
Rado Path Decomposition

Peter Cholak

January, 2016

Singapore
Joint with Greg Igusa, Ludovic Patey, and Mariya Soskova.



Monochromatic paths

Definition
Let c : [ω]2 → r . A monochromatic path of color j is an
ordered listing (possibly finite or empty) of integers
a0, a1, a2 . . . such that, for all i ≥ 0, if ai+1 exists then
c({ai, ai+1}) = j.
An empty listing can be a path of any color. A singleton can
be a path of any color. The color is determined for paths of
more than one node. Paths might be finite or infinite.

3 colors is more canonical than 2 color.



Rado’s Theorem

Improving on a result of Edrős, Rado published a theorem
which implies:

Theorem (Rado Path Decomposition or RPDr )
Let c : [ω]2 → r . Then, for each j < r , there is a
monochromatic path of color j such that these r paths (as
sets) partition ω (so they are pairwise disjoint sets and their
union is everything).

Richard Rado. Monochromatic paths in graphs. Ann. Discrete
Math., 3:191-194, 1978. Advances in graph theory
(Cambridge Combinatorial Conf., Trinity College, Cambridge,
1977).



Ultrafilter Proof, Part I

Let neighbors of m with color i be

N(m, i) = {n : c({m,n}) = i}.

Fix a non-principal ultrafilter on ω. For all m, for some
unique j < r , N(m, j) is large (in the ultrafilter). Let
Aj = {m : N(m, j) is large}. The Aj partition ω.

Think of m ∈ Aj as having color j. Each m has a unique
color.



Ultrafilter Proof, Part II

For any pair of points m < n in Aj, N(m, j)∩N(n, j) is
large. So there are infinitely many v ∈ N(m, j)∩N(n, j). For
all such v, c(m,v) = c(v,n) = j. Note that any such v is
likely much larger than m and n and not necessary the same
color.

Stagewise build finite paths such that the current end of the
path of color j has color j and at stage s (if s is not already
in our finite paths) use a v like above to add s to the path of
it’s color (the path and s have the same color).



Ramsey Theorem and our Ultrafilter Proof

One of the Aj must be large. We can thin Aj to get a
homogenous set of color j. Given ai ∈ Aj choose ai+1 in
Aj ∩

⋂
k≤iN(ak, j).



Questions, I

The existence of an ultrafilter cannot be shown in ZF. But, by
independent results by Enayat, Kreuzer, and Towsner, adding
a non-principal ultrafilter is conservative over ACA0. So
RPDr follows from ACA0.

Question
Does RPDr imply ACA0?

Question
Does RPDr imply RT2

r ?



Computable paths are not enough

It is well known that there is a computable linear order,
(ω,<L) of type of ω+ω∗ with no computable ascending or
descending sequence. For x < y, color the pair (x,y) red iff
x ≤L y. Blue otherwise. A computable red (blue) path is an
ascending (descending) sequence.

This can be improved to show that there is no uniform ∆0
2

path decomposition for 2-computable colorings.

Question
Is there an r -coloring without a ∆0

2 path decomposition?



Cohesive Proof

Recall N(m, i) = {n : c({m,n}) = i} is the neighbors of m
with color i. Let C be cohesive w.r.t. to all N(m, i), so C is
infinite and, for all m,i, either C ⊆∗ N(m, i) or
C ⊆∗ N(m, i).
Now a set X is large iff C ⊆∗ X and repeat ultrafilter proof
with this notion of largeness.



PA over 0′

A careful analysis of the last proof shows that the path
decomposition is computable in C′.

Why the jump? Exactly one N(m, j) is large (in our cohesive
set C) . It is ∆C2 to determine which one.

By Jockusch and Stephan, d� 0′ iff there is an r -cohesive set
C such that C′ ≤T d.

For computable graphs a path decomposition is computable
in d if d� 0′.

Question
Can this be improved?



Generic Path Decompositions

Consider (τ0, τ1 . . . τr−1, X) such that X is infinite, τj is a
finite path of color j, and if τj = σ̂m then X ⊆∗ N(m, j) (so
m has color j w.r.t. X) as our forcing conditions. A generic G
for this forcing is a path decomposition. Forcing ΣG1
statements (like does ΦG(w)↓) is ΣX2 . So this forcing cannot
be used for cone avoidance.



Stable Colorings

A coloring c is stable iff for all m, limn c(m,n) exists. Fix a
stable coloring and now let large mean almost all and repeat
our ultrafilter proof.

Stable computable colorings have ∆0
2 path decompositions

since determining a m’s color is ∆0
2.

A path decomposition restricted for the coloring c : [X]2 → r
(where X ⊂ω) does not help find a path decomposition for
the coloring c : [ω]2 → r . So COH does not help reduce the
problem.



Finite versions of RPDr

Pokrovskiy showed that given any r > 2 and M there is an
r -coloring of [M]2 (this graph is just KM ) which does not
partition into r many paths, one of each color. For r = 3, 3
paths is enough but two of them might have the same color.
r = 2 is special and will be dealt with shortly.

The normal proof of the finite version from the infinite
version using compactness breaks down because the paths
linking numbers below M might also involve some very large
numbers.



Proof for 2-colorings of KM
Assume the colors are RED and BLUE. Inductively assume we
have two paths of color RED and BLUE. Let x be the least
integer not in any path. Let xr be the end of RED path and
similarly with xb.

If there is any RED path between xr and x avoiding our
partially constructed paths, add that path to the end of the
RED path. (Since finite, this is a computable question.)
Similarly for BLUE.

Otherwise look at the color of (xr , xb). If this is RED add
xb, x (in that order) to the end of the RED path and remove
xb from the end of the BLUE path. So xb switches to RED. If
this is BLUE add xr , x (in that order) to the end of the BLUE
path and remove xr from the end of the RED path. Since
there are only finitely many x’s we settle on our final paths.

This proof fails for r = 3.



Path Decompositions for 2-colorings

Theorem
If c : [ω]2 → 2 is computable then there is a ∆0

2 Path
Decomposition and the proof is nonuniform.



A Key Observation about Switching

Assume xb switches to RED. Only the ends of the paths
switch so if xb switches again back to BLUE x also must
switch back to BLUE but there no BLUE path from xb to x. If
xb switches from the blue path to the red path, it cannot
switch again.

If there are infinitely many BLUE and RED switches then both
paths stabilized and are infinte. If there are only finitely
many switches then again the path stabilized but one might
be finite.

But otherwise our algorithm breaks down. We used this
failure to create another algorithm which works within the
environment of this failure. Hence the end result is
nonuniform.



Questions, II

Question
Let I be a Turing ideal where RPDr holds. Is 0′ ∈ I? Does
RT2

r hold in I? WKL? . . .

Question
What is the Medvedev degree of RPDr ? The Muchnik degree?

Take a path decomposition for an r -coloring. A coloring
restricted to k of the paths is not necessarily a k coloring.

Question
Does RPDr imply RPDr+1? Is this computably true?
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