ERRATA FOR "ON THE STRENGTH OF RAMSEY'S THEOREM FOR PAIRS"

PETER A. CHOLAK, CARL G. JOCKUSCH, JR., AND THEODORE A. SLAMAN

Several proofs given in [2] contain significant errors or gaps, although to our knowledge all results claimed there are provable. The needed corrections are described below. All references are to [2] unless otherwise stated, and we adopt the notation and terminology of that paper.

1. Lemma 7.10 asserts that the principles D_2^2 and SRT_2^2 are equivalent over RCA_0 . However, the proof that D_2^2 implies SRT_2^2 has a hidden application of $B\Sigma_2^0$ and thus is actually carried out in $RCA_0 + B\Sigma_2^0$. The problem is that, in the construction of H by adding one element at a time, each element c added to H must form a pair of the appropriate color with all previously chosen elements. To get the existence of such a c one seems to need $B\Sigma_2^0$. This gap was recently closed by Chong, Lempp, and Yang, who showed in [3], Theorem 1.4, that, in RCA_0 , D_2^2 implies $B\Sigma_2^0$, and hence D_2^2 implies SRT_2^2 .

2. Lemma 7.11 asserts that RT_2^2 is equivalent to SRT_2^2 & COH over RCA_0 . However, the proof given there that RT_2^2 implies COH in RCA_0 is seriously flawed. This was pointed out by Joseph Mileti and later by Jeffrey Hirst. A proof that RT_2^2 implies COH in $\mathsf{RCA}_0 + \mathsf{I}\Sigma_2$ can easily be extracted from the proof of Theorem 12.5. Mileti, and simultaneously Lempp and Jockusch, observed that it is possible to eliminate the use of $\mathsf{I}\Sigma_2$ by effectively bounding in terms of k the number of changes changes in the characteristic function of A when it is restricted to A_k , so that proving that this number is finite requires only Σ_1 -induction. Thus, it is provable in RCA_0 that RT_2^2 implies COH, and hence that RT_2^2 is equivalent to SRT_2^2 & COH.

3. Joseph Mileti pointed out a gap in the proof of the claim at the bottom of page 50 that a certain computable 2-coloring of pairs C is "jump universal" in the sense that for every C-homogeneous set A and every computable coloring \tilde{C} , there exists an infinite \tilde{C} -homogeneous set B with $B' \leq_T A'$. The proof provided works only when \tilde{C} is stable. However, this assumption can be eliminated by using the density of the Turing degrees under << (see [6], Theorem 6.5) to stabilize \tilde{C} . Namely,

²⁰⁰⁰ Mathematics Subject Classification. Primary: 03F35 03C62 03D80.

by Theorem 12.5 let C be a computable coloring such that every infinite homogeneous set has jump of degree >> 0', and let A be an infinite homogeneous set for C. Let d be the degree of A', so that d >> 0'. Let \hat{C} be any computable 2-coloring of pairs. We must show that \hat{C} has an infinite homogeneous set with jump of degree at most d. Let **c** be a degree with $\mathbf{d} >> \mathbf{c} >> \mathbf{0}'$, and let **a** be a degree with $\mathbf{a}' = \mathbf{c}$. Since $\mathbf{a}' >> \mathbf{0}'$, there is an infinite set R of degree at most **a** which is sufficiently cohesive that the restriction of C to R is stable. (To see this, note by Theorem 2.1 of [5] there is a *p*-cohesive set of degree \mathbf{a} , and replace the primitive recursive sets by a suitable uniformly computable family which yields stability.) Relativizing the proofs of the results in Section 3 to **a** and using that $\mathbf{d} >> \mathbf{a}'$ shows that there is an infinite set H which is homogeneous for the restricted coloring (and hence for C) such that H has degree at most \mathbf{d} . These same remarks suffice to prove Corollary 12.6. The upshot of these remarks is that if d >> 0', then every computable 2-coloring of pairs has an infinite homogeneous set H whose jump has degree at most d. Another proof of this may be found in [4], Theorem 3.4(ii), where it is shown that, for any uniformly Δ_2^0 family of noncomputable sets $\{C_i\}_{i\in\omega}$, H may be chosen to satisfy in addition $(\forall i)[C_i \not\leq_T H]$.

4. In the penultimate paragraph on page 52, it is claimed that it can be shown by the methods of Avigad and also by those of Hajek that every countable model of $\mathsf{RCA}_0 + \mathrm{I}\Sigma_n$ is an ω -submodel of some countable model of $\mathsf{RCA}_0 + \mathrm{I}\Sigma_n + \mathsf{WKL}_0$. However, Avigad [1] has pointed out that it seems to be necessary to combine his methods with those of Hajek to get this result. Also in [1] there are interesting comments on our paper and related matters as well as a solution to Question 13.3 and a partial solution to Question 13.4.

References

- Jeremy Avigad, Notes on Π¹₁-conservativity, ω-submodels, and the collection schema, Carnegie Mellon Technical Report CMU-PHIL-125, 2001. (Available online at http://www.andrew/cmu.edu/user/avigad/)
- [2] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey's Theorem for pairs, this JOURNAL 66 (2001), 1-55.
- [3] C. T. Chong, Steffen Lempp, and Yue Yang, The collection principle for Σ_2 formulas and the partition principle PART, to appear in Proceedings of the American Mathematical Society.
- [4] Damir D. Dzhafarov and Carl G. Jockusch, Jr., Ramsey's Theorem and cone avoidance, this JOURNAL 74 2009, 557–578.
- [5] Carl Jockusch and Frank Stephan, A cohesive set which is not high, Mathematical Logic Quarterly 39 (1993), 515–530.

ERRATA FOR "ON THE STRENGTH OF RAMSEY'S THEOREM FOR PAIRS" 3

[6] Stephen G. Simpson, Degrees of unsolvability: a survey of results, Handbook of Mathematical Logic (J. Barwise, editor), North-Holland, Amsterdam, 1997, pp. 631–652.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5683, USA

E-mail address: Peter.Cholak.1@nd.edu

Department of Mathematics, University of Illinois, Urbana, IL 61801-2975

E-mail address: jockusch@math.uiuc.edu

Department of Mathematics, University of California, Berkeley, CA 94730-3840, USA

E-mail address: slaman@math.berkeley.edu