority argument for the case n = 2 and the Low Basis theorem for
the induction step. Note that there is a slight gap between the third
and fourth items.

Fix a 2-coloring of [N]2. The third item tells us that there is an
infinite homogeneous set A such that A′ ≤T 0′′. Jockusch [1972] con-
jectured that this cannot be improved to give the existence of an infinite
homogeneous set A such that A′′ ≤T 0′′. By Theorem 3.1, we now know
that this conjecture was false.

Simpson obtained results in reverse mathematics which are related
to Theorem 2.5.

Corollary 2.6 (Simpson [1999]).

(i) For each n ≥ 3 and k ≥ 2 (both n and k fixed), the statements
RT n

k and RT n
<∞ are equivalent to ACA0 over RCA0.

(ii) The statement RT is not provable in ACA0.
(iii) RT does not prove ATR0.
(iv) ATR0 proves RT . (Actually there are stronger results along this

line in Simpson [1999].)

Sketch of the proof: i. Fix n ≥ 3. A relativized version of Theorem 2.5
iv “says” that any model of RCA0+RT n

2 must be closed under the jump
operator. Hence any such model must contain all sets arithmetically
definable from the reals in it.

A relativized version of Theorem 2.5 i “says” that every coloring of n-
tuples has a homogeneous set which is arithmetic in the coloring. Hence
in any model of ACA0 every coloring of n-tuples has a homogeneous
set.

ii. A relativized version of Theorem 2.5 iv “says” that any model of
RT n

2 is closed under the (n− 2)-jump. But one can find non–standard
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models of ACA0 which are not closed under the (n)-jump for any non-
standard integer n.

iii. The family of all arithmetic sets is an ω–model of ACA0 + RT .
Since this is not a model of ATR0, the claim follows.

iv. Any model of ATR0 is closed under the (n)-jump, for any n in
the model. Theorem 2.5 ii “says” that every k-coloring of [X]n has a
homogeneous set which is Turing reducible to X(n). If X is inM then
X(n) is in M and therefore a homogeneous set for the above coloring
is in M. �

This is how things stood for twenty years. During that time, the
strength of RT 2

2 remained a mystery. Sometimes this was phrased
as the “3-2” question: is RT 2

2 equivalent to RT 3
2 (over RCA0)? In

ground–breaking work, D. Seetapun answered this question negatively
by obtaining the following result.

Theorem 2.7 (Seetapun and Slaman [1995]). For any computable 2–
coloring C of [N]2 and any noncomputable sets C0, C1, . . . , there is an
infinite homogeneous set X such that (∀i)[Ci 6≤T X].

This allowed Seetapun to construct an ω–model of RCA0 + RT 2
2

which was not closed under the jump operator and hence deduce the
following corollary.

Corollary 2.8 (Seetapun and Slaman [1995]). In RCA0, RT 2
2 does

not imply ACA0. Hence, over RCA0, RT 2
2 is strictly weaker than RT 3

2.

In the same paper, Slaman obtained the following result going in the
opposite direction.

Theorem 2.9 (Seetapun and Slaman [1995]). RT 2
2 is not Π0

4-conservative
over RCA0.

This is what was known up to the time of our work. Note that
the series of results on Ramsey’s theorem for pairs is somewhat paral-
lel to the results for Weak König’s Lemma. In particular, Seetapun’s
Theorem 2.7 and its corollary that RT 2

2 does not imply ACA0 (Corol-
lary 2.8) are analogous, to the Jockusch–Soare cone avoidance theorem
for Π0

1–classes (Theorem 2.1) and its corollary that WKL0 is strictly
weaker than ACA0 (Corollary 2.2), respectively. However, in this his-
torical survey there is no analogue for Ramsey’s theorem mentioned for
the Low Basis Theorem and Harrington’s Π1

1 conservation theorem for
WKL0, Theorem 8.4. It is the analog between Weak König’s Lemma
and Ramsey’s theorem, which led Slaman to make the following con-
jecture.
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Conjecture 2.10 (Seetapun and Slaman [1995]). Any proof that ev-
ery computable 2-coloring of [N]2 has an infinite homogeneous lown

set should lead to a proof that RCA0 + RT 2
2 is Π1

1-conservative over
RCA0 + I Σn.

It is the main purpose of this paper to confirm Slaman’s conjecture by
supplying the analogues of the Low Basis Theorem and Harrington’s
Π1

1 conservation theorem for WKL0 for Ramsey’s Theorem, namely
Theorems 3.1, 10.2, and 11.1.

3. Low2 Homogeneous Sets

The goal of this section is to outline the structure of the proof of the
following theorem. For reasons stated in the introduction, we will ac-
tually give two proofs of this result. The two proofs, although differing
considerably in their details, will both have the structure outlined in
this section.

Theorem 3.1. For any computable k–coloring of [N]2, there is an in-
finite homogeneous set X which is low2 (i.e., X ′′ ≤T 0′′).

Our proof of this theorem is somewhat indirect. The following defi-
nition will play a key role.

Definition 3.2. An infinite set X is r-cohesive if for each computable
set R, X ⊆∗ R or X ⊆∗ R. An infinite set is p-cohesive if the above
holds for each primitive recursive set R.

Theorem 3.3 (Jockusch and Stephan [1993]). There exists a low2 r-
cohesive set.

A proof of this result can be found in Jockusch and Stephan [1993],
Theorem 2.5, although the proof presented there has an error which is
corrected in Jockusch and Stephan [1997]. We will present a “single
jump control” proof of this theorem in Section 4 and a “double jump
control” proof of this theorem in Section 5.

The reason for considering r–cohesive sets is that if X is r–cohesive
and C is a 2–coloring of [X]2, then the restriction of C to [X]2 is stable
in the sense of the following definition.

Definition 3.4. A k–coloring of [X]2 is called stable if for each a ∈ X,
the pair {a, b} has a fixed color ca for all sufficiently large b ∈ X (i.e.,
there is a da such that for all b greater than da with b ∈ X, the color
of {a, b} is ca).

Stable colorings were considered in Hummel [1994] and play a crucial
role in Hummel and Jockusch [n.d.].
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Now any computable k–coloring of pairs becomes stable when it is
restricted to an r-cohesive set X. (Fix i. The sets Rc = {j : {i, j}
has color c} are computable and partition N−{i} as c ranges over the
colors. Since X is r–cohesive, there exists a color c such that X ⊆∗ Rc.
Thus the color of {i, j} is independent of j for all sufficiently large
j ∈ X.) Thus, using Theorem 3.3, if we can prove that every stable
k-coloring of [N]2 has an infinite low2 homogeneous set, the result for
arbitrary computable k-colorings of [N]2 follows by relativization. (Any
set which is low2 relative to a low2 set is low2.)

The problem of finding homogeneous sets for computable stable col-
orings of pairs is easily reduced, by the Limit Lemma, to the problem
of finding homogeneous sets for ∆0

2 colorings of 1-tuples.

Lemma 3.5. For any computable stable k-coloring C of [N]2, there are
k disjoint ∆0

2 sets Ai such that
⊔
i<k Ai = N and any infinite subset of

any Ai computes an infinite homogeneous set for C.

Proof. Let Ai = {a : limb C({a, b}) = i}. Suppose that B is an infinite
subset of Ai. Define ck by recursion as the least c ∈ B such that, for
all j < k, c > cj and C({cj, c}) = i. Then {ci : i ∈ N} is the desired
infinite set C such that C is homogeneous for C and C ≤T B. �

The following results (relativized to a low2 r-cohesive set) will com-
plete the proof that each computable k-coloring of pairs has an infinite
low2 homogeneous set. (The first is a special case of the second.)

Theorem 3.6. For each ∆0
2 set A there is an infinite low2 set G which

is contained in A or A.

Theorem 3.7. Let {Ai}i<k be k disjoint ∆0
2 sets such that

⊔
i<k Ai = N.

Then for some k, there is an infinite low2 set G which is contained in
Ak.

These results will be proved by “single jump control” in Section 4
and by “double jump control” in Section 5.

Before we proceed, we should note that Theorem 3.7 follows by in-
duction from Theorem 3.6. (Let {Ai}i<k+1 be k + 1 disjoint ∆0

2 sets
such that

⊔
i<k+1Ai = N. Let A = Ak. Apply Theorem 3.6. If there is

a low2 subset of A = Ak, we are done. Otherwise apply the relativized
(to the set G) version of the induction hypothesis (i.e., Theorem 3.7)
to {Ai ∩G}i<k.) But as we will later see (Theorem 11.4) this does not
hold for models of arithmetic; the statement of Theorem 3.6, D2

2, in
second order arithmetic does not imply the statement of Theorem 3.7,
D2
<∞. For this reason we will show, in Section 5.3, how to alter the

forcing proof of Theorem 3.6 to get a proof of Theorem 3.7.
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We now complete the proof of Theorem 3.1, assuming Theorems 3.3
and 3.7. The idea is that the existence of a low2 r–cohesive set allows
us to restrict attention to computable stable partitions of pairs, which
are basically the same as ∆0

2 partitions of 1–tuples, and these have
infinite low2 homogeneous sets by Theorem 3.7. In more detail, let a
computable k–coloring C of [N ]2 be given. Let X be a low2 r–cohesive
set, and let f be the unique increasing function with range X. Define
an X–computable coloring C1 of [N ]2 by C1({a, b} = C({f(a), f(b)}).
Then, since the restriction of C to [X]2 is stable, as remarked above, the
coloring C1 is a stable k–coloring of [N ]2. By Theorem 3.5 relativized
to X there are sets A0, . . . Ak−1 with ∪i<kAi = N such that each Ai is
∆0,X

2 and for any infinite set B contained in any Ai, there is an infinite
homogeneous set H for C1 such that H ≤T X ⊕ B. By Theorem 3.7
relativized to X, there exists i < k such that Ai has an infinite subset
B with (X ⊕ B)′′ ≤T X ′′. Let H be a homogeneous set for C1 with
H ≤T X⊕B, and let H∗ = f(H). Then H∗ is infinite and homogeneous
for C, and (H∗)′′ ≤T (X ⊕ B)′′ ≤T X ′′ ≤T 0′′, so H∗ is the desired
infinite low2 homogeneous set for C.

4. Constructing low2 sets by first jump control

In this section, we prove Theorems 3.3 and 3.6 by constructing sets A
with A′ of degree at most d where d is an appropriately chosen degree
satisfying d′ ≤ 0′′. Here “appropriately chosen” means that d >> 0′,
where the relation >> is defined as follows.

Definition 4.1. Let a and b be degrees. Then a >> b means that
every b–computable {0, 1}–valued partial function has a total a–
computable extension.

The notation >> was defined and studied in Simpson [1977, pp. 652–
653]. Actually, Simpson defined a >> b to mean that each infinite b–
computable tree in 2<ω has an infinite a–computable path. We will see
in Section 8 that this is equivalent to the above definition.

We immediately have the following implications:

a ≥ b′ ⇒ a >> b⇒ a > b

Also, for each degree b there is a degree a >> b such that a′ = b′. To
prove this, consider the case where b = 0 and then relativize the result
to b. Let P be the class of all {0, 1}–valued (total) functions f such
that f(〈e, i〉) = ϕe(i) whenever ϕe(i) ↓≤ 1. Then P is a nonempty
Π0

1 subset of 2ω, so by the Low Basis Theorem there is a low degree b
which contains a function f ∈ P . Clearly b >> 0.
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Of course, it is possible to decide the truth of a given Π0
2 sentence in

the integers using a 0′′–oracle. The following lemma shows that a d–
oracle has a somewhat weaker property, which will however be sufficient
for our construction. It is related to the concept of semirecursiveness
studied in Jockusch [1968].

Lemma 4.2. Suppose that d >> 0′ and that (γe,0, γe,1)e∈ω is an ef-
fective enumeration of all ordered pairs of Π0

2 sentences of first–order
arithmetic. Then there is a d–computable {0, 1}–valued (total) function
f such that γe,f(e) is true whenever γe,0 or γe,1 is true.

Proof. Let R(e, i, s) be a 0′-computable predicate such that, for all
e ∈ ω and i ≤ 1, γe.i is true iff (∀s)R(e, i, s) holds. Let δ(e) be the least
s such that either R(e, 0, s) or R(e, 1, s) is false, if such an s exists, and
otherwise δ(e) is undefined. Let θ(e) = 1− i, where i is minimal such
that R(e, i, δ(e)) is false, provided δ(e) is defined, and θ(e) is undefined
otherwise. Then θ is a 0′–computable {0, 1}–valued partial function
and so has a b–computable total extension f . This f satisfies the
conclusion of the lemma. �

4.1. Constructing a low2 r-cohesive set using first jump con-
trol. The following theorem easily implies Theorem 3.3 (see Corol-
lary 4.5).

Theorem 4.3 (Jockusch and Stephan [1993]). Suppose that the sets
R0, R1, . . . are uniformly computable, and suppose that d >> 0′. Then
there is an infinite set G such that G′ has degree at most d, and for
all e, either G ⊆∗ Re or G ⊆∗ Re.

Proof. The set G is constructed using forcing conditions of the form
(D,L), where D is a finite set, L is an infinite computable set, and
every element of D is less than every element of L. (These are com-
putable Mathias conditions.) A set G satisfies such a condition (D,L)
if D ⊆ G ⊆ D ∪ L. The requirements to be satisfied are the following:

S3e : |G| ≥ e

S3e+1 : G ⊆∗ Re or G ⊆∗ Re

S3e+2 : G′(e) is determined during the construction

An index of a condition (D,L) is a pair (a, b) such that a is a canonical
index of the finite set D and b is an index of the characteristic function
of L.

The set G is constructed by iterating the following lemma, which
says that our requirements are d–effectively dense.
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Lemma 4.4. For any condition (D,L) and number s, there is a con-
dition (D∗, L∗) extending (D,L) such that every set which satisfies
(D∗, L∗) satisfies the requirement Ss. Furthermore, an index of (D∗, L∗)
may be d–effectively computed from s and an index of (D,L). (If
s = 3e + 2, this means that G′(i) has the same value for all G sat-
isfying (D∗, L∗), and this value is computed d–effectively.)

Proof. The case s = 3e is handled by ensuring that |D∗| ≥ e. To handle
the case s = 3e + 1, consider the statements “L ∩ Re is infinite” and
“L∩Re is infinite.” These are Π0

2 statements whose indices as such may
be effectively computed from an index of (D,L) and the value of e. At
least one of these statements is true since L is infinite. By Lemma 4.2,
we may d–effectively select one of these statements which is true. If we
select “L∩Re is infinite”, let (D∗, L∗) = (D,L∩Re), and otherwise let
(D∗, L∗) = (D,L∩Re). Clearly, (D∗, L∗) is a condition with the desired
property in either case and is obtained d–effectively. Finally, consider
the case where s = 3e+2. Ask whether there is a finite set F satisfying
(D,L) such that e ∈ F ′. This is a Σ0

1 question of known index, so it can
be answered effectively relative to 0′ and hence relative to d. If there is,
let F be one of least index, and let u be the least number which exceeds
all elements of F and the use of the computation showing that e ∈ F ′.
Let (D∗, L∗) = (F, {x ∈ L : x > u}), which is obviously a condition.
Then e ∈ G′ (with the same computation) for all G satisfying (D∗, L∗).
Finally, if there is no such F , let (D∗, L∗) = (D,L). In this case,
e /∈ G′ for all G satisfying (D,L) since convergent computations use
only finitely much oracle information. �

Theorem 4.3 is now deduced from Lemma 4.4 using the standard
generic set construction, carried out in a d–effective fashion. Let
(D0, L0) = (∅,N). Given (Di, Li), obtain (Di+1, Li+1) by applying
Lemma 4.4 to (Di, Li) and the requirement Si. Then G = ∪iDi is
the desired set. �

Corollary 4.5 (Jockusch and Stephan [1993]). If d >> 0′, there is
an r–cohesive set G such that G′ is of degree d.

Proof. Let c be a low degree with c >> 0, so that there is an uni-
formly c–computable sequence of sets containing all computable sets
(and perhaps more). Apply Theorem 4.3 relativized to c to obtain an
r–cohesive set G0 whose degree is at most d. By the Friedberg com-
pleteness criterion, there is a degree a ≥ deg(G) such that a′ = d, and
there is an r–cohesive set G of degree a by the upward closure of the
r–cohesive degrees (see Jockusch [1973, Corollary 1]). �
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4.2. A proof of Theorem 3.6 using first jump control. Fix a
degree d >> 0′ and a ∆0

2 set A. We show that there is an infinite set
X which is contained in or disjoint from A such that X ′ has degree at
most d. By choosing d such that d′ ≤ 0′′, we obtain a low2 set X such
that X is contained in or disjoint from A. This proves Theorem 3.6
for k = 2 and, as mentioned in Section 3, the more general result
Theorem 3.7 then follows easily by induction on k.

We will build a suitably generic set G such that G∩A and G∩A are
both infinite and such that at least one of these sets has a d–computable
jump. We assume without loss of generality that neither A nor A has
an infinite low subset. The set G will satisfy the following conditions:
R2e : |G ∩ A| ≥ e and |G ∩ A| ≥ e
R2〈e,i〉+1 : Either (G ∩ A)′(e) or (G ∩ A)′(i) is decided during the

construction.
The set G is constructed using conditions (D,L) where D is a finite

set, L is an infinite low set, and every element of D is less than every
element of L. (We could have used such conditions also in the previous
subsection.) Call (a, b) an index of a condition (D,L) if a is a canonical
index of D and b is a lowness index of L, i.e., L′ = {b}K . Define as
in the proof of Theorem 4.3 what it means for one condition to extend
another and what it means for a set to satisfy a condition. The following
lemma shows that the conditions forcing a given requirement Re to be
satisfied are d–effectively dense.

Lemma 4.6. Given a condition (D,L) and a number s, there is a
condition (D∗, L∗) extending (D,L) such that every set which satis-
fies (D∗, L∗) satisfies the requirement Rs. Furthermore, an index of
(D∗, L∗) may be d–effectively computed from s and an index of (D,L).
(If s = 2〈e, i〉+1, this means that either (G∩A)′(e) has the same value
for all G satisfying (D∗, L∗), or (G ∩ A)′(i) has the same value for all
G satisfying (D∗, L∗). Furthermore, one can determine d–effectively
which of these two cases applies and what the common value is.)

Proof. If s = 2e the result is easily proved from the assumption that L
has infinite intersection with A and with A.

Assume now that s = 2〈e, i〉 + 1. We now use a technique which is
fundamental for this paper. We consider partitions of L into pieces,
each of which satisfies our requirement. However, we do not require
that the pieces be infinite, since this would introduce too high a level
of quantifier complexity.

Let (D̂, L̂) be a pair of sets such that D̂ is finite and every element

of D̂ is less than every element of L̂. However, there is no requirement
that L̂ be infinite or low. We say that (D̂, L̂) forces e /∈ G′ if there is no
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finite set F which satisfies (D̂, L̂) with e ∈ F ′. Here satisfies is defined

as for conditions, i.e., D̂ ⊆ F ⊆ D̂ ∪ L̂.
Define the predicate P (Z) to hold if Z ⊆ L, (D∩A,Z) forces e /∈ G′,

and (D ∩ A,L− Z) forces i /∈ G′.
Note that P is a Π0,L

1 –predicate. An index of P as such a predicate
may be computed effectively from a canonical index of the finite set
D ∩ A and hence effectively from 0′ and a canonical index of D.

Case 1: P (Z) holds for some Z.
By the Low Basis Theorem relative to L, there is a Z such that P (Z)

holds and Z ⊕ L is low over L and hence low. Fix such a Z. We may
assume that we have a lowness index for Z ⊕L, by the effectiveness of
the proof of the Low Basis Theorem and the fact that we are given a
lowness index for L. Consider now the statements “Z is infinite” and
“L−Z is infinite.” Since L is infinite, at least one of these statements
is true. Further these are Π0,L⊕Z

2 –statements and hence Π0
2-statements,

since L⊕Z is low, and Π0
2–indices of the statements may be computed

effectively from a lowness index of L⊕Z, a canonical index of D, and an
index of P as a Π0,L

1 –predicate. Since d >> 0′, by Lemma 4.2 we can
d–effectively select one of the statements which is true. If we select
“Z is infinite,” let (D∗, L∗) = (D,Z), which is clearly a condition.
Then e /∈ (G ∩ A)′ holds for all G satisfying (D∗, L∗) since convergent
computations have a finite use. Similarly, if we select “L−Z is infinite”,
let (D∗, L∗) = (D,L − Z) and note that k /∈ (G ∩ A)′ holds for all G
satisfying (D∗, L∗).

Case 2: P (Z) does not hold for any Z.
Then in particular P (L ∩ A) is false, and so there exists a finite set

F such that either

(1) F satisfies (D ∩ A,L ∩ A) and e ∈ F ′, or
(2) F satisfies (D ∩ A,L ∩ A) and i ∈ F ′.

Search for such a finite set F . (This can be done effectively in 0′

since A is ∆0
2.) For the first such F which is found, let u denote the

use of the computation showing that e ∈ F ′ (if (i) applies), or i ∈ F ′
(if (ii) applies), and let m be the least number which exceeds u and all
elements of F . Let (D∗, F ∗) = (D ∪ F, {z ∈ L : z > m}). If (i) holds
and G satisfies (D,L), then G∩A satisfies (D∩A,L∩A) so e ∈ (G∩A)′.
Analogous comments (with e replaced by i and A replaced by A) apply
if (ii) holds.

The completes the construction of (D∗, L∗). Note that an index for
(D∗, L∗) can be found d–effectively since the distinction between Cases
1 and 2 is L′–effective (and hence computable from K) and the action
within each case can be carried out using d and K. �
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The previous lemma is iterated as in the proof of Theorem 3.3 to
produce a d–effective sequence of conditions (D0, L0), (D1, L1), . . . such
that (Di+1, Li+1) extends (Di, Li) for all i, and all sets G satisfying
(Di, Li) also satisfy the requirement Ri. Let G = ∪iDi. Clearly G ∩A
and G ∩ A are infinite. Further, for each pair (e, k) the construction
decides the value of (G ∩ A)′(e) or of (G ∩ A)′(k). It follows that the
process either decides the value of (G ∩ A)′(e) for all e, or it decides
the value of (G∩A)′(k) for all k. In the first case, (G∩A)′ has degree
at most d, and in the second case (G ∩ A)′ has degree at most d.

5. Constructing Low2 sets using second jump control

We now present the proofs of Theorems 3.3 and 3.6 using direct
control of the second jump. As explained in the introduction, it is these
proofs which will be adapted to models of second order arithmetic to
obtain our conservation results for Ramsey’s theorem.

5.1. Constructing a low2 r-cohesive set using second jump con-
trol. We must construct a low2 r–cohesive set G.

We build G by forcing with conditions (D,L) in which D is a finite
set and L is an infinite low set such that every element of D is less
than every element of L. These are the same conditions used to prove
Theorem 3.6 in Section 4.2 and the same definition of “extends” and
“satisfies” applies here. Let R0, R1, . . . be a listing of all computable
sets such that an index of the characteristic function of Re can be
0′′–effectively computed from e. Let σ0(G), σ1(G), . . . be an effective
enumeration of all Σ0

2 formulas having no free variable other than G.
The requirements are the following:

S3e : |G| ≥ e

S3e+1 : G ⊆ Re or G ⊆ Re

S3e+2 : σe(G) is decided during the construction

As in Section 4 any sufficiently generic G for these forcing conditions
is r–cohesive. However, it would seem that these conditions are not
appropriate for constructing a low2 set since every sufficiently generic
set G is high, i.e., 0′′ ≤T G′. To see this, note that for any condition
(D,L) and any computable function f there is a condition (D∗, L∗) ex-
tending (D,L) such that any set G which satisfies (D∗, L∗) is such that
pG (the principal function of G) dominates f . Hence any sufficiently
generic set for these conditions dominates all computable functions and
so is high. (As remarked in Seetapun and Slaman [1995, p. 580] the
forcing conditions used by Seetapun to prove Theorem 2.7 also have
high generic sets.)
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So how can such conditions be used to produce a low2 set? In the
proof of Theorem 3.3 in Section 4.1, the answer is that the construc-
tion must be d–effective (where d is a given degree satisfying d >> 0′)
and there is no reason to think that a condition (D∗, L∗) forcing pG to
dominate f as above can be obtained d–effectively. However, our cur-
rent construction is only a 0′′–computable construction, and (D∗, L∗)
as above can be obtained 0′′–effectively. Thus, we cannot expect the
analogue of Lemma 4.4 (replacing d by 0′′) to hold. Instead we use
a modified notion of forcing in which a condition not only involves a
pair (D,L) but also a “largeness” constraint. The generic sets will
still be r–cohesive. However, the above argument that generic sets are
high disappears because there is no “large” extension (D∗, L∗) of (D,L)
forcing pG to dominate f . This will be explained in more detail later.

5.1.1. Deciding one Σ0
2-formula (∃~x)ϕ(~x,G). We are given a condition

(D,L) and want to extend it in order to decide (∃~x)ϕ(~x,G) (possibly
imposing a “largeness restriction” on all future conditions used in the
construction).

Definition 5.1. Let (D,L) be a condition.

(i) Let τ be a string and let θ(G) be a ∆0
0 formula. We say that

τ forces θ(G) if the truth of θ(G) follows from G extending τ .
More formally, this is defined by recursion in the standard man-
ner. For example, a string τ forces the atomic formula n ∈ G iff
τ(n) = 1, and τ forces n /∈ G iff τ(n) = 0. The recursion then
mirrors the definition of truth, except that negations are first
“driven inwards” so that they apply only to atomic formulas.

(ii) (D,L) forces a Π0
1 formula ϕ(G) if ϕ(D ∪F ) holds for all finite

subsets F of L.
(iii) Let the Π0

1 formula ϕ(G) be (∀~x)θ(G,~x), where θ(G,~x) is a ∆0
0

formula. Then (D,L) forces ¬ϕ(G) if there is a tuple of ~w of
numbers and a binary string τ such that (D,L) extends τ and
τ forces ¬θ(G, ~w). Here, to say that (D,L) extends τ means
that τ−1(1) ⊆ D and τ−1(0) ⊆ D ∪ L.

We extend the above definition without change to pairs (D,L) which
are not necessarily conditions, as it does not require that L be low or
infinite. However, whenever we discuss pairs (D,L), it will be the case
that D is finite and every element of D is less than every element of L.
It need not always be true that L is infinite or low.

Note that if (D,L) forces a Π0
1 sentence ϕ(G), then ϕ(G) holds for

all G which satisfy (D,L), since the failure of ϕ(G) to hold uses only
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finitely much information about G. An analogous remark holds for
forcing of negations of Π0

1 formulas.
Let (D,L) and (D∗, L∗) be conditions. Say that (D∗, L∗) is a finite

extension of (D,L) if (D∗, L∗) extends (D,L) and L−L∗ is finite. Note
that if (D,L) is a condition which does not force a Π0

1 formula ϕ(G),
then there is a condition (D∗, L∗) which is a finite extension of (D,L)
and forces ¬ϕ(G).

We look for a finite partition of L and a finite collection of finite
extensions of D in which each element of the partition forces some ~w to
be a witness to (∃~x)ϕ(~x,G). That is, we look for sequences (~wi : i < n)
and (Di, Li : i < n) such that the Li are a partition of L; for each i,
D ⊆ Di ⊂ D ∪ L; for each i, every element of Di is less than every
element of Li; and for each i, either Li has no element greater than
max(~wi) or (Di, Li) forces ϕ(~wi, G). (There is no requirement that the
Li’s be low or infinite.)

If such a collection exists, we can view a real Z as representing such
a collection, in which case the above clauses make a Π0,L

1 property of
Z (fixing n, the set (~wi : i < n) and the finite sets (Di : i < n)
beforehand).

Now, if there is a collection as above, then, by the Low Basis Theorem
relative to L, there is Z representing such a collection which is low
relative to L and hence low. Fix such a Z. Then all the Li’s it encodes
are low and, since L is infinite, at least one Li is infinite. It follows that
for some i < n, (Di, Li) is a condition extending (D,L) and forcing
ϕ(~wi, G). It is easily seen for such an i that every set G satisfying
(Di, Li) satisfies the formula (∃~x)ϕ(~x,G). If such a collection exists,
we call the condition (D,L) small, and otherwise we call (D,L) large.

On the other hand, suppose that there is no such collection, so that
(D,L) is large. Then we have to ensure (∀~x)¬ϕ(~x,G). To do this, we
require that all conditions chosen in the remainder of the construction
be large. Let (Ds, Ls) be a large condition chosen at a future stage,
and suppose at this stage we wish to ensure that ¬ϕ(~w,G) holds for
a particular tuple ~w by extending (Ds, Ls). Since (Ds, Ls) is large,
it does not force ϕ(~w,G). Then, as remarked after Definition 5.1,
(Ds, Ls) has a finite extension (D∗, L∗) which forces ¬ϕ(~w,G). It is
easily seen that any finite extension of a large condition is large. Thus,
by maintaining largeness and systematically considering all choices of
~w at future stages, we can ensure (∀~x)¬ϕ(~x,G).

Now, we must also maintain largeness when we extend to meet
the appropriate dense sets for r-cohesiveness. The requirements that
|G| ≥ n are met using finite extensions and so largeness is preserved.
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Also if R is a computable set then either (D,L ∩ R) or (D,L ∩ R) is
a large condition. (If both of these are small, the partitions of L wit-
nessing the smallness of (D,L∩R) and (D,L∩R) could be combined
in the obvious way to obtain a partition witnessing the smallness of
(D,L).) Furthermore, the construction can be carried out computably
in 0′′. However, complications occur when we consider more than one
Σ0

2- formula.

5.1.2. Dealing with finitely many Σ0
2-formulas. Suppose we imple-

ment the strategy of the preceding section considering successively
all Σ0

2 formulas. At any stage, we will have decided finitely many
Σ0

2 formulas. Suppose that at some stage we are committed to fal-
sifying the Σ0

2 formulas ϕ1(G), ϕ2(G), . . . , ϕn(G). Thus we are com-
mitted to falsifying ϕ(G) where ϕ(G) is a Σ0

2 formula equivalent to
ϕ1(G)∨ϕ2(G)∨· · ·∨ϕn(G). Thus we should commit ourselves to using
forcing conditions which are large in the sense of the previous section
for this ϕ(G). This is basically what we do, although it is technically
more convenient to work with the finite set S = {ϕ1(G), . . . , ϕn(G)}
than with the single formula ϕ(G).

Definition 5.2. Let (D,L) be a condition and let S = {(∃ ~x1)ϕ1( ~x1, G),
. . . , (∃ ~xk)ϕk( ~xk, G)} be a finite set of Σ0

2 formulas, with each formula
ϕi(~xi, G) a Π0

1 formula. We say that (D,L) is S–small if there exist
a number n and sequences (~wi : i < n) and (Di, Li, ki : i < n) such
that the Li’s are a partition of L; for each i, D ⊆ Di ⊂ D ∪ L; for
each i, every element of Di is less than every element of Li; and for
each i, either Li has no element greater than max(~wi) or (Di, Li)
forces ϕki(~wi, G). (There is no requirement that the Li’s be low or
infinite.) Otherwise, (D,L) is called S–large. (It is easily seen that
this definition is independent of the indexing of S.)

Assume (D,L) is S-large. If S∗ ⊆ S then (D,L) is S∗-large. If
(D∗, L∗) is a finite extension of (D,L), then (D∗, L∗) is also S–large.
Also, note that if (D,L) is S–large, and (D1, L1), . . . , (Dn, Ln) are ex-
tensions of (D,L) with ∪ni=1Li = L, then (Di, Li) is S–large for some
i ≤ n.

If θ(~x,G) is a Π0
1–formula, then for each tuple ~w of constants of the

same length as ~x, the formula θ(~w,G) is called a Π0
1 instance of the Σ0

2

formula (∃~x)θ(~x,G).
Suppose that at some stage of the construction of G we have com-

mitted ourselves to ensuring the falsity of the formulas in S, where S
is a finite set of Σ0

2 formulas with at most G free, and let ϕ(G) be a Σ0
2
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formula we now wish to decide. Let (D,L) be the condition we are con-
sidering at this stage, so that (D,L) is S–large and we are committed
to working with S–large conditions in the future. Now we ask whether
(D,L) is (S ∪ {ϕ(G)})–large. If it is, we commit ourselves to ensuring
that ϕ(G) is false and to working only with (S ∪ {ϕ(G)})–large condi-
tions at all future stages. The next lemma will then show that all Π0

1

instances of ϕ(G) can be falsified at future stages. On the other hand,
if (D,L) is (S ∪ {ϕ(G)})–small, Lemma 5.5 will show that (D,L) has
an S–large extension which forces some Π0

1 instance of ϕ(G).
An index of a condition is given by a pair (a, b), where a is a canonical

index of D and b is a lowness index of L, i.e., L′ = {b}K .

Lemma 5.3. Suppose that S is a finite set of Σ0
2 formulas with no free

variable other than G, (D,L) is an S–large condition, and ψ(G) is a Π0
1

instance of some formula in S. Then (D,L) has an S–large extension
(D∗, L∗) which forces ¬ψ(G). Furthermore, an index of (D∗, L∗) can be
computed using an oracle for 0′ from an index of (D,L), the canonical
index of S, and the Gödel number of ϕ(G).

Proof. Since (D,L) is S–large, it does not force ψ(G). Hence, (D,L)
has a finite extension (D∗, L∗) which forces ¬ψ(G). (D∗, L∗) is S–large
because it is a finite extension of the S–large condition (D,L). To find
such a (D∗, L∗), search for finite sets F0, F1 such that D ⊆ F0 ∪ L ∪D
and (F0, L − F1) forces ¬ϕ(G). This is a 0′–effective search and must
terminate by the argument above. Let (D∗, L∗) = (F0, L− F1). �

Lemma 5.4. There is a 0′′–effective procedure to decide, given an in-
dex of a condition (D,L) and a canonical index of a finite set S of
Σ0

2 formulas, whether (D,L) is S–large. Furthermore, if (D,L) is S–
small, there are low sets Li which witness this, and one may compute
from a 0′–oracle a value of n, lowness indices for (Li : i < n) and also
the corresponding sequences (~wi : i < n) and (Di, Li, ki : i < n) which
witness that (D,L) is S–small as in Definition 5.2.

Proof. The definition of S–smallness of (D,L) can be put in the form
(∃z)(∃Z)P (z, Z,D, L, S), where P is a Π0

1 predicate. (Here z codes
the number n and the sequences (~wi : i < n) and (Di, ki : i < n)
from the definition of smallness and Z codes (Li : i < n).) Then the

predicate (∃Z)P (z, Z,D, L, S) is a Π0,L
1 predicate, as it asserts that a

certain L–computable tree in 2<ω of known index contains strings of
every length. From a lowness index of L one may find a ∆0

2 index of the
same predicate as a predicate of z,D, and S, and hence a Σ0

2 index of
(∃z)(∃Z)P (z, Z,D, L, S). Thus there is a Σ0

2 formula λ(a, b) such that,
whenever a is an index of a condition (D,L) and b is the canonical
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index of a finite set of Σ0
2 formulas with at most G free, (D,L) is S–

small iff λ(a, b) holds. (Note that we assert nothing about the truth
value of λ(a, b) when a is not an index of a condition.) Assume now
that (D,L) is S–small. Then we may search effectively relative to 0′ for
a z such that (∃Z)P (z, Z,D, L, S) holds. Fixing such a z, by the Low
Basis Theorem relative to L, there is a Z such that P (z, Z,D, L, S)
holds and Z is low relative to L and hence low. By the uniformity of
the proof of the Low Basis theorem, a lowness index of Z may be found
effectively from a lowness index of L. Lowness indices of the Li’s may
be effectively computed from a lowness index of Z. �

Lemma 5.5. Assume that (D,L) is S–large and (S ∪ {γ(G)})–small,
where the formula γ(G) is Σ0

2. Then there exists an S–large condition
(D∗, L∗) extending (D,L) which forces γ(G). Furthermore one can find
an index for (D∗, L∗) by applying a 0′′–computable function to an index
of (D,L), a canonical index of S, and a Gödel number of γ(G).

Proof. By the previous lemma, we may choose the sets Li which witness
that (D,L) is S ∪ {(∃~x)ϕk(~x,G)}-small to be low over L and hence
low. Fix corresponding n,Di for i < n and Π0

1 instances of formulas in
S ∪ {γ(G)}.

Let’s restrict our attention to those i where (Di, Li) forces some Π0
1

instance of γ(G). Since (D,L) is S-large, at least one of these (Di, Li)
must be S–large (otherwise (D,L) would be S-small), and hence may
serve as our desired (D∗, L∗). By Lemma 5.4 we may find such an i
computably in 0′′. �

Let R be a computable set and let (D,L) be an S–large condition.
Then at least one of (D,L∩R) or (D,L∩R) is S-large (since otherwise
(D,L) would be S-small). Using an oracle for 0′′ we can identify one
of these which is S–large. Hence we can satisfy the r–cohesiveness
requirements without violating our commitment to work with S-large
conditions. Similarly, we can meet the requirements |G| ≥ k by finite
extensions which, as has been noted, preserve S–largeness.

(The definition of smallness and the lemmas following the definition
are key to some of our proofs. There will be several additions to this
definition throughout the paper. Each time we add to the definition we
must verify that the appropriate versions of the above lemmas hold.)

5.1.3. Putting it all together. This is a standard 0′′–computable forcing
construction. However, the conditions should be thought of as triples
(D,L, S) such that (D,L) is an S–large condition as defined above.
We say that (D∗, L∗, S∗) extends (D,L, S) if (D∗, L∗) extends (D,L)
and S∗ ⊇ S. Lemmas 5.3–5.5 show that an appropriately generic
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0′′–computable set for this forcing is r–cohesive and low2. For com-
pleteness, the details are spelled out below.

We will work computably in 0′′. Let {Ri} be a listing of all com-
putable sets such that an index of Ri as a computable set can be com-
puted from i effectively relative to 0′′. Let (∃~x)ϕ0(~x,G), (∃~x)ϕ1(~x,G), . . .
be a computable listing of all Σ0

2-formulas with at most G free. (The
ϕi’s are Π0

1). Let θ0(G), θ1(G), . . . be a computable listing of all Π0
1

formulas with at most G free such that each such formula occurs
infinitely often in the list.

Computably in 0′′, we will construct conditions (Ds, Ls) and indices
for these conditions such that G = ∪s∈N{Ds} is r–cohesive and low2. In
addition, we construct finite sets {Ss} of Σ0

2-formulas with Ss ⊆ Ss+1.
During and after stage s, we will commit ourselves to working with Ss-
large conditions and ensuring (∀~x)¬ϕj(~x,G) for all (∃~x)ϕj(~x,G) ∈ Ss.
Initially, let (D−1, L−1) = (∅,N), (a−1, b−1) be an index for (D−1, L−1)
and S−1 = ∅. We can assume inductively that (Ds−1, Ls−1) is Ss−1-
large.

Stage s: If (Ds−1, Ls−1) is (Ss−1 ∪ {(∃~x)ϕs(~x,G)})-small then let
Ss = Ss−1 and as in Lemma 5.5 extend to a Ss-large condition (D∗s , L

∗
s)

which forces ϕs(~w,G), for some ~w. (As we noted in Lemma 5.5
an index for (D∗s , L

∗
s) can be found effectively in 0′′.) Otherwise

let Ss = Ss−1 ∪ {(∃~x)ϕs(~x,G)} and (D∗s , L
∗
s) = (Ds−1, Ls−1). (By

Lemma 5.4, determining which of these cases applies can be done
effectively in 0′′.) Next, if θs(G) is a Π0

1 instance of some formula in
Ss, let (D∗∗, L∗∗) be an Ss–large extension of (D∗, L∗) which forces
θs(G). Such a condition exists by Lemma 5.3, and an index of it may
be found effectively from 0′′ by the same lemma. Furthermore, it is
easy to arrange that |D∗∗| ≥ s by taking a finite extension if necessary.
Finally, if L∗∗ ∩ Rs is infinite, let (Ds, Ls) = (D∗∗, L∗∗ ∩ Rs), and
otherwise let (Ds, Ls) = (D∗∗, L∗∗ ∩R).

The parenthetical remarks in the above construction show that we
can effectively find the indices for all the constructed conditions as
we proceed and that the construction can be done computably in 0′′.
Clearly G is r–cohesive. Since we decide computably in 0′′ all Σ0

2-
formulas relative to G, G is low2.

5.2. Proving Theorem 3.6 by controlling the double jump. We
will assume the reader is familiar with the argument presented in Sec-
tion 5.1 and will argue in a similar vein. Let A be a ∆0

2 set. For ease
of notation in the next subsection, we will let A0 = A and A1 = A. We
assume without loss of generality that for all i, Ai does not have an
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infinite low subset. We will build an infinite set G such that for some
i, G ⊆ Ai and G is low2.

It would be pleasant if we could completely adopt the argument in
Section 5.1 but there are some major problems. Previously, our concern
was to make G r–cohesive and low2; here our concern is to make an
infinite low2 set G contained in A0 or A1. (We need not and will not
make G be r–cohesive also, although this feature could easily be added
to the argument.)

As a first approximation, let’s attempt to build an infinite low2 set
G ⊆ A0 by modifying the method of Section 5.1. Hence we will only
work with conditions (D,L) where D ⊂ A0.

In this case, we must modify Definition 5.2 of S–small by requiring,
in addition, for each i, Di ⊂ A0; we will call this modified definition S-
small0 and S-large0. Now if we could verify the lemmas in Section 5.1.2
for this modified definition of smallness we would be done.

The first (and only) place we get into trouble is the following: There
may exist a condition (D,L) and a finite set S of Σ0

2 formulas such that
(D,L) is S-large0 but (D,L∩A0) is S-small0. (Note that L∩A0 need
not be low, so (D,L ∩ A0) need not be a condition, but the definition
of S–small0 still makes sense.) This situation may cause Lemma 5.3
to break down. Large0-ness only implies the existence of a D∗ not a
D∗ such that D∗ ⊂ A0. Thus, we may commit ourselves to falsifying
a Σ0

2 formula ϕ(G) and later find that there is a Π0
1 instance of ϕ(G)

that we are unable to satisfy by adding elements of A0 to G. In this
situation, we try to build an infinite low2 set G ⊆ A1.

5.2.1. No Problem. We did not have a problem modifying the argu-
ments in Section 5.1.2 if for all conditions (D,L) and all finite sets S of
Σ0

2 formulas with at most G free, (D,L) is S-large0 implies (D,L∩A0)
is S-large0. We will just sketch the proof of this and leave the rest of
the verification of this to the reader. With the above assumption the
proof of the modified Lemma 5.3 goes almost the same with large0ness
replacing largeness. As for Lemma 5.4, a condition (D,L) being S-
small0 can be stated as (∃z)[RA(z) & (∃Z)P (z, Z,D, L, S)], where RA

is an A–computable predicate. For fixed L and S, the matrix of this is
∆0

2, so this is a Σ0
2 predicate whose index can be effectively computed

from an index of the condition (D,L). This is the only situation where
we use the hypothesis that A is ∆0

2, instead of merely ∆0
3. So, in fact,

it is enough that A be low over 0′. The proof of the modified version
of Lemma 5.5 is the same as the proof of Lemma 5.5. To ensure that
G is infinite we observe that for any condition (D,L) with D ⊆ A0

and any k, there is a finite extension (D∗, L∗) of (D,L) with D∗ ⊆ A0
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and |D∗| ≥ k. This follows easily from our assumption that A1 has no
infinite low subset, so that L ∩ A0 is infinite.

5.2.2. Handling the problem. Hence we may assume that there is a
condition (D,L) and a finite set of Σ0

2-formulas such that D ⊆ A0,
(D,L) is S-large0 and (D,L ∩ A0) is S-small0. Fix such a condition
(D̃, L̃) and such a set S̃.

We now try to construct an infinite low2 set G ⊆ A1. However, if
we try to do this by simply replacing A0 by A1 in the argument of the
previous section, we may run into the same problem. Instead, we take
advantage of our failure on the A0–side to ensure success on the A1–
side. We will need a slightly different notion of smallness and largeness.
But once we have such a definition the proof will go almost through as
before. However to be safe we will provide the details.

We will restrict ourselves to conditions (D,L) where D ⊆ A1, L ⊆ L̃,
and (D̃, L) is S̃-large0. We call such conditions 1–acceptable. Note
that (∅, L̃) is 1–acceptable. This condition will be used as the initial
condition in the construction of G.

Definition 5.6 (Small1 and Large1). Let (D,L) be a 1–acceptable
condition, and let S be a finite set of Σ0

2 formulas with at most G free.
Then (D,L) is S–small1 if there exist n, a partition (Li : i < n) of L
and finite sets (Di : i < n) such that for each i < n, Di ⊆ A1∩ (D∪L),
every element of Di is less than every element of Li, and either Li is
finite, or (Di, Li) forces a Π0

1 instance of some formula in S, or (D̃, Li)
forces a Π0

1 instance of some formula in S̃. If (D,L) is not S–small1,
then it is S–large1.

This definition is highly dependent on D̃, L̃ and S̃. Assume (D,L)
is S-large1. If S∗ ⊆ S then (D,L) is S∗-large1. If (D∗, L∗) is a 1–
acceptable finite extension of a 1–acceptable S–large1 condition (D,L),
then (D∗, L∗) is also S–large1. It is enough to prove modified versions
of Lemmas 5.3, 5.4 and 5.5. But first we need the following lemma to
show that the difficulty we had on the A0 side will not arise again on
the A1 side.

Lemma 5.7. If (D,L) is S-large1 then (D,L ∩ A1) is S-large1.

Proof. We have that (D̃, L̃∩A0) is S̃-small0. Since L ⊆ L̃, (D̃, L∩A0) is
S̃-small0. Hence (D,L∩A0) is ∅-small1 and so is S–small1. Assume now
that (D,L∩A1) is also S–small1. Then the witnesses for S–small1ness
of (D,L∩A0) and (D,L∩A1) could be combined to show that (D,L)
is S–small, which is the desired contradiction. �
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Lemma 5.8. Suppose that (D,L) is an S–large1 condition and that
θ(G) is a Π0

1 instance of some formula in S. Then there is a 1–
acceptable extension (D∗, L∗) of (D,L) such that (D∗, L∗) is S-large1
and forces ¬θ(G). Furthermore given an index for (D,L) and a Gödel
number of θ(G), an index for (D∗, L∗) can be found effectively in 0′.

Proof. Since (D,L) is S–large1, it follows from Lemma 5.7 that
(D,L ∩ A1) is S–large1, so that (D,L ∩ A1) does not force θ(G).
It follows that (D,L ∩A1) has a finite extension (D∗, L∗) which forces
¬θ(G). Then (D∗, L∗) is easily seen to be 1–acceptable, and it is
S–large1 because it is a finite extension of (D,L). Furthermore, we
can find it by an A1 ⊕ L′–effective search, and A1 ⊕ L′ ≤T 0′. �

Lemma 5.9. There is a 0′′–effective procedure to decide, given an in-
dex of a condition (D,L) and a canonical index of a finite set S of
Σ0

2 formulas, whether (D,L) is S–large1. Furthermore, if (D,L) is S–
small1, there are low sets Li which witness this, and one may compute
from a 0′–oracle a value of n, lowness indices for (Li : i < n) and also
the corresponding sequences (~wi : i < n) and (Di, Li, ki : i < n) which
witness that (D,L) is S–small1 as in Definition 5.2.

This lemma is proved by virtually the same argument as Lemma 5.4.

Lemma 5.10. Assume that (D,L) is (S ∪ {(∃~x)ϕk(~x,G)})-small1.
Then there exists a condition (D∗, L∗) which is S-large1 and forces
ϕk(~w,G), for some ~w. Furthermore given an index for (D,L) one can
find computably in L′′ ≡T 0′′ an index for (D∗, L∗).

Proof. Same as the proof of Lemma 5.5. �

5.2.3. Putting it all together. The construction of an infinite low2 set
G contained in A0 or A1 is closely parallel to that in Section 5.1. If
there do not exist a finite set S of Σ0

2 formulas and an S–large con-
dition (D,L) such that (D,L ∩ A0) is S–large, we iterate the lemmas
mentioned in Section 5.2.1 to construct a low2 set G ⊆ A0. Otherwise,
by Lemmas 5.8–5.10 in Section 5.2.2, we can ensure that G ⊆ A1. We
omit these routine details.

5.3. A proof of Theorem 3.7 by controlling the double jump.
As we noted shortly after the statement of Theorem 3.7, Theorem 3.7
follows from Theorem 3.6. So this section is unnecessary from the point
of view of computability theory. However, our proofs of Theorems 10.4
and 11.2 will be based on adapting this proof to models of arithmetic.

We will assume the reader is very familiar with the argument pre-
sented in Section 5.2 and will argue in a similar vein. Let Ai be k many



26 P. CHOLAK, C. JOCKUSCH AND T. SLAMAN

∆0
2 sets such that ti<kAi = N. We will build an infinite low2 set G

such that for some i, Ai ⊆ G.
As in Section 5.2, we will first try to make G a subset of A0, if that

fails we will try to make G a subset of A1, and if that fails we will try to
make G a subset of A2 and so on. But in Section 5.2 in order to make
G a subset of A1 we need the witness to the reason we failed to make
G a subset of A0 in order to successfully make G a subset of A1. We
will use the function W to witness these failures. Hence our definition
of smallness and largeness will depend on W .

We consider W as a possibly empty finite function. The domain of
W will be some finite initial segment of N. Let |W | (the length of W )
be the least number not in the domain of W . The values of W are
triples (D,L, S) such that (D,L) is a condition and S is a finite set of
Σ0

2 formulas with at most G free. If i is in the domain of W , then we
denote W (i) by (D̃W (i), L̃W (i), S̃W (i)).

Definition 5.11 (SmallW and LargeW ). Let W be a finite partial
function with |W | < k as we have described. Let l = |W | − 1.
We will restrict ourselves to conditions (D,L) where D ⊆ A|W | and

L ⊆ ∩j≤lL̃W (j). We call such conditions W–acceptable. Let (D,L) be
W -acceptable condition and let S be a finite set of Σ0

2 formulas with
at most G free.

Then (D,L) is S–smallW if there exist n and a partition (Li : i < n)
of L and finite sets (Di : i < n) such that, for each i < n, every element
of Di is less than every element of Li, L0, L1, . . . , Ln−1 is a partition
of L, and, for each i < n, either Di ⊆ A|W | ∩ (D ∪ L) and (Di, Li)
forces a Π0

1 instance of some formula in S, or there exists j < |W | such
that (D̃W (j), Li) forces a Π0

1 instance of some formula in S̃W (j), or Li is
finite. If (D,L) is not S–smallW , it is called S–largeW .

Note that, in the notation of Section 5.2.2, small0 is equivalent to
small∅, large0 is equivalent to large∅, small1 is equivalent to smallW , and
large1 is equivalent to largeW , where |W | = 1 and W (0) = (D̃, L̃, S̃).

Lemma 5.12. There is a W such that |W | < k and for all conditions
(D,L) with D ⊆ A|W | and L ⊆ ∩i<|W |L̃i and for all finite sets S of
Σ0

2 formulas, if (D,L) is S-largeW then (D,L ∩ A|W |) is S-largeW .
(Recall that k is the number of ∆0

2 sets we have partitioned N into.)
Furthermore, (∅,∩i<|W |L̃i) is a condition which is ∅–largeW .

Proof. We define W inductively. Assume that W � i is defined. If
i = k, stop the induction and set W = W � i. Ask whether there is
a W � i–acceptable condition (D̃, L̃) and a set S̃ such that (D̃, L̃) is
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S̃-largeW �i and (D̃, L̃∩Ai) is S̃-smallW �i. If not, we let W = W � i and

end the induction. Otherwise let D̃W (i) = D̃, L̃W (i) = L̃ and S̃W (i) = S̃
and continue the induction.

Suppose temporarily that |W | < k. Then by the definition of W ,
it is the case that for all W–acceptable conditions (D,L) and for all
finite sets S of Σ0

2 formulas if (D,L) is S–largeW , then (D,L∩A|W |) is
S-largeW .

It remains to show that |W | < k. Assume otherwise; |W | ≥ k. Let
l = k − 1 and n < l. Let D = D̃W (l), L = L̃W (l), S = S̃W (l).

By the inductive definition of W , we have that (D̃W (n), L̃W (n) ∩ An)

is S̃W (n)-smallW �n. Inductively assume that (D,L ∩ (ti<nAi)) is

∅-smallW �n. Since L ⊆ L̃W (n) (as (D,L) is W � l–acceptable),

(D̃W (n), L ∩ An) is S̃W (n)-smallW �n. So (D̃W (n), L ∩ (ti<n+1Ai)) is

S̃W (n)-smallW �n. Hence (D,L ∩ (ti<n+1Ai)) is ∅-smallW �(n+1). There-
fore (D,L ∩ (ti<lAi)) is ∅-smallW �l.

Therefore if (D,L∩Al) is S-smallW �l then (D,L) must be S-smallW �l.
This contradicts the choice of D, L and S.

It remains to be shown that (∅,∩i<|W |L̃i) is a condition which is ∅–
largeW . This is clear if |W | = 0, since then ∩i<|W |L̃i = N by convention.

If |W | = j > 0, then W (j − 1) is chosen so that D̃W (j−1), L̃j−1 is S̃j−1–

large. From this it follows easily that (∅,∩i<|W |L̃i) is a condition which
is ∅–largeW . �

Fix such a W . We can now prove the modified versions of Lem-
mas 5.8, 5.9 and 5.10. The proofs of these modified lemmas are essen-
tially the same as the proofs of Lemmas 5.8, 5.9 and 5.10 which are
found in Section 5.2.2. With these modified lemmas in hand the con-
struction of G proceeds as in Section 5.2.3. In particular, all conditions
used in the construction are ∅–largeW conditions, where W is chosen
to satisfy Lemma 5.12, and the construction produces an infinite low2

set G ⊆ A|W |. The initial condition is (∅,∩i<|W |L̃i), which is ∅–largeW
by Lemma 5.12.

6. Second order arithmetic and conservation

Here we present some basic information on second order arithmetic
and conservation theorems. For further information, see, for example,
Simpson [1999].

The language of second order arithmetic is a sorted language with the
symbols: =,∈,+,×, 0, 1, < (the usual symbols of arithmetic with the
additional symbol ∈); number variables: n,m, x, y, z . . . (always lower
case letters); and set variables: X, Y, Z, . . . (always capital letters).
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First order terms are built up in the usual way (without using set
variables). Atomic formulas are those of the form t = u, t < u, and
t ∈ X, where t and u are first order terms. Formulas are then built up
as usual. A model in this language is of the form (X,F ,+,×, 0, 1, <),
where F ⊆ P(X). The elements of X are sometimes called the numbers
of M and the elements of F the reals of M. In interpreting truth of
a formula in this model, the number variables range over the numbers
of M and the set variables range over the reals of M. The intended
model of second order arithmetic is (N,P(N),+,×, 0, 1, <).

Definition 6.1.

(i) A first order formula is a formula without any set variables.
(ii) An arithmetic formula is a formula without any quantification

over set variables (although free set variables may occur).
(iii) ϕ is ∆0

0 if ϕ is an arithmetic formula with all quantifiers bounded
(iv) If ϕ(~x) is ∆0

0 then (∃~x)[ϕ(~x)] is Σ0
1 and (∀~x)[ϕ(~x)] is Π0

1. (So,
for example, (∃x)(∀y < x)[x× y ∈ X] is Σ0

1.)
(v) If ϕ(~x) is Π0

n then (∃~x)[ϕ(~x)] is Σ0
n+1.

(vi) If ϕ(~x) is Σ0
n then (∀~x)[ϕ(~x)] is Π0

n+1.

(vii) A Σ1
1 formula is one of the form (∃ ~X)[ϕ( ~X)] where ϕ( ~X) is an

arithmetic formula.
(viii) A Π1

1 formula is one of the form (∀ ~X)[ϕ( ~X)] where ϕ( ~X) is an
arithmetic formula.

(ix ) A Π1
2 formula is one of the form (∀ ~X)[ϕ( ~X)] where ϕ( ~X) is Σ1

1.

LetM = (X,F ,+,×, 0, 1, <) be a model for our language. A formula
with parameters in M is one obtainable from a formula in the above
language by substituting (constants representing) elements of X for
number variables and elements of F for set variables. A set A ⊆ X
is said to be Σ0

n over M if it is definable in M by a formula with
parameters in M. (Note the use of boldface because set parameters
are allowed.) The notion of Π0

n over M is defined analogously. A set
is called ∆0

n over M if it is both Σ0
n over M and Π0

n over M.

Definition 6.2. (i) The comprehension scheme is the collection of
all universal closures of formulas:

∃X∀n[n ∈ X ↔ ϕ(n)]

where ϕ is any formula in which X does not occur.
(ii) If Γ is a set of formulas, Γ–comprehension is the comprehension

scheme restricted to formulas ϕ in Γ.
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(iii) The ∆0
n comprehension scheme is the set of all universal closures

of formulas of the form

∀x[ϕ(x)↔ ψ(x)]→ ∃X∀n[n ∈ X ↔ ϕ(n)]

where ϕ, ψ are respectively Σ0
n and Π0

n formulas which do not
contain the variable X. (This scheme is true in a modelM just
if any set ∆0

n over M is a real of M.)
(iv) The induction scheme is the collection universal closures of for-

mulas:

[ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))]→ ∀nϕ(n).

(v) I Γ is the induction scheme restricted to formulas in Γ.
(vi) The bounding scheme is the collection of formulas:

(∀a)[(∀x ≤ a)(∃y)ϕ(x, y)→ (∃b)[(∀x ≤ a)(∃y ≤ b)ϕ(x, y)]].

(vii) B Γ is the bounding scheme restricted to formulas in Γ.

Definition 6.3 (Some subsystems of second order arithmetic).

(i) PA denotes the standard axioms of Peano arithmetic (here the
induction scheme is restricted to first order formulas).

(ii) P− denotes the usual algebraic axioms of Peano arithmetic
(without the induction scheme).

(iii) RCA0 (Recursive Comprehension) denotes the axioms of P−,
I Σ0

1 and ∆0
1 comprehension.

(iv) ACA0 (Arithmetic Comprehension) is RCA0 and arithmetic
comprehension.

M = (X,F ,+,×, 0, 1, <) be a model of RCA0. A set D ∈ F is
called M–finite if it is bounded by some element of X and otherwise
M–infinite. M–finite sets may be coded by elements of X. Let 〈., .〉
be a fixed bijection from X×X onto X whose graph is ∆0

0 over M. If
Y ∈ F and i ∈ X, let (Y )i = {j : 〈i, j〉 ∈ Y }. In this situation, we say
that Y codes the sequence of reals (Y )i : i ∈ X, and clearly (Y )i ∈ F
for each i ∈ X.

Definition 6.4. If T1 and T2 are theories and Γ is a set of sentences
then T2 is Γ-conservative over T1 if ∀ϕ[(ϕ ∈ Γ ∧ T2 ` ϕ)⇒ T1 ` ϕ].

Over RCA0, I Σn and IΠn are equivalent. I Σn is also equivalent over
RCA0 to the scheme asserting that every nonempty Π0

n-definable set
(Σ0

n-definable set) has a least element. B Σn+1 is stronger than I Σn but
not as strong as I Σn+1. (See Kaye [1991] or Hájek and Pudlák [1993]
for details.)

All models we consider will be countable, i.e., both the base set X
and the second–order part F will be countable. A model is an ω-model
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if the base set is N and the operations and relations are the usual ones.
Thus, an ω–model M is completely determined by the family F of
reals of M and is often identified with F . Full induction clearly holds
in all ω–models. RCA0 is suitable for formalizing effective proofs (for
more details see Simpson [1999]). See the beginning of Section 2 for a
description of the ω–models of RCA0 and the stronger system ACA0.
Note that, in particular, the computable sets are the smallest ω–model
of RCA0, and the arithmetical sets are the smallest ω–model of ACA0.

ACA0 is arithmetically conservative over PA, i.e., any arithmetic
sentence is provable from ACA0 if and only if it is provable from PA.

We will also briefly mention another subsystem of second order arith-
metic, ATR0 – Arithmetic Transfinite Recursion. The only facts that
we will need about ATR0 are that the family of arithmetical subsets of
N is not an ω–model of ATR0 and that ifM is a model of ATR0 and n
is a number inM thenM is closed under the (n)-jump. This, ATR0’s
definition, and other facts can be found in Simpson [1999].

In this paper, we will work with Π1
1-conservation and arithmetic con-

servation. We will need the following lemmas and definitions.

Definition 6.5. M = (X,F ,+,×, 0, 1, <) is an ω-submodel of
M′ = (X′,F ′,+′,×′, 0′, 1′, <′) if X = X′, + = +′, × = ×′, 0 = 0′,
1 = 1′, <=<′, and F ⊆ F ′. In other words,M′ may be obtained from
M by just adding reals.

Lemma 6.6. If every countable model of T1 is an ω–submodel of some
countable model of T2 then T2 is Π1

1-conservative over T1 (both T1 and
T2 are theories of second order arithmetic).

Proof. Let ϕ be a Π1
1 sentence. If T1 does not prove ϕ then there is

a countable model M of T1 + ¬ϕ. Since we only add reals to get the
expansion M′, a model of T2, and ¬ϕ is Σ1

1, we have that M′ is a
model of ¬ϕ. So T2 does not prove ϕ �

We do not know whether the converse of Lemma 6.6 holds.
The following lemma will be useful throughout the paper.

Lemma 6.7 (Friedman [1976]). Any model M of P− and I Σn is an
ω–submodel of some modelM∗ of RCA0+I Σn. Furthermore,M∗ may
be chosen so that each of its reals is ∆0

1 over M, and M∗ is countable
if M is.

The idea behind the proof is to close under ∆0
1-comprehension, which

roughly corresponds to closing under Turing reducibility and joins. A
proof for n = 1 can be found in Simpson [1999]; the other cases are
similar. In models of second order arithmetic we interpret A ≤T B for
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reals A,B of the model to mean that A is ∆0,B
1 , i.e., A is definable from

the parameter B using a Σ0
1 formula and also using a Π0

1 formula. We
will use this without mention throughout the paper.

Definition 6.8. Let M = (X,F ,+,×, 0, 1, <) be a model of second–
order arithmetic, and letG ⊆ X. ThenM[G] = (X,F∪{G},+,×, 0, 1, <),
so M[G] is obtained by adjoining G to the reals of M.

Note that if M is a model of PA− then M [G] is also. (However,
M [G] is a model of RCA0 only if G is a real of M (in which case
M = M[G]).) Suppose now that M is a countable model of P− and
that M[G] is a model of I Σn. Then, by Lemma 6.7, M[G] is an ω–
submodel of some countable model M∗ of RCA0 + IΣn. We will use
this fact repeatedly.

Definition 6.9. We say that M is topped if M is countable and sat-
isfies the sentence of second order arithmetic asserting that there is a
real of greatest Turing degree. If D is a real ofM such thatM satisfies
the formula asserting that every real is Turing reducible to D, we say
that M is topped by D.

We remark that an ω–model F is topped if and only if F contains
a real of greatest Turing degree. In general, every model with a real
of greatest Turing degree is topped (by that real), but it is not clear
that the converse holds because some of the reductions witnessing that
a real has greatest Turing degree may be nonstandard.

Lemma 6.10. Assume every topped model of RCA0 + I Σn is an ω–
submodel of some countable model of T . Then T is arithmetically con-
servative over RCA0 + I Σn.

Proof. If RCA0+I Σn does not prove ϕ then there is a countable model
M of RCA0 + I Σn + ¬ϕ. Remove all of M’s reals and then apply
Lemma 6.7. By Lemma 6.7 the resulting modelM∗ of RCA0 + I Σn is
topped since all of its reals are Turing reducible to ∅. By adding reals
toM∗ we can get a modelM′ of T . Since we only added and removed
reals to get M′ and ϕ is arithmetic, it follows that M′ is a model of
¬ϕ. Hence ϕ is not provable in T . �

7. Some statements of second order arithmetic

Our proof that every computable k–coloring of pairs has an infinite
low2 homogeneous set (Theorem 3.1) proceeded by means of several
intermediate results such as the Low Basis Theorem, the existence of
a low2 r–cohesive set, and, basically, the existence of infinite low2 ho-
mogeneous sets for ∆0

2 partitions of 1–tuples (Theorem 3.6). Below we
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consider the corresponding formal statements in second–order arith-
metic. These will be useful in proving our conservation results for
Ramsey’s Theorem. The first statement is Weak König’s Lemma and
the next three are various forms of Ramsey’s Theorem in the language
of second order arithmetic.

Recall that in second order arithmetic we say a set X is infinite if
∀x∃y[x < y & y ∈ X], and we can identify binary strings with their
Gödel numbers.

Statement 7.1 (Weak König’s Lemma). Every infinite tree of binary
strings has an infinite branch.

Statement 7.2 (RT n
k). For every k–coloring of [N]n there is an infinite

homogeneous set H.

Note that RT n
k is equivalent over RCA0 to the ostensibly stronger

statement that for every infinite set X and every k–coloring of [X]n

there is an infinite homogeneous set H. Similar comments apply to all
the versions of Ramsey’s Theorem we discuss, since it is provable in
RCA0 that for every infinite set X there is a bijection from N onto X.

Statement 7.3 (RT n
<∞). For every k, RT n

k .

Statement 7.4 (RT ). For every n, RT n
<∞.

Statement 7.5 (SRT 2
k). For every stable k-coloring of [N]2 there is an

infinite homogeneous set H.

Statement 7.6 (SRT 2
<∞). For every k, SRT 2

k.

The following statement defines cohesiveness with respect to a se-
quence of sets and asserts the existence of a cohesive set in this frame-
work.

Statement 7.7 (COH). For any sequence of sets (Ri)i∈N there is an
infinite set A such that for all i, either A ⊆∗ Ri or A ⊆∗ Ri. (Such a

set A is called ~R-cohesive.) X ⊆∗ Y means there is a k such that for
all x, if x ∈ X then either x ∈ Y or x ≤ k. (To say that (Ri)i∈N is a
sequence of sets means that there is a set R with Ri = {j : 〈i, j〉 ∈ R}
for each i.)

COH can be considered as a very strong form of RT 1
2. It says for

every infinite sequence of 2-colorings of [N]1 there is an infinite set
which is homogeneous modulo a finite set for each coloring. If the
terms of the sequence ~R are exactly the primitive recursive subsets
of N then the ~R–cohesive sets are precisely the p–cohesive sets. (See
Definition 3.2 or Jockusch and Stephan [1993].) Note that any ω–model
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of RCA0 contains a sequence of sets consisting of exactly the primitive
recursive sets. It follows that any ω–model of RCA0 + COH contains
a p–cohesive set. Similarly, if the terms of the sequence ~R are exactly
the computable subsets of N then the ~R–cohesive sets are precisely the
r–cohesive sets. (See Definition 3.2 or Jockusch and Stephan [1993].)
It is known that any ω–model of WKL0 contains a sequence of sets
containing all computable subsets of N (and possibly more), so that any
ω–model of WKL0 + COH contains an r–cohesive set (see Sections 8.4
and 8.5).

If the colorings of 1–tuples Ri are replaced by colorings of n–tuples,
the resultings notions of cohesiveness are studied in Hummel and
Jockusch [n.d.] The next two statement are phrasings of Theorems 3.6
and 3.7 in the language of second order arithmetic. (The superscript
stands for ∆0

2 and the subscript stands for the number of such sets.)
We will shortly see that over RCA0 they are equivalent to the appro-
priate statement about stable colorings but in some cases this form
will prove to be slightly easier to work with.

Statement 7.8 (D2
2). For every function f(x, s), if for all x and s,

f(x, s) < 2, and for all x lims f(x, s) exists, then there is an infinite set
G and j < 2 such that for all x ∈ G, lims f(x, s) = j.

Statement 7.9 (D2
<∞). For every k and for every function f(x, s), if

for all x and s, f(x, s) < k, and for all x, lims f(x, s) exists then there
is an infinite set G and j < k such that for all x ∈ G, lims f(x, s) = j.

We can consider F (x) = lims f(x, s) as giving a k-coloring of N and
G as a homogeneous set for this coloring. Hence we can consider these
statements as very strong forms of RT 1

2 and RT 1
<∞.

7.1. Some lemmas about SRT 2
2,D

2
2, SRT 2

<∞, and D2
<∞.

Lemma 7.10. RCA0 ` SRT 2
2 ⇔ D2

2

Proof. Assume SRT 2
2 and let f(i, j) be given. Color {i, j} red for i < j

iff f(i, j) = 0. A homogeneous set for this coloring is the desired set to
satisfy D2

2.
Assume D2

2. Let C be a given stable 2-coloring and define f(i, j) = C({i, j})
if i < j and arbitrarily otherwise. The set G given via D2

2 from f can
be easily used to find an infinite set H ⊆ G which is homogeneous for
C. �

Lemma 7.11. RCA0 ` RT 2
2 ⇔ (COH & SRT 2

2).

Proof. Let M = (X,F , . . . ) be a model of COH and SRT 2
2. Fix

a 2-coloring C ∈ F of [X]2 into the colors red and blue. For
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i ∈ X let Ri = {j > i : {i, j} has color red}, and note that
~R = {〈i, j〉 j ∈ Ri} ∈ F . Use COH to get an ~R-cohesive set A.
Since A is infinite, there is 1-1 onto map g : X → A coded as a
real of M. Create a coloring C ′ as follows: C ′ colors {i, j} red iff C
colors {g(i), g(j)} red. Since A is ~R-cohesive, C ′ is stable. If H is
homogeneous for C ′ then g(H) is homogeneous for C.

Assume RT 2
2. Then clearly SRT 2

2 holds. Given a sequence Ri, if
i < j, then color {i, j} red iff j ∈ Ri. Every homogeneous set for this

2-coloring is ~R-cohesive. �

Lemma 7.12. RCA0 ` SRT 2
<∞ ⇔ D2

<∞.

Proof. Similar to the proof of Lemma 7.10. �

Lemma 7.13. RCA0 ` RT 2
<∞ ⇔ COH + SRT 2

<∞.

Proof. Similar to the proof of Lemma 7.11. �

7.2. Induction: 2 vs. any finite number of colors.

Lemma 7.14. The following are theorems of RCA0.

(i) For all k ≥ 2 and all n, RT n
k implies RT n

k+1.
(ii) For all k ≥ 2, SRT 2

k implies SRT 2
k+1.

Proof. We will just prove i. We reason in RCA0. Let C : [N]n → {0, 1, . . . , k}
be a (k+1)-coloring of [N]n. C induces a k-coloring of [N]n; for Y ∈ [N]n,
C ′(Y ) = C(Y ) unless C(Y ) = k, in which case C ′(Y ) = k − 1. Using
RT n

k , let H be an infinite homogeneous set for C ′. If C ′([H]n) 6= k − 1,
H is homogeneous for C. Otherwise use C to induce a coloring C ′′ on
H; for Y ∈ [H]n, let C ′′(Y ) = 0 if C(Y ) = k − 1 and C ′′(Y ) = 1 if
C(Y ) = k. Every homogeneous set for C ′′ is homogeneous for C. �

Corollary 7.15. (i) For any k ≥ 2, RT 2
k is equivalent to RT 2

2 over
RCA0.

(ii) For any k ≥ 2, SRT 2
k is equivalent to SRT 2

2 over RCA0.

We will later see that RT 2
<∞ is strictly stronger than RT 2

2 over RCA0

(Corollary 11.5) and that SRT 2
<∞ is strictly stronger than SRT 2

2 over
RCA0 (Theorem 11.4). By work of Simpson [1999] (see Corollary 2.6),
it is known that for n ≥ 3 and k ≥ 2, RT n

<∞ and RT n
k are each

equivalent to to ACA0 over RCA0. Thus, the logical strength of RT n
k

is independent of n and k for n ≥ 3, 2 ≤ k ≤ ∞.

8. Weak König’s Lemma

8.1. Low Basis Theorem and conservation. Weak König’s Lemma
is the fact that every infinite tree of binary strings has an infinite



RAMSEY’S THEOREM 35

branch. As we noted in the Introduction, the Low Basis Theorem
will play an important role in our work. Here we will consider it as a
theorem about the effective content of Weak König’s Lemma.

Theorem 8.1 (Jockusch and Soare [1972]). Every infinite computable
tree of binary strings has an infinite low path P (i.e., P ′ ≤T 0′).

Leo Harrington, in unpublished work, used the idea of the proof
of the Low Basis Theorem to produce a notion of forcing over mod-
els of second order arithmetic to prove the following technical lemma
(Lemma 8.2) which then in turn yields the following conservation result
(Corollary 8.4). See Simpson [1999] for the details.

Lemma 8.2 (Harrington). If M is a model of RCA0, T ∈ F and T
codes an M–infinite tree of binary strings then there is a P ⊂ X such
that M[P ] is a model of I Σ1 and P is an M [P ]–infinite path through
T .

Theorem 8.3 (Harrington). Every countable model of RCA0 is an ω–
submodel of some countable model of WKL0.

Proof of Theorem 8.3 from Lemma 8.2. Let M = (X,F+,×, 0, 1, <)
be a model of RCA0. Choose some T ∈ F coding an M–infinite tree
of binary strings. Apply Lemma 8.2 to getM′. Then apply Lemma 5.3
to get a model M′′ of RCA0. Iterate the process infinitely many
times to produce a sequence of models Mn = (X,Fn,+,×, 0, 1, <)
with F0 ⊆ F1 ⊆ F2 . . . , and let Mω = (X,∪nFn,+,×, 0, 1, <) ensur-
ing that for every such T ∈ ∪nFn an Mω–infinite path is added to
∪nFn. Then Mω is a countable model of WKL0 which has M as an
ω–submodel. �

Corollary 8.4 (Harrington). WKL0 is Π1
1-conservative over RCA0.

Proof. This is immediate from Theorem 8.3 and Lemma 6.6. �

We will need some results analogous to Lemma 8.2, Theorem 8.3 and
Corollary 8.4 for stronger forms of induction.

Lemma 8.5. If M is a model of RCA0 + I Σ2, T is a real of M which
codes an M–infinite tree of binary strings, then there is a set P of
numbers of M such that M[P ] is a model of I Σ2 and P is an M[P ]–
infinite path through T .

Corollary 8.6. Every countable model of RCA0 + I Σ2 is an ω-
submodel of some countable model of WKL0 + I Σ2.

Proof of Corollary 8.6 from Lemma 8.5. This is entirely analogous to
the proof of Theorem 8.3 from Lemma 8.2. �
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Lemma 8.7. Assume M is a topped model of RCA0 + I Σ3. Suppose
that T is a real ofM and T codes anM–infinite tree of binary strings.
Then there is a set P of numbers ofM such that P is anM[P ]–infinite
path through T and M[P ] is a model of I Σ3.

Note that after applying the proof of Lemma 8.7 to M′ above, the
resulting model is still topped (by P ⊕D). So we can repeatedly apply
Lemma 8.7 as above to get the following corollary.

Corollary 8.8. Every topped model of RCA0 + I Σ3 is an ω–submodel
of some countable model of WKL0 + I Σ3.

The proofs of Lemmas 8.5 and 8.7 follow in Sections 8.2 and 8.3.

8.2. I Σ2 Conservation and Weak König’s Lemma. Fix a model
M = (X,F ,+,×, 0, 1, <) of RCA0 + I Σ2. We will callM the “ground
model.” Let T be an M–infinite tree of binary strings in F . We will
add a set P such that P is an M[P ]–infinite path in T and M[P ]
satisfies I Σ2.

Except for the set P , we will assume in this subsection that all
numbers, strings, and sets mentioned are in the ground model.

We force over M using conditions C ∈ F where C codes an M–
infinite subtree of T . C extends C∗ if C is an M–infinite subtree of
C∗. We will need the following definitions and lemmas in our proof.

If τ ∈ C then let Cτ = {σ ∈ C : σ � τ or τ � σ}. If C is an M–
infinite tree then for all l there is a τ ∈ C of length l such that Cτ is an
M–infinite subtree of C. We define forcing for certain formulas of low
quantifier complexity. For the rest of this proof, the word “formula”
will mean a formula of second–order arithmetic with parameters from
M and no free variables other than the ones displayed.

Definition 8.9. (i) We say C forces (∃~x)(ψ(~x,G)) if there exists
l such that for all τ ∈ C of length l there is a ~w ∈ Xn such
that τ forces ψ(~w, τ). (Forcing of ∆0

0 formulas by strings was
defined in Definition 5.1. Here we use the same definition but
allow parameters from M as constants.)

(ii) We say C forces (∀~y)(∃~x)(ψ(~x, ~y,G)) if for all ~w ∈Mn, C forces
(∃~x)(ψ(~x, ~w,G)).

Note that forcing implies truth for all the formulas considered above.
Thus, for any formula θ(G) which is Σ0

1 or Π0
2 and any condition

C and any M[P ]–infinite path P through C, if C forces θ(G), then
M[P ] |= θ(P ). The corresponding statement also holds for ∆0

0 formu-
las and strings. Note that, at these levels, “forcing implies truth” holds
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for all P ⊆ X, and there is no requirement that P must be generic in
any sense.

Lemma 8.10. Let M be a model of RCA0.

(i) Let ψ(~x,G) be a ∆0
0 formula. Then the relation “τ is a binary

string and ~w is a sequence of parameters and τ forces ψ(~w,G)”
is ∆0

0 over M.
(ii) Let ψ(~y,G) be a Σ0

1 formula and let C be a condition. Then
{~w ∈Mn : C forces ψ(~w,G)} is Σ0

1 over M.
(iii) Let ψ(~y,G) be a Π0

2 formula and let C be a condition. Then
{~w ∈Mn : C forces ψ(~w,G)} is Π0

2 over M.

Proof. Part (i) is proved by induction on the complexity of the ∆0
0

formula ψ(~x,G).
Then part (ii) follows from part(i), and part (iii) follows from part

(ii).
�

Let ψ(~x,G) be a ∆0
0 formula. We say that the condition C forces

¬(∃~x)(ψ(~x,G)) if for all strings τ ∈ C and ~w ∈ Xn τ does not force
ψ(~w,G). Since conditions areM–infinite and for any ∆0

0 formula δ any
sufficiently long binary string τ coded in M forces either δ or ¬δ, it is
easily seen that forcing implies truth here. Finally, we say that C forces
¬(∀~y)(∃~x)θ(ψ(~x, ~y,G) for ψ ∆0

0 if there is a tuple ~u ∈ M such that C
forces ¬∃~xψ(~x, ~u,G). Again, it is clear that forcing implies truth.

Lemma 8.11. If θ(G) is a Π0
2 formula and C is a condition which does

not force θ(G), then there is an extension C∗ of C such that C∗ forces
¬θ(G).

Proof. Let θ(G) be (∀~y)(∃~x)ψ(~x, ~y,G) where ψ is ∆0
0. Since C does not

force (∀~y)(∃~x)ψ(~x, ~y,G) there is a ~w ∈Mn such that C does not force
(∃~x)(ψ(~x, ~w,G)). Fix such a ~w.

Since C does not force (∃~x)(ψ(~x, ~w,G)), it follows that for all l ∈ X
there exists a τ ∈ C of length l such that τ does not force ψ(~v, ~w, τ).

Let C∗ be the subset of C formed by taking all such τ . It is easily
seen that C∗ is a condition. Then C∗ forces ¬(∃~x)(ψ(~x, ~w,G)). �

8.2.1. Preserving I Σ2. For all θ(x,G), a Π0
2–formula, we want to ensure

either M[G] |= θ(a, P ) for every number a of M or else there is a
least b such that M[G] |= ¬θ(b, P ). Hence we are ensuring that every
nonempty set which is Σ0

2 over M[G] has a least element.
Fix a condition C. Consider the set S of c such that C does not

force θ(c,G). By Lemma 8.10, S is Σ0
2 over M. If S = ∅, C forces

θ(a,G) for every a ∈ M. If S 6= ∅, it has a least element b by I Σ2 in
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the ground model M. Then C forces θ(c,G)) for each c < b and so
does each extension of C. By Lemma 8.11, there is an extension C∗ of
C which forces ¬θ(b,G). Hence b is the least element of X satisfying
θ(x,G) for any path P through C∗.

8.2.2. Putting it all together. Above we showed how to ensure that a
single nonempty Π0

2 subset of M[G] has a least element. It is now a
routine matter to do this for all such subsets simultaneously.

Let θi(x,G)i∈N be a listing of Π0
2-formulas. Let f : N → X be a

bijection.
We will construct conditions Cs, s ∈ N, such that there is a unique

M [P ]–infinite path P through ∩s{Cs}, and furthermore, adding P to
the reals of M preserves I Σ2. Let C0 = T .

Stage s+1: Let the condition Cs be given. Let θs be (∀~y)ψs(x, ~y,G),
where ψs(x, ~y,G) is Σ0

1. Using the procedure in Section 8.2.1 find a
condition C∗ extending Cs such that either C∗ forces (θs(c,G)) for all
c ≤ as or for some b, C∗ forces θs(c,G)) for each c < b there is a tuple ~w
such that C∗ forces ¬ψs(c, ~w,G). Let Cs+1 be C∗τs where τs is of length
≥ f(s) and C∗τs is M–infinite.

Let P = ∪sτs. It is easily seen that P is a branch of each tree Cs.
To show that I Σ2 holds in M [P ] it suffices to show that whenever a
sentence which is Π2 or Σ0

1 is forced by a condition C having P as a
path, then it is true of P . This is clear from the definition of forcing
for such sentences.

8.3. The Proof of Lemma 8.7. This will be similar to the proof in
Section 8.2 except that dealing with I Σ3 introduces some additional
technical complications. Fix a topped modelM = (X,F ,+,×, 0, 1, <)
of RCA0 + I Σ3, and suppose that M is topped by D ∈ F . Let T be
an M–infinite tree of binary strings in F . We will add a set P such
that P is an M[P ]–infinite path in T preserving I Σ3.

Except for the set P , we will assume in this subsection that all
numbers and sets mentioned are in the ground model. As before we
force overM using conditions C ∈M where C is anM–infinite subtree
of T .

8.3.1. Forcing Σ0
3 statements. We say C forces a Σ0

3 statement (∃~x)δ(~x,G),
where δ(~x,G) is a Π0

2 statement, if there exists some sequence of param-
eters ~w such that C forces δ(~w,G). We know from Lemma 8.10 that if
θ(x,G) is a Π0

2 statement and C is a condition, then {a : C forces θ(a,G)}
is Π0

2 over M. It follows easily that forcing is Σ0
3 in the analogous

sense for Σ0
3 statements. However, there is a problem in handling

negations of Σ0
3 statements. If we define forcing for such statements in
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analogy with the definition of forcing for negations of Π0
2 statements

just before the statement of Lemma 8.11, then it is not clear that
the analogue of Lemma 8.11 will hold. Instead we use the traditional
definition of forcing for negation so that the analogue of Lemma 8.11
is trivially true. Specifically, we say that a condition C forces ¬θ(G),
where θ(G) is a Σ0

3 formula, if no condition C ′ extending C forces θ(G).
The following definition and lemma show that forcing and truth agree
for sufficiently generic sets.

Definition 8.12. (i) If P ⊆ X and θ(G) is a formula, then P
forces θ(G) if there is a condition C which has P as a branch
and forces θ(G).

(ii) A set P ⊆ X is 2–generic over M if for each Π0
2 formula ψ(G),

either P forces ψ(G) or P forces ¬ψ(G).

Lemma 8.13. If θ(G) is Σ0
3 and P is 2–generic over M and P forces

¬θ(G), then M |= ¬θ(P ).

Proof. This is a standard argument.
Let C be a condition such that P is a path through C and C forces

¬θ(G). Let θ(G) be ∃~xψ(~x,G) where ψ is Π0
2. We must show that

M |= ¬ψ(~w, P ) for any sequence ~w of parameters from M of the ap-
propriate length. Since P is 2–generic overM, P forces either ψ(~w,G)
or ¬ψ(~w,G). Suppose for the moment that P forces ψ(~w,G), and
let C∗ be a condition such that P is a branch of C∗ and C∗ forces
ψ(~w,G). Then C ∩ C∗ is a condition which extends C and forces
ψ(~w,G), which contradicts the hypothesis that C forces ¬θ(G). This
contradiction shows that P forces ¬ψ(~w,G). Since forcing implies truth
for ψ, M |= ¬ψ(~w,G), as needed. �

Unfortunately, it is not clear that forcing for negations of Σ0
3 state-

ments is Σ0
k–definable in M for any k since its definition involves a

set quantifier (over conditions C ′). We do not know how to handle
this problem in general, but here we handle it by requiring thatM be
topped, as in Definition 6.9. Fix a set D such that M is topped by
D, i.e., M satisfies the second–order statement asserting that D has
greatest Turing degree among all reals.

Lemma 8.14. Fix a condition C and a Σ0
3 formula δ(y,G). Let

S = {a ∈ X : C forces ¬δ(a,G)}. Then S is Π0
3 over M.

Proof. Note that a ∈ S iff there does not exist e such that {e}D is
a condition C∗ extending C which forces δ(a,G). Note that it is a
Σ0

3 predicate of a condition C∗ and a to assert that C∗ forces δ(a,G).
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Routine quantifier manipulations then show that the condition a ∈ S
is Π0,D

3 and hence Π0
3 over M. �

Of course, if the statement in Lemma 8.14 fails to hold, then C forces
¬(∃~x)δ(~x).

8.3.2. Preserving I Σ3. This section is the same as Section 8.2.1 except
that the formula θ(x,G) is now Π0

3 instead of Π0
2, and correspondingly

the set S is Σ0
3 instead of Σ0

2. One must also assume that P is 2–generic
over M and apply Lemma 8.14 to go from forcing to truth.

8.3.3. Putting it all together. This section is the same as Section 8.2.2
except that one considers Π0

3 formulas instead of Π0
2 formulas, and also

one must ensure that the constructed set P is 2–generic overM. Actu-
ally, this is already achieved by the given construction, or alternatively
one may easily add steps to achieve this.

8.4. Scott Sets and PAX Degrees.

Definition 8.15. A Scott set S is a nonempty family of reals which is
closed under join such that if X ∈ S and T is an infinite tree of binary
strings computable in X then T has an infinite branch in S.

The Scott sets are precisely the ω–models of WKL0 (see Simpson
[1999]).

Let {ϕn}n∈N be a computable listing of all sentences in the lan-
guage of PA. Define a computable tree Tr as follows: σ ∈ Tr iff
for all n < |σ|, if PA ` ϕn with a proof of Gödel number ≤ |σ| then
σ(n) = 1 and if PA ` ¬ϕn with a proof of Gödel number ≤ |σ| then
σ(n) = 0. Every completion of PA is an infinite path though Tr.
Every infinite path P though Tr computes a completion of PA, by
effectivizing the proof of Lindenbaum’s Lemma. (We build the com-
pletion T stagewise in P . Given θ0 . . . θs in T . Let ϕm be the formula
θ0∧ θ1 . . .∧ θs∧ϕs+1 =⇒ 0 = 1. If m ∈ P then let θs+1 = ¬ϕs+1; oth-
erwise let θs+1 = ϕs+1. Notice that this can be done uniformly.) Let T
be a completion of PA. We call a degree d a PA degree if there is some
completion of PA computable in d (or, equivalently, if d computes an
infinite path though Tr).

A set S ⊆ N is binumerable in T if there is a formula ϕ(x), with no
free variable other than x, such that S is the set of n such that ϕ(n) is
provable in T . The following theorem shows that there is a Scott set,
ST , which is uniformly computable from T .

Theorem 8.16 (Scott [1962]). Let T be a completion of PA. Then the
family ST of all sets binumerable in T is a Scott set.
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Sketch of the proof. Suppose A = {n : T ` ϕ(n)}. First suppose that
B = {n : T ` ψ(n)}. Then

A⊕B = {n : T ` (∃m)((ϕ(m) ∧ n = 2m) ∨ (ψ(m) ∧ n = 2m+ 1)).

Now we show that ST is closed downwards under Turing reducibility.
Assume A is as above and C = ΦA for some Turing functional Φ. Then

C = {n : T ` (∃σ)(σ ⊆ χA ∧ Φσ
|σ|(n) = 1

∧(∀σ′)(σ′ * χA ∨ Φσ′

|σ′|(n)↑ ∨|σ′| > |σ|))}

This formula says that σ is the initial segment of A of least length such
that Φσ

|σ|(n) = 1. Hence C ∈ ST . Assume that A codes a tree in 2ω.
The characteristic function of the following set is a path through A.

{n : T ` (∃σ)(|σ| = n+ 1 ∧ ϕ(pσq) ∧ σ(n) = 1 ∧ (∀y < |σ|)(σ(y) = 0

iff (∀τ ⊇ (σ � y)̂ 1)(∃τ ′ ⊇ (σ � y)̂ 0)(ϕ(pτq) ∧ ϕ(pτ ′q) ∧ |τ ′| ≥ |τ |)))}

(This formula says that our path branches right at any level if for every
finite extension to the left there is a longer one to the right.) �

Let T be a complete extension of PA of low degree, which exists by
the Low Basis Theorem. ST is a Scott set in which all the sets are low,
in fact, uniformly low.

This can all be relativized to any set X. Just add a new unary
predicate P to the language of PA and axioms P (n) if n ∈ X and
¬P (n) if n /∈ X, and allow P to occur in the induction scheme. Call
the resulting theory PAX . Hence using the above we get a tree TrX

such every infinite path though TrX computes a completion of PAX

and every completion of PAX is an infinite path though TrA. A degree
d is a PAX degree if there is some completion of PAX computable in
d. Clearly X is binumerable in a completion of PAX . Hence Scott’s
theorem implies that for each completion T of PAX there is a Scott set,
ST , such that ST is uniformly computable from T and X ∈ S.

Recall that in Definition 4.1 we defined a >> b to mean that every
partial {0, 1}–valued b computable function has a total a–computable
function. The following well–known result shows that this is equivalent
to Simpson’s original definition.

Lemma 8.17. Let a and b be degrees. The following are equivalent:

(i) a >> b
(ii) a is a PAb degree

(iii) Each infinite b–computable tree in 2<ω has an infinite a–
computable path



42 P. CHOLAK, C. JOCKUSCH AND T. SLAMAN

Proof. This may be proved by considering the case b = 0 and rela-
tivizing. For (i) → (ii), assume a >> 0 and consider the computable
function ψ∗, where ψ∗(n) = 1 if PA ` ϕn and ψ∗(n) = 0 if PA ` ¬ϕn.
As we have remarked, each total extension of ψ∗ computes a comple-
tion of PA, so a is a PA degree. The implication (ii) → (iii) follows
at once from Scott’s Theorem (Theorem 8.4). The proof of (iii) → (i)
is implicit in the proof that there is a low degree a >> 0 just after
Definition 4.1. �

8.5. Relativizing to models of RCA0. We claim that Scott’s Theo-
rem, once formalized in second–order arithmetic, is provable in RCA0.
This is basically because Scott’s Theorem is proved in an effective man-
ner. (Details of similar theorems can be found in Simpson [1999].)

Let SS be the assertion (formalized in second–order arithmetic) that
every real belongs to some countable Scott set. Of course, one refers
to countable Scott sets in this context by referring to the reals which
uniformly enumerate them.

Lemma 8.18. SS is equivalent to Weak König’s Lemma over RCA0.

Proof. We argue in RCA0. It is obvious that SS implies Weak König’s
Lemma over RCA0. Conversely, assume Weak König’s Lemma. For
any real X, there is an infinite tree TrX all of whose branches com-
pute completions of PAX and hence, by Scott’s Theorem relative to
X, compute Scott sets containing X. By Weak König’s Lemma, TrX

has a branch, so there is a countable Scott set containing X as an
element. �

Lemma 8.19. Every countable model of RCA0 is an ω–submodel of a
countable model of RCA0 + SS.

Proof. This is immediate from Theorem 8.3 and the previous lemma.
�

We get a similar lemma by applying Lemma 8.7. It will be used in
Section 11.

Lemma 8.20. For every countable topped model M of RCA0 + I Σ3

and every real X of M, there is a topped model M′ of RCA0 + I Σ3

and a real Y of M′ such that, in M′, Y codes a Scott set having X as
a member.

Proof. Use Lemma 8.7 to add a path T though TrX to M. Apply
Lemma 5.3 to get a model M′ of RCA0. Now M′ is a model of “ST
is a Scott set and X ∈ ST” and M′ is topped by T ⊕D, where M is
topped by D. �
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9. COH

9.1. Conservation theorems for COH. The following theorem
which is the analogue in second–order arithmetic of the existence of a
low2 r–cohesive set (or, more precisely, of an infinite low2 set not split
by any set in a given uniformly computable sequence of sets).

Theorem 9.1. RCA0 + COH is Π1
1-conservative over RCA0.

The theorem follows from the next lemma, which is proved in Sec-
tion 9.2.

Lemma 9.2. Let M be any countable model of RCA0 and let (Ri) be

a sequence of sets coded inM. Then there is an ~R–cohesive set G such
that M[G] is a model of IΣ1.

Proof of Theorem 9.1 from Lemma 9.2. Let M be a model of RCA0.
Let (Ri) be a sequence of sets which is coded inM. Apply Lemma 9.2
to getM′. Then apply Lemma 6.7 to get a modelM′′ of RCA0. Iterate
the process infinitely many times ensuring that for every such sequence
of sets Ri a ~R-cohesive set G is added. The resulting model is a model
of RCA0 + COH. Theorem 9.1 now follows from Lemma 6.6 and the
following corollary to the argument just given. �

Corollary 9.3. Every countable model of RCA0 is an ω–submodel of
some countable model of RCA0 + COH.

In later sections, we will need some lemmas similar to Lemma 9.2
and Corollary 9.3.

Lemma 9.4. Let M be any countable model of RCA0 + I Σ2 + WKL
and let (Ri) be a sequence of sets coded in M. There is an ~R-cohesive
set G such that M [G] satisfies I Σ2.

Lemma 9.5. Every countable model of RCA0 + I Σ2 is an ω-submodel
of some countable model of WKL0 + I Σ2 + COH.

Proof of Lemma 9.5 from Lemma 9.4. LetM be a model of RCA0+I Σ2.
Apply Lemma 8.6 to get a modelM′ of WKL0 + I Σ2 of whichM is an
ω–submodel. Choose some (Ri), a sequence of sets which is coded in

M′. Apply Lemma 9.4 to get a ~R-cohesive set G which can be added
to M′ while preserving I Σ2. Then apply Lemma 6.7 to get a model
M′′ of RCA0 + I Σ2. Iterate the process infinitely many times ensuring
that for every such sequence of sets Ri a ~R-cohesive set G is added.
The resulting model is a model of WKL0 + I Σ2 + COH. �
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Lemma 9.5 and Lemma 6.6 imply that WKL0 + COH + RCA0 + IΣ2

is Π1
1-conservative over RCA0+I Σ2. But using Theorem 8.3 and Corol-

lary 9.3 we can slightly improve this.

Lemma 9.6. Every countable model of RCA0 is an ω-submodel of
some countable model of WKL0 + COH.

Proof. LetM be a model of RCA0. Apply Theorem 8.3 to get a model
M′ of WKL0 of whichM is an ω–submodel. Apply Lemma 9.3 to get a
modelM′′ of RCA0 +COH of whichM′ is an ω–submodel. Iterate the
process infinitely many times. Since COH and Weak König’s Lemma
are Π1

2, the resulting model is a model of WKL0 + COH. �

By Lemma 9.6 and Lemma 6.6, WKL0+COH is Π1
1-conservative over

RCA0. We should point out that it is unclear if this conservation result
or Lemma 9.6 implies Lemma 9.5. For related issues see Question 13.3
and Question 13.4.

The next lemma will be useful in the proof of Theorem 11.2.

Lemma 9.7. Assume M is a model of RCA0 + I Σ3. Let (Ri) be a
sequence of sets in M coded by a set C ∈M. Furthermore assume M
has a set T which uniformly codes a Scott set ST containing C. Then
there is an ~R-cohesive set G such that M [G] satisfies I Σ3.

The proof of Lemma 9.2 can be found in Section 9.2, the proof of
Lemma 9.4 can be found in Section 9.3 and the proof of Lemma 9.7
can be found in Section 9.4.

9.2. The proof of Lemma 9.2. Fix a modelM = (X,F ,+,×, 0, 1, <)
of RCA0. We will call M the ground model. We will assume in this
subsection that all numbers and sets (except for G) are in the ground
model.

This argument will be modeled on the argument in Section 5.1. How-
ever, it will be simpler since we need concern ourselves only with Σ0

1-
formulas rather than Σ0

2-formulas.
We will add an unbounded set G such that for all S ∈ F either

G ⊆∗ S or G ⊆∗ S while preserving I Σ1. So G is cohesive for the
sequence of all sets in F and could be said to be ~M-cohesive. This
sequence is not coded inM and hence in reality we are proving a result
stronger than that claimed by Lemma 9.2.

We force over M using conditions (D,L) where D is M–finite, L
is an M–infinite set (in F) and each element of D is less than each
element of L. We say (D∗, L∗) extends (D,L) iff D ⊆ D∗ ⊂ D ∪L and
L∗ ⊆ L. A set G ⊆ X satisfies a condition (D,L) if D ⊆ G ⊆ D∪L. A
condition (D,L) forces a Π0

1 formula ϕ(G) if for allM–finite subsets F
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of L, ϕ(D ∪F ). (This is the same as Definition 5.1, but in the context
of M.) In this case, ϕ(G) holds for all sets G satisfying (D,L), since
the failure of ϕ(G) uses onlyM–finitely much information about G. It
is clear that if a condition (D,L) fails to force a Π0

1 formula ϕ(G) then
(D,L) has an M–finite extension (D∗, L∗) which forces ¬ϕ(G).

A condition (D,L) extends a binary string τ if τ−1(1) ⊆ D and
τ−1(0) ⊆ X − (D ∪ L). (This is equivalent to saying that every set
which satisfies (D,L) extends τ .) For a condition (D,L) and a Π0

1

formula (∀~x)θ(~x,G), where θ(~x,G) is ∆0
0, we say that (D,L) forces

¬(∀~x)θ(~x,G) if there is a tuple ~w of parameters from X and a binary
string τ such that (D,L) extends τ and τ forces ¬θ(~w,G). Here, forcing
of ∆0

0 formulas by binary strings is defined recursively as indicated
in Definition 5.1. Clearly, forcing implies truth for negations of Π0

1

formulas. Also, it is clear that if a condition (D,L) fails to force a Π0
1

formula ϕ(G) then (D,L) has an M–finite extension (D∗, L∗) which
forces ¬ϕ(G).

Any generic G for these conditions will meet dense sets to ensure that
G is not split by any set in F . Suppose that some condition (D,L)
and some set R ∈ F is given. Then either (D,L ∩ R) or (D,L − R)
is a condition satisfied only by sets which are not split by R. Also, for
each n ∈ M and each condition (D,L) there is a condition (D∗, L∗)
extending (D,L) such that |D∗| ≥ n (in the sense of M), so that
any sufficiently generic set G is M[G]–infinite. Hence any sufficiently

generic set G for these forcing conditions is an ~M–cohesive set.

9.2.1. Preserving I Σ1. For all ϕ(x,G), a Π0
1-formula with param-

eters from M, we want to ensure either (∀x)ϕ(x,G) or for some
b, ¬ψ(b,G) ∧ (∀x < b)ϕ(x,G). Hence we are ensuring that every

nonempty set which is Π0,G
1 over M (with parameters from F ∪ {G})

has a least element.
We show how to ensure this for a given Π0

1 formula ϕ(x,G) by extend-
ing a given condition (D,L). Let S = {c ∈ X : (D,L) does not force ϕ(c,G)}.
It is easily seen that S is Σ0

1 over M. If S = ∅, (D,L) forces ϕ(a,G)
for every a ∈ M, so (∀x)ϕ(x,G) holds for every set G which satisfies
(D,L). If S 6= ∅, S has a least element b by I Σ1 in the ground model
M. Then (D,L) forces ψ(c,G)) for each c < b and so does each ex-
tension of (D,L). As remarked above, there is an M–finite extension
(D∗, L∗) of (D,L) which forces ¬θ(b,G). Hence b is the least element
of X satisfying θ(x,G) for any set G which satisfies (D∗, L∗).
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9.2.2. Putting it all together. Let (Rs)s∈N be a listing of the various

requirements discussed in the previous section to ensure that G is ~M–
cohesive and that M [G] satisfies I Σ1. Construct a sequence of con-
ditions (Ds, Ls) with (Ds+1, Ls+1) extending (Ds, Ls) and chosen so
that every set satisfying (Ds+1, Ls+1) satisfies the requirement Rs. Let
G = ∪sDs. Then G satisfies all the requirements Rs.

9.3. The proof of Lemma 9.4. This argument will be based on
the arguments presented in Sections 5.2 and 9.2. Fix a model
M = (X,S,+,×, 0, 1, <) of WKL0 + I Σ2. We will call M the ground
model.

We will add a set G such that for all S ∈ S either G ⊆∗ S or G ⊆∗ S
while preserving I Σ2. So G is ~M-cohesive. Hence in reality we are
proving a result stronger than that claimed by Lemma 9.4.

Except for the sets G and Z, we will assume in this subsection that
all numbers and sets mentioned are in the ground model.

We force over M using the conditions (D,L) where D is M–finite,
L is an M–infinite set in S and each element of D is less than each
element of L. Let ϕ(G) be Π0

1. We say (D,L) forces ϕ(G) if for all
M–finite subsets F of L, ϕ(D ∪ F ) holds in M. We say (D,L) forces
(∃~x)ϕ(~x,G) if for some ~w, (D,L) forces ϕ(~w,G).

9.3.1. Preserving I Σ2. For all θ(x,G), a Σ0
2-formula with parame-

ters from M, and all numbers a in M, we want to ensure either
(∀x ≤ a)θ(x,G) or for some b ≤ a, ¬θ(b,G) ∧ (∀x < b)θ(x,G). Hence
we are ensuring that every nonempty set which is Π0

2 over M[G] has
a least element.

Definition 9.8. Let (D,L) be a condition and let S = {(∃ ~x1)ϕ1( ~x1, G),
. . . , (∃ ~xk)ϕk( ~xk, G)} be an M–finite set of Σ0

2 formulas, with each for-
mula ϕi(~xi, G) a Π0

1 formula.
We define what it means for (D,L) to be S–small as in Definition 5.2

except that, of course, this definition is now interpreted in M. More
precisely, (D,L) is S–small if there exist a number n of M and se-
quences (~wi : i < n) and (Di, Li, ki : i < n) coded in M such that the
Li’s are a partition of L; for each i, D ⊆ Di ⊂ D ∪L; for each i, every
element of Di is less than every element of Li; and for each i, either Li
has no element greater than max(~wi) or (Di, Li) forces ϕki(~wi, G). The
condition (D,L) is S–large if it is not S–small.

The following lemma gives the basic combinatorial property we need
of smallness. Its analogue in the context of Section 3 was obvious. How-
ever, a proof is needed now since we must show that the appropriate
sequences are M–finite.
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Lemma 9.9. Suppose S is an M–finite set of Σ0
2 formulas, k is a

number of M and that ((Di, Li) : i < k) is an M–finite sequence of
S–small conditions in the sense of M. Let D be an M–finite set such
that D ⊆ Di for each i < k, and let L = ∪i<kLi. Then (D,L) is an S–
small condition.

Proof. The idea is simply to combine the witnesses that each (Di, Li)
is S–small to produce a witness that (D,L) is S–small. However, it
must be shown that this operation can be carried out in M.

First note that the definition of S–smallness for (D∗, L∗) can be
written in the form (∃w)(∃X)P (w,X,D∗, L∗) where P is a Π0

1 for-
mula. This can be done by contraction of the number and set quan-
tifiers in the definition of smallness. (The number of set quantifiers
was variable but may be coded into w.) Thus M satisfies the formula
(∀i < k)(∃w)(∃X)P (w,X,Di, Li). The formula (∃X)P (w,X,Di, Li) is
Π0

1 since M is a model of Weak König’s Lemma and hence this state-
ment can be rewritten as the assertion that a certain binary-branching
tree (whose paths are the possible X’s) which is coded by a real inM
is infinite. Thus, since M satisfies IΣ2 and hence BΣ2 it follows that
M satisfies (∃b)(∀i < k)(∃w < b)(∃X)P (w,X,Di, Li). Fix such a b.

Now use that M satisfies IΣ2 to show that M satisfies the formula
(∃X)(∀i < a)(∃w < b)P (w, (X)i, Di, Li) for each a ≤ k. (This is an in-
duction on a. It uses that (∀i < a)(∃w < b)P (w, (X)i, Di, Li) is equiv-
alent to a Π0

1 formula by standard quantifier manipulations, so that
(∃X)(∀i < a)(∃w < b)P (w, (X)i, Di, Li) is equivalent to a Σ0

2 formula.
The base step is trivial, and the induction step follows from the hypoth-
esis that (∀i < k)(∃w)(∃X)P (w,X,Di, Li).) Now, fix a real X of M
such that M satisfies (∀i < k)(∃w < b)P (w, (X)i, Di, Li). Then there
is a number z ofM such thatM satisfies (∀i < k)P ((z)i, (X)i, Di, Li).
(Again using I Σ2.) Then from X and z one can decode anM–finite se-
quence of sets and numbers which witnesses that (D,L) is S–small. �

As in Section 5.1.2, we will restrict ourselves to S–large conditions
for various S as the construction proceeds. Thus we consider how to
extend a given S–large condition to an S–large condition which forces a
given requirement to be satisfied. We first do this for the requirements
used for IΣ2.

Lemma 9.10. Suppose that (D,L) is a condition and S is a finite set
of Σ0

2 formulas and that (D,L) is S–large. Let (∃x)θ(x, y,G) be a Σ0
2

formula, where θ(x, y,G) is a Π0
1 formula, and let a be a number inM.

Then there is an S–large condition (D∗, L∗) extending (D,L) such that
either



48 P. CHOLAK, C. JOCKUSCH AND T. SLAMAN

• (D∗, L∗) forces (∃x)θ(x, b,G) for all b ≤ a, or
• There exists b ≤ a such that (D∗, L∗) forces (∃x)θ(x, c,G) for

all c < b and (D∗, L∗) is (S ∪ {(∃x)θ(x, b,G)})–large.

Proof. Let R be the set of b ≤ a such that there exist a number k,
sets L0, L1, . . . , Lk with L = ti≤kLi, M–finite sets F0, F1, . . . Fk with
D ⊆ Fi ⊆ D ∪ L, and each element of Fi less than each element of Li,
formulas ϕ0(G), . . . , ϕk(G) and numbers w0, . . . , wk and such that for
each i ≤ k either:

(1) ϕi(G) is a Π0
1–instance of a formula in S and (Fi, Li) forces

ϕi(G),
(2) wi codes anM–finite sequence w0

i , w
1
i , . . . , w

b
i such that (Fi, Li)

forces θ(wji , j, G) for each j ≤ b, or
(3) Every element of Li is less than wi.

Note that the above definition is to be interpreted in M. In par-
ticular, k ∈ M , (L0, . . . , Lk) is coded by a set of M , etc. The set R
is Σ0

2 over M. To see this, note that the definition of R could be

phrased as (∃k)(∃~F )(∃~w)(∃~L)P (k, ~F , ~w, ~L), where P is a Π0
1 formula.

The formula (∃~L)P is then also equivalent to a Π0
1 formula over M,

since by Weak König’s Lemma it is equivalent to the assertion that
a certain tree (whose paths are the possible ~L) which is a set in M
contains strings of every length. Thus, R can be defined over M by a
Σ0

2 formula.
Suppose first that a ∈ R, and consider the corresponding k, L0, . . . , Lk,

F0, . . . , Fk, w0, . . . , wk, and ϕ0, . . . , ϕk. Note by Lemma 9.9 that for
some i ≤ k, the pair (Fi, Li) is an S–large condition, since (D,L) is
S–large. For such an i, (Fi, Li) is an S–large condition which extends
(D,L) and forces (∃x)θ(x, b,G) for each b ≤ a, so the conclusion of the
lemma holds with (D∗, L∗) = (Fi, Li).

Now suppose that a /∈ R. Since M satisfies IΣ2, there is a
least number b /∈ R, and b ≤ a. First suppose that b = 0. Then
(D,L) is (S ∪ {(∃x)θ(x, 0, G)})–large, so the conclusion of the lemma
holds with (D∗, L∗) = (D,L). Now assume that b > 0, and choose
k, L0, . . . , Lk, . . . which witness that b−1 ∈ R. We claim that (Fi, Li) is
(S∪{(∃x)θ(x, b,G)})–large for some i ≤ k. Once the claim is proved, it
follows that the conclusion of the lemma holds with (D∗, L∗) = (Di, Li),
since (Di, Li) forces (∃x)θ(x, c,G) for each c < b, as in the case where
a ∈ R.

To prove the claim, assume for a contradiction that (Fi, Li) is
(S ∪ {(∃x)θ(x, b,G)})–small for all i ≤ k. Choose corresponding wit-
nesses Li,j, j ≤ ki, etc. Altogether, there are onlyM–finitely many sets
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Li,j, and this M–finite collection of sets and the other corresponding
witnesses show that b ∈ R. For the moment, we argue very informally.

We will focus on those i where (Fi, Li) is S-large and Li isM-infinite.
Fix such an i. Then (Fi, Li) forces (∃x)θ(x, c,G) for each c < b, as these
pairs are witnessing that b − 1 ∈ R. It follows then that the stronger
condition (Di,j, Li,j) forces (∃x)θ(x, c,G) for each c < b. By our choice
of i and the fact that (Fi, Li) is (S∪{(∃x)θ(x, b,G)})–small, there must
be some j such that (Di,j, Li,j) forces a Π0

1-instance of (∃x)θ(x, b,G).
Fix any such j. (Di,j, Li,j) forces (∃x)θ(x, c,G) for each c ≤ b. Hence,
b ∈ R, which gives a contradiction. (This argument may be formalized
in a manner similar to the proof of Lemma 9.9.) �

As in our previous constructions, when we restrict ourselves to S–
large conditions, our intention is to make every formula in S false in
M[G]. The following lemma ensures that this is possible.

Lemma 9.11. Let S be a finite set of Σ0
2 formulas, and let (D,L) be

an S–large condition. Suppose that θ(G) is a Π0
1–instance of a formula

in S. Then there is an S–large condition (D∗, L∗) which extends (D,L)
and forces ¬θ(G).

Proof. The proof is entirely analogous to that of Lemma 5.3. �

9.3.2. Putting it all together. Let R ∈ S. If (D,L) is S-large then
one of (D,L ∩ R) or (D,L ∩ R) must be S-large (otherwise (D,L) is
S-small).

Let {〈θi(x,G), ai〉} be a listing of all pairs where θi(x,G) is a Σ0
2-

formula with parameters from M and ai is a number in M. Let {Ri}
be a listing of reals inM, and let δs(G) be a listing of the Π0

1 formulas
with parameters from G such that each such formula occurs infinitely
often in the list.

We will construct conditions (Ds, Ls) such that G = ∪s{Ds} is an
~M-cohesive set and preserves I Σ2. In addition, we construct finite sets
{Ss} of Σ0

2-formulas. During and after stage s, we will commit ourselves
to working with Ss-large conditions and ensuring (∀~x)¬ϕ(~x,G) for all
(∃~x)ϕ(~x,G) ∈ Ss. Initially, let (D−1, L−1) = (∅, L̃), (let L̃ = X) and
S−1 = ∅. We can assume inductively that (Ds−1, Ls−1) is Ss−1-large.

Stage s: Use Lemma 9.10 to find an Ss−1–large condition (D∗, L∗)
extending (Ds−1, Ls−1) such that either (D∗, L∗) forces (θs(b,G)) for all
b ≤ as or for some b ≤ as, (D∗, L∗) forces (θs(c,G)) for all c < b and
(D∗, L∗) is Ss-large, where Ss = Ss−1 ∪ {θs(b,G)} in the latter case,
and Ss = Ss−1 otherwise.

If δs(G) is a Π0
1–instance of some formula in Ss, let (D∗∗, L∗∗) be an

Ss–large condition which extends (D∗, L∗) and forces ¬δs(G). (Such a
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condition exists by Lemma 9.11.) Otherwise, let (D∗∗, L∗∗) = (D∗, L∗).
Furthermore, we may require that, in the sense of M, the cardinality
of D∗∗ is ≥ as.

Finally, let (Ds, Ls) = (D∗∗, L∗∗ ∩ Rs) if (D∗∗, L∗∗ ∩ Rs) is Ss-large;
otherwise let (Ds, Ls) = (D∗∗, L∗∗ ∩Rs).

Let G = ∪sDs. As forcing implies truth for the notions of forcing
considered in this proof, it is easily seen that the model M [G] obtained
by adjoining G to the reals of M has the desired properties.

9.4. The proof of Lemma 9.7. The proof is similar to that in Sec-
tion 9.3, although the class of forcing conditions is now chosen so that
it will be possible to quantify over conditions using number quantifiers.
Fix a model M, {Ri}, C, T and ST as in Lemma 9.7. We will add an
unbounded set G such that for all i either G∩Ri or G∩Ri is bounded
in M while preserving I Σ3. So G is ~R-cohesive.

Except for the sets G, we will assume in this subsection that all
numbers and sets mentioned are in the ground model. We force over
M using the conditions (D,L) where D is M–finite, L ∈ ST , L is an
M–infinite set, and every element of D is less than every element of
L. This will help us to quantify over conditions (see Lemma 9.12).
We define what it means for a condition (D,L) to be S–large as in
Section 9.3.

9.4.1. Preserving I Σ3. For all γ(x,G), a Σ0
3-formula with parame-

ters from M, and all numbers a in M, we want to ensure either
(∀x ≤ a)(γ(x,G)) or for some b ≤ a, ¬γ(b,G) ∧ (∀x < b)(γ(x,G)).

Hence we are ensuring that every nonempty Π0,G
3 -definable set (with

parameters in M) has a least element.
Suppose we are are given an S–large condition (D,L), where S is

an M–finite set of Σ0
2 formulas. (We can no longer assume that S

is actually finite, as we did in Sections 9.2.1 and 9.3.1; see the next
lemma.) If we wish to ensure that a Σ0

2 formula δ(G) is false, we
know that it is possible to do this if (D,L) is (S ∪ {δ(G)})–large, by
committing to work with (S ∪ {δ(G)})–large conditions from now on.

Lemma 9.12. Let S be an M–finite set of Σ0
2 formulas and let (D,L)

be an S–large condition. Suppose that δ(x, y,G) is a Σ0
2 formula. Let C

be the set of c such that for some M–finite set S∗ ⊇ S of Σ0
2 formulas

and some condition (D∗, L∗) extending (D,L), (D∗, L∗) is S∗–large and
(∀b < c)(∃d)[δ(d, b,G) ∈ S∗]. Then C is Σ0

3 over M.

Proof. There is a Π0
2 formula λ(S∗, D∗, L∗) such that whenever S∗ is

a (code for) an M–finite set of Σ0
2 formulas, D∗ is an M–finite set,
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and L∗ ∈ ST , then λ(S∗, D∗, L∗) holds in M iff (D∗, L∗) is an S∗–
large condition. This is proved as usual (for example, see the proof of
Lemma 9.9), except rather than using that M satisfies Weak König’s
Lemma we use the fact that “ST is a Scott Set” in true in M. In the
definition of C, the quantifier over L∗ can be replaced by a number
quantifier, using a parameter for T . The rest is routine quantifier
counting. �

It is easily seen that the Σ0
3 formula γ(y,G) is equivalent over M

to a formula of the form (∃x)¬δ(x, y,G), where δ(x, y,G) is Σ0
2. Fix a

condition (D,L) and a M–finite set S where (D,L) is S-large. Define
C as in Lemma 9.12.

Consider now the case where a+ 1 ∈ C. Then there is an extension
(D∗, L∗) of (D,L) and an M–finite set S∗ of Σ0

2 formulas containing
S such that for all c ≤ a, there is a d, δ(d, c,G) ∈ S∗ and (D∗, L∗)
is S∗-large. Hence if we continue to work with S∗-large conditions we
will ensure as usual that for all c ≤ a there exists d such that M [G]
satisfies ¬δ(d, c,G). It then follows that M [G] satisfies γ(c,G), for all
c ≤ a.

Suppose now that a+ 1 /∈ C. Then, by IΣ3 inM and Lemma 9.12,
there is a least number b such that b /∈ C, and clearly, b ≤ a + 1.
Since (D,L) is S–large, b 6= 0. Let S∗, D∗, L∗ witness that b − 1 ∈ C.
Then by extending to (D∗, L∗) and committing to work with S∗–large
conditions from now on, we can ensure that M [G] satisfies γ(c,G) for

all c < b− 1. Furthermore for all conditions (D̂, L̂) extending (D∗, L∗)

and for all d, if (D̂, L̂) is S∗-large then (D̂, L̂) is (S∗∪{δ(d, b−1, G)})–
small. Hence at future stages we can extend our conditions to force
δ(d, b−1, G) for all d, and thus ensure that M [G] satisfies ¬γ(b−1, G).
Thus, b − 1 ≤ a, and b − 1 is the least c such that γ(c,G) is false in
M [G].

9.4.2. Putting it all together. One constructs an ascending chain
(Ds, Ls) of forcing conditions andM–finite sets Ss and takesG = ∪sDs,

using the results of the previous subsection to ensure that G is ~R cohe-
sive and M [G] satisfies IΣ3. We omit the details, which are analogous
to those of Section 9.3.2.

9.5. Independence. We show that COH and Weak König’s Lemma
are independent over RCA0. We build an ω–model of COH where Weak
König’s Lemma fails and also an ω–model of Weak König’s Lemma
where COH fails. There has already been some work in this direction;
Hirst [1987, Theorem 6.10] showed that there is an ω–model of Weak
König’s Lemma where RT 2

2 fails.
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Theorem 9.13. COH and Weak König’s Lemma are independent over
RCA0.

The theorem follows from the next two lemmas.

Lemma 9.14. There is ω–model of WKL0 which is not a model of
COH.

Proof. By the Low Basis Theorem, there is a low complete extension
T of Peano arithmetic. Let S be the family of all sets binumerable in
T , so that S is a Scott set and hence an ω–model of WKL0. As all
computable sets are in S, S contains a set which uniformly codes all
primitive recursive sets. Thus, if S were a model of COH, S would
contain a p–cohesive set, i.e. an infinite set not split by any primitive
recursive set. However, no p-cohesive set is low (see Theorem 12.4 or
Jockusch and Stephan [1993, Theorem 2.1]). Hence S is not a model
of COH. �

Lemma 9.15. There is an ω-model of RCA0 + COH which is not a
model of Weak König’s Lemma.

Lemma 9.15 is a consequence of the following lemma.

Lemma 9.16. Fix a real A. Suppose that T is an infinite binary
branching computable tree such that none of its infinite paths are com-
putable from A. Finally, suppose that the sets R0, R1, . . . are each
computable from A. Then there is an ~R-cohesive set G which does not
compute any paths through T .

Proof. The requirements to be met are the following:

(S3e) (∃x)[{e}G(x)↑ or {e}G � x /∈ T ]

(S3e+1) |G| ≥ e

(S3e+2) G ⊆∗ Re or G ⊆∗ Re

These will be met using forcing with conditions (D,L), which are
as in our previous arguments except that now L is an infinite A–
computable set (and need not be low). As before, it suffices to show
that for any requirement Ss and any condition (D,L), there is a con-
dition (D′, L′) extending (D,L) such that every set satisfying (D′, L′)
satisfies the requirement Ss. This is clear if s is of the form 3e + 1 or
3e + 2, so assume that s = 3e. Also assume for a contradiction that a
condition (D,L) is given such that no such (D′, L′) exists for s = 3e.
We now obtain a contradiction by constructing an A–computable path
f through T . To do this we recursively define an infinite sequence
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of conditions (D0, L0), (D1, L1), . . . such that (D0, L0) = (D,L) and
(Di+1, Li+1) is a finite extension of (Di, Li) for each i. We also define
an infinite sequence of strings τ0, τ1, . . . such that |τi| ≥ i, {e}G extends
τi for all G satisfying (Di, Li), and τi+1 extends τi for all i. It follows
that τi ∈ T , since otherwise (Di, Li) would be a condition (D′, L′) as
above. Hence f ∈ [T ] where f = ∪iτi. Furthermore, Di, Li and τi
are A–computable, uniformly in i, so that f is an A–computable path
through T , yielding the desired contradiction.

To start the construction, let (D0, L0) = (D,L), and let τ0 be the
empty string. Now suppose that Di, Li, and τi have been constructed.
There is a set G satisfying (Di, Li) with {e}G(i) ↓, since otherwise
(Di, Li) would serve as (D′, L′). Hence, by a standard construc-
tion, there is a finite extension (Di+1, Li+1) of (Di, Li) and a value
yi such that {e}G(i) = yi for all G satisfying (Di+1, Li+1). Further-
more, Di+1, Li+1, and yi may be found by an A–effective search. Let
τi+1 = τ_i yi. This clearly works. �

Proof of Lemma 9.15 from Lemma 9.16. Fix an infinite computable
tree T with no computable paths. (It is easy to see such a tree exists.
For example, if B0 and B1 are disjoint computably inseparable com-
putably enumerable sets. Then family of sets which separate B0 and
B1 forms a nonempty Π0

1 class in 2ω with no computable paths.) By
iterating Lemma 9.16 it is possible to build an ω-model of RCA0+COH
which does not contain any infinite path through T . To carry this out,
let H0 = ∅. Assume inductively that Ht is defined for t ≤ s and that
Hs does not compute an infinite path through T . Let s = 〈e, k〉, where
k < s. If {e}Hk is not a characteristic function, let Hs+1 = Hs. If
{e}Hk is the characteristic function of a set R, let Ri = (R)i, and let G
be as in Lemma 9.16, and let Hs+1 = Hs ⊕G. It is clear by induction
on s that Hs does not compute an infinite path through T . Thus, if
S is the family of all sets computable from some Hs, then S is the
desired ω-model of RCA0 + COH + ¬ Weak König’s Lemma . �

10. Two colors

The goal of this section is to obtain the following result.

Theorem 10.1. Every countable model of RCA0 + I Σ2 is an ω–
submodel of some countable model of WKL0 + I Σ2 + RT 2

2.

By Theorem 6.6, the above theorem immediately yields the following
consequence.

Theorem 10.2. RT 2
2+RCA0+I Σ2 is Π1

1–conservative over RCA0+I Σ2.
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In fact, it implies that WKL0 + I Σ2 + RT 2
2 is Π1

1-conservative over
RCA0 + I Σ2. By a result of Slaman (Theorem 2.9), Theorem 10.1 fails
for models of RCA0, i.e. there is a countable model of RCA0 which is
not an ω–submodel of any model of RCA0 + RT 2

2.
Theorem 10.1 follows from Lemma 9.5 and the following result.

Theorem 10.3. Every countable model of RCA0 + I Σ2 is an ω–
submodel of some countable model of WKL0 + I Σ2 + SRT 2

2.

Proof of Theorem 10.1. Start with any countable modelM of RCA0+I Σ2.
By Lemma 9.5, M is an ω–submodel of a countable model M1 of
RCA0 + I Σ2 + COH. By Theorem 10.3 M1 is an ω–submodel of
a countable model M2 of WKL0 + I Σ2 + SRT 2

2. Iterate to get a
countable ω–chain of countable models whose union is a model of
WKL0 + I Σ2 + SRT 2

2 + COH. By Lemma 7.11, RT 2
2 follows from

RCA0 + COH + SRT 2
2. �

The following result is used to prove Theorem 10.3.

Lemma 10.4. LetM be a countable model of WKL0+I Σ2. Let f(x, s)
be a function coded inM such that for all x and s, f(x, s) < 2, and for
all x, lims f(x, s) exists. It is possible to add an unbounded set G while
preserving I Σ2 such that for some j < 2, for all x ∈ G, lims f(x, s) = j.

Proof of Theorem 10.3. Start with any countable modelM of RCA0+I Σ2.
By Lemma 8.6 it is an ω–submodel of a countable model M′ of
WKL0+I Σ2. Given f coded inM′ as in Lemma 10.4, use Lemma 10.4
to form a new modelM′′ by adding the set G while preserving I Σ2. By
Lemma 6.7M′′ is an ω–submodel of a countable model of RCA0+I Σ2.
Iterate over all such functions and take the union of a chain to get a
model M∗ of WKL0 + I Σ2 + D2

2. By Lemma 7.10, over RCA0, D2
2 is

equivalent to SRT 2
2. So M∗ is a model of WKL0 + I Σ2 + SRT 2

2. �

The following theorem is a slight improvement of the above men-
tioned result of Slaman (Theorem 2.9) and it shows that Theorem 10.3
cannot be improved to countable models of RCA0. A proof of the
following theorem can be found in Section 10.2.

Theorem 10.5. SRT 2
2 is not Π0

4-conservative over RCA0.

A proof of Lemma 10.4 can be found in Section 10.1. A proof of
Theorem 10.5 can be found in Section 10.2.

10.1. The proof of Lemma 10.4. This argument will be based
on the arguments presented in Sections 5.2 and 9.3. Fix a model
M = (X,S,+,×, 0, 1, <) of WKL0 + I Σ2. Fix f as in Lemma 10.4.
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Let F (x) = lims f(x, s) and Ai = F−1(i) for i ≤ 1. Except for the sets
A0, A1, G, Z and the function F , we will assume in this subsection
that all numbers and sets mentioned are in the ground model.

Via forcing we will add an unbounded set G such that either G ⊆ A0

or G ⊆ A1 while preserving I Σ2. Without loss of generality we can
assume that for all M–infinite sets X ∈ S, it is not the case that
X ⊆ A0 or X ⊆ A1. Our first task is deciding whether G ⊆ A0 or
G ⊆ A1.

We force overM using the conditions (D,L) where D is anM–finite
set, L is an M–infinite set in S and every element of D is less than
every element of L.

10.1.1. A0 or A1? We will build G ⊆ A0 if for all (D,L) and finite sets
of formulas S, (D,L) is S-large∅ implies (D,L ∩ A0) is S-large∅. (For
a definition of large∅, see Definition 5.11.) Let Ai = A0, L̃ = X and
W = ∅.

Otherwise, we will use A1. Let D̃, L̃ and S̃ be the counterexample.
Let W be a function such that |W | = 1 and DW (0) = D̃, LW (0) = L̃

and SW (0) = S̃. Now it is the case that for all (D,L) and finite sets S
of formulas, (D,L) is S-largeW implies (D,L ∩ A1) is S-largeW . (This
follows exactly as in the proof of Lemma 5.7.) Let Ai = A1.

10.1.2. The rest. We will restrict ourselves to using conditions (D,L)
where D ⊂ Ai and (D,L) is ∅-largeW . (∅, L̃) will be our initial con-
dition. Otherwise, the rest of the argument goes exactly like the ar-
gument in Section 9.3 using S-largeW conditions rather than S-large
conditions. We leave the verification of this to the reader except for
the following minor comments.

In ensuring that G contains an element ≥ a by extending a given
condition (D,L), we use the fact that L ∩ Ai is unbounded, which
follows from our hypothesis that A1−i has no unbounded subset which
is a real of M.

While the definition of smallness changed slightly from Section 9.3,
its complexity remains unchanged.

Lemma 10.6. The definition of a condition (D,L) being S-smallW is
Σ0

2.

Proof. As noted before (see the the proof of Lemma 9.9) the definition
of S-smallW boils down to the form “there exists n′, a set (~xj : j < n′)

and finite sets (Dj : j < n) (for all j, Dj ⊂ A|W |) and something Π0,L
1 ).”

Now “Dj ⊂ A|W |” can be replaced with “there exists t, for all s ≥ t,
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for all x, x ∈ Dj implies f(x, s) = |W |.” Here we are using that M
satisfies B Π1. �

10.1.3. A failed improvement; Why I Σ2 is needed. One may wonder
why we cannot just use the argument in Section 9.2.1 here. If this were
possible, we could prove a stronger result: LetM be a model of WKL0.
Let f(x, s) be a function in M such that for all x and s, f(x, s) < 2,
and for all x, lims f(x, s) exists. It is possible to add an unbounded
set G while preserving I Σ1 such that for some j < 2, for all x ∈ G,
lims f(x, s) = j.

First of all this improved result would lead to the result: RCA0+RT 2
2

is Π1
1-conservative over RCA0+I Σ1. But this contradicts Theorem 10.5.

Let’s take a closer look to see where the argument breaks down.
Let ψ(G) be a Σ0

1 sentence. Here whether we can extend a given
condition (D,L) to a condition (D∗, L∗) such that (D∗, L∗) forces ψ(G)
is a Σ0

1-question. D∗ must be a subset of (D∪L)∩Ai such that ψ(D∗).
But Ai is not a set in the ground model. Asking if x ∈ Ai is ∆0

2.
Hence in this case whether we can extend a given condition (D,L) to
a condition (D∗, L∗) such that (D∗, L∗) forces ψ(G) is Σ0

2. Hence we
cannot just use I Σ1 as we did in Section 9.2.1; we need I Σ2.

10.2. The proof of Theorem 10.5. Slaman’s proof of Theorem 2.9
involves two lemmas; Seetapun and Slaman [1995, Lemmas 3.4 and
3.5]. The first is well-known; the second is not. By examining how
these two lemmas are used (see the proof of Seetapun and Slaman
[1995, Theorem 3.6]), we can see that it is enough to alter Seetapun
and Slaman [1995, Lemma 3.5] so that the function F (the partition
or 2-coloring of all pairs) produced is stable. For this task we will
adopt the notation of Seetapun and Slaman [1995, Lemmas 3.4 and
3.5]. Since we do not have to make major changes we will just present
the needed changes to Seetapun and Slaman [1995, Lemma 3.5].

First we will require that h0[s+1], . . . , ha[s+1] be sets of cardinality
2a rather cardinality a. We will have to choose xi carefully. Define xi[s]
by recursion for i < a; Let xi[s] be such that xi[s] ∈ hi[s], for all j < i,
xi[s] 6= xj[s] and for all j ≤ i, xi[s] 6= aj[s]. Since for each standard n
lims an[s] = an exists and we have changed the size of hi[s] to 2a, if i
is standard then lims xi[s] exists. Define F (xi[s+ 1], s+ 1) 6= F (l1, l2),
where l1 and l2 are the first two elements (under <) of ha[s + 1]; oth-
erwise for x ≤ s + 1, F (x, s + 1) = 0. Pick some x. Since the se-
quence of an’s (for standard n) lists every number in our model, either
x = limxi[s] or for only finitely many s there is an i such that x = xi[s].
In either case, lims F (x, s) exists.
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11. Finitely many colors

The following is the main result of this section.

Theorem 11.1. RT 2
<∞ + RCA0 + I Σ3 is conservative for arithmetic

statements over RCA0 + I Σ3.

This is a consequence of the following theorem.

Theorem 11.2. Every countable topped model of RCA0 + I Σ3 is an
ω–submodel of some countable model of
WKL0 + I Σ3 + RT 2

<∞.

In fact Theorem 11.2 implies that RT 2
<∞ + WKL0 + I Σ3 is conser-

vative for arithmetic statements over RCA0 + I Σ3. Theorem 11.2 is
deduced from the following result.

Lemma 11.3. Assume M is a countable model of RCA0 + I Σ3. Let
f(x, s) be a function coded inM and k be a number inM such that for
all x and s, f(x, s) < k, and for all x, lims f(x, s) exists. Furthermore
assumeM has a set T which uniformly codes a Scott set ST containing
f . It is possible to add a unbounded set G to M while preserving I Σ3

such that for some j < k, for all x ∈ G, lims f(x, s) = j.

Proof of Theorem 11.2. Let M = (X,F ,+,×, 0, 1, <) be a countable
model of RCA0 + I Σ3, and let M be topped by D.

Choose some f and k as in Lemma 11.3. Apply Lemma 8.20 to
get M′ such that M′ is a model of RCA0 + I Σ3, M′ has a set T
which uniformly codes a Scott set ST containing f , and T ⊕ D wit-
nesses that M′ is topped. Apply Lemma 11.3 to add an unbounded
set G to M′ while preserving I Σ3 such that for some j < k, for all
x ∈ G, lims f(x, s) = j. Then apply Lemma 6.7 to get a model M′′ of
RCA0 + I Σ3. M′′ is topped by G⊕ T ⊕D.

Choose some {Ri}i∈ω a sequence of sets which is coded by C inM′′.
Apply Lemma 8.20 to getM′′′ such thatM′′′ is a model of RCA0+I Σ3,
M′′′ has a set T ∗ which uniformly codes a Scott set ST ∗ containing C,
andM′′′ is topped by T ∗⊕G⊕ T ⊕D. Apply Lemma 9.7 to add a ~R-
cohesive set G∗ toM′′′ while preserving I Σ3. Then apply Lemma 6.7 to
get a modelM∗ of RCA0+I Σ3. M∗ is topped by G∗⊕T ∗⊕G⊕T ⊕D.

Iterate the process infinitely many times, ensuring that for every f
and k, as in Lemma 11.3, an unbounded set G is added such that for
some j < k, for all x ∈ G, lims f(x, s) = j and for every such coded

sequence of sets {Ri} a ~R-cohesive set G is added. The resulting model
is a model of WKL0+I Σ3+COH+D2

<∞. By Lemma 7.12, RCA0+D2
<∞

implies SRT 2
<∞ and, by Lemma 7.13, RCA0 + COH + SRT 2

<∞ implies
RT 2

<∞. �
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A proof of Lemma 11.3 will appear in Section 11.1. However, the
following result shows that these theorems cannot be improved to I Σ2.

Theorem 11.4. RCA0 + SRT 2
<∞ ` B Σ3.

Corollary 11.5. RCA0 + RT 2
<∞ ` B Σ3.

This improves work of Mytilinaios and Slaman [1994] who showed
RCA0+RT 2

<∞ ` I Σ2. Since B Σ3 is stronger than I Σ2 (see Kaye [1991]
or Hájek and Pudlák [1993]), we have that RT 2

2 does not imply RT 2
<∞

(and SRT 2
2 does not imply SRT 2

<∞). A proof of Theorem 11.4 can be
found in Section 11.2

11.1. A Proof of Lemma 11.3. The argument is similar to that
in Section 9.4.1, although the forcing conditions are modified as in
Section 10.1. Fix a model M, f , k, T and ST as in Lemma 11.3. Let
F (x) = lims f(x, s) and Ai = F−1(i). It is enough to add an unbounded
set G to M such that for some i, G ⊆ Ai while preserving I Σ3.

Except for the sets Ai, G and the function F , we will assume in
this subsection that all numbers and sets mentioned are in the ground
model. Clearly, Ai is ∆0,f

2 and hence ∆0,T
2 . Lemma 10.6 applies; so the

while the definition of smallness has slightly changed (from the notion
used in Section 9.4) its complexity remains unchanged.

We force over M using the conditions (D,L) where D is M–finite,
L ∈ ST is an M–infinite set and every element of D is less than every
element of L.

Our first task is to decide for which i < k, G ⊆ Ai.

11.1.1. Which Ai? We would like to find an i and a function W such
that |W | = i and for all conditions (D,L) and finite sets of Σ0

2 formulas,
S, if (D,L) is S-largeW then (D,L∩Ai) is S-largeW . We will use I Σ3

to find such an i and W .

Lemma 11.6. “There is a W such that for all j ≤ i, (DW (j), LW (j))

is SW (j)-largeW �j and (DW (j), LW (j) ∩ Aj) is SW (j)-smallW �j” is a Σ0,T
3

formula (i is a free variable).

Proof. There is a Π0
2 formula λ(S,D,L) such that whenever S is a (code

for) an M–finite set of Σ0
2 formulas, D is anM–finite set, and L ∈ ST ,

then λ(S,D,L) holds inM iff (D,L) is an S–large condition (this uses

a number of previous lemmas including Lemma 10.6). Since Ai is ∆0,T
2 ,

whether (D,L∩Ai) is an S–small condition is Σ0,T
3 . The quantifier over

W can be replaced by a number quantifier, using a parameter for T .
The rest is routine quantifier counting. �
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Let ξ(i) be the Σ0,T
3 formula described by the above lemma. Consider

the set B = {b : ¬ξ(b)}. B is a Π0
3 set. Hence by I Σ3 in the ground

model if nonempty B must have a least element. The next lemma
shows that B is nonempty and the least element must be less than k.
(The lemma and its proof are based on Lemma 5.12.)

Lemma 11.7. Let l = k − 1. Then ¬ξ(l).

Proof. We argue informally. Assume ξ(l). Let W witness the satisfac-
tion of ξ(l). Thus |W | ≥ k. Let D = D̃W (l), L = L̃W (l), S = S̃W (l).

For n ≤ l, we have that (D̃W (n), L̃W (n)∩An) is S̃W (n)-smallW �(n). Let
n < l and inductively assume that (D,L ∩ (ti<nAi)) is ∅-smallW �n.

Since (D,L) is W -acceptable, L ⊆ L̃W (n) and hence (D̃W (n), L ∩ An)

is S̃W (n)-smallW �(n). So (D̃W (n), L ∩ (ti<n+1Ai)) is S̃W (n)-smallW �(n).
Hence (D,L∩(ti<n+1Ai)) is ∅-smallW �(n+1). Therefore (D,L∩(ti<lAi))
is ∅-smallW �l.

Therefore if (D,L∩Al) is S-smallW �l then (D,L) must be S-smallW �l.
This contradicts the choice of D, L and S.

To make this formal we need the fact that M is a model of I Σ3 to
prove a lemma similar to Lemma 9.9 and to make the above induction
showing (D,L ∩ (ti<lAi)) is ∅-smallW �l hold in M. �

11.1.2. The rest. Let i be the least element of the set B. Then i < k.
Let W witness the satisfaction of ξ(i− 1) (if i = 0 let W = ∅). Hence
|W | = i− 1 and for all conditions (D,L) and allM–finite sets S of Σ0

2

formulas, if (D,L) is S-largeW , then (D,L ∩ Ai) is S-largeW . We will
restrict ourselves to using conditions (D,L) where D ⊂ Ai and (D,L)
is ∅-largeW . (∅, L̃W (i−1)) will be our initial condition (if i = 0 use (∅,X)
as the initial condition).

Otherwise, the rest of the argument goes exactly like the argument in
Section 9.4 using S-largeW conditions rather than S-large conditions.
We leave this to the reader to verify except for one minor comment. If
(D,L) is any condition such that where D ⊂ Ai and (D,L) is ∅-largeW ,
then L∩Ai is unbounded (since (D,L∩Ai) is ∅-largeW ). Thus, it will
be possible to ensure that G is unbounded.

11.2. A Proof of Theorem 11.4. By Mytilinaios and Slaman [1994,
Proposition 5.2], RCA0 + RT 2

<∞ implies B Σ2. However their proof
shows something stronger: RCA0 + SRT 2

<∞ implies B Σ2. We will use
this below.

We work in a nonstandard modelM and suppose that we are given
a failure of BΣ3. That is, we are given a number a and a Σ3 formula



60 P. CHOLAK, C. JOCKUSCH AND T. SLAMAN

(∃x)(∀y)(∃z)ϕ(w, x, y, z), with free variable w, such that the following
conditions hold.

(1) For all w less than a, (∃x)(∀y)(∃z)ϕ(w, x, y, z).
(2) For all s, there is a w less than a such that ¬(∃x < s)(∀y)(∃z)ϕ(w, x, y, z).

Let X be the set of numbers of M. We define a coloring C of
[X]2 into a-many colors which is ∆0

1 over M, ensure that C is sta-
ble, and ensure that for each w less than a the set of s such that C
is stable with value w for pairs which begin with s is bounded in X.
Basically, we want limt→∞ C(s, t) to equal some w less than a such
that ¬(∃x < s)(∀y)(∃z)ϕ(w, x, y, z) (we use C(x, y) as shorthand for
C({x, y})). There is such a w by Item 2 above. During stage t, we
define C(s, t) for all s less than t and let C(s, t) be our best guess for
such a w.

Say that a number w < a is released for the y∗th time during stage t
relative to s if (∃x < s)(∀y < y∗)(∃z < t)ϕ(w, x, y, z). We define C(s, t)
to be the least w less than a such that the number of times that w has
been released relative to s during stage t is minimized in comparison
to other numbers less than a.

First, check that C is stable. By Item 2, there is a w less than a
such that ¬(∃x < s)(∀y)(∃z)ϕ(w, x, y, z). Fixing such a w and looking
at the numbers x less than s, we have a function mapping x to the
least y such that ¬(∃z)ϕ(w, x, y, z). By BΣ2, there is a bound y∗ on
the range of this function and a bound on all of the z’s associated with
y’s smaller than y∗. So there is a w which is released no more than y∗

times relative to s during all sufficiently large stages t. The stability
of C follows by arguing that the minimum number of releases reaches
a limit and then that the minimum w for this number of releases also
reaches a limit.

Now, check that for each w less than a, w can be the stable value for
only boundedly many s. Fix w. By Item 1, (∃x)(∀y)(∃z)ϕ(w, x, y, z).
Fix x so that x is a witness to the leading existential quantifier of
this formula. If s is greater than x then w will be released y∗ times
during each stage t such that (∀y < y∗)(∃z < t)ϕ(w, x, y, z). Thus, the
number of times that w is released relative to s during stage t goes to
infinity as t increases. Consequently w cannot be the eventual value of
C(s, t) as t increases.

12. More Computability Results

12.1. Extension to n-tuples. The following result extends the ex-
istence of low2 infinite homogeneous sets from colorings of pairs to
colorings of n-tuples.
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Theorem 12.1. For each n ≥ 2 and each computable 2-coloring of
[N]n, there is an infinite homogeneous set A with A′′ ≤T 0(n).

Proof. This is proved in relativized form by induction on n. The base
case n = 2 is proved by relativizing Theorem 3.1. Now assume the
result for n in order to prove it for n + 1. For notational simplicity,
we prove it in unrelativized form. Let C be a computable 2-coloring of
[N]2. By Jockusch [1972, Lemma 5.4] there is a pre–homogeneous set
A with A′ ≤T 0′′. (A set A is pre–homogeneous if any two (n + 1)–
element subsets of A with the same first n elements are assigned the
same color by C.) Now C induces a coloring C ′ on [A]n, i.e., forD ∈ [A]n,
C ′(D) = C(D∪{a}), where a ∈ A and a > max(D) (this is well–defined
since A is pre-homogeneous). Applying the inductive hypothesis to the
A-computable coloring C ′, one obtains a homogeneous set X for C ′
such that X ′′ ≤T A(n) ≤T 0(n+1). Since every homogeneous set for C ′ is
homogeneous for C, the induction is complete. �

The above is best possible since, by Theorem 2.5 iv, there is a com-
putable 2-coloring of [N]n with 0(n−2) ≤T A (and so 0(n) ≤T A′′) for
each infinite homogeneous set A.

12.2. Avoiding cones. The next result extends Seetapun’s cone
avoidance theorem (Theorem 2.7) to colorings of n–tuples and also,
for n = 2, gives a homogeneous set which is not high.

Theorem 12.2. For each n ≥ 2, each computable k–coloring C of [N]n,
and any sequence of sets C0, C1, . . . with (∀i)[Ci 6≤T 0(n−2)], there is an
infinite homogeneous set A with A′ 6≥T 0(n) and (∀i)[Ci 6≤T A].

Proof. This is proved in relativized form by induction on n. First
consider the base step n = 2, which we prove in unrelativized form
with k = 2 for notational convenience. Let a computable 2–coloring
C of [N]n, and a sequence of noncomputable sets C0, C1, . . . be given.
We must construct an infinite homogeneous set A with A′ 6≥T 0′′ and
(∀i)[Ci 6≤T A]. This will be done by applying Theorem 3.6 and the ar-
gument which was used to prove Jockusch and Stephan [1993, Theorem
4.6], which is the analogous cone avoidance result for non–high cohesive
degrees. (In Jockusch and Stephan [1993, Theorem 4.6] a should be
replaced by b in the statement of the result for consistency with the
notation used in the proof of that result.)

Let ci be the degree of Ci. Define inductively a sequence of degrees
d0,d1, . . . (di 6≥ 0′′) as follows. Let d0 = 0′. If di ∪ ci 6≥ 0′′, then let
ei = ci else ei = 0′; in both cases let di+1 = di ∪ ei. By Spector’s The-
orem [Spector, 1956] (see Odifreddi [1989, p. 485]) the ideal generated
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by the degrees di has an exact pair f and g such that the degrees ei are
uniformly recursive in both f and g. Since 0′′ does not belong to the
ideal, one half of the exact pair is not above 0′′, say g 6≥ 0′′. Posner and
Robinson [1981, Theorem 3] showed that there is a degree a such that
a′ = g and a′ = a∪ei for all i. By Jockusch and Soare [1972, Theorem
2.4] relativized to a′ there is a degree d >> a′ which is hyperimmune-
free relative to a′. Hence by Theorem 3.6 relativized to a there is a
degree b which contains an infinite set B which is homogeneous for the
given coloring C and such that (b ∪ a)′ ≤ d.

Since a′ ∪ 0′′ is computably enumerable but not computable in a′,
a′ ∪ 0′′ is hyperimmune relative to a′, and hence a′ ∪ 0′′ is also hyper-
immune relative to b′. Thus 0′′ 6≤ b′ so b is not high.

Assume now for a contradiction that ci ≤ b . If ei = ci, then
b = b ∪ ei ≥ a ∪ ei = a′ and b′ ≥ a′′ ≥ 0′′. Otherwise, ci ∪ di ≥ 0′′.
Then b′ ≥ ci ∪ a′ = ci ∪ g ≥ ci ∪ di ≥ 0′′. Both cases contradict the
above assertion that b is not high, so ci 6≤ b. This completes the proof
of the theorem for the case n = 2.

For the induction step, assume the theorem holds for n (in rela-
tivized form). We prove it for n + 1, but for notational convenience
assume that k = 2 and prove it in unrelativized form. Let a com-
putable 2–coloring C of [N]n+1, and a sequence of sets C0, C1, . . . with
(∀i)[Ci 6≤T 0(n−1)] be given. We must construct an infinite homoge-
neous set B with B′ 6≥T 0(n+1) and (∀i)[Ci 6≤T B]. By Jockusch [1972,
Lemma 5.4] there is a pre-homogeneous set A with A′ ≤T 0′′. Then

C induces an A–computable 2–coloring Ĉ of [A]n (for more details see
the proof of Theorem 12.1). Note that for each i, Ci 6≤T A(n−2), since
otherwise we obtain Ci ≤T A(n−2) ≤T 0(n−1). Since we are assuming
that the theorem holds for n relative to A, there is an infinite set B

which is homogeneous for Ĉ, and hence for C, such that B′ 6≥T A(n) and
(∀i)[Ci 6≤T B⊕A]. It then follows that B′ 6≥T 0(n+1) and (∀i)[Ci 6≤T B],
which completes the induction. �

12.3. Uniformity and Theorem 3.6. The only nonuniform step in
the proof of Theorem 3.1 is the use of Theorem 3.6 (or Theorem 3.7).
The following is a uniform version of Theorem 3.6 which is useful in
Hummel and Jockusch [n.d.].

Theorem 12.3. There is a function f ≤T 0(3) such that whenever the
number a is a ∆0

2 index of a ∆0
2 set A, H ′′ = {f(a)}0′′ for some infinite

set H contained in or disjoint from A.

Proof. The proof is based on a slight modification of the proof of The-
orem 3.6 found in Section 4.2. Here we will require that the sets L in
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the forcing conditions (D,L) lie in a fixed, uniformly low Scott set S.
(As we explained in Section 8.4, such a set exists). As all sets in S are
low, the proof of Theorem 3.6 goes through with this restricted set of
forcing conditions. It is a Π0

3 predicate of a to say that a is a ∆0
2 index,

and we can define f(a) arbitrarily if it is not. Assume now that it is,
and let A be the set of which a is a ∆0

2 index. Fix a set B of degree d as
in the proof of Theorem 3.6 in Section 4.2. The construction produces
effectively from a two numbers b and c such that at least one of the
following conditions holds:

(A) Some set S ∈ S is an infinite subset of A or A,
(B) {b}B = X ′ for some infinite X ⊆ A, or
(C) {c}B = Y ′ for some infinite Y ⊆ A.

(For example, {b}B(e) = 1 if there exists i such that e ∈ X ′ is forced at
stage 2〈e, i〉.) Furthermore, if {b}B is total and Condition (A) is false,
then (B) holds. An analogous statement holds for {c}B and Condition
(C).

Since S is uniformly computable from T where T is low, the Con-
dition (A) is a Σ0

3 predicate of a. If Condition (A) holds, one may
0(3)–effectively find a lowness index for an infinite subset of A or A
which is in S, and from that a low2 index of the set, i.e. an appro-
priate value of f(a). Suppose now that Condition (A) is false. The
predicate “{d}B is total” is a Π0

3 predicate of d and a and either (B) or
(C) holds, so one may 0(3)–effectively choose one of the two Conditions
(B), (C) which holds. It is then easy to compute f(a) as required, using
that d is low over 0′. �

(It is possible to make modifitions to the proof found in Section 5.2
to prove the above result.)

12.4. Jump universal. The following results show a close degree–
theoretic connection between degrees d >> 0′, r–cohesive sets and in-
finite sets homogeneous for computable colorings of pairs.

Theorem 12.4 (Jockusch and Stephan [1993]). The following are
equivalent for any degree d:

(i) There is an r-cohesive (p-cohesive) set with jump of degree d.
(ii) d >> 0′

Proof. The implication (ii) → (i) is Corollary 4.5. For the implication
(i) → (ii), suppose that A is a p–cohesive set. Let g be a primi-
tive recursive {0, 1}–valued function such that lims g(e, i, s) = {e}K(i)
whenever {e}K(i) ↓≤ 1. Such a function g exists by the proof of the
limit lemma. Since A is p–cohesive, lims∈A g(e, i, s) exists for all e and
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i. Let f(e, i) = lims∈A g(e, i, s), so that f(e, i) = {e}K(i) whenever
{e}K(i) ↓≤ 1. Clearly, f ≤T A′, and each K–computable {0, 1}–
valued partial function has a total f–computable extension. Hence
d = deg(G′) >> 0′. �

Theorem 12.5. There is a computable 2–coloring C of [N]2 such that
every infinite homogeneous set A has jump of degree >> 0′.

Proof. By Theorem 12.4, it will suffice to produce a computable 2-
coloring C such that every infinite homogeneous set is p-cohesive.

Let A0, A1, . . . be an uniformly computable listing of the primitive
recursive sets. If a 6= b let d(a, b) be the least i with Ai(a) 6= Ai(b). If
a < b and a ∈ Ai(a,b) then C colors {a, b} red and otherwise it colors
the pair blue.

Suppose that A is a homogeneous set for C and (for a contradic-
tion) that A is split by Ak. Choose k as small as possible. Then for
sufficiently large distinct numbers a, b ∈ A, d(a, b) ≥ k. Then take
“sufficiently large” a, b, c ∈ A with a < b < c, Ak(a) 6= Ak(b) and
Ak(b) 6= Ak(c), so that d(a, b) = d(b, c) = k. But then C colors {a, b}
red iff C colors {b, c} blue, contradicting the homogeneity of A. �

The proof of Theorem 3.6 in Section 4.2 shows that for every degree
d >> 0′ and for every computable 2-coloring C ′, there exists a homo-
geneous set B (for C ′) with B′ ≤T d. Hence the above coloring C is
“jump universal” in the sense that for any homogeneous set A (of C)
and any computable 2-coloring C ′, there exists a homogeneous set B
(for C ′) with B′ ≤T A′. Also, note that for any computable coloring
C ′ the degrees of the infinite homogeneous sets are closed upwards by
Jockusch [1973, Corollary 1] and hence the degrees of the jumps of
such sets are closed upwards by the relativized Friedberg completeness
criterion. Hence we have the following corollary:

Corollary 12.6. The following are equivalent for any degree d:

(i) Every computable 2–coloring of [N]2 has an infinite homoge-
neous set with jump of degree d.

(ii) d >> 0′

It is open whether there is a computable coloring C which is “uni-
versal” (i.e., for any infinite homogeneous set A (for C) and any com-
putable 2-coloring C ′, there exists an infinite homogeneous set B (for
C ′) with B ≤T A.)

13. Conclusions and Questions
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13.1. The relationship between 2nd order theories and state-
ments. Figure 1 summarizes the relationship between various second
order theories and statements. (The arrows are implications. The
solid arrows cannot not be reversed (unless of course they have arrows
in both directions). It is not known if the dashed ones can. The lack
of arrows means the relations between the theories is also unknown.)
The two relations that are missing from Figure 1 are the one we were
able to exploit for some of our results: over RCA0, RT 2

2 is equivalent
to COH + SRT 2

2 and RT 2
<∞ is equivalent to COH + SRT 2

<∞.
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Figure 1. The relationship between 2nd order theories
and statements.

13.2. First order consequences.

Theorem 13.1. Let (ϕ)1 be the set of first order consequences of
ϕ+RCA0.

(i) (RCA0)
1 = (WKL0)

1 = (COH)1.
(ii) (RCA0)

1 ( (SRT 2
2)

1 ⊆ (RT 2
2)

1 ⊆ (I Σ2)
1.

(iii) (I Σ2)
1 ( (B Σ3)

1 ⊆ (SRT 2
<∞)1 ⊆ (RT 2

<∞)1 ⊆ (I Σ3)
1.

(iv) (I Σ3)
1 ( PA = (RT 3

2)
1 = (RT k

n)1 (for any fixed k ≥ 3 and
n ≥ 2).

13.3. Reverse Mathematics Questions. Perhaps the most interest-
ing question in this vein is:
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Question 13.2. Is RCA0 + RT 2
2 Π0

2-conservative over RCA0? In par-
ticular, does RCA0 + RT 2

2 prove the consistency of P− + I Σ1? Does
RCA0 + RT 2

2 prove that the Ackermann function is total?

It is known that the provably total recursive functions in RCA0 are
exactly the primitive recursive functions. This characterizes the Π0

2

sentences provable from RCA0. (Fairtlough and Wainer [1998] credits
this result to Parsons [1970], Mints [1973] and Takeuti [1987]). Hence
to get a negative answer (to the above question) one must show using
RT 2

2 that some computable but not primitive recursive function (such
as the Ackermann function) is provably total. The functions provably
total in RCA0 + I Σ2 include the Ackermann function and far larger
functions.

Question 13.3. Does the converse to Lemma 6.6 hold? It is known
that WKL0 is Π1

1-conservative over RCA0 + I Σ3. So a particular case
of the above question is: Is every countable model of RCA0 + I Σ3 an
ω-submodel of some countable model of WKL0 + I Σ3?

A positive answer to the last question in Question 13.3 would imply
every countable model of RCA0 + I Σ3 is an ω-submodel of some count-
able model of WKL0 + I Σ3 + RT 2

<∞. Our current techniques can be
used to show for all n, every countable topped model of RCA0 + I Σn

is an ω-submodel of some countable model of WKL0 + I Σn + RT 2
<∞

(this is an improvement on Theorem 11.2). A positive answer would
also imply a positive answer to the following question. (For details of
how this implication would go, see the proof of Lemma 9.6 and then
use Lemma 6.6.) Call a theory T a Π1

2 theory if all of its axioms are Π1
2

sentences.

Question 13.4. If T0 and T1 are Π1
2-theories (in second order arith-

metic) which are each Π1
1-conservative over T (RCA0) is T0 + T1 also

Π1
1-conservative over T (RCA0)?

The above question can be answered negatively if we remove the
restriction that the theories be Π1

2-theories. One can show that every
countable model of RCA0 is an ω-submodel of some countable model
of RCA0 + ¬ Weak König’s Lemma (we will leave the details as an
exercise). Hence both Weak König’s Lemma and its negation are Π1

1-
conservative over RCA0 but clearly the conjunction of these two sen-
tences is not.

Answers to the following questions would allow one to flesh out the
above diagram and theorem.

Question 13.5. Does RT 2
2 imply Weak König’s Lemma in RCA0?

Does RT 2
<∞ imply Weak König’s Lemma?
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Question 13.6. Does SRT 2
2 imply RT 2

2? (Does SRT 2
2 imply COH?)

Does SRT 2
<∞ imply RT 2

<∞? (Does SRT 2
<∞ imply COH)?

Question 13.7. Does RT 2
2 imply I Σ2? Does RT 2

<∞ imply I Σ3?

Question 13.8. Does the “Chain or Anti-chain Condition” imply
RT 2

2 ? (The Chain or Anti-chain Condition is the statement that every
infinite partial order has an infinite chain or an infinite anti-chain.
This statement follows easily from RT 2

2 +RCA0.) In Herrmann [n.d.]
it is shown that there is a computable partial order of ω with no infinite
∆0

2 chain or anti-chain.

13.4. Computability Theory Questions.

Question 13.9. For each ∆0
2 set A is there an infinite low set X which

is contained in or disjoint from A? Equivalently, does each stable com-
putable 2–coloring of [N]2 have an infinite low homogeneous set? A
relativizable positive answer would imply that SRT 2

2 is strictly weaker
than RT 2

2 over RCA0.

Question 13.10. For each ∆0
3 set A is there an infinite low2 set which

is contained in or disjoint from A?

Question 13.11. For each noncomputable set C and each computable
2-coloring of [N]2, is there an infinite low2 homogeneous set X with
C 6≤T X?

Question 13.12. For every 2-coloring C of [N]2 which is not of PA
degree is there an infinite homogeneous set H such that C ⊕H is not
of PA degree? A relativizable positive answer will lead to a negative
answer to Question 13.5.

Question 13.13. What degrees d have the property that every 2-
coloring of [N]2 has an infinite homogeneous set of degree at most d?
(Clearly every degree d >> 0′ has this property, but the converse is
false. Indeed Hummel and Jockusch [n.d.] has shown that there is a
degree with the above property which is incomparable with 0′.)
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